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Figure 1: The workflow of our proposed method which comprises four stages: attribute inspection, guided uncertainty-aware
lasso for defining features, feature extraction through automated transfer function tuning and finally spatial fine tuning and
visualization. Shown in this figure is the example of extracting the tumor core in a multimodal MR brain scan data.

Abstract
Multivariate volume visualization is important for many applications including petroleum exploration and
medicine. State-of-the-art tools allow users to interactively explore volumes with multiple linked parameter-space
views. However, interactions in the parameter space using trial-and-error may be unintuitive and time consuming.
Furthermore, switching between different views may be distracting. In this paper, we propose GuideME: a novel
slice-guided semiautomatic multivariate volume exploration approach. Specifically, the approach comprises four
stages: attribute inspection, guided uncertainty-aware lasso creation, automated feature extraction and optional
spatial fine tuning and visualization. Throughout the exploration process, the user does not need to interact with
the parameter views at all and examples of complex real-world data demonstrate the usefulness, efficiency and
ease-of-use of our method.

Categories and Subject Descriptors (according to ACM CCS): I.4.10 [Image Processing and Computer Vision]:
Image Representation—Volumetric I.3.3 [Computer Graphics]: Picture/Image Generation—Line and curve gen-
eration

1. Introduction

The exploration and visualization of multivariate volume has
been an active research area for a decade. The state-of-the-
art methods for exploring multivariate volumes is user inter-
action with multiple linked view systems. These methods re-

quire the user to explore the volume using parameter views,
e.g. parallel coordinate plots (PCP) or histograms, in a trial-
and-error manner [AM07, BBP08, GXY11]. Although they
have shown successes in simulation datasets where the user
understands the "recipe" of the parameter space, i.e. knows
what combinations of value ranges of attributes may result in
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interesting features, it is difficult for the user to explore com-
plex measured datasets, e.g. seismic datasets. To this end,
research efforts have addressed the exploration of complex
datasets such as seismic data [ZH13, HBG∗11, HFG∗12].
In [ZH13], the approach allows domain users to apply their
expertise into the finding of features by directly select a re-
gion of interest in a multi-panel slice view. However, these
methods either work only on univariate seismic data for a
certain type of features [HBG∗11, HFG∗12] or still requires
transfer function tuning with a PCP based or a histogram
based editor [ZH13] which can be unintuitive and time con-
suming for domain users. Moreover, switching between mul-
tiple views may be somewhat distracting.

Seismic datasets are an important tool to the petroleum
industry and is the driving application of our method. Geo-
physicists interpret features which indicate potential oil and
gas reservoirs, including channels and salt domes, on 3D
seismic data slices. To interpret the seismic data, they first
identify and locate geological features on slices from the
3D seismic data through examination and selection. With the
advancement of multivariate 3D seismic [CM07] interpreta-
tion, attributes derived from the seismic amplitude are used
to aid in the extraction of relevant features. Interpretation
is done mainly by free-hand drawing on slices and refine-
ment of the features through multi-attribute transfer func-
tions [ZH13,TLM03]. Users typically perform the following
tasks during interpretation: selecting features by drawing on
2D slices, refine those features through transfer function ma-
nipulation, examination of results in 3D renderings. Other
domains use similar tasks and we demonstrate the generality
of our approach with multi-modal MR brain scans.

As such, we propose GuideME: a novel method for mul-
tivariate volume exploration which strives to provide the
user with a very simple and intuitive exploration process for
highly complex datasets. Instead of multiple linked views,
our method has only one slice view coupled with a fo-
cus overlay and a volume rendering view, and the tedious
trial-and-error interactions are largely replaced by a guided
uncertainty-aware lasso and automated feature extraction.
The user starts the exploration by browsing through the
slices and detects a feature of interest using his/her domain
knowledge. A focus window which allows the user to in-
spect other attributes can be placed over the feature of in-
terest. Through the inspection, the user determines attributes
that best describe the boundaries of the feature. A bound-
ary confidence image is then blended with the slices, and the
user can easily select the region with a guided uncertainty-
aware lasso which automatically snaps to the detected fea-
ture boundaries. The selected region is then used as input for
the automated feature extraction. Eventually, the feature is
volume rendered and may be optionally edited directly in the
3D view. Using a highly complex real-world seismic dataset
and multi-modal MR brain scans, we show our approach is
efficient, and is able to create comparable results that given
by previous method and ground-truth segmentations.

In this paper, we make the following contributions:

• A novel slice-guided semiautomatic multivariate volume
exploration workflow. The user is freed from unfamiliar
parameter space views and tedious trial-and-error transfer
function tunings.

• A guided uncertainty-aware lasso for region selection,
based on edge detection and Dijkstra shortest path algo-
rithms.

• A technique to automatically fine-tune a multivariate
transfer function given the lasso, based on the optimiza-
tion of a response function.

2. Related Work

Multivariate volumes are often visualized using transfer
functions in a linked view system. In this section, we give
an overview of the relevant techniques.

The most frequently used transfer functions (TFs) are a
1D TF that uses scalar values of the volume or a 2D TF that
has the gradient magnitude of the volume as a second prop-
erty for better classification [KD98]. The TFs can be inter-
actively defined by 1D or 2D parameter space widgets pro-
posed by Kniss et al. [KKH02]. However, to design a good
TF, the user has to manipulate the TF widgets in a trial-and-
error fashion which is laborious and time consuming. To ad-
dress this issue, researchers have proposed methods to auto-
mate the TF design process. Maciejewski et al. [MWCE09]
utilize kernel density estimation to structure the data param-
eter space to generate initial TFs. Wang et al. [WCZ∗11] ini-
tialize TFs by modeling the data value space using Gaussian
mixture model and render the extracted volume with pre-
integrated volume rendering. Alternatively, the system pro-
posed by Guo et al. [GMY11] allows the user to directly ma-
nipulate on the volume rendering view with intuitive screen
space stroking tools similar to 2D photo editing applications.
The above methods work well on volumes with one or two
attributes, however, extending the ideas to more attributes or
higher dimensional TFs is not straight forward.

In recent years, a large amount of work on multivari-
ate volume exploration and visualization has been proposed.
The SimVis system [Dol07,PKH04] allows the user to inter-
act with several 2D scatter plot views using linked brushes
to select features of interest in particle simulations rendered
as polygons and particles. Akiba and Ma [AM07] propose
a tri-space exploration technique involving PCPs together
with time histograms to help the design of high-dimensional
TFs for time-varying multivariate volume datasets. Blaas
et al. [BBP08] extend parallel coordinates for interactive
exploration of large multi-time point datasets rendered as
isosurfaces. Zhao and Kaufman [ZK10] combine multi-
dimensional reduction and TF design using parallel coor-
dinates. Guo et al. [GXY11] propose an interactive high-
dimensional TF design framework using both continuous
PCPs and multidimensional scaling technique accelerated by
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employing an octree structure. Unfortunately, the techniques
described above require the user to design high-dimensional
TFs in the parameter space which may be unintuitive for do-
main users and impractical for complex real-world datasets.
Zhou and Hansen [ZH13] proposed a hybrid method that al-
lows the user to specify initial TFs from region selected in
the object space, fine-tune the TFs in the parameter space
and optionally edit the classified volume directly in the ob-
ject space. However, their work still requires trial-and-error
tuning of the TF in the parameter space.

Our work introduces a novel workflow that replaces the
manual TF tuning procedure with an automated optimization
method, simplifies the user interface to a single slice view
and introduces a guided uncertainty-aware lasso for region
selection. We strive to make multivariate volume exploration
an intuitive experience without burdening the domain user
with unfamiliar spaces and views. As a result, we achieve a
very simple system which produces comparative results to
previous methods. Via a real-world multivariate 3D seismic
dataset and multi-modal MR brain scans, we will show the
usefulness, efficiency and ease-of-use of our proposed tech-
nique.

3. Method Overview

Our approach utilizes automated methods to replace a la-
borious user workflow. A guided uncertainty aware lasso
which snaps to feature boundaries is proposed to assist re-
gion selection, automated transfer function tuning is applied
to avoid trial-and-error transfer function design, and finally a
3D connected component is automatically extracted. The re-
sult of the method is a 3D connected component which best
represents the intention of the user. As shown in Figure 1,
our approach comprises four conceptual stages: attribute in-
spection, uncertainty aware lasso drawing, feature extraction
based on automated transfer function tuning and volume vi-
sualization with optional spatial fine tuning. In the follow-
ing, we explain attribute inspection in this section, detail the
uncertainty aware lasso in Section 4 and the automated fea-
ture extraction in Section 5, and briefly describe the volume
rendering and spatial fine tuning in Section 6.

During attribute inspection, the user inspects one attribute
at a time through a focus window on slices. The focus win-
dow serves as a "magic lens" [BSP∗93] to overlay the chosen
attribute with the contextual background. Then, the user se-
lects one or more attributes that can properly represent the
feature boundaries. The selected attribute(s) are then used to
generate uncertainty information in terms of boundary con-
fidence as shown in Figure 2 as the color coded curves . With
the uncertainty information, the user is able to draw guided
uncertainty-aware lassos which snap to feature boundaries
via a few mouse clicks as the white curves seen in Figure 2.
Next, the feature is extracted using an automated feature ex-
traction approach which minimizes false positives outside
the lasso region while preserving true positives inside, and

Figure 2: On an MR brain scan dataset, the inspection
window with attribute, T1C, is shown over a tumor region
with the FLAIR attribute as background. The boundary con-
fidence derived from T1C, is rendered overlaying the data
slice with a color map shown to the right.

finds the dominant 3D connected component within the lasso
region. Finally, further spatial fine tuning can be conducted
in the 3D view.

4. Guided Uncertainty-Aware Lasso

In this stage, we first extract feature boundaries using Canny
edge detection on an anisotropic diffused image of the data
slice. A boundary confidence image describing the uncer-
tainty can then be derived from the feature boundaries of the
selected attributes. Next, the system calculates an optimal
path between user clicks based on the uncertainty informa-
tion to create a guided uncertainty-aware lasso. The details
of each component will be described in the next subsections.

4.1. Boundary Extraction

The feature boundaries are extracted via edge detection on
an anisotropic diffused image of current slice Ia of attribute
a. We apply Perona and Malik [PM90] anisotropic diffu-
sion to Ia to remove noise while preserving edges. The flow
function g(∇Ia) shown below is used, where K is a constant
which is empirically set to 30 which gives a good diffusion
stopping effect, and the partial differential equation is nu-
merically solved with a small number of iterations.

g(∇Ia) = e−( ||∇Ia||
K )2

Then, the edges in the filtered image are extracted by
Canny edge detection [Can86] which is simple and has good
accuracy. The gradient field is first derived, and we then
compute the direction of the gradient and classify it into
four cases: horizontal, vertical and two diagonals. We re-
move pixels that are not maximal in the pixel’s classified
direction in the non-maximal suppression step. Finally, we
conduct the hysteresis step via recursive edge tracing. To
avoid user involvement in the setup of the lower and upper
thresholds, we compute the histogram of the gradient magni-
tude and accumulate histogram bins until the sum is equal or
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greater than a certain portion Tgm of the count of voxels on
the given slice and take the gradient magnitude value of that
bin as the upper threshold tup [Can86]. The lower threshold
tlo is then computed by multiplying the upper threshold with
a constant kl . We adopt the settings of Tgm = 0.7 and kl = 0.4
from Matlab and find they work well on all datasets we use.

4.2. Boundary Confidence Image

A boundary confidence image can be derived from the ex-
tracted boundary images of user chosen attributes Ās from
the pop-up menu in the inspection window to indicate the
uncertainty. As an uncertainty measurement, the boundary
confidence should be in the range [0,1] which is defined by
Equation 1.

Ib =


1, if ||∇Ia||> tup

maxĀs

||∇Ia||−tlo
tup−tlo , if tlo ≤ ||∇Ia||< tup

0, otherwise

(1)

The boundary confidence of each attribute is computed by
normalizing the gradient magnitude of the extracted bound-
aries. The normalization uses the upper and lower thresholds
defined in the edge extraction process, and values greater
than the upper threshold are mapped to 1. Pixels that are
not detected as edges are simply mapped to 0. Next, the
boundary confidence value for all selected attributes is cal-
culated by blending individual boundary confidence using
the MAX operator which keeps the blended value inside the
range [0,1]. An equal weight is assigned to each attribute so
as to avoid having the boundary confidence of one attribute
reduces the importance of others, and to remove the require-
ment of user involvement. A sequential color map scheme
suggested by Color Brewer [HB03] is used for the rendering
of the boundary confidence image as seen in Figure 2. The
color map range and opacity can be interactively modified to
remove or highlight certain confidence value ranges.

4.3. Guided Uncertainty-aware Lasso

Given the boundary confidence image Ib with its pixels P,
and two user defined end points u and v, an uncertainty-
aware lasso which snaps to feature boundaries can be
thought of as finding an optimal path that minimizes the tran-
sition energy between each pixel as shown in Equation 2.

E(I) = ∑
p∈P

Es(p) (2)

Es(p) = 1−||Ib(p)|| where p ∈ P

The energy in Equation 2 can be efficiently optimized using
the Dijkstra’s algorithm [Dij59] from end point u to v.

To compute the optimal path using Dijkstra’s algorithm,
we convert image Ib into a bidirected graph where each pixel
p is assigned a node and the edge from p to its neighbor-
ing pixel pn has energy Es(pn) as weight. Thanks to the

efficiency of Dijkstra’s algorithm, the user is able to inter-
actively set the end points u, v by clicking on the boundary
confidence image inside the inspection window to setup, and
edit the end points by a click and drag interaction.

5. Automated Feature Extraction

In this stage, we extract the feature based on the lasso re-
gion via an automated feature extraction procedure. An ini-
tial transfer function is generated and tuned using our novel
automated transfer function tuning method. The resulting
transfer function gives minimum false positives outside the
lasso region while preserving true positives inside the lasso.
Then, the dominant 3D connected component in the classi-
fied volume is extracted.

5.1. Automated Transfer Function Tuning

The core of our feature extraction approach lies in auto-
mated transfer function tuning. By watching the domain ex-
perts manually fine-tuning the transfer functions using ex-
isting tools, we observed that they focus only on the las-
soed region and tried to minimize false positives outside the
lasso while preserving true positives inside the lasso. There-
fore, we mimic this procedure by formulating an optimiza-
tion problem. For a multivariate volume of M attributes:
Ā = (A1,A2, . . . ,AM), we model the M-dimensional trans-
fer function space by conducting AND operation between the
M 1D spaces. This avoids erroneous classification caused
by a separable M-D transfer function composed of M 1D
transfer functions multiplied together as shown on page 258
in [HKRs∗06]. We use only binary values 0 and 1 to indi-
cate the selection of attribute values, and denote such a bi-
nary transfer function as f and its i-th 1D subspace f i. An
initial transfer function can be setup, and then optimized by
maximizing a response function.

5.1.1. Initial Transfer Function Setup

Given the lasso region, an initial transfer function, f0, can be
created by querying the attribute values of the pixels inside
the lasso. We conduct the query by a simple traversal over
the slice and test if the current pixel on the slice falls inside
the lasso. If true, we record the pixel’s M-queried results into
the corresponding locations of the histogram array H. Where
H is a 1D histogram array of M-layers, and each layer Hi is a
1D histogram associated with an attribute Ai. Then, an initial
binary transfer function f0 is generated by setting non-zero
histogram locations to one.

5.1.2. Response Function Formulation

We formulate a response function R(Is, Ic) of two binary
images: the user lasso image Is and a connected compo-
nent image Ic of the transfer function classified image I f .
Since we focus on the lasso region only, we take the domi-
nant connected component of the classified image inside the

submitted to Eurographics Conference on Visualization (EuroVis) (2014)



L. Zhou & C. Hansen / GuideME: Slice-guided Semiautomatic Multivariate Exploration of Volumes 5

Figure 3: Left, shows the lasso image Is where the red indi-
cates the lasso region. The transfer function classified image
I f is seen in the center where the blue and green regions are
classified by the transfer function. Right, sees the connected
component image Ic where blue is the dominant connected
component.

lasso. Specifically, we extract all connected components in
the classified image and create a histogram of tag values
inside the lasso. Then we keep only the connected compo-
nent with the most frequent tag in this histogram and discard
other connected components. As shown in Figure 3, the re-
lationship between Is, Ic and I f is clearly demonstrated. For
a multivariate transfer function f , a slice of M-attribute vol-
ume with pixels p, I f can be denoted as:

I f = {p| f (v⃗p)> 0} (3)

where v⃗p = (v1
p,v

2
p, . . .v

M
p ) is the multivariate value of pixel

p. In practice, whenever the transfer function changes, we
update I f and extract the dominant connected component.

The response function R(Is, Ic) can then be written as:

R(Is, Ic) = wr · r(Is, Ic)+(1−wr) · s(Is, Ic)

subject to Nc ≥ Nmin (4)

where wr ∈ [0,1]

where r(Is, Ic) is the cross-correlation coefficient of images
Is and Ic, s(Is, Ic) is a smoothness term, wr is a tunable weight
which is empirically set to 0.7 by default, and the non-zero
pixel count Nc of image Ic has to be greater or equal to Nmin
which we empirically set to be 90% of the non-zero pixel
count of the lasso image Is. The cross-correlation coefficient
is computed by treating the images as arrays of binary pixels
as seen in Equation 5.

r(Is, Ic) =
σIsIc

σIs σIc

=
∑N

i=1(Isi − Īs)(Ici − Īc)√
∑N

i=1(Isi − Īs)2
√

∑N
i=1(Ici − Īc)2

(5)

The smoothness term s(Is, Ic) measures the normalized dif-
ferences of non-zero pixels pc and the neighborhood pcn of
Ic inside the lasso, in our case eight neighbors n, in the clas-
sified region inside the lasso:

s(Is, Ic) =−∑Ps ∑n(pc − pcn)

smax
(6)

where Ps are non-boundary pixels of Is and smax denotes
the maximum possible differences inside Is. Specifically,

we derive smax by considering the extreme case that all
non-zero pixels are surrounded by zero pixels which gives
smax = 8× 1

1+(4×0.25+4×0.5) ×|Ps| = 2×|Ps| as the corner
pixels are shared by four neighboring stencils while the mid-
dle pixels on each side are shared by two stencils. Maximiz-
ing the response function R encourages higher correlation
between the classified region and the lasso, while penalizing
the elimination of true positives inside the lasso. As a result,
maximizing Equation 4 minimizes false positives outside the
lasso while preserving true positives inside the lasso.

5.1.3. Transfer Function Optimization

Since there is no direct link between the transfer function
and R, Equation 4 is hard to optimize using methods like
gradient descent or conjugate gradient. As such, we propose
the following greedy algorithm to approximately maximize
R(Is, Ic). As seen in Algorithm 1, we first determine the or-

Algorithm 1 TF_Opt(Is, f0)
for Attribute Ai in all M attributes do

Generate Ii
c with f i

0
end for
Sort all attributes Ā with descending order of R(Is, Ii

c)
f = f0
for Attributes A j in sorted Ā do

ModifyTF( f j,H j)
end for

der for optimizing the 1D subspace of individual attributes
of the transfer function. This step is necessary because this
ordering affects the final result. We assume that an attribute
which has higher R than others is likely to require fewer
changes for optimization than others, and this is confirmed
by experiments on the datasets we used. Therefore, we use
a conservative heuristic which optimizes the 1D subspaces
from more contributing ones (higher R) to less contributing
ones (lower R) for the feature of interest. The reason is two-
fold: first, this heuristic may lead to minimal iterations of
optimization. Second, if we start with less contributing at-
tributes, it is likely to overly eliminate true positives inside
the lasso and other attributes may never have the chance to
remedy such an error. We first get the binary images classi-
fied by the initial transfer function of individual attribute f i

0
for all attributes Ā. The response function value R is evalu-
ated for each binary image, and then we sort the attributes
by R. Next, we select the attribute that has the highest re-
sponse function value, and maximize the response function
R by optimizing the transfer function’s j-th subspace.

To optimize the individual subspace of the transfer func-
tion, we propose a simple yet efficient transfer function bin
dropping approach as seen in Algorithm 2. In Figure 4, the
steps of the bin dropping method are clearly illustrated on
the top. The method starts with the computation of the mean
value µ of the associated queried histogram of the given at-
tribute. Then, the farther end of the attribute to µ is chosen as
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Algorithm 2 ModifyTF( f i,Hi)
Compute µ of Hi
Select direction d whose bin is farther to µ
for true do

if Rn+1(Is, Ic) > Rn(Is, Ic) then
Drop bin from f i in direction d

else
if Both directions have been tried then

break
else

Switch direction d
end if

end if
end for

direction d as it is likely to contain more false positives. The
algorithm finds the optimal point that maximizes R by drop-
ping bins from the transfer function in the direction d, and
then performs the same operations on the other direction un-
til converges. The effect of the automated transfer function
tuning process is shown in the bottom of Figure 4.

Figure 4: On the top, shows the steps involved in transfer
function modification by bin dropping. In the bottom left is
the initial transfer function classified result (green) using the
queried values from the lasso (white) on the MR brain scan
HG11. To the right, the optimized transfer function classifi-
cation result.

5.2. 3D Connected Component Extraction

Transfer function does not contain any spatial information,
and as such, even with an optimized transfer function may
contains false positive in 3D. Therefore, the last step of fea-
ture extraction is to apply connected component finding to
extract the intended feature in the transfer function classi-
fied volume. We first extract all connected components in
the classified volume, and then, query tag values inside the

user lasso on the slice. The connected component whose tag
value is most frequent is then selected. Next, the selected
connected component is given a color and opacity and other
components are discarded.

6. Volume Rendering and Spatial Fine Tuning

Once the 3D connected component has been extracted from
the automated feature extraction stage, the classified re-
sult is stored as a tag volume and visualized using vol-
ume rendering. We adopt the directional occlusion shading
method from Schott et al. [SPH∗09] which provides bet-
ter depth cues than local shading models as demonstrated
by [LR11] and has shown to provide more insights into seis-
mic datasets [PBVG10]. To provide smooth tag volume ren-
dering, we utilize a simplified version of [HBH03] which
can be efficiently computed in the GPU shader.

In some cases, even the user intended connected compo-
nent contains false positives. As such, we provide the user a
simple yet flexible means of spatial fine tuning: volume ren-
dered image space lasso. This image space lasso allows the
user to select voxels inside the back projected volume of the
volume rendered image. Two modes are provided: the keep
mode keeps voxels inside the lasso while removing others,
and the remove mode does just the opposite which is similar
to [WOCH12].

7. Implementation

Our proposed method has been implemented in C++,
with OpenGL and CUDA for rendering and computa-
tion. The user interface has been implemented using
Qt. Most image processing procedures and value query-
ing tasks, slice rendering and volume rendering have
been implemented on the GPU using GLSL shaders with
the GL_EXT_shader_image_load_store extension.
The rendering of lassos and texts are accelerated with
NVidia’s NV_path_rendering SDK [NVI]. Correlation
coefficient computation is implemented with thrust CUDA
library [HB]. Graph creation from the slice and Dijkstra’s
algorithm are implemented on the CPU. Efficient con-
nected component extraction is realized with CONNEXE li-
brary [Mal].

8. Examples

To demonstrate the usefulness and efficiency of our method,
we apply it to complex multivariate datasets in two differ-
ent disciplines: a multivariate seismic data in the petroleum
industry and multi-modal brain scans from the 2013 Med-
ical Image Computing and Computer Assisted Intervention
(MICCAI) Conference challenge. To validate our method,
we compare the method against previously extracted fea-
tures by domain experts for the seismic example and hand-
segmented ground truths for the MR brain example.
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Figure 5: The first row shows the upper channel in the New Zealand seismic data. Shown in subfigure (a) is the lasso which
extracts the feature, (b) is the result using GuideME, and (c) is the result generated by a domain expert using [ZH13]. The salt
dome is shown to the bottom. In subfigure (d) shows the lasso region drawn for feature extraction, in (e), shows the result using
GuideME, and in (f), the result extracted by the domain expert.

8.1. Seismic Dataset

The seismic dataset we used is a part of the public New
Zealand seismic data. Six attributes have been computed
from the original seismic amplitude: namely instantaneous
amplitude InstAmp, instantaneous phase InstPhase,
entropy of instantaneous phase InstPhase_Entropy,
horizon layers Layer_Seg, semblance Semb and thick-
ness of semblance Semb_Thick. The user starts the ex-
ploration on slices in ’inline’ direction which in our case
is the slices on the ’YZ’ plane. A potential channel struc-
ture draws the user’s attention, and the user zooms in and
places the inspection window over this feature of interest.
As seen in Figure 5(a), after inspecting different attributes,
it is decided that InstAmp best represents the boundary of
this channel structure. Next, the user creates an uncertainty-
aware lasso by placing several anchor points on the feature’s
boundary with relatively high boundary confidence and fine-
tunes it by dragging the anchor points. The feature is then
extracted as shown in Figure 5(b). Compared to Figure 5(c)
where the feature is extracted by our collaborating geophysi-
cists using [ZH13], our automated method provides similar
result which captures the connected body and its meander
details. However, the proposed method greatly reduces the
time to achieve such a result. With the same feature lassoed,
our method takes around a second as shown in Section 8.3 to

extract the feature while pure interactive tuning takes min-
utes. Moreover, the lasso drawing process is guided which
may also be faster than free hand drawing. Next, we would
like to extract the salt dome structure found near the center
of the volume. Again, the user utilizes the inspection win-
dow to examine attributes that emphasis this feature, and
finds that in addition to the InstAmp attribute, the In-
stPhase_Entropy attribute best illustrates the boundary.
Then, a lasso is drawn with boundary confidence informa-
tion calculated from these two attributes as shown in Fig-
ure 5(d). The result as seen in Figure 5(e) is comparable
to the one from domain expert interactions as seen in Fig-
ure 5(f).

To make a quantitative comparison, we compute the dice
score, i.e. twice the number of overlapping voxels from two
data sets divided by the sum of all voxels from the two data,
for our proposed approach against the results conducted by
the domain expert. The dice score for the upper channel is
0.84 while the score for the salt dome is also both 0.84 as
shown in Table 1. Both cases demonstrate that our method
is able to extract features that are similar to interactively ex-
tracted and fine-tuned features generated by domain experts,
but is faster and easier. Furthermore, the entire user interac-
tion in our method happen on slices and the 3D view which
may be more familiar and intuitive to domain users.
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Figure 6: GuideME is applied to multi-modal brain scans of four modals from the BRATS 2013 challenge. Subfigures (a) and
(b) show the visualization result and the lassos on the slice for HG15 and HG11. The extracted active tumors are rendered in
blue, the edemas in red in the context of brain tissue in green. In (c) and (d), we compare the volume rendering of the tumor
and the edema of the GuideME result against the ground truth. In (c) we include a slice comparison against the ground truth
as well as the method proposed in [CMDA13].

Dataset Size #Attr Feature Dice Timing

Seismic
x 274 7 Upper Channel 0.84 1.231s (741+490ms)
y 426 Salt Dome 0.84 1.373s (888+485ms)
z 245

MR HG15
x 161 4 Tumor Core 0.85 0.833s (411+422ms)
y 216 Edema 0.81 0.817s (402+415ms)
z 177 Both 0.87 —

MR HG11
x 161 4 Tumor Core 0.84 0.730s (350+380ms)
y 216 Edema 0.76 0.815s (405+410ms)
z 177 Both 0.87 —

Table 1: Quantitative comparisons and timing results for
the features extracted in the example datasets. For the tim-
ings, the first numbers in the parenthesis are the automated
transfer function tuning time while the second numbers are
the 3D connected component finding time.

8.2. Brain Scan

To demonstrate the generality of GuideME, brain tumor im-
age data from the NCI-MICCAI 2013 Challenge on Multi-
modal Brain Tumor Segmentation [FRM∗] (BRaTS) were
used. The data consists of multi-contrast MR scans of 30
glioma patients with expert annotations for the tumor core
and the edema as ground truths. The datasets in the challenge
all contain four channels: FLAIR, T1, post-Gadolinium T1
(T1C) and T2. We chose high-grade subject HG15 and

HG11 which the methods in the proceedings of the Chal-
lenge gave good agreement with the ground truths.

We describe detailed operations to extract the tumor in
HG15. Setting the FLAIR as the context attribute, and
browsing the slices on XY direction, a large tumor region is
observed. First, we extract the tumor core. Visualizing dif-
ferent attributes inside the inspection window, it is apparent
that the T1C attribute is the best candidate for boundary con-
fidence for the tumor core. A lasso is then drawn around the
tumor to extract it, and a volume rendered image space lasso
is used to fine tune it. The extracted tumor core is seen in
blue in Figure 6(a). Next, we extract the edema. Checking
with different attributes inside the inspection window, the
FLAIR attribute best describes the edema. Clicking along
the edema boundary, the feature is then extracted and fine-
tuned using the volume rendered image space lasso. The fi-
nal classification of the edema is shown in red as seen in Fig-
ure 6(a). To validate the result, we compare our classification
against the ground truth segmentation using the dice score.
The dice score for the tumor and the edema together is: 0.87,
and respectively 0.85, and 0.81 as seen in Table 1. The result
is also compared to a method [CMDA13] proposed in the
BraTS challenge as seen in Figure 6(c), in which the method
gives slightly above 0.91 dice score for the whole tumor re-
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gion, and around 0.90 for the tumor while around 0.86 for
the edema.

Similarly, we extract the tumor core and the edema for
HG11 as seen in Figure 6(b), and a comparison can be seen
in Figure 6(d). The resulting dice score for the core and the
edema is: 0.87, while the core has dice score 0.84 and the
edema has 0.76 as shown in Table 1. In comparison, the
scores for the method in [CMDA13] are: just above 0.90 for
the whole tumor, around 0.82 for the core and 0.70 for the
edema.

8.3. Performance

All the performance timings are conducted on a workstation
with a single Intel Core i5 3.30GHz CPU, 16GB of main
memory and an Nvidia GeForce GTX 480 with 1.5GB mem-
ory running 64-bit Windows 7 system. The creation of the
boundary confidence image is around 200ms, and the update
of guided uncertainty-aware lasso typically takes below 20
milliseconds. The timing results of features in both examples
can be found in Table 1. For the seismic dataset, the classi-
fication of the upper channel takes 714ms for 43 response
function iterations, while it takes 55 iterations (888ms) for
the salt dome. For the brain scan datasets, both subjects have
the same size and thus show similar timings. Specifically for
the subject HG15, the time for the automated transfer func-
tion tuning for the tumor takes 411ms with a total number
of 53 iterations. While for the edema region, the timing is
402ms for 49 iterations.

8.4. Discussion

Although we have not conducted a formal user study, our
collaborating experts from the petroleum industry found
GuideME an improvement over previous tools and provided
informal comments. As in their traditional workflow, the
datasets are examined and analyzed using slices. Since they
have the expertise to identify a certain feature on slices, in-
teractively selecting feature boundaries is not an imposition
to them. As they are familiar with free-hand drawing on
seismic slices, selecting an appropriate slice and view an-
gle is naturally part of their workflow. While selecting fea-
tures from multi-attribute slices is interactive and thus done
through trial and error, they have the expertise to identify
a feature on slices. A previous method [ZH13] required the
user to use a free-hand lasso tool to select features of in-
terest on slices. The free-hand lasso was cumbersome to
use. GuideME guides the user through the uncertainty-aware
lasso interactions where boundaries can be more rapidly and
concisely defined by the drawing interaction. The domain
experts commented that the GuideME system is faster and
easier to use than previous tools. The experts also com-
plained about the trial-and-error transfer function tuning
in [ZH13]. Having the automated transfer function tuning
freed the experts from this tedious step. Given that the ex-
tracted features are comparable to the previous method as

shown in 8.1, the domain experts found that with our pro-
posed method, they can be more focused on their geological
interpretation tasks.

Our approach is not without limitations. Our proposed
method is not an automated feature extraction method for
multivariate volume datasets. It requires the user to iden-
tify features of interest on slices and select them using the
uncertainty-aware lasso. The selection of feature boundaries
is an interactive process which requires the user’s expertise
and understanding of the data. The lasso region chosen for
features is critical to the final visualization result. Further-
more, our method extracts features that are connected in the
3D data. As such, our method would not work on datasets in
where features are not distinguishable on 2D attribute slices
or where features are not connected in the 3D space. While
the user has to browse through the slices to detect features
of interest and the lasso region drawn for features is critical
to the final visualization result, we argue that this is where
the expertise of the user applies, and is the main focus of our
method.

9. Conclusion and Future Work

We have introduced GuideME: a novel slice-guided semiau-
tomatic multivariate volume exploration method. The user
explores the volume on slices, inspects different attributes
via an inspection window and draws guided uncertainty-
aware lassos on feature of interest, and then the features
are extracted through an automated feature extraction ap-
proach. More specifically, a boundary confidence measure-
ment which is derived from edge detection provides the
user with hints and the uncertainty of feature boundaries.
A guided uncertainty-aware lasso that snaps to the feature
boundary facilitates region selection. An automated feature
extraction method minimizes false positives outside the lasso
while preserving true positives inside the lasso. Our experi-
ments have shown that GuideME gives comparable results to
those generated by previous methods and expert segmenta-
tions, but is more efficient and easier in terms of interaction.
We believe that the presented method is a first step towards a
visual analytic environment in which the domain experts can
focus on spaces and views of their expertise without worry-
ing about unfamiliar and tedious interactions.

In the future, we would like to investigate how to provide
the user more guidance towards a feature using advanced
image processing and machine learning techniques. Also, we
plan to provide the user quantitative visual analysis tools to
better understand the features in the dataset.
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