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Abstract. Magnetic resonance diffusion tensor imaging (DTI) has emerged as a 
convenient and reliable alternative to conventional histology for characterizing 
the fiber structure of the myocardium.  The acquisition of full data for different 
diffusion directions for a large number of slices often takes a long time and 
results in trade-offs in the number of slices and signal to noise ratios.  We 
propose a constrained reconstruction technique based on a regularization 
framework to jointly reconstruct sparse sets of cardiac DTI data. Constraints on 
spatial variation and directional variation were used in the reconstruction. The 
method was tested on sparse data undersampled in both rectilinear and 
(simulated) radial fashions and compared to reconstructions from full data.  The 
method provided reasonable reconstructions with half of the data for rectilinear 
undersampling and similar quality images with a quarter of the data if radial 
undersampling was used. 

1   Introduction 

The fiber structure of the myocardium plays a key role in determining the anisotropic 
mechanical and electrophysiological properties of the tissue.  DTI has emerged as a 
convenient and reliable alternative to conventional histology for characterizing the 
fiber structure of the myocardium [1].  A limitation of current cardiac DTI is the long 
acquisition time, which often results in tradeoffs in the number of slices and signal to 
noise ratios. Methods [2, 3] have been proposed to reduce the acquisition time by 
acquiring sparse data in k-space for each orientation and reconstructing each image 
direction separately.  The methods achieved accelerations up to a factor of two (R=2, 
using half of the data), but often require acquiring additional reference data.  Also 
these methods do not exploit the correlations in the dimension of diffusion direction.  
Typically 6-12 or more diffusion directions are measured separately. We recently 
proposed a spatio-temporal constrained reconstruction framework to reconstruct 
sparse dynamic contrast enhanced MRI data.  The method is based on regularizing the 
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data in both space and time dimensions and is applied to reconstructing dynamic 
cardiac perfusion images [4] from sparse data.  A similar framework is proposed here 
to apply instead to space and diffusion dimensions to jointly reconstruct sparse 
cardiac DTI data for all directions at the same time with appropriate constraints. 

2   Methods 

2.1   Constrained Reconstruction 

The most common technique to reconstruct cardiac MR DTI data is by applying an 
inverse 2D Fourier transform on fully acquired k-space data for each image. A 
separate image is acquired with gradients at different directions to give diffusion 
weighting at different orientations. At least six images, and a separate reference image 
without diffusion weighting, are obtained to determine the diffusion tensor and fiber 
orientations. When full data for each image direction are not acquired in k-space, 
reconstruction using the inverse Fourier transform leads to aliasing in the images.  We 
have previously shown that the aliasing due to undersampling the data can be resolved 
using a regularization framework with different constraints [4, 5, 6].  For cardiac DTI, 
we chose two constraints, one in the dimension of diffusion weighting direction and 
the other, a spatial constraint.  The constraint chosen in the dimension of diffusion 
direction is the total variation constraint.  This constraint was chosen in order to 
preserve the sharp gradients in the diffusion-weighting direction dimension for each 
pixel in the image while resolving the artifacts due to undersampling.  This constraint 
is mathematically represented in equation (1) below. 
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In the above equation, N is the total number of pixels in each image direction, 

d∇ represents the rate of change in the diffusion weighting direction dimension, im  is 

the vector of complex pixel values in the diffusion weighting direction dimension of 
pixel i in the estimated image space data. β is a small positive constant and 

1
represents the L1 norm. 

The spatial constraint we chose is also a total variation constraint in order to 
preserve the spatial image gradients.  The spatial constraint is shown below in 
equation (2). 
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In the above equation, M represents total number of image directions in a given 

sequence for a single slice, x∇ is the spatial gradient of the image in the x-direction, 

y∇ is the spatial gradient in the y-direction and jm represents the complex image data 

for direction  j in the given sequence. 
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Reconstruction from sparse data is performed using the constraints in equations (2) 
and (3) and preserving fidelity to the acquired sparse data.  Reconstruction is 
performed by minimizing the cost function C given in equation (3) below. 
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In the above equation (3), W represents the binary sparsifying pattern used to 

obtain sparse k-space data, d which is from the full k-space data and 
2

represents 

the L2 norm.  1α and 2α are the regularization parameters which are the weighting 

factors for the constraints.  An iterative gradient descent technique with finite forward 
differences was used to minimize the above function.  The complex image data was 
updated iteratively according to equation (4) shown below. 
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In the above equation, n represents the iteration number, λ  is the step size of the 
gradient descent method and '( )C m  is the Euler-Lagrange derivative of the cost 

function, C in equation (3) with respect to m , which is given in equation (5) below. 
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 (5) 

2.2   Cardiac DTI Data 

To test the above method, retrospective DTI experiments were simulated from 
datasets acquired in separate studies, including (a) diffusion-weighted spin-echo 
images (128 x 64 matrix size, 3.0 cm FOV, 2.0 mm thickness) encoded in 6 directions 
and 8 gradient levels per direction (48 images total) of excised dog heart right 
ventricular specimens at 7.1 T [2], and (b) diffusion-weighted images (256 x 256 
matrix size, 10.0 cm FOV, 3.0 mm thickness) encoded in 12 directions of the left 
ventricle equatorial slice of intact sheep heart acquired at 2.0 T [3]. Two different 
undersampling schemes were used to generate sparse data from full k-space data.  
Fully acquired k-space data for each image direction was sparsified by removing 
phase encode lines in a variable density fashion in which 8 lines around the center of 
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k-space for each image direction were kept and the phase encodes away from the 
center were removed in a random fashion.  Fig. 1a shows such an undersampling 
binary mask for a single image direction in the sequence.  This sampling scheme was 
chosen as random undersampling can lead to less severe artifacts as compared to 
interleaved undersampling.  The acceleration factor was defined as the ratio of the 
number of phase encodes acquired for full data to the number of phase encodes kept 
for the reconstruction. The second undersampling scheme was radial undersampling 
in which fully acquired rectilinear k-space data was first sampled on 256 radial lines 
to simulate radial data.  Sparsification was done by removing the radial lines for each 
image direction.  The set of radial spokes for each image direction were rotated by a 
random angle for different image directions in the sequence.  Fig. 1b shows an 
example of a binary radial mask used to undersample full data in radial fashion.  
Acceleration factor was defined as the ratio of the number of radial lines in the full 
data (256) to the number of lines kept for reconstruction. 

                           
                                     (a)                                                                (b) 

Fig. 1. (a) Image showing the binary mask for a single image direction to undersample full k-
space data in variable density fashion by a factor of two.   Six lines around the center of k-space 
are sampled and the lines outside are sampled in a random fashion.  The white portion 
represents the region of k-space sampled.  The phase encoding direction is horizontal. (b) 
Image showing the binary mask for a single image direction to undersample full data in radial 
fashion.  White portion is the region of k-space sampled. 

3   Results 

3.1   Rectilinear Undersampling – Canine Heart Specimen 

The results of the above approach for variable density undersampling by a factor of 
R=2 are shown in Fig. 2.  Fig. 2a shows an image direction for a direction 
reconstructed from full k-space data using 2D inverse Fourier transform (IFT) with a 
line passing through it.  Fig. 2b shows the corresponding image direction from sparse 
data using the constrained reconstruction method.  Fig. 2c compares the 
corresponding signal intensity profiles for the images in Fig. 2a and Fig. 2b for the 
line shown in Fig. 2a. 

Three sets of diffusion tensors were computed using (i) reconstructions from full 
data, (ii) reconstructions from sparse data using constrained approach and (iii) using  
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Fig. 2. (a) Image from the canine ex vivo heart specimen showing one diffusion encoded 
direction reconstructed from full data using IFT.  A line passing through the image is also 
shown.  (b) Corresponding image reconstructed from sparse data R=2 using the constrained 
reconstruction approach.  (c) Comparison of the intensity profiles for the line shown in Fig. 2a 
for the images in Fig. 2a and Fig. 2b. 

only half the number of image directions in the full dataset, for different datasets for 
different slices. The difference angles between the primary diffusion tensor eigenvectors 
(fiber orientations) were then computed.  Fig. 3 shows the results on a single dataset, 
which shows the potential of the constrained approach.  Fig. 3a shows the difference 
angle map between full data reconstructions and sparse data reconstructions.  Fig. 3b 
shows the difference angle map between full data and using only half data.  The mean 
deviation angle for the full-sparse is 8.84 0.03± degrees while the value for full-half is 
10.44 0.03±  degrees. This implies that the sparse data reconstruction using the 
constrained approach is better at capturing DTI fiber orientation. 

 
 

(a) 
 

 

(b) 

Fig. 3. (a) Difference angle map between full data reconstructions using IFT and sparse data 
R=2 using the constrained reconstruction method.  (b) Difference angle map between full data 
reconstructions using IFT and half the number of image directions reconstructed using IFT. 
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3.2   Radial Undersampling – Canine Heart Specimen 

Results of the constrained reconstruction approach on radially undersampled data are 
shown in Fig. 4.  Fig. 4a shows an image direction for a direction reconstructed from 
full k-space data with a line passing through it.  Fig. 4b shows the corresponding 
image direction from sparse data, R=4 using the constrained reconstruction method.  
Fig. 4c compares the corresponding signal intensity profiles for the images in Fig. 4a 
and Fig. 4b for the line shown in Fig. 4a. 

 

 
 

(a) 

 
 

(b) 

 
 

(c) 

Fig. 4. (a) Image showing a diffusion weighted direction reconstructed from full k-space data.  
A line passing through the image is also shown.  (b) Corresponding image reconstructed from 
sparse data R=4 using the constrained reconstruction approach.  (c) Comparison of the intensity 
profiles for the line shown in Fig. 4a for the images in Fig. 4a and Fig. 4b. 

3.3   Rectilinear Undersampling – Sheep Heart 

The results of the constrained approach for R=2 data undersampled in variable density 
fashion for the sheep heart are presented in Fig. 5.  Fig. 5a shows a single direction 
image reconstructed from full k-space data using IFT. Fig. 5b shows the 
corresponding image reconstructed from sparse data using the current method.  The 
absolute difference image between Fig. 5a and Fig. 5b is shown in Fig. 5c.  The peak 
intensity value in the Fig. 5c was about 15% of the peak intensity value in Fig. 5a. 

 

 
(a) 

 
(b) 

 

(c) 

Fig. 5. (a) Image showing a diffusion weighted direction reconstructed from full k-space data for 
the sheep heart.  (b) Corresponding image reconstructed from sparse data R=2 using the 
constrained reconstruction approach.  (c) Absolute difference image between Fig. 5a and Fig. 5b. 
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4   Discussion 

The parameters in the reconstruction method were empirically chosen based on the 
results for different datasets.  The method was robust to small variation in the 
regularization parameters.  We also note that formal methods, like the L-surface [7] 
technique can be used to determine the regularization parameters. 

We found that the spatial and temporal constraints were almost equally helpful in 
reducing the artifacts from undersampling.  Fig. 6 compares the effects of spatial and 
temporal constraints.  Fig. 6a shows the absolute difference image between full data 
reconstruction using IFT and image reconstructed using IFT from R=2 data for a 
single image direction.  Fig. 6b shows the absolute difference image between full data 
reconstruction using IFT and image reconstructed using only the temporal constraint, 

that is 1α  set to the empirical value and 2α  is set to zero in equation (3).  Fig. 6c 

shows the absolute difference image between the image reconstructed from full data 
using IFT and the image reconstructed from R=2 data using spatial constraint only  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6. (a) Image showing the absolute difference between full data reconstruction using IFT 
and R=2 data using IFT for a single image direction.  (b) Image showing the absolute 
difference between full data reconstruction using IFT and R=2 data using only the temporal 
constraint.  (c) Corresponding absolute difference image between full data reconstruction using 
IFT and R=2 data using spatial constraint only.  (d) Corresponding absolute difference image 
between full data reconstruction using IFT and R=2 data using both spatial and temporal 
constraints. 
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that is 1α  is set to zero and 2α is set to the empirical value in equation (3).  Fig 6d 

shows the corresponding absolute difference between image reconstructed using full 
data using IFT and the image reconstructed using both spatial and temporal 
constraints.  We can see that both the spatial and temporal constraints independently 
help reduce the artifacts but when combined together perform better in reducing the 
artifacts due to undersampling. 

It is expected that the joint constrained reconstruction approach will perform better 
when more diffusion-weighted directions are measured. This is because neighboring 
directions are not independent, but have correlations. These correlations are implicitly 
used in the reconstruction to give “lossless” reconstructions from less data. Early 
results show the 12 direction sheep heart dataset performed better qualitatively than 
the 6 direction canine heart specimen dataset. Further work is needed to quantify 
these differences.  

A limitation of the current study is that the results are from post-acquisition 
downsampling. Actually changing the DTI acquisition to acquire fewer phase encodes 
would be advantageous in terms of image artifacts, but could lead to either better or 
worse performance of the reconstruction method.   

It was found that radial undersampling provided higher accelerations using the 
reconstruction method as compared to rectilinear undersampling.  This could be due 
to the fact that radial undersampling leads to less severe artifacts as compared to 
rectilinear undersampling.  Note that another limitation of the study is that the radial 
k-space data was generated from rectilinear k-space measurements, so do not reflect 
the actual measurements that would be made with a radial pulse sequence. 

5   Conclusions 

A constrained approach to reconstruct sparse cardiac DTI was proposed. The method 
has the potential to improve cardiac diffusion tensor imaging by acquiring less data in 
each diffusion weighted direction while reconstructing the entire set of diffusion-
weighted images from multiple directions simultaneously. The method was tested on 
k-space data undersampled in both rectilinear and radial patterns.  The results showed 
that the diffusion-weighted images could be reconstructed with little loss in the image 
quality. 
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