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Abstract. Computing image atlases that are representative of a dataset
is an important first step for statistical analysis of images. Most current
approaches estimate a single atlas to represent the average of a large pop-
ulation of images, however, a single atlas is not sufficiently expressive to
capture distributions of images with multiple modes. In this paper, we
present a mixture model for building diffeomorphic multi-atlases that
can represent sub-populations without knowing the category of each ob-
served data point. In our probabilistic model, we treat diffeomorphic
image transformations as latent variables, and integrate them out using
a Monte Carlo Expectation Maximization (MCEM) algorithm via Hamil-
tonian Monte Carlo (HMC) sampling. A key benefit of our model is that
the mixture modeling inference procedure results in an automatic clus-
tering of the dataset. Using 2D synthetic data generated from known pa-
rameters, we demonstrate the ability of our model to successfully recover
the multi-atlas and automatically cluster the dataset. We also show the
effectiveness of the proposed method in a multi-atlas estimation problem
for 3D brain images.

1 Introduction

Atlas building through diffeomorphic image registration is an effective way to
compute a common coordinate system for comparison across images, as well as
to encode shape via the diffeomorphic transformations. As such, atlas estimation
becomes a fundamental step in population-based studies, shape quantification,
etc. The diffeomorphic framework guarantees a smooth, and smoothly invertible,
mapping between the atlas and each individual subject. Early work in this area
chose either a standard template or a randomly selected subject from the dataset
as the atlas. This, as a result, may bias the statistical analysis made with an atlas
that is not representative of the data at hand. Several works [8, 16, 13, 21] have
constructed an unbiased single atlas in the Large Deformation Diffeomorphic
Metric Mapping (LDDMM) framework [3]. They register a set of input images to
a template, which is simultaneously estimated by minimizing the energy function
of the sum-of-squared difference between the deformed atlas and each individual
image. All these approaches are based on the assumption that the population
comes from a distribution of transformations from the atlas centered about a
single mode.



However, a single atlas does not provide enough information for robust sta-
tistical analysis if significant differences exist between sub-populations. Blezek et
al. [5] were the first to investigate the multi-atlas building problem and infer each
atlas from the mode of a population through the mean-shift algorithm. They it-
eratively optimized between a small deformation image registration framework
and atlas construction. Later, two major classes of multi-atlas building methods
were developed in medical imaging. One of the classes is a two-step strategy,
in which the algorithm does clustering, like K-means or affinity propagation,
after registration. Another class of multi-atlas building is motivated by prob-
abilistic modeling of multi-atlases. Allassonnière et al. [2] discussed a mixture
model of template estimation with small deformations. Sabuncu et al. [12] in-
troduced a joint framework of image registration and clustering using a mixture
of Gaussians, although their work was not in a diffeomorphic setting. Tang et
al. [14] proposed a random diffeomorphic orbit model to treat the multiple at-
lases as Gaussian random fields, and then estimated them from the model using
maximum a posteriori estimation. These multi-atlas methods are of high im-
portance for related research areas, for example, image segmentation [1, 9, 11,
15, 18], where a priori knowledge about the shapes and structures from the pre-
segmented multiple atlases is used to guide the segmentation. Aljabar et al. [1]
discussed the issue of multi-atlas selection and showed that multi-atlas based
segmentation results in higher accuracy than a single atlas.

In this paper, we propose a generative formulation of the diffeomorphic multi-
atlas building problem. We develop an algorithm that can for the first time
cluster population-based images into different sub-groups automatically while
co-registering them in a diffeomorphic setting with marginalized deformations.
To achieve this, we use a MCEM algorithm, where the diffeomorphic image
transformations are treated as latent variables and integrated out from the joint
distribution of the complete data likelihood. Much like Zhang et al. in [21], we
sample on the space of diffeomorphisms by HMC sampling. The reason why
we treat diffeomorphisms as latent random variables, rather than parameters to
estimate by maximum a posterior (MAP), is that such a mode approximation
scheme performs poorly under image noise and is more likely to get stuck in
a local minima as shown in [2, 21]. Since we have a generative model, we can
forward generate 2D synthetic data with known parameters from our model. We
demonstrate that our model can successfully recover multiple atlas as well as
automatically cluster the dataset. We also show the effectiveness of the proposed
method in a multi-atlas estimation problem for real 3D brain MRI images.

2 Background

We define a mixture model for multi-atlas building in the diffeomorphic setting.
Before introducing our model, we first briefly review single diffeomorphic atlas
building [13, 17, 19, 21].

Diffeomorphic Atlas Building Given input images J1, . . . , JN ∈ L2(Ω,R),
the atlas image I and the diffeomorphic deformations between the atlas and each



individual image are estimated alternatively by minimizing the energy,

E(vn, I) =

N∑
n=1

1

2σ2

∥∥I ◦ (φn)−1 − Jn
∥∥2 + (Lvn, vn), (1)

where σ2 represents noise variance, and the velocities {vn ∈ L2([0, 1], V )}n=1,...,N

are initial velocity fields in a reproducing kernel Hilbert space, V , equipped with
a metric, L : V → V ∗, a positive-definite, self-adjoint, differential operator,
mapping to the dual space, V ∗. The dual to the vector vn is a momentum,
mn ∈ V ∗, such that mn = Lvn and vn = Kmn, where K is the inverse operator
of L. The notation (mn, vn) denotes the pairing of a momentum vector mn ∈ V ∗
with a tangent vector vn ∈ V . The deformation φn is generated by the integral
flow of time-varying velocity fields vnt , that is, (d/dt)φn(t, x) = vn(t, φn(t, x))
with vn0 = vn. To achieve the optimal solution of the energy above, the geodesic
path φn is constructed via integration of the following EPDiff equation [10]:

∂vn

∂t
= −Kad∗vnmn = −K

[
(Dvn)Tmn +Dmn vn +mn div(vn)

]
, (2)

where D denotes the Jacobian matrix, and the operator ad∗ is the dual of the
negative Lie bracket of vector fields, advw = −[v, w] = Dvw −Dwv.

3 Mixture Model of Diffeomorphic Multi-Atlas Building

We assume that the input images {Jn}n=1,...,N are generated from multiple at-
lases Ik, where k = 1, . . . ,K represents the number of clusters and πk denotes
the prior probability of the kth cluster. Each individual image Jn is associated
with a k-dimensional binary random variable zn, in which a particular kth el-
ement znk is equal to 1 and all other elements are equal to 0. As in a general
mixture model, the prior distribution of zn is specified by the mixing coefficients
πk as p(znk = 1) = πk, where πk ∈ [0, 1] with

∑K
k=1 π

k = 1. We then can write
the distribution of p(zn) as

p(zn) =

K∏
k=1

(πk)z
nk

.

Let vn denote a set of initial velocities from each cluster k for the nth image,
which is {vnk}. Similarly, the atlases {Ik} and noise variances {σk} will be
represented as I and σ. Consider that our input images and atlases are measured
on a discrete grid, we formulate our noise model as i.i.d. Gaussian at each image
voxel, with the data likelihood p(Jn | zn,vn, I,σ) given by

p(Jn | zn,vn, I,σ) =

K∏
k=1

N(Jn | vnk, Ik, σk)z
nk

=

K∏
k=1

[
1

(2π)M/2(σk)M
exp

(
−‖I

k ◦ (φnk)−1 − Jn‖2

2(σk)2

)]znk

,

(3)



where M is the number of voxels.
We then define a multivariate Gaussian distribution on the initial velocity

vn that guarantees smoothness of the geodesic shooting path. The formulation
is given by

p(vn) =

K∏
k=1

N(vnk | 0, L−1)z
nk

∝
K∏

k=1

[
exp

(
−1

2
(Lvnk, vnk)

)]znk

, (4)

where we use a metric of the form L = −α∆+I, in which ∆ is the discrete Lapla-
cian operator, α is a positive regularity parameter, and I denotes an identity
matrix. In this paper, we set α with the same value across all clusters.

Putting together equations (3) and (4), we arrive at the log joint posterior
distribution with a set of parameters θ = {Ik, σk, πk} as

log

N∏
n=1

p(zn,vn | Jn, θ) =

N∑
n=1

K∑
k=1

znk{log πk − 1

2(σk)2
∥∥Jn − Ik ◦ (φnk)−1

∥∥2
L2

− M

2
log σk − 1

2
(Lvnk, vnk)}+ const. (5)

Figure 1 shows the graphical representation of our model.

Fig. 1: Graphical representation of our model for a set of i.i.d. images
{Jn}, with corresponding latent variables {zn,vn}n=1,...,N and parameters
{Ik, σk, πk}k=1,...,K .

4 Inference

We now present an algorithm for estimating the parameters, θ, of our model
described in the previous section. In order to treat the zn,vn as latent random



variables, we need to integrate them out over the log posterior given by (5).
Marginalizing zn is straightforward as the Gaussian mixture model. However,
marginalizing vn is intractable in the closed form. We develop a Hamiltonian
Monte Carlo procedure to generate samples vn from the posterior distribu-
tion (5), and use these samples in a Monte Carlo Expectation Maximization
algorithm to estimate θ. The inference consists of two main steps:

1. E-step To compute the expectation function Q, we integrate out the hidden
variables zn and vn with the current estimate of the parameters θ(i) as

Q(θ | θ(i)) = Ezn,vn

[
N∑

n=1

log p(zn,vn | Jn, θ(i))

]
. (6)

A standard way to approximate (6) is sampling zn,vn through Gibbs sam-
pling on the joint posterior distribution (5). We draw S samples, vnj{j=1,...,S},

from the log conditional distribution log p(vn | zn, Jn, θ(i)) by HMC. Note that
vnj denotes a set of jth samples for the nth initial velocity across k clusters.
We then use the sample mean to approximate the expectation function Q. To
simplify the computation, we develop a closed-form solution for marginalizing
zn from the log conditional distribution log p(zn |vn, Jn, θ(i)) directly.

Closed-form solution for znk: Much like [4], the closed-form solution for
computing the expectation of znk is

γ(znk) =
πk
∏S

j=1N(Jn, vnjk | θ(i))∑K
k=1 π

k
∏S

j=1N(Jn, vnjk | θ(i))
,

which is the responsibility that cluster k takes for representing the observed
image data Jn. Here vnjk is the jth sample for the nth velocity field that belongs
to the cluster k.

Hamiltonian Monte Carlo Sampling for vnk: Hamiltonian Monte Carlo [7]
is a powerful sampling method that efficiently explores the target distribution
with a high acceptance rate. We draw random samples from the joint distribution
of latent variables, vnk, which generates diffeomorphic deformations between the
atlas and each individual image. The critical step of HMC sampling is computing
the gradient with respect to the initial velocity vnk of the distribution (5). We
use a fast version of the geodesic shooting algorithm [16] proposed by Zhang
and Fletcher [20] (https://bitbucket.org/zhubomm/flashc). The steps for
computing the gradient w.r.t. the initial velocity vnk are:

– Forward integrate the geodesic evolution equations (2) to generate diffeo-
morphic deformations at time points t1 = 0, t2, . . . , tT = 1.

– Compute the gradient ∇vnkQ at tT = 1 as

f = −K
[

1

σ2
(Ik ◦ (φk)−1 − Jn) · ∇Ik ◦ (φk)−1

]
,



– Integrate the gradient backward to t1 = 0 using reduced adjoint Jacobi fields
from Bullo [6] to update the gradient. By introducing time-dependent adjoint

variables v̂, f̂ , we write the reduced adjoint Jacobi equations as

dv̂

dt
= −ad†v v̂,

df̂

dt
= −v̂ + sym†v f̂ ,

where sym†v f̂ = −adv f̂ + ad†
f̂
v. For more details on the derivation of the

reduced adjoint Jacobi field equations, see [6]. The final gradient term w.r.t.
vnk is

∇vnkQ = vnk − f.

Finally, the expectation function (6) is ultimately approximated as

Q(θ | θ(i)) ≈ 1

S

S∑
j=1

N∑
n=1

log p(γ(zn),vnj | Jn, θ(i)). (7)

2. M-step We then maximize the approximated function Q(θ | θ(i)) (7) to up-
date the parameters θ = {Ik, σk, πk}, which turns out to be a closed-form update
for all parameters. We set the derivative of the expectation Q w.r.t. each param-
eter of θ to zero, and the closed-form update is

π̃k =
Nk

N
, where Nk =

N∑
n=1

γ(znk),

Ĩk =

∑N
n=1

∑S
j=1 γ(znk) · Jk ◦ φnjk|Dφnjk|∑N

n=1

∑S
j=1 γ(znk) · |Dφnjk|

,

(σ̃k)2 =
1

M · S ·Nk

N∑
i=1

S∑
j=1

γ(znk) · ‖Ik ◦ (φnjk)−1 − Jn‖2.

5 Results

We demonstrate the effectiveness of our model using both 2D synthetic data and
real 3D MRI brain data.

Synthetic Data Because we have a generative model, we can forward simulate
random images from the known parameters θ = {Ik, σk, πk}, where we choose
k ∈ {1, 2, 3}. We use three atlases, which are 2D binary images of a square,
triangle, and ellipse with a resolution of 100× 100. We then generate 30 initial
velocity fields (10 per cluster) from the prior p(vnk) given in (4), setting α = 3.0.
We shoot the initial velocities by the EPDiff equations (2) to generate diffeomor-
phic deformations, and then use them to transform the atlases. Finally, we add
random Gaussian noise with σ = (0.01, 0.025, 0.03) to each transformed cluster
atlas.



In our testing procedure, we initialize σ = 0.3 for all K clusters (K is the true
number of clusters in this synthetic example). For the HMC sampling procedure,
we use a step size of 0.05 for leap-frog integration with 40 samples after a burn-in
of 50 samples. Each atlas from the kth cluster is initialized to the linear average
of the image intensities over the samples we generated for each cluster, and the
{πk} are set as the averaged weight, 0.3. Figure 2 compares the ground truth
atlases and our estimated atlases, showing that our model is able to accurately
recover the true atlases, as well as automatically cluster data into sub-groups.
As for other parameters, we get the estimated σ = (0.011, 0.026, 0.031) and
π = 0.33333 for each cluster. We compared our multi-atlas approach with a
single atlas estimated over all data points using the method of Zhang et al. [21].
The single atlas was completely incapable of representing the synthetic dataset.

Fig. 2: Estimation of atlases. Top: ground truth atlases of three clusters: square,
ellipse, and triangle; Bottom: our estimation; Right: single atlas estimated from
the whole dataset.

OASIS Brain Data To show the effectiveness of our model on the real 3D brain
data, we applied our algorithm to an OASIS brain MRI dataset with 26 healthy
subjects from ages 60 to 90. All the MRI images have resolution 128×128×128
with the image spacing 1.0 × 1.0 × 1.0mm3, and are skull-stripped, intensity
normalized, and co-registered with affine transforms. We set α = 0.3, which
was estimated by Zhang et al. [21] with 10 time-steps in geodesic shooting. We
ran K-means algorithm with two clusters using image intensity as features, and
then used the output as our initialization for Ik, the initial atlas at each cluster.
Note that here we use cross-validation to determine the number of clusters.
Other alternative ways could also be used, such as the Elbow method, which
evaluates the percentage of variance with respect to the number of clusters and
information criterion approaches (for instance, Akaike information criterion and
Bayesian information criterion).



The first two columns in Figure 3 show sagittal, axial, and coronal views of
slices from the output of K-means algorithm, which are the greyscale averages
of the clustered images. The middle two columns are atlases estimated from
our model. It demonstrates that the final atlases produces sharper averaged
images with more details. Meanwhile, the big shape difference between the two
estimated atlases shows that multiple atlases gives a better representation of
multi-model population by an atlas per mode than a single atlas that mixes up
the features across different groups. For a purpose of better visualization, we also
add difference maps that represent the absolute value of the intensity differences
between our two estimated atlases.
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Fig. 3: Initialization and our estimation of atlases. Top to bottom: sagittal, axial,
and coronal views of the K-means initialization and our estimated atlases. Left
to right: initialization for each cluster (column 1-2), our estimated atlases from
two different clusters (column 3-4) and difference maps over image intensity
between two atlases.

6 Conclusion

In this paper, we presented a generative Gaussian mixture model of diffeomorphic
multi-atlas building. Our method is the first probabilistic model for construct-
ing multiple atlases navigated by unsupervised clustering in a diffeomorphic
setting. To treat the diffeomorphic transformations as latent random variables,
we developed a MCEM algorithm to integrate the diffeomorphisms out from the



joint distribution of data likelihood via HMC sampling on the space of diffeo-
morphisms. Our algorithm aggregates data that belongs to the same category
automatically and constructs multiple representations of a large image database.
This framework can be very useful for further statistical analysis in many areas,
such as shape variation quantification and guidance of image segmentation.
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