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ABSTRACT

Segmentation of the myocardium in dynamic contrast enhanced 
MR short axis images is an important step towards the estimation 
of semi-quantitative or quantitative parameters to determine the 
perfusion to the tissue regions.  The perfusion indices of the tissue 
are obtained by dividing the tissue into regions of interest and 
estimating perfusion to each region.  A fast automatic 
segmentation method based on level sets has been developed that 
makes use of the spatial and temporal information available in the 
dynamic images.  The algorithm is validated on cardiac data 
qualitatively and quantitatively by comparing against regional 
flow indices from manually segmented tissue regions. 

1. INTRODUCTION 

Cardiac MR perfusion is a promising tool to detect and 
characterize coronary artery disease.  The contrast agent Gd-DTPA 
is injected and perfusion images are rapidly acquired using ECG 
gated sequences to track the uptake and washout of the contrast 
agent in the heart.

Segmenting the myocardium is an important step in 
estimating the blood flow to the tissue.  The myocardium is 
divided into regions of interest (ROIs) and a flow estimate for each 
of the regions is obtained by fitting the mean of the signal intensity 
time curves in the region to a model [1,2].  To ensure consistency 
in the regions over the entire perfusion sequence, the myocardium 
is typically segmented by manually drawing contours on a single 
reference frame and the same masks for the regions are used on all 
of the time frames of the registered perfusion sequence.  Accurate 
segmentation of the tissue is required so that there is no region 
from outside the tissue affecting the flow parameters leading to an 
incorrect diagnosis.  The segmentation is time consuming and in 
some datasets it is difficult to draw contours because of poor 
contrast between the myocardium and other regions.  Manual 
segmentation requires expert knowledge and suffers from 
variability across observers. 

A few semi-automatic methods have been proposed towards 
the segmentation of the myocardium in dynamic perfusion images 
[3-5].  Much more effort has been directed at segmenting gated 
wall motion sequences [6-10].  Gated wall motion studies are cine 
recordings used to image the heart in different phases of the heart 
cycle with no apparent change in heart contrast.  Dynamic 
perfusion datasets often require more robust methods due to the 
presence of noise, respiratory motion, changing contrast and poor 

data quality. Spreeuwers et al. [3] used a region growing method to 
segment the left ventricle and right ventricle blood pools in 
perfusion datasets.  They segmented the epicardium using a five-
node snake on a myocardium feature image.  The myocardium 
feature image was obtained by subtracting maximum intensity 
projections in the time dimension for two temporal regions.  Two 
fixed nodes of the snake were determined by the segmented right 
ventricle extrema.  This approach gave visually reasonable results, 
but was not quantitatively evaluated.  The method required 
choosing the temporal regions to get the feature image for the 
myocardium.  Also the method required the presence of the 
segmented right ventricle blood pool to segment the epicardium.  
In some apical slices the right ventricle is not present.   

Santarelli et al. [4] used a method based on gradient vector 
flow snakes which required manual tracing of a coarse polygon in 
the left ventricle to segment the myocardium.  Most other methods 
to date require many parameters to be tuned to get satisfactory 
results.

The work here improves on our semi-automatic level set 
based segmentation method in [5] which used both spatial and 
temporal information. In that approach the final shape of the 
segmented myocardium was constrained by a-priori determined 
shape models, as proposed in [11].  The method required the 
manual selection of a few seeds in the myocardium and choosing a 
shape model that depended on the slice to be segmented.  Here we 
propose an automatic method which requires no manual interaction 
and does not use shape models. The new approach uses a level set 
based framework and the temporal and spatial information in the 
perfusion images to achieve segmentation of the myocardium. 

2. METHODS 

2.1 Registration 

The dynamic perfusion images were initially registered to a 
reference image chosen from the temporal center of the sequence 
to correct for translations in horizontal and vertical directions.  
Such translations commonly arise due to respiratory motion.  
Registration was done by minimizing the mean squared difference 
between the reference frame and all the other perfusion images.  A 
spatial weighting function was used to weight the squared 
differences.  A 2D raised cosine function (Hanning window) was 
used to penalize the square of the intensity difference more in the 
center region of the image as compared to outer regions.  The 
registration step was used to make the next step of finding the 
location of the heart more robust.
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2.2 Finding the heart 

In the perfusion images the changing contrast in the left 
ventricular and right ventricular blood pools creates high temporal 
variance in the blood pools.  A variance image was generated by 
computing the variance of temporal pixel intensities.  In order to 
reduce the effects due to residual respiratory motion of the heart 
and other structures in the images, the variance image was 
generated using only a few image frames in the temporal sequence.
The frames used to compute the variance image were chosen based 
on the sum of all the pixel intensities for each frame.  The sum for 
each image in the temporal sequence gradually increases as the 
contrast agent enters the right ventricle blood pool and reaches the 
left ventricle blood pool.  The starting frame used to compute the 
variance was chosen after the point where the sum follows an 
increasing pattern in three consecutive frames to reduce the 
variance of right ventricle blood pool.  The end frame to compute 
the variance was chosen such that the contrast agent was in the 
tissue.  The end frame was chosen 17 frames after the starting 
frame.

After finding the starting and the ending time frames to be 
used to compute the variance image, the images in the range were 
smoothed to reduce the noise.  The variance image was computed 
using the smoothed images and the 2D raised cosine spatial 
weighting function was applied on the variance image to weight 
more the left ventricle blood pool.  A seed in the left ventricle 
blood pool was determined as the location of the maximum value 
in the weighted variance image.  Figure 1a shows the weighted 
variance image for a typical dataset. 

2.3 Segmenting the myocardium 

Figure 1b shows the seed in the left ventricle blood pool 
obtained by finding the maximum value in the weighted variance 
image in Figure 1a.  A reference image was chosen at the peak of 
the signal intensity time curve of the seed pixel.  Using the seed 
index a polar map was generated by going radially outward from 
the seed in the left ventricle blood pool in the reference image.  
Figure 1c shows the polar map from the seed shown in Figure 1b.  
The endocardium in the polar map was segmented using intensity 
thresholding (a lower threshold fraction of 0.6 of the intensity of 
the seed found in left ventricle was used) due to the good contrast 
between the left ventricle blood pool and the endocardium.  Seeds 
in the myocardium were then found by going outward three pixels 
from the segmented left ventricle blood pool in the polar map.  The 
polar map was only used to get the seeds in the myocardium.  The 
seed indices were converted back into Cartesian space and input to 
a level set based framework.  The implementation was based on 
routines available in ITK [12]. 

Level sets have been widely used in the segmentation of 
medical images.  In this approach a curve is implicitly represented 

as a zero level set of a higher dimensional function and the entire 

function is evolved according to a differential equation.  The terms 
in the differential equation are used to constrain the evolution of 

the function .  Most of the terms in the equation are based on the 

spatial features of the image to be segmented although in our 
previous work [5], we incorporated temporal information in the 
evolution equation by using a spectral speed function as proposed 
in [13] that accounts for the selected images in the perfusion 

sequence. The embedded curve deforms as evolves and segments 

the object of interest.

In the current implementation, the differential equation 
governing the evolution of the function is given by 
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The function is evolved iteratively and the binary image of 
segmented object is obtained by performing a binary thresholding 
on the output function obtained after the iterations.  The upper and 
lower thresholds required in the above equation to segment the 
myocardium were determined as fractions (1.4 and 0.6 
respectively) of the median of the intensities of the seeds found in 
the tissue.  The parameters 1 and 2 were chosen as 1 and 25 
respectively.  The level sets were evolved until the root-mean-
square change in the level set function was below 0.02 or the 
number of iterations reached 1200.  The binary mask of segmented 

myocardium was obtained after the evolution of .

2.4 Use of adjacent frames 

In some datasets a single reference frame chosen as above 
was not sufficient to get accurate segmentation of the myocardium 
due to poor contrast between the tissue and other regions.  We 
make use of the fact that there is more than one frame with 
different contrast between the myocardium and the blood pools 
when the contrast agent uptake is in the tissue.  We repeated the 
above method of segmenting the myocardium on the two image 
frames before and the two image frames chosen after the initial 
reference frame.  The segmented myocardial masks were then 
registered using the mean squared difference method to correct for 
any residual motion and a mask, which was the sum of the five 
masks, was obtained.  The final segmented myocardial mask was 
obtained by binary thresholding (a threshold factor of four was 
used) the sum mask.  This was helpful to remove any leaking if 
present in some frames.  Figure 1d shows the final result of 
segmentation for the typical dataset. 

3. TEST DATASETS 

The algorithm was tested on 16 short axis datasets from eight 
different patients, two slices each.  Five patients and one volunteer 
were imaged with a saturation recovery turboFLASH sequence on 
a Siemens Trio 3T.  One patient and one volunteer were imaged 
with a fast gradient echo train sequence on a GE Signa 1.5T 
scanner.  Seven of the 16 datasets were adenosine stress perfusion 
data and nine were rest perfusion data. Reconstructed pixel size 
varied between 1.7 mm and 1.9 mm.  The results of the segmented 
myocardium were assessed visually and by performing two-
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compartmental model [1] analysis of the segmented tissue.  The 
myocardium was divided into eight ROIs as shown in Figure 2 and 
the mean flow indices for each ROI were obtained.  Manual 
segmentation was performed by a trained user.  The flow indices 
obtained using the manual segmentation were compared with those 
obtained using the automatic method.

4. RESULTS 

The results of the automatically segmented myocardium 
matched well with the edges of the myocardium in the datasets.  
Figure 3 shows one frame of automatically segmented 
myocardium in four datasets.  The flow indices for the eight 
regions obtained using manual segmentation and the fully 
automatic method for the dataset in Figure 1d are given in table 1.  
The average relative error in the flow indices for the eight regions 
is 0.07.  Paired t-tests were performed between the flow indices of 
the ROIs obtained with the manual segmentation and the automatic 
method at significance level of P<0.05 for the 128 regions in 16 
datasets.  The flow indices were not significantly different 
(P=0.492).

5. DISCUSSION 

An automatic segmentation method for cardiac perfusion 
short axis slices was presented.  For all of the datasets tested using 
this algorithm, no parameters of the segmentation algorithm were 
changed.  Although registration was an important step to determine 
the location of the heart, a coarse registration was sufficient. In 
some cases, if the subject had a good breath-hold, no registration 
was required.  The smoothing of the frames used to calculate the 
variance image helped to reduce the outliers in the variance image 
caused due to change of shape of structures in the liver in a few 
datasets.

In our previous work we incorporated shape information in 
the segmentation of myocardium in which deformable shape 
models for a basal slice, mid slice and apical slices were created.  
Each 2D shape model was trained for a particular axial slice.  The 
results in this paper show that the shape model may not be 
necessary if we use a sufficiently high weighting for the curvature 
term in equation (1) and more than one frame from the dynamic 
sequence to segment the myocardium.  Figure 4 shows an example 
dataset in which there was leaking of the segmented myocardium 
into the right ventricle in one frame due to the poor contrast.  But 
the leaking was prevented in the final segmented myocardium by 
using adjacent time frames in which the contrast of the 
myocardium was different from that in the right ventricle.  Also 
the high weighting on the curvature term prevented leakage of 
level sets into papillary muscles.   

6. CONCLUSION 

A method for segmenting the left ventricular myocardium in 
short axis slices from dynamic contrast enhanced MRI datasets 
was developed and tested.  Clinically useful flow index parameters 
of the tissue regions obtained from the automatic segmentation 
matched well with those obtained from manual segmentation.  The 
time taken by the algorithm to segment a typical dataset on a 
Pentium IV 2.2 GHz processor with 256 MB of RAM was 16 
seconds.  The results show that using spatial and temporal 
information as in this method achieves robust results efficiently. 
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7. FIGURES AND TABLES 

Figure 1 

                     (a)                                               (b)                                                   (c)                                                       (d) 

(a) Weighted variance image computed from the dynamic dataset of a typical patient  
(b) Seed found in the left ventricular blood pool using the maximum value in the variance image shown in Figure 1a 
(c) Polar map generated by going radially outward from the seed found in Figure 1b (X = radius, Y = angle) 
(d) A single time frame of the final segmented myocardium obtained using the level set based framework is shown
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Figure 2        Table 1 

Division of the manually segmented myocardium     Comparison of the manually and automatically segmented flow indices of       
into eight regions to estimate the flow indices for     each region of the perfusion dataset shown in Figure 1 
each region 

Figure 3 

Results of the automatic segmentation procedure shown for a single time frame in four different datasets

Figure 4 

                    (a)        (b) 
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Region Flow index for manually 
segmented tissue 

Flow index for automatically 
segmented tissue 

1 1.2522 1.2514 

2 1.0426 0.7808 

3 1.1216 0.9020 

4 1.0448 1.0484 

5 0.9490 1.0072 

6 0.7806 0.7896 

7 1.1846 1.1394 

8 1.3601 1.3364 

(a) – Segmentation of myocardium using a single time 
frame in which there is ‘leakage’ at the arrow shown 

(b) – Segmentation of myocardium using five time 
frames resolving the leakage 
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