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Abstract—Heterogeneous computing is becoming common in
the HPC world. The fast-changing hardware landscape is pushing
programmers and developers to rely on performance-portable
programming models to rewrite old and legacy applications
and develop new ones. While this approach is suitable for
individual applications, outstanding challenges still remain when
multiple applications are combined into complex workflows. One
critical difficulty is the exchange of data between communi-
cating applications where performance constraints imposed by
heterogeneous hardware advantage different data layouts. We
attempt to solve this problem by exploring asynchronous data
layout conversions for applications requiring different memory
access patterns for shared data. We implement the proposed
solution within the DataSpaces data staging service, extending it
to support heterogeneous application workflows across a broad
spectrum of programming models. In addition, we integrate
heterogeneous DataSpaces with the Kokkos programming model
and propose the Kokkos Staging Space as an extension of the
Kokkos data abstraction. This new abstraction enables us to
express data on a virtual shared space for multiple Kokkos
applications, thus guaranteeing the portability of each application
when assembling them into an efficient heterogeneous workflow.
We present performance results for the Kokkos Staging Space
using a synthetic workflow emulator and three different scenarios
representing access frequency and use patterns in shared data.
The results show that the Kokkos Staging Space is a superior
solution in terms of time-to-solution and scalability compared to
existing file-based Kokkos data abstractions for inter-application
data exchange.

I. INTRODUCTION

High performance computing has stepped into a heteroge-

neous era as various computing devices are integrated into

new supercomputers. As of June 2021, seven out of the top

ten systems on the TOP500 list [1] are built with GPUs. This

increases the computing capability of these systems, but also

increases the complexity of the applications deployed on them.

Scientific simulations are capable of running at higher fidelity

by utilizing the computing power of heterogeneous machines

[2]. A variety of applications, such as LULESH [3], LAMMPS

[4] and GTC-P [5], have been ported to GPUs to improve their

capability.

Although these applications obtain great benefits from being

ported to new hardware, the cost of refactoring legacy code

for new architectures and platforms is high. It requires that

application programmers understand the performance char-

acteristics of the target computing platform as well as the

application program in detail. Further, assembling heteroge-

neous simulations and analyses into a scalable in-situ workflow

becomes even more challenging than porting individual appli-

cations. Either refactoring all the components in the workflow

to an identical programming model or designing ad-hoc data

transformations between components with mismatching data

layouts renders the entire porting process time-consuming and

complicated.

Performance portable programming frameworks, such as

Kokkos [6] [7] and RAJA [8], are widely adopted as productive

solutions to write applications targeted at all major HPC

platforms. Applications adapted to the high-level abstractions

provided by such frameworks allow users to simply choose

a particular execution platform at compile time. While these

programming frameworks consider the performance portability

of single applications, to the best of our knowledge, none of

them have the capability to link multiple heterogeneous ap-

plications into a complex workflow using similar performance

portable abstractions. Workflow coupling middleware, such as

DataSpaces [9] and ADIOS [10] [11], provide application-

level data exchange abstractions for efficient code coupling.

However, they do not consider the heterogeneity between com-

ponents and various data representations associated with these

components, which is usually represented as the requirement

for the same data but in different memory layouts.

Our previous work [12] built a workflow for projection-

based reduced-order models (pROMs) [13] in Kokkos. We

observed that while using a uniform programming model in

a single application is intuitive, coupling multiple compo-

nents implemented with optimal data layout for underlying

hardware requires data reorganization between them. Existing

programming interfaces and semantics are inflexible from

the workflow-level perspective, which forces the data reor-

ganization to be offloaded to the application implementation.

Staging-based coupling tasks are typically I/O-bound, which

enables us to utilize compute resources in the staging area for

data reorganization. Building on these insights, we explore

the effects of several data reorganization methods based on
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data access patterns and propose a Self-Adaptive Hybrid

Reorganization (SAHR) method. We implement this method

within the DataSpaces data staging service, and find that we

are able to leverage workflow data access characteristics to

improve heterogeneous I/O performance.

In addition, we integrate our solution into the Kokkos

programming model and propose the Kokkos Staging Space

as an extension of the Kokkos data abstraction, improving the

portability of individual applications within a heterogeneous

workflow by enabling asynchronous data layout conversions.

Ultimately, this achieves performance portability of both indi-

vidual applications and combined workflows of these applica-

tions.

The Kokkos Staging Space extends the data copy semantics

of the Kokkos view, a platform-agnostic representation of a

multi-dimensional array, to heterogeneous application work-

flow settings. Our data exchange API for heterogeneous views

requires only one additional parameter at initialization.

Our main contributions can be summarized:

• We explore the trade-offs between three data reorganiza-

tion methods within the DataSpaces data staging service

with respect to the available resources and features of the

workflow, then propose a Self-Adaptive Hybrid Reorgani-

zation (SAHR) method which reduces resource consump-

tion by collecting data access pattern information.

• We design the Kokkos Staging Space, a prototype of

a portable application coupling framework, implemented

based on Heterogeneous DataSpaces as an extension of

the Kokkos data abstraction, which enables asynchronous

data layout conversions for heterogeneous applications.

• We evaluate the Kokkos Staging Space on current lead-

ership computing systems using a synthetic workflow

running up to ∼5K cores and demonstrate that it can

reduce I/O time by up to 98.7% in comparison to C++

standard I/O and HDF5.

The rest of the paper is organized as follows: Section II

provides background and related work. Section III describes

the design and implementation details of the data reorgani-

zation methods. We then present the architecture and a usage

example of the Kokkos Staging Space in Section IV. In Section

V, we evaluate the trade-offs between the data reorganization

methods and compare the Kokkos Staging Space with two

other current methods of inter-application data exchange based

on a file used by Kokkos. We present our conclusions and

future work in Section VI.

II. BACKGROUND AND RELATED WORK

Coupled workflows still do not benefit from the latest

hardware equipped in HPC clusters due to porting difficulties

[14]. Often, heterogeneous hardware imposes constraints on

which data layouts are performant that are stronger than the

constraints on homogeneous systems [15] [16]. This may

necessitate data transformations when moving data between

execution platforms in order to maintain overall application

performance. In addition, heterogeneity is found not only

within hardware but also in the software stack. Even if all of

Fig. 1. Data layout mismatch between heterogeneous applications. Left:
Application 0 partitions a 4x4 2D array into 4 processors. Application
1 partitions it into 2 processors. Above: Row-major data layout in each
processors memory. Below: Column-major data layout in each processor’s
memory. Arrows show required data movement.

Fig. 2. Complex workflow requires combinatorial numbers of ad-hoc data
layout transformations for polymorphic applications.

the applications are running on CPUs, programming languages

and underlying libraries exhibit different data layout require-

ments. Kokkos, as a heterogeneous programming framework,

accommodates bindings to include Python and Fortran applica-

tions into its ecosystem [17] [18]. Adding these applications to

coupled workflows or reusing math kernels further introduces

heterogeneity issues. Figure 1 illustrates a simple workflow

consisting of two heterogeneous applications with four and

two processes respectively. The first application serializes

data in row-major format with its programming abstraction

while the second requires column-major data to reach peak

performance in the example platform. Such reorganizations

are usually achieved by ad-hoc transformations after the I/O

process, which incurs extra overhead and coding complexity.

With every workflow component also targeting several op-

tional layout models, extreme scale workflows make porting

a combinatorial problem, as shown in Figure 2. Refactoring

all of the components to an identical programming model and

implementing ad-hoc data transformations between all com-

ponents of a workflow makes such a task an insurmountable

challenge.

There are several popular heterogeneous programming

frameworks targeted at simplifying the application porting

process to a specific platform. Kokkos, RAJA, and SYCL

[19] provide high-level programming abstractions where users

are able to specify a parallel execution policy, manage multi-

dimensional data, and execute collective operations in a flex-

ible manner. Applications written in the provided program-

ming abstraction can be configured to support platforms at

compile time. A cornerstone of this portability is the multi-

dimensional data abstraction, which is optimized for each
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architecture to minimize data access penalties. Both Kokkos

and RAJA refer the multi-dimensional data abstraction as

the view, while SYCL calls it a buffer. These programming

frameworks have also been extended across nodes by applying

the MPI+X model to improve performance through node-level

parallelism [20] [21]. Instead of focusing on the portability and

heterogeneity of only a single application, our work strives to

assemble multiple heterogeneous applications into a workflow

while maintaining their portability.

To enhance I/O performance, [22] [23] [24] apply efficient

layout reorganization mechanisms to parallel I/O systems

by identifying data access patterns. However, they do not

consider heterogeneity requirements from a workflow per-

spective. Apache Arrow [25] defines a language-independent

columnar memory format to enable data reorganization for

heterogeneity, but it has not been applied to HPC settings.

Coupling frameworks for scientific workflows such as DataS-

paces [9] and ADIOS [11] define coupling semantics between

components in a workflow. Unfortunately, they only operate

as a pipeline between applications and offload the data trans-

formation to the workflow components. While these basic

coupling semantics together with application-specific data

transformations work to create a consistent multi-component

workflow, this approach lacks flexibility and is labor-intensive

when components can be configured to any given platform at

compile time. In contrast, our work integrates data reorgani-

zation inside the coupling and adds heterogeneity semantics,

enabling flexible coupling between polymorphic components.

III. HETEROGENEOUS DATA REORGANIZATION METHODS

Data producer applications in extreme-scale in-situ work-

flows using a staging-based approach are computationally

intensive, and therefore extra overhead generated by hetero-

geneity should not be handled by these applications. We thus

propose four data reorganization methods, reorganization at

reorganization at destination (RAD), reorganization at staging

as requested (RASAR), reorganization at staging in advance

(RASIA), and self-adaptive hybrid reorganization (SAHR),

and present the details of these four methods.

A. Reorganization at Destination (RAD)

To prepare data for a different layout than its original

format, the most straightforward approach is to get the original

data and reorganize it right before usage. We implement this

approach by adding a generic function for data reorganization

inside the data get API call. The data reorganization is

triggered after the original data is moved from the DataSpaces

server to the destination application/client. This straightfor-

ward design has obvious advantages. The embarrassingly par-

allel data reorganization task displays consistent performance

and is easy to scale out with the destination application. The

weakness of this approach becomes apparent when workflow

is complex. As shown in Figure 3a, if multiple applications

request the data the same layout which is different from the

original layout, every application has to reorganize the data

(a) Reorganization at Destination (RAD)

(b) Reorganization at Staging as Requested (RASAR)

(c) Reorganization at Staging in Advance (RASIA)

Fig. 3. A schematic illustration of data reorganization methods.

on its own, which is a waste of both computational resources

and time to solution.

B. Reorganization at Staging as Requested (RASAR)

Placing the data reorganization in the staging server is an-

other viable solution. Figure 3b illustrates data reorganization

requested at the staging server. The first get request for the

data in a different layout from the original layout will invoke

the reorganization process at the server. A lock mechanism

is applied here to avoid repetitive reorganization overheads

as well as duplicated heterogeneous replica storage. The first

request for a data object in the heterogeneous layout will

acquire the lock so that other concurrent requests will be

halted until the first one finishes. Then, the staging server will

send the reorganized data to the proper destination according

to the requests and add the reorganized data object into its

storage at almost the same time. Since the staging server

keeps the replicated data in the new layout, subsequent get

requests for the data in this layout can reuse the existing one,

which saves I/O time as well. This design leverages the idle

computing resources at the staging server as data staging is an

I/O-bounded operation. However, placing reorganization in the

middle of the data request and transfer still leads to elongated

I/O time for the first request for each data object. If the staging

server is extremely limited in scale, server-side reorganization

may also consume more time.

C. Reorganization at Staging in Advance (RASIA)

In order to hide the data reorganization overhead and make

it transparent to the destination applications, overlapping the

reorganization time in the staging server with the processing
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Fig. 4. A schematic illustration of Self-Adaptive Hybrid Reorganization (SAHR) method.

time in the destination applications is essential. We achieve this

goal by reorganizing the data to all layouts at the staging server

in advance. As shown in Figure 3c, the staging server starts to

reorganize the entire data domain immediately after receiving

it from the source applications. In this approach, all subsequent

get requests do not have to spend extra time on reorganization,

since the staging server has a heterogeneous data replica for all

possible layouts. However, a major weakness of this design is

the huge memory requirement in the staging server to support

multiple data layouts for every single data object exchanged

in the workflow. This very likely results in waste, if a given

workflow does not use all layout types.

D. Self-Adaptive Hybrid Reorganization (SAHR)

Although a dynamic decision between RAD, RASAR, and

RASIA based on the workflow features maximizes the advan-

tages of each method, the decision synchronization between

servers and clients, as well as server instances, becomes

a bottleneck when the scale increases. Thus, we propose

a self-adaptive hybrid reorganization method based on two

assumptions:

• A particular numerical application is interested in a fixed

set of data objects with iterative values.

• The particular numerical application only requests one

specific layout for each data object.

This method combines the three methods above by adding

a data access pattern collection module. The data access

pattern collection module extracts a pattern for each requested

variable from the query by collecting its layout, domain index

descriptor(bounding box), and request frequency. While each

individual destination application holds a pattern record for

itself, the staging server keeps the pattern record for all

components in the workflow. As shown in Figure 4, when

a data get request is initiated, the module will check local

records to determine if the request exhibits a new data object

get pattern that should be collected asynchronously and sent

to the server. Algorithm 1 describes the details of the pattern

update process at both the destination application and the

staging server. For those data objects which intersect with

existing get patterns from other applications in the workflow,

the server will calculate a superset to prepare the data for all

applications. When data is put to the server, it will check the

get pattern list for the intersected record and transform the

data object to the destination layout in advance. The pattern

collection module predicts what the applications will require

after their first data get request, which makes reorganization at

staging efficient and accurate. When a data query is received

by the server, it first searches the data objects in the requested

layouts. If the requested data object exists, then the client does

not reorganize it after the bulk transfer is complete. Otherwise,

the server transfers the data object in the source layout and

lets the client reorganize it at the destination. In this design,

requested data objects are reorganized in advance except for

the initial get, and a missing search implicitly indicates that

the server is busy. Thus, reorganizations are then placed to

destination clients to reduce the overhead load on the server.

Algorithm 1 Get Pattern Update

qodsc ←MetaData for the queried data object {Contains

varname, bounding box descriptor, version, layout,

src layout, etc..}
query ← Query(qodsc) {Request for a specified data

object}
pattern ← ExtractPattern(query)

record list ←SearchGetPattern(pattern.varname,

pattern.layout)

if record list != NULL then

for all record in record list do

if CheckGridIntersection(pattern.bbox, record.bbox)

then

pattern ←CalculateSuperSet(pattern, record)

end if

end for

end if

record list ←UpdateGetPattern(pattern)

IV. IMPLEMENTATION

Our implementation aims to provide a concise coupling

tool that can be applied to the extension of any portable

programming framework for heterogeneous workflow support.

We develop an in-transit mechanism to collect data access

patterns and manage data reorganization as well as replication

for heterogeneous memory layouts based on the DataSpaces

staging service. Specifically, we explore three approaches with

different placements for in-transit data reorganization and

finally propose a self-adaptive hybrid reorganization(SAHR)
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method to automatically adapt with system resource con-

straints and workflow characteristics. In addition, we integrate

our heterogeneous data staging solution with Kokkos ecosys-

tem by supporting inter-application data exchanges between

various memory layouts. The resulting Kokkos Staging Space

allows us to simply transfer the data between applications in

the Kokkos semantics at runtime irrespective to the data layout

and the underlying memory subsystems of the individual

application instances.

A schematic overview of the Kokkos Staging Space is pre-

sented in Figure 5. It is built upon the DataSpaces framework

and directly leverages the existing components by reusing

its data transport, indexing, and querying capabilities. The

DataSpaces client APIs are seamlessly integrated with the

Kokkos core library to support Kokkos::Staging APIs.

The key components of the Kokkos Staging Space include

the Access Pattern Collection module and the Data Reorga-

nization module inside Heterogeneous DataSpaces as well as

the Kokkos::Staging Interface on the top. These modules

cooperate to facilitate data movement and sharing across

heterogeneous HPC workflow applications.

A. Heterogeneous DataSpaces

Heterogeneous DataSpaces is extended from existing solu-

tions by adding an Access Pattern Collection module and a

Data Reorganization module. The Access Pattern Collection

module is responsible for new data access pattern recognition

and record as detailed in Section III-D. The Data Reorganiza-

tion module accommodates a unified data layout management

abstraction for the data staging movement. Specifically, it

implements general-purpose transposition algorithms for ar-

bitrary data structure but provides a plugin interface for third-

party algorithms as well. It is also responsible for managing

the supported data layout and scheduling the data reorga-

nization operations by cooperating with the Access Pattern

Collection module. In a complex workflow, the required data

layouts of multiple applications can be varied. If such a

workflow scales out, the complexity of data access requests

would be a Cartesian product of the number of layout types

and the number of data objects. When thousands or even

millions of asynchronous heterogeneous data requests flood

in, concurrency also becomes a major concern if the data

reorganization operations are performed at the staging server.

To overcome this problem, we have integrated concurrency

and heterogeneous replica controls in the Data Reorganiza-

tion module. When the staging server receives data access

requests for heterogeneity, the server only launches a data

reorganization for the first request and keeps a replica with

the reorganized layout for the subsequent requests so that the

particular layout is served through the replica.

B. Kokkos::Staging Interface

For the purpose of making our new data staging capa-

bility compliant to other memory spaces in Kokkos, we

wrap DataSpaces client operations with a new namespace

Kokkos::Staging. Figure 6 presents a sample code that

Fig. 5. Architecture of Kokkos Staging Space. The data reorganization module
and Kokkos::Staging API were implemented on top of the DataSpaces and
Kokkos framework respectively.

exchanges data between two Kokkos applications whose views

are in different layouts. To use Kokkos::Staging function-

alities, an initialization call is required. This call is responsible

for initializing an internal DataSpaces client, assuming that

Kokkos initialization call has been made. At the end of each

program but before Kokkos finalizes, Kokkos::Staging

needs to be called in order to release the resource binding

to the DataSpaces server. After the initialization, users can

declare a Kokkos::Staging view similar to what they

are supposed to do with other Kokkos memory spaces [6].

The layout of Kokkos::Staging view should be explicitly

declared for heterogeneity, otherwise, it would use the default

layout of the host space. In accordance with the data copy

semantics in Kokkos memory spaces, a deep copy between

Kokkos::Staging view and other memory space views

is served by zero-copy non-blocking put/get operations for

Kokkos applications to transfer data to/from the staging server.

However, setting the version and bounding box of the vari-

able before the actual data transfer is optional but strongly

suggested. When reader applications request the data with

a different layout, an extra line is needed to declare the

heterogeneity, as shown in line 26 in Figure 6. An implicit data

reorganization will be performed in deep_copy function

after this explicit call for user awareness.

With these fundamental APIs, users can exchange data

between heterogeneous applications. Coupled applications are

expected to be aware of the variable name and local bounding

box of the data. They can then simply call deep_copy() to

enable data exchange between the coupled applications. Users

are free to implement complex functions by encapsulating

these basic operations.

V. EVALUATION

We test our heterogeneous data reorganization methods

using a synthetic workflow emulator, which simulates various

data read patterns. We performed these experiments on the

Frontera system [26] at the Texas Advanced Computing Center

(TACC). Frontera hosts 8368 compute nodes, each containing

a Dual Intel Xeon Platinum 8280 (“Cascade Lake”) 28-core

processor with 192GB of DDR4 RAM and 240GB SSD. All

of the test runs in subsequent sections have been executed 3

times and the average result is reported.

To better understand the impact of the read access rate

and layout matching between a source and a destination on

workflow performance, we select two scenarios similar to
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1 Kokkos::Staging::initialize();

2 {

3 using ViewHost_lr_t = Kokkos::View<Data_t**,

4 Kokkos::LayoutRight, Kokkos::HostSpace>;

5 using ViewHost_ll_t = Kokkos::View<Data_t**,

6 Kokkos::LayoutLeft, Kokkos::HostSpace>;

7 using ViewStaging_lr_t = Kokkos::View<Data_t**,

8 Kokkos::LayoutRight, Kokkos::StagingSpace>;

9 using ViewStaging_ll_t = Kokkos::View<Data_t**,

10 Kokkos::LayoutLeft, Kokkos::StagingSpace>;

11 ViewHost_lr_t v_P("PutView", i0, i1);

12 ViewStaging_lr_t v_S_lr("StagingView_LayoutRight",

13 i0, i1);

14 ViewStaging_ll_t v_S_ll("StagingView_LayoutLeft",

15 i0, i1);

16 ViewHost_ll_t v_G("GetView", i0, i1);

17 // global domain geometric descriptor

18 Kokkos::Staging::set_lower_bound(v_S_lr, lb0, lb1);

19 Kokkos::Staging::set_upper_bound(v_S_lr, lb0, lb1);

20 Kokkos::Staging::set_lower_bound(v_S_ll, lb0, lb1);

21 Kokkos::Staging::set_upper_bound(v_S_ll, lb0, lb1);

22 // global iteration

23 Kokkos::Staging::set_version(v_S_lr, version);

24 Kokkos::Staging::set_version(v_S_ll, version);

25 // bind two staging views in different layout

26 Kokkos::Staging::view_bind_layout(v_S_ll, v_S_lr);

27 // from host to staging

28 Kokkos::deep_copy(v_S_lr, v_P);

29 // from staging to host

30 Kokkos::deep_copy(v_G, v_S_ll);

31 }

32 Kokkos::Staging::finalize();

Fig. 6. Code example of data exchange between Kokkos views in different
layouts

[27]: reading the entire data domain and reading a subset

data domain for all time steps. In both scenarios, the coupled

scientific applications are modeled to read/write data to/from a

3-D data domain. The data is modeled as writes over multiple

iterations or time steps in a fixed layout, and reads in a similar

temporal manner but with heterogeneous layouts.

In our synthetic tests, two application codes, namely readers

and writers, are used to emulate generic end-to-end data

movement behaviors in real coupled simulation workflows. As

their names suggest, writers produce simulation data and write

it to the staging servers and readers read the data from staging

servers and then perform some analysis. In all of the test cases,

one writer application writes the data for the entire domain in

a fixed layout over all of the simulation time steps into the

staging servers. One reader application also reads the data,

using either the same layout or a different layout as needed,

but varies the data access pattern. To demonstrate reorganized

data reuse, a second reader, which shares the same read pattern

as the first one, is added when the reader requests the data in

a layout different from that of writer.

A. Exploring the task placement of data reorganization

This experiment evaluates the impact on I/O performance in

the scalable in-transit workflow of the four data reorganization

methods introduced in Section III. To better understand the

trade-offs between these approaches, three critical workflow

metrics are selected according to [28]. Table I details the

base setup for all tests cases in this experiment. The second

reader starts after the first reader finishes data reads in this

TABLE I
EXPERIMENTAL SETUP CONFIGURATIONS FOR SYNTHETIC EXPERIMENTS

Data Domain 1024 × 1024 × 1024

No. of Parallel Writer Cores (Nodes) 512(16)

No. of Parallel Reader Cores (Nodes) 64(4)

No. of 2nd Parallel Reader Cores (Nodes) 64(4)

No. of Staging Cores (Nodes) 32(8)

Total Staged Data Size (15 Time-steps) 120 GB

experiment to eliminate interference between asynchronous

reader applications.

1) Metric 1 - Cycle time of writer and reader: Because our

synthetic writers and readers use a simplified data generator,

both of the applications have a relatively fast cycle time.

While this fast cycle time may accurately represent some

applications, applications with longer cycle times should be

studied as well. To simulate a longer cycle time, a pause is

added to our synthetic writers and readers after the completion

of computation but before the data movement in each cycle.

The four simulated cases were:

• Delay(0): writers and readers ran with no sleep com-

mand.

• Delay(5): writers and readers ran with 5 seconds of sleep

after each computation time step.

• Delay(10): writers and readers ran with 10 seconds of

sleep after each computation time step.

• Delay(20): writers and readers ran with 20 seconds of

sleep after each computation time step.

Figure 7 shows the I/O time per time step for each data

reorganization method with varying application cycle time. We

see that longer cycle times benefit data reorganization at the

staging server. RAD, where data reorganization takes place at

the reader side, cannot take advantage of any latency hiding

and keeps a steady I/O time regardless of the delay time.

Although the data reorganization in RASAR happens at the

staging server at the start of receiving get requests, it benefits

from the longer cycle time, because less frequent data get

requests leave enough time for the data reorganization at the

staging server, avoiding a cascading slowdown in the following

requests. RASIA and SAHR obtain the most advantage from

the longer cycles, with a speedup of up to 96% and 78%

compared to RAD and RASAR respectively in Delay(20),

because the data reorganization overhead can be hidden by

the staging server and the readers can proceed in parallel.

However, in Delay(0), the reorganization in the server means

the staging servers are computationally bound, which causes

both the read and write times of RASAR, RASIA, and SAHR

to increase. For the second reader, RASAR, RASIA, and

SAHR have nearly identical read times due to directly hitting

the reorganized replica at the staging server, while RAD still

has to transform every data object. This “cache hit” saves up

to 95% read time.

2) Metric 2 - Staging server scale: Placing the data reor-

ganization task at the staging server has a great potential to

make the staging operations computationally bounded. Con-

sequently, the response rate to incoming I/O requests would

slow down, which might further affect the entire workflow
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Fig. 7. Comparison of I/O time per time step among four data reorganization methods with varying cycle time of applications

adversely. For an in-transit paradigm, the scale of simulation

and analysis is predetermined. Thus, we change the number

of the staging server cores to explore how the staging server

scale impacts the performance. The three server configurations

with the scale of 512(16) writer cores(nodes) and 64(4) reader

cores(nodes) used were:

• 8(2): staging server ran with 8(2) cores(nodes).

• 16(4): staging server ran with 16(4) cores(nodes).

• 32(8): staging server ran with 32(8) cores(nodes).

Figure 8 demonstrates the I/O time per time step among

the four data reorganization methods with different staging

server sizes. Since the first reader starts with the writer at the

same time, the read time of the first time step is extremely

long because the reader must wait for the data generated

and transferred to the staging server. The statistic in the

first time step is always excluded due to its uncertainty.

Several insights can be drawn from Figure 8. RASAR, RASIA,

and SAHR are subject to a dramatic I/O time increase as

the server:reader ratio decreases while RAD keeps constant

performance because the limited server resources cannot afford

the computational overhead incurred by reorganization. Such

a heavy workload can even lead to performance degradation

for the writers since the write call is blocking and the response

time to the write requests increases. For the first reader,

RASAR is sensitive to the server scale changes because of no

time overlapping. It performs the worst in the server:reader

ratio of 8:64 case while RASIA and SAHR have relatively

the same performance as RAD on average. The read time

of RASIA and SAHR witness an extraordinary slowdown in

the beginning, but finally converge to the read time of the

second readers who completely reuse the reorganized replicas

at the server, which is due to the I/O behavior variation in

the asynchronous workflow we were running as time step

increases. From the second time step, RASIA and SAHR

must wait for the reorganization, which happens immediately

after the staging server receives the data from the writer, to

be completed. As the writer stops putting data to the staging

server and the server finishes the reorganization in advance,

they start to benefit from reorganized replicas at the server.

The read time of them becomes shorter than the other two

from time step 7 and converges from time step 9. This also

explains the large span of the error bar of RASIA and SAHR

in Figure 8. As for the second reader, because the first reader

did not cache the heterogeneous replica at the server in the

initial time step, SAHR always uses the RAD method and thus

spends more time in the first time step than other methods that

use cache.

3) Metric 3 - Data size of reading subset domain: Be-

sides the scenario where the entire data domain is read, the

mere need for a subset of data domain is representative for

applications such as interactive visualizations and descriptive

statistical analysis [29]. Reorganizing the data as requested

saves both computation and storage overhead. How the subset

data size results in terms of time and memory also draw

our interest. Thus, we only read a geometric core, whose

coordinates are { 1024−d

2
, 1024+d

2
} in each dimension, of the

entire domain as the subset data. The three distances(d) used

were:

• d=128: readers only read a 128×128×128 cube from the

geometric core of the entire data domain.

• d=256: readers only read a 256×256×256 cube from the

geometric core of the entire data domain.

• d=512: readers only read a 512×512×512 cube from the

geometric core of the entire data domain.

In Figure 9, we show the I/O time per time and memory

consumption step among proposed reorganization methods

with different sizes of subset domain to read. It is observed

that all the methods perform identically on the writer side. For

the first reader, while RAD and RASAR require longer time as

subset size increases, RASIA and SAHR stay constant because

of the computation in advance. Although SAHR typically

requires slightly more read time than RASIA, it uses the

memory more efficiently by collecting the data access pattern.

RAD only uses the memory for the original data despite

the always longer read time. RASAR saves only the part of

reorganized data as reader queried, which consumes up to the

double size of the original data. However, RASIA always saves

the entire data domain in another layout, which remains stable

memory usage to the double size of the original data.

From the above-mentioned test cases, a trade-off is drawn

with respect to the available resources and the features of the

workflow planned to run. Apart from the main applications, if

the additional resource for the staging server is very limited,

RAD turns to perform the best in both time to the solution

and the memory usage, since others are likely to be slow

due to the heavy workload at the server and even breaks
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Fig. 8. Comparison of I/O time per time step among four data reorganization methods with different staging server scale

Fig. 9. Comparison of I/O time & staging server memory usage per time step among four data reorganization methods with different size of subset domain
to read

down due to the insufficient memory size. Applications with a

longer cycle time benefit from the reorganization in advance as

RASIA works. For the situation where applications only need

a subset of data, RASAR outperforms others by computing

as needed. SAHR presents its advantage in adaption to a

particular workflow by balancing memory consumption and

I/O time.

B. Strong scaling comparison to existing Kokkos backends

Besides the experiment to explore the trade-offs between

different data reorganization placements, we compare the

SAHR method implemented in our heterogeneous data staging

system with two other existing backends of inter-application

data exchange based on the file in Kokkos framework: StdFile

(C++ standard I/O binary files who need ad-hoc data reor-

ganization if layouts between applications are mismatched.),

Parallel HDF5 [30] (HDF5 files who need ad-hoc data reor-

ganization if layouts between applications are mismatched.).

Because the data coupling through the file system does not

support asynchronous I/O between applications, writer, reader,

and the second reader are running in sequence in all the

cases of this test. To simulate a typical extreme scale in-

situ workflow, such as XGC1 [31], FLASH [32], according

to [33], a strong scaling test is performed with the detailed

configuration described in Table II.

In Figure 10, we show the result of strong scaling com-

parison among C++ standard I/O, HDF5, and DataSpaces

in the fixed data domain for both homogeneous and het-

erogeneous data exchange between writer and reader. It is

clearly observed that DataSpaces outperforms the other two

existing baseline approaches by the I/O time reduction of 27%-

79% and 77%-98% for the writer and reader respectively,

except for DataSpaces SAHR, which sacrifices a little at

writer side but gains the overhead hide at reader side with

the performance identical to homogeneous data get. This is

expected because data storage and management in DataSpaces

avoids the involvement of secondary storage. In contrast to

the result of fixed scale experiments, DataSpaces shows great

overall scalability and acceptable overhead with the increasing

number of application processors from 300 to 5k in total,
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TABLE II
EXPERIMENTAL SETUP CONFIGURATIONS OF DATA DOMAIN, CORE-ALLOCATIONS AND SIZE OF THE STAGED DATA FOR STRONG SCALING TESTS

Data Domain 1024 × 1024 × 1024

No. of Parallel Writer Cores (Nodes) 256(8) 512(16) 1024(32) 2048(64) 4096(128)

No. of Parallel Reader Cores (Nodes) 32(2) 64(4) 128(8) 256(16) 512(32)

No. of 2nd Parallel Reader Cores (Nodes) 32(2) 64(4) 128(8) 256(16) 512(32)

No. of Staging Cores (Nodes) 16(4) 32(8) 64(16) 128(32) 256(64)

Total Staged Data Size (15 Time-steps) 120 GB

Cycle Time 20 second

Fig. 10. Strong scaling comparison of I/O time per time step among C++ standard I/O, HDF5 and DataSpaces

compared to the existing baseline approach.

From our strong scaling workflow simulations, we can

infer that file-based in-situ data exchange between applications

performs poorly at the extreme scale due to the unnecessary

involvement of the file system. In addition, heterogeneous

workflow makes file-based in-situ data exchange difficult to

provide portability from both performance and development

perspectives. On the contrary, our heterogeneous staging ser-

vice is able to tackle these cases easily and provide an I/O time

reduction of up to 97% in comparison to C++ standard I/O and

HDF5. Also, our staging service provides the common APIs

for heterogeneous applications, so developers could easily

couple them by adding extra a few extra lines. In summary,

our staging service can effectively support heterogeneous

multi-component scientific workflow thus guaranteeing the

portability of the individual applications at the extreme scale,

by efficiently reorganizing the data on the fly.

VI. CONCLUSION AND FUTURE WORK

Although heterogeneous programming frameworks have

emerged as effective solutions for porting applications to

various platforms, they are not capable of assembling these

applications into a heterogeneous in-situ workflow while main-

taining individual portability. We propose four data reorgani-

zation methods, RAD, RASAR, RASIA, and SAHR, which

simplify the exchange of data between heterogeneous appli-

cations requiring different memory access layouts and then

implement these methods within the Kokkos Staging Space,

an extension of Kokkos’ original data abstraction based on the

DataSpaces data staging framework. We evaluate the Kokkos

Staging Space on the TACC Frontera system using a synthetic

benchmark; our experimental results give insight into the

effectiveness and trade-offs between the four methods under

different access frequencies and use patterns in the shared data.

We demonstrate that the Kokkos Staging Space outperforms

the existing file-based Kokkos data abstraction both in time-

to-solution and scalability for inter-application data exchange.

The source code for our prototype implementation of the

Kokkos Staging Space is publicly available at https://github.

com/Zhang690683220/kokkos-staging-space. As future work,

we plan to support more data reorganization types, such as the

transformation between Array of Structs(AoS) and Struct of

Arrays(SoA), and to evaluate these methods using a real-world

scientific workflow of heterogeneous components.
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