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Abstract

In this paper, we present a generative Bayesian approach for estimating the low-dimensional latent space of diffeomor-
phic shape variability in a population of images. We develop a latent variable model for principal geodesic analysis
(PGA) that provides a probabilistic framework for factor analysis in the space of diffeomorphisms. A sparsity prior
in the model results in automatic selection of the number of relevant dimensions by driving unnecessary principal
geodesics to zero. To infer model parameters, including the image atlas, principal geodesic deformations, and the ef-
fective dimensionality, we introduce an expectation maximization (EM) algorithm. We evaluate our proposed model
on 2D synthetic data and the 3D OASIS brain database of magnetic resonance images, and show that the automatically
selected latent dimensions from our model are able to reconstruct unobserved testing images with lower error than
both linear principal component analysis (LPCA) in the image space and tangent space principal component analysis
(TPCA) in the diffeomorphism space.

Keywords: Bayesian estimation, principal geodesic analysis, diffeomorphic image registration, dimensionality
reduction

1. Introduction

The deformable template approach to statistical shape
analysis of images is to quantify shape using deformable
image registration and then compute statistics of the re-
sulting transformations, rather than the images them-
selves. The first step in this process is to compute a tem-
plate image, or atlas, which represents the large data set.
The class of diffeomorphic transformations preserves
the topology of objects in the images and provides for-
ward and inverse mappings between the atlas and in-
dividuals. Furthermore, the requisite distance metric
for atlas estimation and further statistics is provided by
the setting of Large Deformation Diffeomorphic Met-
ric Mapping (LDDMM) (Beg et al., 2005). Motivated
by Bayesian reasoning, current approaches (Joshi et al.,
2004; Twining et al., 2005; Ma et al., 2008; Vialard
et al., 2011) formulate diffeomorphic atlas building as
maximum a posteriori (MAP) optimization problems,
where the image match is analogous to a log-likelihood,
and the deformation regularization is analogous to a log-
prior.

However, an image atlas is only a point estimate and
does not encode the shape variability of a population.
Extracting low-dimensional, second-order statistics of

anatomical shape variability is a critical step to improve
the statistical power and interpretability of further sta-
tistical analyses. The standard method for conducting
dimensionality reduction and analyzing variability of
Euclidean data is principal component analysis (PCA),
which decomposes the data matrix into a linear combi-
nation of independent factors. Bishop (1999) introduced
a Bayesian model for PCA (BPCA) that automatically
learns the dimension of the latent space from data by
including a sparsity-inducing prior on each component
of the factor matrix. These linear factor analysis mod-
els, nevertheless, are not directly applicable to nonlinear
diffeomorphic transformations.

There exist several methods for dimensionality re-
duction and shape variability modeling on nonlinear
manifolds. Fletcher et al. (2003) generalized PCA to
finite-dimensional manifolds, in a method called prin-
cipal geodesic analysis (PGA), which estimates lower-
dimensional geodesic subspaces by minimizing the
sum-of-squared geodesic distances to the data. Based
on this work, Said et al. (2007); Sommer et al. (2010)
developed algorithms for exact solutions to PGA. In
order to allow factor analysis on manifolds, Zhang
and Fletcher (2013) recently introduced a probabilistic
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model for PGA (PPGA). In the setting of diffeomorphic
image registration, Vaillant et al. (2004) computed a tan-
gent space PCA (TPCA) of the initial momenta from the
atlas image. Later, Qiu et al. (2012) used TPCA as an
empirical shape prior in diffeomorphic surface match-
ing. A Bayesian model of shape variability using diffeo-
morphic matching of currents is also formulated by Gori
et al. (2013). Their model includes an estimation of a
covariance matrix of the deformations, from which they
then extracted PCA modes of shape variability. Even
though these methods formulate the atlas and covari-
ance estimation as probabilistic inference problems, the
dimensionality reduction is done after the fact, i.e., as
a singular value decomposition of the covariance as a
second stage after the estimation step.

We propose instead to treat the dimensionality reduc-
tion step as a probabilistic inference problem on discrete
images, in a model called Bayesian principal geodesic
analysis (BPGA), which jointly estimates the image at-
las and principal geodesic modes of variation. Our
model goes beyond the PPGA algorithm by introducing
automatic dimensionality reduction, as well as extend-
ing from finite-dimensional manifolds to the infinite-
dimensional case of diffeomorphic image registration.
This Bayesian formulation has two advantages. First,
it explicitly optimizes the fit of the principal modes to
the data intrinsically in the space of diffeomorphisms,
which results in better fits to the data. Second, by for-
mulating dimensionality reduction as a Bayesian model
with a sparsity prior, we can also infer the inherent di-
mensionality directly from the data.

This paper is an extension of Zhang and Fletcher
(2014), with three major differences: (1) we incorporate
a stronger sparsity prior, based on the adaptive sparsity
method of (Figueiredo, 2003) that avoids the need for
hyperparameters; (2) we provide more in-depth deriva-
tions of the statistical model and inference procedure;
and (3) we expand the experimental results on brain
MRI from 2D slices to full 3D volumes. We also men-
tion the relationship of our work to manifold learning
approaches and dimensionality reduction (Yan et al.,
2007; Gerber et al., 2010). Unlike the non-parametric
manifold learning methods, the Bayesian approach we
present here is parametric and fully generative. The
shape deformation of individuals is explicitly encoded
in the model, and can be reconstructed directly in a
compact space of principal modes of deformations. We
show experimental results of principal geodesics and
parameters estimated from both 2D synthetic data and
3D OASIS brain MRI data. To validate the advantages
of our model, we reconstruct images from our estima-
tion and compare the reconstruction errors with TPCA

of diffeomorphisms and LPCA based on image inten-
sity. Our results indicate that intrinsic modeling of the
principal geodesics, estimated jointly with the image at-
las, provides a better description of brain image data
than computing PCA in the tangent space after atlas es-
timation.

2. Background

In this section, we briefly review the mathematical
background for diffeomorphic atlas building. Through-
out, we will consider images to be square-integrable
functions defined on a d-dimensional torus domain Ω =

Rd/Zd, that is, an image is an element of L2(Ω,R). Let
TΩ define the tangent space of Ω, Ṽ = Hs(TΩ) denote
the Hilbert space of vector fields on Ω whose deriva-
tives up to order s exist and are square-integrable. As is
standard, we require that s > (d/2) + 1, so that V em-
beds continuously in C1(TΩ), the space of continuous
vector fields with continuous first derivatives. We will
consider diffeomorphisms that are generated by flows of
time-varying velocity fields from Ṽ . More specifically,
consider a time-varying velocity field, vt : [0, 1] → Ṽ ,
then we may define the flow t 7→ φt ∈ Diff s(Ω) as a
solution to the equation

dφt

dt
(x) = vt ◦ φt(x). (1)

The space of all diffeomorphisms generated in this fash-
ion will be denoted Diff s(Ω). We use subscripts for the
time variable, i.e., vt(x) = v(t, x), and φt(x) = φ(t, x).

2.1. Metrics on diffeomorphisms
A key ingredient in computational anatomy is the

notion of a distance metric on the space of diffeomor-
phisms. Such a metric provides a means for quantifying
the magnitude of the deformation between two images,
and forms the mathematical foundation for estimation
of statistical models, such as atlases, as least-squares
minimization problems. The first step is to define an in-
ner product on the space of velocities, V = TeDiff s(Ω),
identified with the tangent space at the identity trans-
form, e ∈ Diff s(Ω). This inner product is of the form

〈v,w〉V =

∫
Ω

〈Lv(x),w(x)〉dx,

for v,w ∈ V , and a symmetric, positive-definite differ-
ential operator L : V → V∗, mapping to the dual space,
V∗. In this paper, we use L = (−α∆ + I)c, for some
constant α > 0 and integer power c. The dual to the
vector v is a momentum, m ∈ V∗, such that m = Lv and
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v = Km, where K is the inverse of L. Now we can define
a right-invariant metric as an inner product at any other
point φ ∈ Diff s(Ω), by pulling back the velocities at φ
to the identity by right composition. In other words, for
ṽ, w̃ ∈ TφDiff s(Ω) the right-invariant metric is given by
〈ṽ, w̃〉TφDiff s(Ω) = 〈ṽ ◦ φ−1, w̃ ◦ φ−1〉V .

Given this definition of a right-invariant metric, we
can now define a geodesic curve in Diff s(Ω) as a flow
that minimizes the energy

E(φt) =

∫ 1

0

∥∥∥∥∥dφt

dt
◦ φ−1

t

∥∥∥∥∥2

V
dt.

The geodesics that minimize this energy are character-
ized by the Euler-Poincaré equations (EPDiff) (Arnol’d,
1966; Miller et al., 2006),

∂v
∂t

= −ad†vv = −Kad∗vm

= −K
[
(Dv)T m + Dm v + m div v

]
, (2)

where D denotes the Jacobian matrix. The operator ad∗

is the dual of the negative Lie bracket of vector fields,

advw = −[v,w] = Dvw − Dwv.

Given an initial velocity, v0 ∈ V , at t = 0, the EPDiff
equation (2) can be integrated forward in time, resulting
in a time-varying velocity vt : [0, 1] → V , which itself
is subsequently integrated in time by the rule (dφt/dt) =

vt ◦ φt to arrive at the geodesic path, φt ∈ Diff s(Ω). This
process is known as geodesic shooting.

2.2. Diffeomorphic atlas building
Given input images, J1, . . . , JN ∈ L2(Ω,R), a min-

imization of the sum-of-squared distance function is
solved to estimate the atlas, I ∈ L2(Ω,R) and the dif-
feomorphic transformations between the atlas and each
input image as

E(vk
t , I) =

N∑
k=1

1
2σ2

∥∥∥I ◦ (φk)−1 − Jk
∥∥∥2

L2 +

∫ 1

0

∥∥∥vk
t

∥∥∥2
V dt,

(3)
where σ2 represents image noise variance, and the tan-
gent vectors {vk

t ∈ L2([0, 1],V)}k=1...N are time-varying
velocity fields in a reproducing kernel Hilbert space, V ,
equipped with the metric, L. The deformation φk is de-
fined in (1) as the integral flow of vk

t with φk
0 = Id.

Because the distance function between images is it-
self a minimization problem, the atlas estimation is typ-
ically done by alternating between the minimization to
find the optimal vk

t and the update of the atlas, I. As

described in Beg et al. (2005), a variational scheme
is applied to simulate the evolution of velocity vk

t and
diffeomorphism φk

t at each discretized time point us-
ing gradient descent. This approach requires a large
amount of memory to store the entire sequence of time-
varying velocities and diffeomorphisms. To resolve this
issue, Vialard et al. (2012) instead estimate only the ini-
tial velocity, vk

0, by geodesic shooting. This requires
backward integration of adjoint equations to carry gra-
dients of the image match at the endpoint t = 1 back to
a gradient of the initial velocity at time t = 0.

2.3. Decoupling images from diffeomorphisms

As shown in (Miller et al., 2006), at an optimal solu-
tion to (3), the initial momenta, mk

0 = Lvk
0, are orthog-

onal to the level sets of the atlas. Therefore, each ini-
tial momentum mk

0 is typically represented as a scalar
field Pk multiplied by the gradient of the atlas, i.e.,
mk

0(x) = ∇I(x)Pk(x). This has a major disadvantage
while solving the optimization problem: the coupled
estimation of atlas and momenta leads to a poor con-
vergence performance.

Singh et al. (2013) proposed to decouple the estima-
tion of the atlas from momenta by optimizing in the
full space of vector momenta, rather than restricting to
scalar multiples of the image gradient. They demon-
strated that this approach obtains better convergence
rates and numerical stability. The vector momenta for-
mulation also results in closed-form updates for the op-
timal atlas. However, perhaps the most important ad-
vantage of using the vector momenta formulation is that
decoupling images from diffeomorphisms allows us to
treat the diffeomorphic transformations as unobserved
random variables, separate from the observed image
data. Based on this critical factor, Zhang et al. (2013)
treat diffeomorphisms as latent random variables in a
Bayesian model and integrate them out using Monte
Carlo. This provides estimation of the regularization
parameter (i.e., the α in the L operator) and the image
noise variance, σ2.

3. Bayesian Principal Geodesic Analysis

Before introducing our BPGA model for diffeomor-
phisms, we first review BPCA Bishop (1999) for Eu-
clidean data. The main idea of BPCA is to formulate
a generative latent variable model for PCA that auto-
matically selects the appropriate dimensionality of the
model. Consider a set y of n-dimensional Euclidean ran-
dom variables {y j} j=1,...,N ∈ Rn, the relationship between
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each variable y j and its corresponding q-dimensional
(q < n) latent variable x j is

y j = µ + Bx j + ε, (4)

where µ is the mean of dataset {y j}, x j is conventionally
defined as a random variable generated from N(0, I), B
is an n × q factor matrix that relates x j and y j, and ε ∼
N(0, σ2I) represents error. This definition gives a data
likelihood as

p(y | x; B, µ, σ) ∝
N∏

j=1

exp

−
∥∥∥y j − µ − Bx j

∥∥∥2

2σ2

 .
To automatically select the principal components

from data, BPCA includes a Gaussian prior over each
column of B, which is known as an automatic relevance
determination (ARD) prior. Each such Gaussian has an
independent variance associated with a precision hyper-
parameter γi, so that

p(B | γ) =

q∏
i=1

(
γi

2π

)n/2
exp

(
−

1
2
γiBT

i Bi

)
,

where Bi denotes the ith column of B.
The value of γi is estimated iteratively as n

‖Bi‖
2 in this

model, and thus enforces sparsity by driving the cor-
responding component Bi to zero. More specifically,
if γi is large, Bi will be effectively removed in the la-
tent space. This arises naturally because the larger γi is,
the lower the probability of Bi will be. Notice that the
columns of B define the principal subspace of standard
PCA, therefore, inducing sparsity on B has the same ef-
fect as removing irrelevant dimensions in the principal
subspace.

3.1. Probability Model

Likelihood. We formulate the random initial velocity
for the kth individual as vk

0 = Wxk, where W is a ma-
trix with q columns of principal initial velocities, and
xk ∈ Rq is a latent variable that lies in a low-dimensional
space, with

p(xk |W) ∝ exp
(
−

1
2

∥∥∥Wxk
∥∥∥2

V

)
. (5)

Compared to BPCA, the difference of this latent vari-
able prior is incorporating W as a conditional prob-
ability, which guarantees smoothness of the geodesic
shooting path. Notice that we shift from the momenta
space Zhang and Fletcher (2014) to a nicely smooth ve-
locity space, which gains more stable computations.

Our noise model is based on the assumption of i.i.d.
Gaussian at each image voxel, much like (Ma et al.,
2008; Qiu et al., 2012; Zhang et al., 2013). This can
be varied under different conditions, for instance, spa-
tially dependent model for highly correlated noise data.
In this paper, we will focus on the commonly used and
simple Gaussian noise model, with the likelihood given
by

p(Jk | I, σ, xk) = 1
(2π)M/2σM exp

(
−
‖I◦(φk)−1−Jk‖

2
L2

2σ2

)
, (6)

where M is the number of voxels, and the norm inside
the exponent is the L2(Ω,R) norm. Note that for a con-
tinuous image domain, Ω = Rd/Zd, this is not a well-
defined probability distribution due to its infinite mea-
sure in the Hilbert space L2(Ω,R) on images. There-
fore, we consider the input images as well as diffeomor-
phisms to be defined on a finite discretized grid.

Prior. The prior on W is a sparsity prior that suppresses
the small principal initial velocity to zero. This prior
is analogous to the hierarchical sparsity prior proposed
by Figueiredo (2003), with the difference that we use the
natural Hilbert space norm for the velocity. The prior is
based on Laplacian distribution, a widely used and ex-
ploited way to achieve sparse estimation. It presses the
irrelevant or redundant components exactly to zero. As
first introduced by Andrews and Mallows (1974), the
Laplace distribution is equivalent to the marginal distri-
bution of a hierarchical-Bayes model: a Gaussian prior
with zero mean and exponentially distributed variances.
Let i denote the ith principal component of W. We de-
fine each component Wi as a random variable with the
hierarchical model distribution

p(Wi | τi) ∼ N(0, τi),

p(τi | γi) ∼ Exp(
γi

2
),

After integrating out τi, we have the marginalized dis-
tribution as

p(Wi | γi) =
∫ ∞

0 p(Wi | τi)p(τi | γi)dτi =
√
γi

2 exp
(
−
√
γi ‖Wi‖1

)
,

which is a Laplacian distribution with scale parame-
ter γi/2. The degree of sparsity is controlled by the
hyperparameter γi on the l1 penalty. However, the
sparsity parameter is specified in an ad hoc manner.
Figueiredo (2003) proposed an effective model to re-
move γi by adopting a Jeffreys’ noninformative hyper-
prior as p(τi) ∼ 1/τi. This has the advantages that (1)
the improper hyperprior is scale-invariant, (2) the model
is parameter-free. Using this hierarchical sparsity prior
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on the columns of W for the automatic dimensionality
selection, we formulate the problem as

p(W, x | τ) ∝ exp

−1
2

N∑
k=1

∥∥∥Wxk
∥∥∥2

V −

q∑
i=1

‖Wi‖
2
V

2τi

 , (7)

p(τ) ∝
1
τ
,

where x = [x1, ..., xk], τ = [τ1, ..., τq]. We will later in-
tegrate out the latent variable τ using expectation maxi-
mization.

We can express our model for the kth subject using
the graphical representation shown in Figure 1.

Figure 1: Graphical representation of BPGA for the kth subject Jk .

3.2. Inference

We use MAP estimation to determine the model pa-
rameters θ = {I, σ}. After defining the likelihood (6)
and prior (7) in the previous section, we now arrive at
the joint posterior for BPGA as

∏N
k=1 p

(
W, x, τ | Jk; θ

)
∝

[∏N
k=1 p(Jk | xk, θ) p(xk |W)

]
p(W |τ) p(τ).

(8)
In order to treat the W, xk and τ as latent random vari-

ables with the log posterior given by (8), we would
ideally integrate out the latent variables, which are in-
tractable in closed form for W, xk. Instead, we develop
an expectation maximization algorithm to compute a
closed-form solution to integrate out τ first, and then
use a mode approximation for W, xk to the posterior dis-
tribution. It contains two alternating steps:

E-step. Using the current estimate of the parameters
θ̂, we compute the expectation Q of the complete log-
posterior of (8) with respect to the latent variables τ as

Q(W, xk, θ | θ̂, Ŵ) ∝ −
1

2σ2

N∑
k=1

∥∥∥I ◦ (φk)−1 − Jk
∥∥∥2

L2 −
MN

2
logσ

−
1
2

N∑
k=1

∥∥∥Wxk
∥∥∥2

V
−

q∑
i=1

‖Wi‖
2
V

2‖Ŵi‖
2
V

. (9)

Note that we use the same approach to integrate out τ
in Figueiredo (2003). Details are in Appendix A.

M-step: Gradient Ascent for W, xk. We introduce a
gradient ascent scheme to estimate W, xk, and θ = (I, σ)
simultaneously. We need to compute the gradient with
respect to the initial velocity vk

0 of the diffeomorphic im-
age matching problem in (3), and then apply the chain
rule to obtain the gradient term w.r.t. W and xk. Follow-
ing the optimal control theory approach in Vialard et al.
(2012), we add Lagrange multipliers to constrain the
kth diffeomorphism φk

t to be a geodesic path, which is
done by introducing time-dependent adjoint variables,
Îk
t , m̂k

t , v̂k
t for transported image Ik

t , momentum mk
t , and

velocity vk
t , respectively. To make the calculation sim-

ple to read, we drop the notation t and denote ∂t f as ḟ
for any function f . We then write the augmented energy

Q̃(W, xk, θ | θ̂, Ŵ) = Q +

N∑
k=1

∫ 1

0

[
〈v̂k, v̇k + Kad∗vk mk〉L2

+ 〈Îk, İk + ∇Ik · vk〉L2 + 〈m̂k,mk − Lvk〉L2

]
dt,

(10)
where Q is the expectation function from (9), and
the other terms correspond to Lagrange multipliers
enforcing: a) the geodesic constraint, which comes
from the EPDiff equation (2), b) the image transport
equation, İk = −∇Ik · vk, and c) the constraint, mk = Lvk

respectively.
Dropping out the terms that are not related to W, xk

and I0 in (10), we have

Q̃(W, xk, θ | θ̂, Ŵ) ∝ −
1

2σ2

N∑
k=1

∥∥∥I ◦ (φk)−1 − Jk
∥∥∥2

L2 −
1
2

N∑
k=1

∥∥∥Wxk
∥∥∥2

V

−

q∑
i=1

‖Wi‖
2
V

2‖Ŵi‖
2
V

+

N∑
k=1

∫ 1

0

[
〈v̂k, v̇k + Kad∗vk mk〉L2

+ 〈Îk, İk + ∇Ik · vk〉L2 + 〈m̂k,mk − Lvk〉L2

]
dt.

(11)
The gradient of Q̃ with respect to the kth initial ve-

locity is ∇vk
0
Q̃ = vk

0 − Kv̂k
0 (details are in Appendix A).

Applying the chain rule, the gradient term of (11) for
updating W is

∇W Q̃ = −

N∑
k=1

(vk
0 − Kv̂k

0)(xk)T −WΛ,
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where Λ is a diagonal matrix with diagonal element
1
‖Ŵi‖

2
V

. The gradient with respect to xk is

∇xk Q̃ = −WT (vk
0 − Kv̂k

0).

Closed-form solution for θ. We now derive the maxi-
mization for updating the parameters θ. This turns out
to be a closed-form update for the atlas I, noise vari-
ance σ2. For updating I and σ, we set the deriva-
tive of the expectation with respect to I, σ to zero (see
Appendix A). The solution for I, σ2 gives an update

I =

∑N
k=1 Jk ◦ φk |Dφk |∑N

k=1 |Dφk |
, σ2 =

1
MN

N∑
k=1

∥∥∥I ◦ (φk)−1 − Jk
∥∥∥2

L2 .

4. Results

We demonstrate the effectiveness of our proposed
model and MAP estimation routine using both 2D syn-
thetic data and real 3D MRI brain data.

4.1. Synthetic data

Because we have a generative model, we can forward
simulate a random sample of images from a distribu-
tion with known parameters θ = (I, σ). We tested if
we can recover those parameters using our BPGA in-
ference procedure. We simulated a 2D synthetic dataset
with 40 subjects starting from an atlas image, I, of a
binary circle with resolution 100 × 100. We then gen-
erated random samples of W with two principal modes
and xk from the prior distribution, p(W, xk | τ), defined
in (7), setting α = 0.2 for the Laplacian operator L. To
generate a deformed circle image, we shot the initial ve-
locity constructed by Wxk, and transformed the atlas by
the resulting diffeomorphisms. Finally, we added i.i.d.
Gaussian noise according to our likelihood model (6).
We used a standard deviation of σ = 0.05, which corre-
sponds to a SNR of 20 (which is more noise than typi-
cal structural MRI). Figure 2 compares the ground truth
atlas I and principal geodesics with our estimation. In
addition, our estimation of the noise variance σ = 0.051
is also close to the ground truth σ = 0.05. It shows that
our method recovers the model parameters fairly well.
Figure 3 demonstrates the shape variation of our syn-
thetic data set from the atlas by ai = −3,−1.5, 0, 1.5, 3.

4.2. OASIS brain dataset

To demonstrate the effectiveness of our proposed
model and MAP estimation, we applied our BPGA
model to a set of brain magnetic resonance images
(MRI) from the 3D OASIS brain database. The data

consists of MRI from 130 subjects between the age of
60 to 95. The MRI have a resolution of 128× 128× 128
with an image spacing of 1.0 × 1.0 × 1.0 mm3 and are
skull-stripped, intensity normalized, and co-registered
with rigid transforms. To set the parameters in L oper-
ator, we did initial step of estimating α = 0.1 using the
procedure in Zhang et al. (2013). We used 15 time-steps
in geodesic shooting and initialize the template I as the
average of image intensities, with W as the matrix of
principal components from TPCA.

The proposed BPGA model automatically deter-
mined that the latent dimensionality of the data was 15.
Figure 4 displays the automatically estimated modes,
i = 1, 2, of the brain MRI variation. We forward shoot
the constructed atlas, I, by the estimated principal mo-
mentum aiWi along the geodesics. For the purpose of
visualization, we demonstrate the brain variation from
the atlas by ai = −3,−1.5, 0, 1.5, 3. We also show the
log determinant of Jacobians at ai = 3, with red repre-
senting regions of expansion and blue representing re-
gions of contraction. The first mode of variation clearly
shows that ventricle size change is a dominant source
of variability in brain shape. Our algorithm also jointly
estimated the image noise standard deviation parameter
as σ = 0.04.

Image reconstruction accuracy. We validated the
ability of our BPGA model to compactly represent the
space of brain variation by testing how well it can recon-
struct unseen images. After estimating the principal ini-
tial velocity and parameters from the training subjects
above, we used these estimates to reconstruct another
20 testing subjects from the same OASIS database that
were not included in the training. We then measured the
discrepancy between the reconstructed images and the
testing images. Note that our reconstruction only used
the first 15 principal modes, which were automatically
selected by our algorithm.

We use the first fifteen dimensions to compare our
model with LPCA and TPCA. Examples of the recon-
structed images and their error maps from these models
are shown in Figure 5 and 6. Table 1 shows the com-
parison of the reconstruction accuracy as measured by
the average and standard deviation of the mean squared
error (MSE). The table indicates that our model outper-
forms both LPCA and TPCA in the diffeomorphic set-
ting. We also display the reconstruction error with in-
creasing number of principal modes. Figure 7 shows
that TPCA requires approximately 32 principal modes,
more than twice as much as our model does, to achieve
the same level of reconstruction accuracy. LPCA cannot
match the BPGA reconstruction accuracy with even 40

6



Number of modes

Le
ng

th
 o

f m
od

es

Ground truth Our estimation

Figure 2: Left to right: ground truth of atlas I; our estimation of atlas; ground truth of the length of all principal geodesics and our estimation.

PG1

PG2

Figure 3: Top to bottom: shooting atlas by the first and second principal modes. Left to right: BPGA model of image variation evaluated at
ai = −3,−1.5, 0, 1.5, 3.

Table 1: Comparison of mean squared reconstruction error between
LPCA, TPCA, and BPGA models. Average and standard deviation
over 20 test images.

LPCA TPCA BPGA
Average MSE 4.2 × 10−2 3.4 × 10−2 2.8 × 10−2

Std of MSE 1.25 × 10−2 4.8 × 10−3 4.2 × 10−3

principal modes. This reflects that our model BPGA
gains a more compact representation than TPCA and
LPCA.

5. Conclusion and Future Work

We presented a generative Bayesian model of prin-
cipal geodesic analysis in diffeomorphic image regis-
tration. Our method is the first probabilistic model
for automatic dimensionality reduction for diffeomor-
phisms. We developed an inference strategy based on

MAP to estimate parameters, including the noise vari-
ance and image atlas, simultaneously. The estimated
low-dimensional latent variables provide a compact rep-
resentation of the anatomical variability in a large im-
age database, and they can be used for further statistical
analysis of anatomical shape in clinical studies. Reduc-
ing the dimensionality to the inherent modes of shape
variability has the potential to improve hypothesis test-
ing, classification, and mixture models.

There are several avenues for future work to build
upon our BPGA model. In this paper, we precomputed
the regularization parameter using simple atlas building
model in Zhang et al. (2013). Since different param-
eters can lead to different principal modes, atlas, etc.,
ideally we would estimate the regularization parameter
simultaneously with all other parameters. Doing this
would require a more computationally-expensive ap-
proach that integrates out the latent x variables, rather
than the mode approximation used here. Such an ap-
proach has been done for PPGA on finite-dimensional

7



Figure 4: Top to bottom: axial, coronal and sagittal views of shooting the atlas by the first and second principal modes. Left to right: BPGA model
of image variation evaluated at ai = −3,−1.5, 0, 1.5, 3, and log determinant of Jacobians at ai = 3.

(a) Observed (b) LPCA (c) TPCA (d) BPGA

Figure 5: Left to right: original data, reconstruction by LPCA, TPCA, and BPGA.

manifolds (Zhang and Fletcher, 2013). This would be
related to several other approaches that integrate out de-
formations in image atlas building. For instance, Allas-
sonnière and Kuhn (2010) proposed a fully generative
Bayesian model of small elastic deformation in which
the latent image transformations are marginalized from
the distribution. Markov chain Monte Carlo (MCMC)

methods for sampling elastic deformations in Bayesian
atlas models have been introduced by Van Leemput
(2009), Risholm et al. (2010), and Iglesias et al. (2012).
Furthermore, Simpson et al. (2012) inferred the regular-
ization parameter from a hierarchical Bayesian model,
although their work was in the elastic deformation set-
ting as well. Zhang et al. (2013) were the first to develop
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(a) LPCA (b) TPCA (c) BPGA

Figure 6: Left to right: absolute value of reconstruction error map by LPCA, TPCA, and BPGA.
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Figure 7: Averaged mean squared reconstruction error with different number of principal modes by LPCA, TPCA, and BPGA over 20 test images.

a truly Bayesian model for diffeomorphic atlas building
and regularization parameter estimation by integrating
out latent random diffeomorphisms.

In addition, much like the Euclidean BPCA model
(Bishop, 1999), we did not enforce that the principal
modes be orthogonal. This can be achieved by opti-
mization in the Stiefel manifold of orthonormal frames,
as is done in Zhang and Fletcher (2013). However, the
high-dimensionality of velocity fields makes this a dif-
ficult problem to implement directly.

Acknowledgments. This work was supported by NIH
Grant 5R01EB007688 and NSF CAREER Grant
1054057.

Appendix A

Deriving Expectation. The complete expectation
function is

Q(W, xk, θ | θ̂, Ŵ) = E
τ | Jk ;θ̂,Ŵ,x̂k

 N∑
k=1

log p(W | Jk; θ)


∝ −

1
2σ2

N∑
k=1

∥∥∥I ◦ (φk)−1 − Jk
∥∥∥2

L2 −
MN

2
logσ

−
1
2

N∑
k=1

∥∥∥Wxk
∥∥∥2

V
−

q∑
i=1

‖Wi‖
2
V

2
E[τ−1

i | J
k; θ̂, Ŵ, x̂k].

(12)
Since the sum of log likelihood and the prior on xk do
not depend on τ, we reduce the E-step to compute the
conditional expectation E[τ−1

i | J
k; θ̂, Ŵ, x̂k]. Observe

that p(τi | Jk; θ,W, xk) = p(τi |W, xk), thus

p(τi | Jk; θ,W, xk) =
p(W | τi, xk)p(τi)∫

p(W | τi, xk)p(τi)dτi
.
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The conditional expectation is computed by

E[τ−1
i | J

k; θ̂, Ŵ, x̂k] =

∫
1
τi

p(τi | Jk; θ̂, Ŵ, x̂k)dτi,

=

∫
1
τi

N(Ŵ | 0, τi) 1
τi

dτi∫
N(Ŵ | 0, τi) 1

τi
dτi

,

=
1
‖Ŵi‖

2
V

, (13)

We obtain the Q function by plugging (13) into (12).

Deriving Derivatives. Now we compute the variation
of Q̃ w.r.t. time-dependent variables Ik,mk, vk. Note that
the following equations are equivalent for the geodesic
paths of each of the subjects, so for notation simplicity,
we drop the subject index k momentarily. The deriva-
tions are

∂I Q̃ =
∂

∂ε

∣∣∣∣∣
ε=0

∫ 1

0
〈Î, (İ + εδİ) + ∇(I + εδI) · v〉L2

+
1
σ2 〈δI1, I1 − J〉L2

=
1
σ2 〈δI1, I1 − J〉L2 +

∫ 1

0
〈Î, δİ + ∇δI · v〉L2

=
1
σ2 〈δI1, I1 − J〉L2 + 〈Î, δI〉L2

∣∣∣∣∣t=1

t=0
−

∫ 1

0
〈
˙̂I, δI〉L2

+

∫ 1

0
〈Î,∇δI · v〉L2

=
1
σ2 〈δI1, I1 − J〉L2 + 〈Î1, δI1〉L2 − 〈Î0, δI0〉L2

−

∫ 1

0
〈
˙̂I, δI〉L2 −

∫ 1

0
〈∇ · (Îv), δI〉L2 ,

∂vQ̃ = 〈Lv0, δv0〉L2 +
∂

∂ε

∣∣∣∣∣
ε=0

∫ 1

0
〈v̂, δv̇ + Kad∗v+εδvm〉L2

+ 〈Î, İ + ∇I · (v + εδv)〉L2

= 〈Lv0, δv0〉L2 +
∂

∂ε

∣∣∣∣∣
ε=0

∫ 1

0
〈v̂, δv̇〉L2 + 〈adv+εδvKv̂,m〉L2

+ 〈Î, İ + ∇I · (v + εδv)〉L2

= 〈Lv0, δv0〉L2 + 〈v̂, δv〉L2

∣∣∣∣∣t=1

t=0
−

∫ 1

0
〈 ˙̂v, δv〉L2

+
∂

∂ε

∣∣∣∣∣
ε=0

∫ 1

0
〈−adKv̂(v + εδv),m〉L2

+ 〈Î, İ + ∇I · (v + εδv)〉L2

= 〈Lv0, δv0〉L2 + 〈v̂1, δv1〉L2 − 〈v̂0, δv0〉L2

+

∫ 1

0
〈−adKv̂δv,m〉L2 + 〈Î,∇I · δv〉L2 − 〈 ˙̂v, δv〉L2

= 〈Lv0, δv0〉L2 + 〈v̂1, δv1〉L2 − 〈v̂0, δv0〉L2

+

∫ 1

0
〈−ad∗Kv̂m, δv〉L2 + 〈Î∇I, δv〉L2 − 〈 ˙̂v, δv〉L2 ,

∂mQ̃ =
∂

∂ε

∣∣∣∣∣
ε=0

∫ 1

0
〈v̂,Kad∗v(m + εδm)〉L2 + 〈m̂, (m + εδm)〉L2

=

∫ 1

0
〈advKv̂, δm〉L2 + 〈m̂, δm〉L2 ,

here ∇· is the divergence operator. Since we have
δI0 = 0, δv0 = 0, the optimality conditions for I, v
are given by the following time-dependent system of
ODEs, termed the adjoint equations:

−
˙̂I − ∇ · (Îv) = 0,

−ad∗Kv̂m + Î∇I − ˙̂v = 0,
advKv̂ + m̂ = 0,

 (14)

subject to initial conditions

v̂1 = 0, Î1 =
1
σ2 (I1 − J).

Finally, after integrating these adjoint equations back-
wards in time to t = 0, the gradient of Q̃ with respect to
the kth initial velocity is

∇vk
0
Q̃ = vk

0 − Kv̂k
0.

Deriving Closed-form Solution for θ. Notice that the
gradient term of (10) w.r.t. θ = {I, σ} only relates to the
image matching term

Q̃(I, σ) = −
1

2σ2

N∑
k=1

∥∥∥I ◦ (φk)−1 − Jk
∥∥∥2

L2 −
MN

2
logσ,

(15)
we have the gradient of (15) as

∂σQ̃(I, σ) =
1
σ3

N∑
k=1

∥∥∥I ◦ (φk)−1 − Jk
∥∥∥2

L2 −
MN
2σ

. (16)

Setting (16) to zero, We then get the closed-form for-
mulation to update σ2 by

σ2 =
1

MN

N∑
k=1

∥∥∥I ◦ (φk)−1 − Jk
∥∥∥2

L2 .

Next we compute the gradient of (10) w.r.t. the atlas
I by changing variables y =

(
φk

)−1
(x), such that

x = φk(y), dx = |Dφk(y)|dy.

After dropping the normalizing constant of σ which is
irrelevant to I, we expand and rewrite equation (15) as

Q̃(I) =

N∑
k=1

∫
Ω

〈I(y) − Jk ◦ φk(y), I(y) − Jk ◦ φk(y)〉L2 |Dφk(y)|dy.
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This gives the derivative w.r.t I by

∂I Q̃ =

N∑
k=1

(I − Jk ◦ φk)|Dφk | (17)

Equating (17) to zero at optimal, we have

I =

∑N
k=1 Jk ◦ φk |Dφk |∑N

k=1 |Dφk |
.

References

Allassonnière, S., Kuhn, E., 2010. Stochastic algorithm for parameter
estimation for dense deformable template mixture model. ESAIM-
PS 14, 382–408.

Andrews, D.F., Mallows, C.L., 1974. Scale mixtures of normal distri-
butions. Journal of the Royal Statistical Society. Series B (Method-
ological) , 99–102.
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