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Abstract. Histopathological image classification is one of the critical aspects in medical image analysis. Due to the high
expense associated with the labeled data in model training, semi-supervised learning methods have been proposed to
alleviate the need of extensively labeled datasets. In this work, we propose a model for semi-supervised classification tasks
on digital histopathological Hematoxylin and Eosin (H&E) images. We call the new model Contrastive Learning with
Adaptive Stain Separation and MixUp (CLASS-M). Our model is formed by two main parts: contrastive learning between
adaptively stain separated Hematoxylin images and Eosin images, and pseudo-labeling using MixUp. We compare our
model with other state-of-the-art models on clear cell renal cell carcinoma (ccRCC) datasets from our institution and The
Cancer Genome Atlas Program (TCGA). We demonstrate that our CLASS-M model has the best performance on both
datasets. The contributions of different parts in our model are also analyzed.
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1 Introduction

Digital histopathological image analysis plays a crucial role in
disease diagnosis and treatment optimization. The most com-
monly used histopathological images are Hematoxylin & Eosin
(H&E) stained whole slide images (WSIs) that help the differ-
entiation of various tissue sample features [15]. H&E staining
involves the use of two dyes, Hematoxylin and Eosin, which
selectively stain different components of the tissue sample.
Hematoxylin stains the acidic components of the tissue sample,
such as the cell nuclei, and has a blue-purple color, while Eosin
stains the basic components of the tissue sample, such as the
cytoplasm and extracellular matrix, and exhibits a pink color.
In recent years, many efforts have been made to the automatic
analysis of images.

With the rapid development of computing power and ad-
vanced algorithms, deep learning has been widely used in
the field of digital histopathological image analysis for au-
tomating disease diagnosis and performing auxiliary image
analysis [8,36,43,45]. However, achieving a highly accurate
model requires a substantial amount of training labels, de-
manding significant time and effort from human experts. Var-
ious strategies have been proposed to mitigate this challenge.
Weakly-supervised learning become the accepted method in
histopathology because of the easy availability of case-level
labels from medical reports. Self-supervised learning is also
commonly used to train the backbone. Nevertheless, semi-

supervised learning remains a relatively less explored area in
histopathology.

One area worthy of further investigation with deep learn-
ing models is kidney cancer. Kidney cancer ranks among the
most prevalent cancers globally. It is estimated that around
76,080 new cases were diagnosed with cancers of the kidney
and renal pelvis and there are around 13,780 deaths resulted
from it in the US in 2021 [38]. Clear cell renal cell carcinoma
(ccRCC) stands out as the predominant subtype that dom-
inates the kidney cancer cases [4]. Consequently, further re-
search on cancer detection and classification using ccRCC im-
ages holds paramount importance for disease diagnosis and
early patient treatment. In this paper, we contribute new an-
notated Utah ccRCC dataset and The Cancer Genome Atlas
Program (TCGA) ccRCC dataset. The Utah ccRCC dataset
consists of 49 WSIs, while TCGA ccRCC dataset comprises
420 WSIs. Even though multi-instance learning, requiring only
slide-level annotations, is widely used in the histopathology
field [32,35,42,50], it requires a larger number of WSIs for ef-
fective training. Moreover, slide-level multi-instance learning
has some prerequisites, like certain classes should have both
positive and negative cases, which can’t always be fulfilled
in our ccRCC datasets. Therefore, we decided to use poly-
gons to mark regions in a subset of WSIs and assign labels
to those polygons. The patches can be cropped inside those
annotated polygons to collect labeled samples for performing
patch-level classification tasks. To fully utilize the WSIs, we
collect the patches outside annotated polygons and from WSIs
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that are not annotated at all to gather unlabeled samples. Con-
sequently, we form a semi-supervised classification task based
on the labeled and unlabeled patches. Notably, a patch-level
classification model serves as a precise tool to expedite pathol-
ogists’ identification of cancerous regions within WSIs.

In our work, we propose a new semi-supervised model
for histopathological image classification: Contrastive Learn-
ing with Adaptive Stain Separation and MixUp (CLASS-M),
where CLASS-M can also be understood as CLASSifying Med-
ical images. The main portions of our model are contrastive
learning and pseudo-labeling. A simple but effective margin
loss is built for contrastive learning between adaptive stain
separated Hematoxylin images and Eosin images. The pseudo-
labeling with MixUp is also applied to provide more samples
and pseudo-labels in classification training. The two methods
focus on different aspects to fully utilize the information in
both labeled and unlabeled samples. Our new model is an
extension of [54] presented in MICCAI 2022 workshop with
substantial modifications and great improvements on classifi-
cation results. Instead of using a globally fixed stain separation
matrix in Optical Density space, a simple and efficient slide-
by-slide stain separation from [37] is applied to utilize domain
knowledge of color patterns across slides. We not only perform
image augmentations on Hematoxylin images and Eosin im-
ages, but also apply augmentations on original RGB images
before stain separation process to strengthen the augmenta-
tion process. Additionally, considering the benefit of pseudo-
labeling in famous semi-supervised learning methods [47] [3],
pseudo-labeling with MixUp [56] is adopted to mix samples
and then create mixed one-hot encoding labels. In this pa-
per, we evaluated multiple state-of-the-art semi-supervised and
self-supervised learning models on Utah ccRCC dataset and
TCGA ccRCC dataset. Our CLASS-M model demonstrates
the best classification results. We further did ablation studies
to carefully analyze the contributions of different parts in our
model.

In conclusion, the main contributions of our paper are as
follows:

– We proposed our new CLASS-M model for semi-supervised
learning. We applied contrastive learning on Hematoxylin
images and Eosin images after performing slide-level stain
separation, and pseudo-labeling with MixUp to generate
more mixed samples and pseudo-labels.

– We provide new Utah ccRCC dataset from our institution
and TCGA ccRCC dataset that contain tile-level labels
on 49 WSIs and 150 WSIs separately, with extra 270 un-
labeled WSIs from TCGA. The Utah ccRCC dataset and
its annotations are publicly available upon transfer agree-
ment. The annotations on TCGA ccRCC dataset are pub-
licly available.

– We tested various state-of-the-art semi-supervised learning
and self-supervised learning methods on ccRCC datasets
and benchmarked their performances. The results of
CLASS-M always have the best performance among state-
of-the-art models.

2 Related work

2.1 Weakly-supervised learning

Weakly-supervised learning [28,39,58] leverages weak la-
bels to help guide training process. A typical case of
weakly-supervised learning is multiple instance learning
(MIL) [16,24]. Various MIL approaches, such as instance-
based and embedding-based methods, have been proposed.
The instance-based approach [25,13] involves training a clas-
sifier using bag labels at the instance level, then aggregating
the predicted instance labels to form bag label predictions.
However, due to the noise in instance labels, the performance
of this aggregation may be impacted. On the other hand, the
embedding-based approach [19,34] first creates a bag repre-
sentation from individual instance representations, followed by
training a classifier on these bag representations. Research has
shown that embedding-based approaches are generally more
effective than instance-based methods. The attention-based
MIL method, proposed in [26], suggests that instead of treat-
ing all patches within a bag equally, assigning varying impor-
tance scores to patches, particularly the more discriminative
ones, is more effective. This method involves computing atten-
tion scores from instance representations to reflect the impor-
tance of respective patches and forming the bag representation
through a weighted average of these instances. [51] proposed
a hierarchical attention-guided MIL that effectively identifies
important areas at different scales in WSIs. This method com-
bines several attention techniques to form a comprehensive
group representation. Furthermore, the recent Self-ViT-MIL
approach by [18], which combines self-supervised learning with
Vision Transformers (ViTs) [14] and MIL, has shown promis-
ing results, even in comparison to fully-supervised methods.

In digital histopathological image applications, MIL can be
applied when only whole slide image-level labels are provided,
but the specific regions that contribute to the labels are not
given. Despite the convenience of annotation work, weakly-
supervised learning can’t deal with small datasets so well, as
it needs adequate amount of slides to have enough labels. Ad-
ditionally, weakly-supervised learning struggles with multiple
classes which almost always co-exist in slides or a certain class
that lacks positive or negative labels in datasets. For example,
in our Utah ccRCC dataset, cancer is consistently present in
all WSIs, resulting in a lack of negative labels for the cancer
category in the context of MIL.

2.2 Self-supervised learning

Self-supervised learning (SSL) [27,30] learns useful patterns
from data itself without explicit labels provided by humans.
Self-supervised learning allows models to first pre-train on a
large unlabeled dataset, where effective feature representations
can be learned. Examples include image inpainting, predict-
ing rotations, or colorizing images. Then the final layers of
the models can be optimized in specific downstream tasks, re-
ducing the need of extensively labeled data. SimCLR [9,10]
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presents a seminal contrastive learning to train feature repre-
sentation, where augmented views of an image (positive sam-
ples) are minimized within that image while being maximized
against augmented views of other images (negative samples).
MoCo [11,12,21,22,20] strengthens SSL with a dynamic dictio-
nary, tapping into past batches for more negative samples, and
a slowly updating momentum encoder for stable global rep-
resentations. In contrast, Barlow Twins [53] omits negatives,
focusing on refining features by measuring cross-correlation
between positive samples. BYOL [17] and DINO [7] utilize
a teacher-student setup, where the student refines its un-
derstanding by predicting the teacher’s representation, while
teacher network is updated through the slow-moving aver-
age of student’s parameters. Clustering-based methods like
Deep Clustering [5] and SwAV [6] define pseudo-labels, sort-
ing images into clusters, yielding great performance on down-
stream tasks. Mingu et al. [29] benchmarked SSL methods
on pathology datasets, showcasing consistent enhancements in
histopathology tasks. In CS-CO [52], the encoders for Hema-
toxylin images and Eosin images are also adopted. Instead of
contrastive loss between Hematoxylin images and Eosin im-
ages introduced in our work, CS-CO calculates contrastive
loss between different augmentations. In addition, CS-CO is
a self-supervised learning method that requires encoders to
generate a visual representation containing enough informa-
tion to recover images in cross-stain prediction, while our
semi-supervised CLASS-M only pursues shared latent features
containing enough information to perform classification tasks.
Self-supervised learning is especially helpful when there is a
lack of labeled data for training. While self-supervised learn-
ing benefits from unlabled data, semi-supervised learning has
the advantages that allows both unlabeled data and labeled
data to be trained at the same time and use the knowledge
learned from labeled data to better utilize unlabeled data.

2.3 Semi-supervised learning

Semi-supervised learning [40,48] involves training a model with
both labeled and unlabeled data to enhance training outcomes,
which reduces reliance on a limited number of annotated sam-
ples. Semi-supervised learning has superiority especially when
obtaining fully labeled data is prohibitively expensive or im-
practical. In the realm of digital histopathological image anal-
ysis, getting a large amount of labeled data requires great ef-
fort from well-trained experts, which is expensive and time
consuming. However, it is much easier to acquire unlabeled
data such as unannotated WSIs. One type of semi-supervised
learning is consistency regularization which seeks agreement
among the same input with different views, augmentations or
epochs. For example, Temporal ensembling [31] aims to reach
consensus in prediction of labels between current epochs and
previous epochs. [44] tries to make classifier’s prediction con-
sistent across various transformations. More up-to-date con-
sistency regularization methods, such as FixMatch [47] and
MixMatch [3], have been developed. FixMatch assigns pseudo-
labels to unlabeled samples when the predicting confidence is

high with weak augmentation of input data, then the unla-
beled data will be treated as labeled data and trained after
strong augmentation. MixMatch is another consistency regu-
larization method where pairs of labeled/unlabeled input data
are linearly combined to create "Mixup" data. The label of
new created data is a weighted average of the original labels
followed by a sharpening process. Inspired by self-supervised
learning, contrastive learning idea is also integrated in semi-
supervised learning [1,46,54]. Instead of seeking agreements in
label predictions, contrastive learning focuses on forming posi-
tive pairs and negative pairs. Positive pairs originate from the
same inputs with different views or augmentations, while neg-
ative pairs involve different inputs. The method encourages a
shorter distance between positive pairs and a longer distance
between negative pairs in the feature representation space.

3 Methods

3.1 An overview of CLASS-M

Figure 1 shows the workflow of our Contrastive learning with
adaptive stain separation and mixup (CLASS-M). As shown in
orange part of Figure 1, slide-level stain separation is applied
for generating Hematoxylin images and Eosin images from
original RGB images. The original RGB images, Hematoxylin
images and Eosin images are all augmented during training
to improve the robustness of CLASS-M model. The model
takes Hematoxylin images and Eosin images as input pairs
to form different views of input data. The purple and pink
boxes in Figure 1 illustrate the H and E ResNet [23] encoders
that have the same architecture but separate parameters to
generate latent features fH and fE . A contrastive loss is pro-
posed for shared latent feature space between H channel and
E channel to increase the similarity between fH and fE . We
take the average of features fH and fE and pass it to a lin-
ear+softmax layer to predict the labels. For labeled samples
in training, the cross-entropy loss is introduced to measure the
difference between predicitons and true labels. Moreover, the
main challenge in semi-supervised learning in general is the
limited number of labeled samples. pseudo-labeling on unla-
beled samples has been widely used in many state-of-the-art
semi-supervised learning methods [3,47,55]. In MixMatch [3],
after pseudo-labeling, the model further used MixUp [56] to in-
troduce virtual samples by linear interpolation of two random
samples. Inspired by those ideas and to fully utilize unlabeled
samples, we first provide pseudo-labels to unlabeled samples,
then add MixUp on both labeled and unlabeled samples to cre-
ate virtual samples. The labels of the generated samples after
MixUp are set to weighted averages of original labels/pseudo-
labels with a sharpening process. The green part in Figure 1
shows the workflow of this process for pseudo-labeling. We in-
troduce different parts of CLASS-M model in details in the
following subsections.

3.2 Adaptive stain separation

Stain separation is introduced to separate different types of
stains present in histological images [41,49,57], such as sepa-
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Fig. 1. The block-diagram of our Contrastive learning with adaptive stain separation and mixup (CLASS-M) for semi-supervised
histopathological image classification. Orange part shows adaptive stain separation, where OD means Optical Density space. Green
part shows mixup on both labeled and unlabeled samples.

rating Hematoxylin and Eosin(H&E) images into Hematoxylin
images and Eosin images. The process has many challenges
due to the variation of stains caused by different manufactur-
ers, storage conditions and staining procedures. In our model,
a simple and unsupervised method for adaptive stain separa-
tion [37] is applied. The main idea is to first project all pix-
els from RGB space to Optical Density (OD) space, where
stain components are formed by linear combinations. Inside
the OD space, the appropriate Hematoxylin and Eosin vectors
are calculated. Then all the RGB pixels can be projected to the
Hematoxyling portion and Eosin portion to form Hematoxylin
images and Eosin images. The images are further normalized
to mitigate the effect of variations on the brightness and dosage
of stains. More detailed algorithm can be found in Appendix
A.

3.3 Augmentations on original RGB images,
Hematoxylin images and Eosin images

We perform color-jittering augmentations on brightness, con-
trast and saturation of original images, followed by other im-
age augmentations on Hematoxylin images and Eosin images,
including random crops, random rotations and random flips.
Independent jittering of brightness on Hematoxylin images and
Eosin images is also applied. The extra augmentations on origi-
nal images provide more diversities in the training samples and
help generalize more robust features.

3.4 Contrastive learning

The inputs with two different views are usually adopted in
co-training. The general presumptions of co-training are that
each input view carries sufficient information for the task and
the views should be more independent of each other to achieve
good results. Our preliminary work [54] has demonstrated that
Hematoxylin and Eosin channels fulfill those requirements per-
fectly in contrastive co-training, especially compared to using
the Red, Green or Blue channels in co-training.

Let fH(x) and fE(x) denote the output features after the
two ResNet models that take sample x as input. Then the
contrastive loss function on sample xi is written as

Lct(xi) =

max (∥ fH(xi)− fE(xi) ∥2 − ∥ fH(xi)− fE(xk) ∥2 +m, 0)

(1)

where xk represents another random sample, ∥ a ∥2 denotes
the L2 norm of vector a, and m serves as a margin hyperpa-
rameter. This contrastive loss term forms a positive pair whose
fH(x) and fE(x) originate from the same sample and a nega-
tive pair whose fH(x) and fE(x) come from different samples.
After training, the two features from the same samples tend
to get closer in the shared latent feature space.

3.5 MixUp

MixUp [56] is applied on both labeled and unlabeled samples.
First, we assign pseudo-labels to unlabeled samples. Assume
xi is an original image sample from unlabeled training set U ,
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we augment xi K times and get the average of softmax pre-
dictions from the model. The result is sharpened later to lower
the entropy of label distribution. The formulas are as follows:

ȳi =
1

K

∑
1≤k≤K

Pmodel(xi,k), xi ∈ U (2)

yi = sharpen(ȳi, T ),where sharpen(y, T )(c) =
y(c)

1
T∑C

j=1 y(j)
1
T

(3)
xi,k means the k-th augmentation of sample xi, T is a temper-
ature hyperparameter to control the sharpness, y(c) means the
c-th element in one-hot label encoding y, C means the total
number of classes, and yi is the virtual one-hot label encoding
of sample xi.

We follow the standard procedure of MixUp to mix sam-
ples. Let xi and xj be two random samples from labeled train-
ing set L or unlabeled training set U, whose one-hot label
encodings are yi and yj . Let λ denote a random number from
Beta distribution Beta(α, α), and set λ′ = max(λ, 1−λ). Then
the new mixed sample and its label are as follows:

x′ = λ′xi + (1− λ′)xj (4)

y′ = λ′yi + (1− λ′)yj (5)

After MixUp, we define x′ as labeled sample if xi is from
labeled set to form new labeled set L′, the remaining samples
form new unlabeled set U ′ with virtual labels. Since the λ′ is
a random number during training, there would be a lot more
virtual samples compared to the original samples.

3.6 Loss function

The total loss is formed by the summation of losses from la-
bel prediction and the contrastive learning. Inspired by Mix-
Match [3], we use cross-entropy loss in labeled set L′ and
squared L2 loss between predictions and virtual labels in un-
labeled set U ′ considering squared L2 loss is less sensitive to
incorrect predictions. The total loss in a batch can be written
as

L =
∑
xi∈L′

yi log ŷi
|L′|

+λU ′

∑
xi∈U ′

∥ yi − ŷi∥22

C|U ′|
+λC

∑
xi∈L′∪U ′

Lc.t.(xi)

(6)
yi is one-hot encoding of labels (in L′) or virtual labels (in
U ′), ŷj is the label prediction from the model, C is the number
of classes, |L′| and |U ′| means the size of labeled set and un-
labeled set in a batch. λU ′ and λC are hyperparameters that
control the weights of squared L2 loss and contrastive learning
loss.

4 Experiments

4.1 Datasets

To evaluate our method, we applied our CLASS-M model on
Utah clear cell renal cell carcinoma (ccRCC) dataset and The

Cancer Genome Atlas Program (TCGA) dataset seperately,
and compared results with other semi-supervised and self-
supervised classification methods.

In the Utah ccRCC dataset, there are 49 Whole Slide Im-
ages (WSIs) from 49 patients. First, a pathologist drew poly-
gons inside WSIs to mark areas with certain growth patterns,
which were subsequently verified by another pathologist. We
randomly split the WSIs into 32, 10, and 7 WSIs for train-
ing, validation and test set. The WSIs were then cropped into
400×400 tiles in 10X resolution with sampling step set to 200
pixels inside each labeled polygon. The same process was ap-
plied to crop tiles outside polygons in 32 training WSIs to
collect unlabeled tiles to form a semi-supervised learning task
for a 4-class classification. In detail, there are 28497, 2044,
2522, 4115 tiles in the category of Normal tissue, Low risk
cancer, High risk cancer, and Necrosis, respectively, in the la-
beled training set extracted from polygons in 32 WSIs. Addi-
tionally, there are 171,113 unlabeled training tiles, 5472, 416,
334, 2495 tiles for each category in validation set, and 7263,
598, 389, 924 tiles for each category in test set. Tiles with pre-
dominantly background areas were removed, along with those
tainted by ink. Tile examples can be seen in Figure 2(a). 6

For the TCGA ccRCC dataset, we have in total 420 WSIs
from 420 patients. 150 of them were labeled by a pathologist
through drawing polygons with annotations and verified by an-
other pathologist, and the remaining 270 WSIs were unlabeled.
If pathologists had disagreements or concerns about labels of
polygons, then those annotations were abandoned. The reso-
lution we trained on was 20X. To make it a more challenging
task and show the effectiveness of semi-supervised learning, we
split the 150 WSIs into 30, 60 and 60 WSIs for labeled train-
ing, validation and test set. The tile cropping process was the
same as in the Utah ccRCC dataset except for different sam-
pling steps. We chose 200 pixels as sampling step for labeled
training set, but 400 pixels for validation and test set, consid-
ering they contain enough tiles. We cropped foreground tiles
outside polygons in 30 labeled training WSIs, as well as fore-
ground tiles across the 270 unlabeled WSIs to form unlabeled
samples by setting sampling step to 400 pixels. The tiles main-
tained 400×400 size at all times. We split the labeled tiles into
3 categories: Normal tissue, Cancer and Necrosis to perform 3
class semi-supervised learning classification tasks. Tile exam-
ples can be seen in Figure 2(b). In summary, we have 84578,
180471, 7932 labeled training tiles, respectively, in the cate-
gory of Normal tissue, Cancer and Necrosis, as well as 19638,
79382, 1301 validation tiles, and 15323, 62565, 6168 test tiles
for each category. The number of unlabeled training tiles is
1,373,684. The TCGA ccRCC dataset is a publicly available
dataset, and our annotations for each WSI are available by
contacting authors.

6 The Utah ccRCC dataset is available through a transfer agreement by contacting authors.
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Fig. 2. Examples of tiles with the size of 400×400 from (a) Utah ccRCC dataset (in 10X) and (b) TCGA ccRCC dataset (in 20X).

4.2 Adaptive stain separation

In experiments, we maintained slide-by-slide level adaptive
stain separation based on the following considerations: The
stain styles are various across whole slide images due to differ-
ent conditions. But within one whole slide image, most condi-
tions, such as stain manufacturer, storage condition, and stain-
ing procedure, remain consistent. On the other hand, if adap-
tive stain separation is applied patch-by-patch, there are not
enough pixel samples inside each patch to obtain robust stain
separation results. For example, in Figure 2(a), the top image
in Necrosis category has very limited Hematoxylin portion,
which makes stain separation less trustful at patch-by-patch
level.

The RGB to H/E conversion matrices for each WSI were
already calculated before the CLASS-M model training. We
provide our original code for adaptive stain separation based
on algorithms in [37]. Please contact authors to get access to
the code.

4.3 Experiment settings

For a fair comparison, we used ImageNet pretrained ResNet18
model [23] as backbone for all Convolutional Neural Network
(CNN) models in semi-supervised learning. We compared our
CLASS-M model with other state-of-the-art semi-supervised
learning models, including FixMatch [47] and MixMatch [3].
In CLASS-M model training, we performed jittering of bright-
ness, contrast and saturation on original RGB images, as well
as image augmentations on H images and E images after stain
separation, such as random rotation, random crop to 256×256,
random flip and jittering of brightness. The image augmenta-
tions on H images and E images are independent, for exam-
ple, they could have different rotation angles in random rota-
tion. Since H images and E images are one-channel images, we
summed the pretrained weights on the first layer of ResNet18
as initialization weights.

We used Root Mean Squared Propagation optimization
method with a decaying learning rate. A batch size of 64 was
chosen for experiments. Balanced sampler was used to address
the imbalance in the number of labels in the training set. In
experiments with the Utah ccRCC dataset, we chose to have
32 labeled samples in each batch, with 8 samples for each cat-
egory, while the remaining 32 samples were unlabeled. In ex-
periments with the TCGA ccRCC dataset, we chose to have
33 labeled samples in each batch, with 11 samples for each
category, and the remaining 31 samples would be unlabeled.
In validation and test, we first calculated classification accura-
cies for each category, and then averaged them to get balanced
validation accuracy and test accuracy. This approach ensures
that each category holds equal importance, irrespective of the
actual number of tiles for each category. The hyperparameters
were fine-tuned for all models to get the best validation accu-
racy, then the test accuracy on that hyperparameter setting
was the final performance. We found that most hyperparame-
ters didn’t need to be changed between Utah ccRCC dataset
and TCGA ccRCC dataset. We chose decaying learning rate
with initial value set to 10−4. We set number of augmenta-
tion times K to 2, temperature T to 0.5, α to 2, margin m
in contrastive loss to 37 and unlabeled L2 loss weight to 7.5
for both datasets. We set contrastive loss weight to 0.1 for
experiments on the Utah ccRCC dataset, and contrastive loss
weight to 0.001 for the TCGA ccRCC dataset. For each epoch,
we ran 1000 iterations and checked validation accuracy once.
The total epochs were large enough to ensure convergence.
The training would stop if the best validation accuracy was
no longer updated for more than 100 epochs. Each experiment
was repeated three times to obtain the average test accuracy
and standard deviation.

The experiment platform is Python 3.7.11, Pytorch 1.9.0,
torchvision 0.10.0, and CUDA 10.2. The GPUs we used are
NVIDIA TITAN RTX. During CLASS-M model training, it
usually took 13 GB GPU memory and 12 minutes for each
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Table 1. Performance of different classification models on Utah ccRCC dataset and TCGA ccRCC dataset. Mean accuracy and stan-
dard deviation on test set are calculated. The encoders of self-supervised learning foundational models including Barlow Twins, SwAV,
MoCov2, and ViT-DINO are pretrained on large amount of histopathological images by [29] and then frozen. The results with the best
mean accuracy are shown in bold.

Models Test accuracy (Utah) Test accuracy (TCGA)

Fully-supervised ResNet 88.85± 2.66% 72.11± 0.41%
ViT 84.69± 1.33% 73.50± 0.94%

Transfer learning ResNet (Freeze) 85.68± 0.18% 73.17± 0.42%
ViT (Freeze) 82.51± 0.15% 73.17± 0.46%

Self-supervised

BT 90.64± 1.21% 80.81± 1.79%
SwAV 91.22± 0.67% 77.23± 3.61%
MoCoV2 87.35± 0.21% 80.54± 1.75%
ViT-DINO 92.11± 0.86% 77.61± 3.64%

Semi-supervised

FixMatch 91.58± 0.65% 83.34± 2.53%
MixMatch 92.94± 1.54% 88.35± 1.39%
CLASS 94.92± 0.67% 83.06± 0.47%
CLASS-M 95.35± 0.46% 92.13± 0.89%

training epoch. The code of our CLASS-M model is publicly
available, please contact authors for the access to the code.

4.4 Results

We tested our CLASS-M model along with other state-
of-the-art semi-supervised models, including FixMatch and
MixMatch by conducting semi-supervised ccRCC histopatho-
logical image classification tasks on Utah ccRCC dataset
and TCGA ccRCC dataset. The CLASS-M without pseudo-
labeling using MixUp was tested as a reference, and we call it
CLASS model. The baseline ResNet18 [23] and Vision Trans-
former (ViT) [14] were also tested as references, where only
labeled samples were used in training. The ResNet18 and ViT
were pre-trained on ImageNet and then trained with two op-
tions, train all the parameters (fully-supervised learning), or
freeze the encoder part and only train the final layer (trans-
fer learning). All experiments were run three times to obtain
mean test accuracy and standard deviation. Each test accu-
racy was calculated based on the mean of each category’s test
accuracy to address the unbalanced nature of the numbers of
each category in the test set.

As shown in Table 1, our CLASS-M model outperforms
other state-of-the-art models by a large margin on both
datasets. We achieved a test accuracy of 95.35 ± 0.46% on
Utah ccRCC dataset, and 92.13 ± 0.89% on TCGA ccRCC
dataset. The ResNet18 results from Table 1 indicates that it is
a more challenging task on TCGA ccRCC dataset, whose test
accuracy dropped by more than 15%. One possible reason is
that the samples from Utah ccRCC dataset have less variation.
For instance, the slides follow the same staining procedure,
and the storage conditions are uniform. However, on TCGA
ccRCC dataset, slides come from different institutions, lead-
ing to more variation in the quality of slides. Additionally, the
Necrosis tiles on TCGA training set only come from 3 WSIs,
which causes more difficulties in learning robust Necrosis fea-
tures. As shown in the recall section of Table 4 in Appenix

B, the pseudo-labeling with MixUp raised the Necrosis’s test
accuracy from around 60% to around 87% on TCGA ccRCC
dataset, demonstrating that MixUp is especially effective on
classes with very limited number of samples. In conclusion,
our CLASS-M model achieves top results and proves to be the
best on a variety of tasks. We also provide recall, precision and
F-score for each run, with details available in Appendix B.

4.5 Quantitative comparison to Self-supervised
learning foundation models

To demonstrate our superior performance in histopathology
image classification by adopting adaptive stain separation-
based contrastive learning and pseudo-labeling with MixUp,
we did extra self-supervised learning experiments for com-
parison. We employed a fully-connected classification network
built upon pre-trained models from [29], including Barlow
Twins [53], SwAV [6], MoCov2 [12], and ViT-DINO [7]. The
encoder part was frozen after pre-training on a large amount of
histopathological images by [29], and the final fully-connected
classification layer was trained on our labeled training sam-
ples. As shown in Table 1, our proposed models, CLASS and
CLASS-M outperformed those self-supervised learning models
on ccRCC datasets even though they were pre-trained on very
large histological images. The recall, precision and F-score of
those self-supervised learning models can also be found in Ap-
pendix B.

4.6 Ablation studies

We conducted ablation studies to further validate our model’s
H/E contrastive learning structure and identify the compo-
nents contributing to the classification results.

One of the critical parts of our model is the H/E contrastive
loss that provides a regularization term and helps to generate
representative features. As shown in Table 2, removing the
contrastive loss term from total loss led to a significant drop
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Table 2. Ablation studies of CLASS-M models on Utah ccRCC dataset and TCGA ccRCC dataset. Mean accuracy and standard devi-
ation on test set are calculated. The results with best mean accuracy are shown in bold.

Models Test accuracy (Utah) Test accuracy (TCGA)
CLASS-M 95.35± 0.46% 92.13± 0.89%

CLASS 94.92± 0.67% 83.06± 0.47%

CLASS (use Red/Green channels as two views) 90.75± 0.13% 81.14± 0.34%

CLASS (use Red/Blue channels as two views) 89.06± 0.54% 80.14± 2.66%

CLASS (use Green/Blue channels as two views) 83.43± 3.63% 80.25± 1.15%

CLASS without contrastive loss 84.57± 2.40% 74.46± 2.03%

CLASS without aug on RGB images 94.99± 0.58% 82.78± 1.10%

CLASS without adaptive stain separation (use fixed stain seperation) 92.43± 0.34% 79.89± 0.69%

CLASS without aug on RGB images and adaptive stain separation 91.53± 1.52% 75.67± 1.76%

in the test accuracy. On the Utah ccRCC dataset, the test ac-
curacy dropped from 94.92% to 84.57% in CLASS model. On
TCGA ccRCC dataset, the test accuracy declined from 83.06%
to 74.46%. Choosing Hematoxylin and Eosin channels as two
views also plays a crucial role. Instead of choosing Hematoxylin
and Eosin as two channels, we did extra experiments by di-
rectly selecting two channels from Red, Green and Blue chan-
nels in RGB images to form two views in CLASS model. As
a result, we saw obvious reduction in the test accuracies. In
addition, splitting the original RGB images into Hematoxylin
and Eosin channels is more logical and makes more sense in the
aspect of pathology and the true nature of H&E images. The
effect of adaptive stain separation was also verified. We used
globally fixed stain separation matrix to replace adaptive stain
separation. The CLASS model’s test accuracy dropped from
94.92% to 92.43% on Utah ccRCC dataset and dropped from
83.06% to 79.89% on TCGA ccRCC dataset. We further did
ablation study on the augmentations on original RGB images.
The augmentation proved beneficial and improved classifica-
tion accuracy from 91.53% to 92.43% on dataset from Utah
ccRCC dataset and from 75.67% to 79.89% on TCGA ccRCC
dataset with fixed stain separation in CLASS model. However,
the improvement was limited when adaptive stain separation
was adopted. One possible reason is that the augmentation dis-
turbed the color pattern and made adaptive stain separation
produce less accurate Hematoxylin and Eosin results.

We finally analyzed the role of pseudo-labeling using
MixUp. Table 2 shows that, by comparing CLASS-M with
CLASS, we saw a substantial improvement by adding MixUp
augmentation, especially on the TCGA ccRCC dataset.

5 Conclusion

In this paper, we proposed a novel semi-supervised clas-
sification model called CLASS-M for histopathological im-
age classification by adopting adaptive stain separation-based
contrastive learning and pseudo-labeling using MixUp. We
provided newly annotated Utah ccRCC dataset and TCGA
ccRCC dataset. Experiments on them have shown that our
CLASS-M model consistently reached the best classification
results compared to other state-of-the-art models. Our model

demonstrates the capability to perform accurate patch-level
classification at various resolutions with only rough annota-
tions on approximately 30 WSIs in training. The code for our
model is also publicly available.

In theory, the advantage of semi-supervised learning is the
end-to-end training despite the sacrifice of conveniency com-
pared to self-supervised learning. The self-supervised learn-
ing freezes the pre-trained encoders in final training with la-
beled data, which lacks the flexibility to fine-tune the whole
model. However, unfreezing the encoders in final training leads
to overfitting as there is no longer access to the large unlabeled
dataset, especially when labeled data is limited.

Future work may involve addressing the challenge of han-
dling noisy labels. In our datasets, there is a small portion of
tiles that only contain blood vessels, which makes labels inac-
curate. A model with more capabilities to tolerate noisy labels
may be an interesting road to explore. Our method can also
be readily applied to other types of histopathological images,
such as immunohistochemistry (IHC) stained images.
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Appendix A. Detailed algorithm of Adaptive
Stain Seperation

First, the RGB pixel values from slide images are transformed
into Optical Density (OD) space, where stain components
are formed by linear combinations. The corresponding Beer-
Lambert law [2,33] for this operation is below:

ODC = log10
I0,C
IC

(7)



CLASS-M: Adaptive stain separation-based contrastive learning with pseudo-labeling 9

The letter C represents a specific channel, like Red, Green, or
Blue channel. The value I0,C means the intensity of light before
passing through the specimen, which is background intensity,
and the value IC is the intensity of light after passing through
the specimen. We can treat the OD value as a measurement of
the absorption of light on different channels. Zero values in all
channels on OD space means pure white background where
there is no tissue absorbing light on that pixel. So for each
RGB pixel, we use a 3× 1 vector VOD = (ODR, ODG, ODB)

⊤

to show the values on OD space.
Second, dimensionality reduction is applied. In an ideal sit-

uation of H&E staining, VOD is a linear combination of fixed
Hematoxylin and Eosin unit vectors: VOD = αHVH + αEVE ,
where VH and VE are 3×1 unit vectors on 3D OD space. So all
OD vectors should approximately fall into the same 2D plane
for all pixels in one image. We use Principal Component Anal-
ysis (PCA) on 3D OD space to get a 2D plane formed by two
covariance matrix’s eigenvectors with the largest two eigenval-
ues. Figure 3.a is an example of the distribution of OD vectors
that map onto the 2D plane. The brightness shows the density
of pixels. The x-axis is the direction of the eigenvector with the
largest eigenvalue. The y-axis is the direction of the eigenvec-
tor with the second-largest eigenvalue. The third dimension
would be treated as a residual part and be abandoned. The
x and y axes are orthogonal because the eigenvectors of the
covariance matrix are orthogonal to each other. By applying
the PCA method, the 2D plane we found is more informative,
increasing the possibility that the separated H and E images
contain more information and details.

The third step is to find stain vectors VH and VE . [37] as-
sumes every pixel sample in OD space must exist between the
two stain vectors, considering the fact that each component
should be non-negative. However, noise can’t be fully avoided.
As a result, we allow 1% of samples to be outside of VH and
VE respectively. Moreover, pixel samples that are within a dis-
tance of 0.1 from original point are not taken into account as
they contain less stain and are more easily influenced by noise.
An example of VH and VE is shown in Figure 3.b. The positive
directions of x-axis and y-axis were carefully chosen such that
H unit vector falls into quadrant IV and E unit vector falls
into quadrant I.

After acquiring unit vectors VH and VE , we are able to
reconstruct the transformation matrix. In the previous PCA
process, we got three unit eigenvectors Vx, Vy, VResidual, which
are orthogonal to each other and ordered by their eigenval-
ues from maximum to minimum. The VH and VE on x-y
2D OD space can be written as VH = cos θHVx + sin θHVy,
VE = cos θEVx+sin θEVy. The transformation matrix from H,
E, Residual to RGB on OD space would be

MatHERes→RGB onOD = [VH , VE , VResidual] (8)

Therefore:

(ODR, ODG, ODB)
T =

MatHERes→RGB onOD × (αH , αE , αResidual)
T

(9)

If we define MatRGB→HERes onOD as inverse matrix of
MatHERes→RGB onOD, then:

(αH , αE , αResidual)
T =

MatRGB→HERes onOD × (ODR, ODG, ODB)
T

(10)

If we apply this formula to all pixels in an image, then
the αH forms the Hematoxylin image and αE forms the Eosin
image.

Finally, to further normalize Hematoxylin images and
Eosin images, the 99th percentile of intensity values is used
as an approximation of maximum value. We normalize it to
0.5 and clip to 1.0 for any numbers larger than 1.0 after nor-
malization.

The main advantages of this stain separation method are
simplicity and efficiency. We are able to perform it without
the need of model training or complex calculations. Moreover,
finding optimum H vectors and E vectors helps to handle stain
variations. The final normalization based on the calculated
maximum value further mitigates the effect of variations on
the brightness and hue of stains.

Appendix B. More details on experiment
results.

Please check Table 3 and Table 4 for recall, precision and F-
score of each model on Utah ccRCC dataset and TCGA ccRCC
dataset.
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Fig. 3. Mapping pixels onto the 2D OD space

Table 3. Recall, precision and F-score of different classification models on Utah ccRCC dataset. Mean and standard deviation on test
set are calculated based on 3 runs. Blue numbers show fully-supervised learning results. Brown numbers show transfer learning results.
Green numbers show self-supervised learning results. Black numbers show semi-supervised learning results.

Models Normal Tissue Low Risk Cancer High Risk Cancer Necrosis average (all classes)

Recall

ResNet 0.9308± 0.0358 0.9186± 0.0254 0.9717± 0.0384 0.7330± 0.1172 0.8885± 0.0266
ViT 0.8906± 0.0138 0.9571± 0.0179 0.7112± 0.0351 0.8286± 0.0278 0.8469± 0.0133
ResNet(Frz) 0.8534± 0.0035 0.9326± 0.0035 0.7781± 0.0121 0.8633± 0.0056 0.8568± 0.0018
ViT(Frz) 0.8486± 0.0089 0.9415± 0.0073 0.7241± 0.0193 0.7861± 0.0088 0.8251± 0.0015
BT 0.8987± 0.0466 0.9810± 0.0075 0.8612± 0.0268 0.8849± 0.0708 0.9065± 0.0121
SwAV 0.9363± 0.0205 0.9537± 0.0126 0.8946± 0.0380 0.8640± 0.0542 0.9122± 0.0067
MoCoV2 0.9586± 0.0081 0.9426± 0.0042 0.7352± 0.0068 0.8575± 0.0204 0.8735± 0.0021
ViT-DINO 0.9734± 0.0089 0.9950± 0.0029 0.9632± 0.0097 0.7529± 0.0411 0.9211± 0.0086
FixMatch 0.8322± 0.0759 0.9693± 0.0459 0.9563± 0.0602 0.9051± 0.0558 0.9158± 0.0065
MixMatch 0.9004± 0.0261 0.9047± 0.0420 0.9588± 0.0044 0.9538± 0.0092 0.9294± 0.0154
CLASS 0.9753± 0.0061 0.9660± 0.0092 0.9563± 0.0051 0.8994± 0.0260 0.9492± 0.0067
CLASS-M 0.9252± 0.0194 0.9576± 0.0174 0.9880± 0.0065 0.9430± 0.0051 0.9535± 0.0046

Precision

ResNet 0.9702± 0.0148 0.8665± 0.1087 0.4963± 0.1317 0.8930± 0.0493 0.8065± 0.0493
ViT 0.9832± 0.0034 0.5781± 0.0642 0.3941± 0.0429 0.8649± 0.0547 0.7051± 0.0132
ResNet(Frz) 0.9902± 0.0004 0.4538± 0.0090 0.3983± 0.0088 0.8628± 0.0091 0.6762± 0.0006
ViT(Frz) 0.9790± 0.0012 0.5345± 0.0078 0.3128± 0.0158 0.7876± 0.0077 0.6535± 0.0048
BT 0.9868± 0.0075 0.8436± 0.0464 0.5036± 0.0831 0.7130± 0.1271 0.7618± 0.0442
SwAV 0.9875± 0.0030 0.8012± 0.0868 0.6008± 0.0612 0.8228± 0.0980 0.8031± 0.0306
MoCoV2 0.9829± 0.0044 0.7937± 0.0255 0.5673± 0.0307 0.9063± 0.0246 0.8126± 0.0186
ViT-DINO 0.9729± 0.0048 0.9479± 0.0228 0.7767± 0.0840 0.8782± 0.0295 0.8939± 0.0294
FixMatch 0.9913± 0.0059 0.6529± 0.1011 0.3679± 0.0784 0.7837± 0.1874 0.6990± 0.0776
MixMatch 0.9945± 0.0015 0.8400± 0.1067 0.4072± 0.0615 0.8660± 0.0518 0.7770± 0.0401
CLASS 0.9918± 0.0026 0.9165± 0.0103 0.7164± 0.0411 0.9439± 0.0119 0.8921± 0.0111
CLASS-M 0.9980± 0.0005 0.9263± 0.0102 0.7316± 0.0048 0.6760± 0.0666 0.8330± 0.0192

F-score

ResNet 0.9497± 0.0137 0.8903± 0.0706 0.6483± 0.1052 0.8005± 0.0641 0.8222± 0.0256
ViT 0.9346± 0.0063 0.7192± 0.0495 0.5065± 0.0400 0.8452± 0.0152 0.7513± 0.0156
ResNet(Frz) 0.9167± 0.0019 0.6104± 0.0074 0.5268± 0.0062 0.8630± 0.0023 0.7292± 0.0017
ViT(Frz) 0.9091± 0.0048 0.6819± 0.0080 0.4365± 0.0118 0.7868± 0.0014 0.7036± 0.0059
BT 0.9401± 0.0222 0.9066± 0.0235 0.6318± 0.0565 0.7811± 0.0512 0.8149± 0.0290
SwAV 0.9611± 0.0099 0.8687± 0.0476 0.7164± 0.0297 0.8383± 0.0264 0.8462± 0.0196
MoCoV2 0.9706± 0.0020 0.8616± 0.0151 0.6402± 0.0220 0.8809± 0.0044 0.8383± 0.0097
ViT-DINO 0.9731± 0.0023 0.9707± 0.0107 0.8586± 0.0544 0.8097± 0.0117 0.9030± 0.0177
FixMatch 0.9035± 0.0415 0.7785± 0.0834 0.5263± 0.0777 0.8273± 0.0878 0.7589± 0.0572
MixMatch 0.9451± 0.0137 0.8692± 0.0697 0.5699± 0.0600 0.9072± 0.0281 0.8228± 0.0357
CLASS 0.9835± 0.0019 0.9406± 0.0093 0.8187± 0.0267 0.9208± 0.0080 0.9159± 0.0044
CLASS-M 0.9602± 0.0106 0.9416± 0.0037 0.8407± 0.0050 0.7864± 0.0479 0.8822± 0.0150
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Table 4. Recall, precision and F-score of different classification models on TCGA ccRCC dataset. Mean and standard deviation on test
set are calculated based on 3 runs. Blue numbers show fully-supervised learning results. Brown numbers show transfer learning results.
Green numbers show self-supervised learning results. Black numbers show semi-supervised learning results.

Models Normal Tissue Cancer Necrosis average (all classes)

Recall

ResNet 0.7136± 0.0191 0.9032± 0.0105 0.5466± 0.0172 0.7211± 0.0041
ViT 0.7502± 0.0164 0.8986± 0.0130 0.5563± 0.0242 0.7350± 0.0094
ResNet(Frz) 0.7239± 0.0054 0.8837± 0.0031 0.5876± 0.0141 0.7317± 0.0042
ViT(Frz) 0.7383± 0.0072 0.9233± 0.0038 0.5333± 0.0212 0.7316± 0.0046
BT 0.7906± 0.0274 0.9650± 0.0029 0.6688± 0.0681 0.8081± 0.0179
SwAV 0.7462± 0.0577 0.9436± 0.0227 0.6271± 0.0695 0.7723± 0.0361
MoCoV2 0.8377± 0.0545 0.9633± 0.0093 0.6152± 0.0072 0.8054± 0.0175
ViT-DINO 0.7969± 0.0962 0.9782± 0.0049 0.5531± 0.0179 0.7760± 0.0364
FixMatch 0.8582± 0.0548 0.9565± 0.0165 0.6855± 0.0664 0.8334± 0.0253
MixMatch 0.9198± 0.0334 0.8910± 0.0250 0.8397± 0.0156 0.8835± 0.0139
CLASS 0.9291± 0.0377 0.9580± 0.0212 0.6047± 0.0260 0.8306± 0.0047
CLASS-M 0.9477± 0.0173 0.9496± 0.0060 0.8665± 0.0106 0.9213± 0.0089

Precision

ResNet 0.6168± 0.0214 0.9130± 0.0048 0.7622± 0.0128 0.7640± 0.0062
ViT 0.6281± 0.0302 0.9166± 0.0035 0.7879± 0.0902 0.7776± 0.0385
ResNet(Frz) 0.5883± 0.0071 0.9391± 0.0016 0.5735± 0.0188 0.7003± 0.0044
ViT(Frz) 0.6919± 0.0112 0.9093± 0.0011 0.7886± 0.0154 0.7966± 0.0079
BT 0.8824± 0.0415 0.9324± 0.0072 0.7535± 0.0809 0.8561± 0.0163
SwAV 0.8290± 0.0886 0.9401± 0.0106 0.5345± 0.0915 0.7679± 0.0394
MoCoV2 0.8391± 0.0288 0.9362± 0.0140 0.8759± 0.0072 0.8837± 0.0061
ViT-DINO 0.8722± 0.0096 0.9214± 0.0199 0.9432± 0.0085 0.9123± 0.0070
FixMatch 0.8651± 0.0677 0.9530± 0.0151 0.7338± 0.1257 0.8506± 0.0224
MixMatch 0.7505± 0.0380 0.9939± 0.0031 0.5674± 0.0380 0.7706± 0.0235
CLASS 0.8727± 0.0472 0.9636± 0.0108 0.6986± 0.1187 0.8449± 0.0452
CLASS-M 0.8592± 0.0249 0.9913± 0.0037 0.7420± 0.0295 0.8641± 0.0130

F-score

ResNet 0.6616± 0.0183 0.9081± 0.0076 0.6365± 0.0117 0.7354± 0.0051
ViT 0.6836± 0.0222 0.9075± 0.0056 0.6503± 0.0308 0.7471± 0.0192
ResNet(Frz) 0.6490± 0.0029 0.9106± 0.0023 0.5803± 0.0132 0.7133± 0.0039
ViT(Frz) 0.7143± 0.0093 0.9162± 0.0016 0.6361± 0.0151 0.7554± 0.0040
BT 0.8331± 0.0058 0.9484± 0.0051 0.7044± 0.0267 0.8286± 0.0117
SwAV 0.7815± 0.0275 0.9417± 0.0062 0.5768± 0.0825 0.7667± 0.0362
MoCoV2 0.8370± 0.0128 0.9494± 0.0029 0.7227± 0.0060 0.8364± 0.0070
ViT-DINO 0.8310± 0.0563 0.9488± 0.0086 0.6971± 0.0130 0.8257± 0.0258
FixMatch 0.8588± 0.0120 0.9546± 0.0062 0.7016± 0.0439 0.8383± 0.0104
MixMatch 0.8260± 0.0273 0.9395± 0.0132 0.6767± 0.0282 0.8141± 0.0209
CLASS 0.8987± 0.0084 0.9606± 0.0061 0.6435± 0.0429 0.8343± 0.0186
CLASS-M 0.9011± 0.0150 0.9700± 0.0017 0.7993± 0.0211 0.8901± 0.0109
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