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Abstract. This paper presents a fast geodesic shooting algorithm for
diffeomorphic image registration. We first introduce a novel finite-di-
mensional Lie algebra structure on the space of bandlimited velocity
fields. We then show that this space can effectively represent initial ve-
locities for diffeomorphic image registration at much lower dimensions
than typically used, with little to no loss in registration accuracy. We
then leverage the fact that the geodesic evolution equations, as well as
the adjoint Jacobi field equations needed for gradient descent methods,
can be computed entirely in this finite-dimensional Lie algebra. The re-
sult is a geodesic shooting method for large deformation metric mapping
(LDDMM) that is dramatically faster and less memory intensive than
state-of-the-art methods. We demonstrate the effectiveness of our model
to register 3D brain images and compare its registration accuracy, run-
time, and memory consumption with leading LDDMM methods. We also
show how our algorithm breaks through the prohibitive time and memory
requirements of diffeomorphic atlas building.

1 Introduction

Deformable image registration is a fundamental tool in medical image analy-
sis that is used for several tasks, including anatomical comparisons across in-
dividuals, alignment of functional data to a reference coordinate system, and
atlas-based image segmentation. In many applications, it is desirable that image
transformations be diffeomorphisms, i.e., differentiable, bijective mappings with
differentiable inverses. Such diffeomorphic mappings ensure several properties of
the transformed images: (1) topology of objects in the image remain intact; (2)
no non-differentiable artifacts, such as creases or sharp corners, are created; and
(3) the process can be inverted, for instance, to move back and forth between
two individuals, or between an atlas and an individual. An elegant mathematical
formulation for diffeomorphic image registration is that of Large Deformation
Diffeomorphic Metric Mapping (LDDMM), first proposed by Beg et al. [5]. In
this setting, the group of diffeomorphisms is equipped with a Riemannian metric,
giving rise to a variational principle that expresses the optimal image registration
as a geodesic flow. The result is a distance metric between images that quantifies
their geometric similarity. Having a distance metric is a critical component in
statistical analysis of anatomical shape, including regression, longitudinal analy-
sis, and group comparisons, as it provides a mathematical foundation for fitting
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a statistical model to image data via minimization of the sum-of-squared residual
distances.

A major barrier to the widespread use of LDDMM, especially in large imaging
studies, is its high computational cost and large memory footprint. The origi-
nal algorithm by Beg et al. computes a geodesic path by gradient descent of a
time-varying velocity field. This requires expensive numerical solutions to partial
differential equations for the gradient evaluation, as well as time integration of
the velocities to compute the diffeomorphic transformation, all of which must
be done on dense spatial grids for numerical accuracy. Furthermore, convergence
of the algorithm can be slow and prone to getting stuck in local minima, as is
often the case with relaxation methods. Addressing some of these weaknesses,
Vialard et al. [14] introduced a geodesic shooting algorithm for diffeomorphic
image matching. This takes advantage of the fact that a geodesic is determined
by its initial momentum at time zero via the geodesic evolution equations. Us-
ing a control theory formulation, Vialard et al. then derive the necessary adjoint
equations to carry gradients of the image match at the endpoint of the geodesic
back to a gradient in the initial momentum. They demonstrated that this led to
better convergence and more reliable estimates of the initial momentum. It also
avoids having to store the entire time-varying velocity field from one iteration
to the next, as just the initial momentum is sufficient to encode the current
geodesic. However, despite these advantages, the geodesic shooting and back-
ward adjoint equations must also be solved numerically on a dense grid and are
still prohibitively time consuming.

Another class of diffeomorphic registration methods are the “greedy” algo-
rithms, that is, algorithms that iteratively apply gradient updates to a single
deformation field, rather than update a full time-dependent flow each iteration.
Algorithms in this class include the original diffeomorphic image registration
algorithm of Christensen et al. [6] and the diffeomorphic demons algorithm of
Vercauteren et al. [13]. Greedy methods are much faster and more memory effi-
cient than LDDMM, but they do not minimize a global variational problem and
do not provide a distance metric between images. They also lack the initial ve-
locity parameterization that geodesic methods possess. Such a parameterization
is important for statistical analysis because it represents deformations in a linear
vector space, which is amenable to statistical models such as principal compo-
nent analysis [12] and regression [10]. Arsigny et al. [2] introduced the concept of
a stationary velocity field representation for diffeomorphisms and demonstrated
that one-parameter subgroup flows of diffeomorphisms could be computed effi-
ciently. A similar strategy is used by the DARTEL image registration method of
Ashburner [3]. While stationary velocity fields again are more efficient in time
and memory than LDDMM, they do not provide distance metrics on the space
of diffeomorphisms.

In this paper, we show that it is possible to have a fast diffeomorphic im-
age registration algorithm that retains the metric properties of LDDMM. To
do this, we introduce a novel theoretical framework for diffeomorphic image
registration based on representing discretized velocity fields as elements in a
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finite-dimensional Lie algebra. A somewhat surprising feature of our proposed
framework is that not only is our algorithm faster than state-of-the-art LDDMM
algorithms, it is actually able to converge to better solutions, i.e., lower values
of the registration objective function.

2 Background on LDDMM and Geodesic Shooting

In this section we give a brief overview of LDDMM and set up the notation we
will use. We consider images defined on a cyclical domain, i.e., a d-dimensional
torus, Ω = Rd/Zd. An image will be a square-integrable function on Ω, that is,
an element of L2(Ω,R). Let Diff∞(Ω) denote the Lie group of smooth diffeo-
morphisms on Ω. The Lie algebra for Diff∞(Ω) is the space V = X∞(TΩ) of
smooth vector fields on Ω, which is the tangent space at the identity transform.
We equip V with the weak Sobolev metric:

〈v, w〉V =

∫
Ω

(Lv(x), w(x))dx, (1)

where L = (I − α∆)s is a symmetric, positive-definite, differential operator for
some scalar, α > 0, and integer power, s. The dual to the tangent vector v
is a momentum, m = Lv ∈ V ∗. The notation (m, v) denotes the pairing of a
momentum vector m ∈ V ∗ with a tangent vector v ∈ V . The metric L is an
invertible operator, and K = L−1 maps the momentum vector m ∈ V ∗ back to
the tangent vector v = Km ∈ V .

LDDMM: In the LDDMM framework, we will consider diffeomorphisms that
are generated by flows of time-varying velocity fields from V . More specifically,
consider a time-varying velocity field, v : [0, 1]→ V , then we may define the flow
t 7→ φt ∈ Diffs(Ω) as a solution to the equation

dφt
dt

(x) = vt ◦ φt(x).

The registration between two images, I0, I1 ∈ L2(Ω,R), is the minimizer of the
energy,

E(vt) =

∫ 1

0

‖vt‖2V dt+
1

2σ2
‖I0 ◦ φ−11 − I1‖2L2 . (2)

Geodesic Shooting: Given an initial velocity, v0 ∈ V , at t = 0, the geodesic
path t 7→ φt ∈ Diff∞(Ω) under the right-invariant Riemannian metric (1) is
uniquely determined by the Euler-Poincaré equations (EPDiff) [1, 9],

∂v

∂t
= −ad†vv = −Kad∗vm

= −K
[
(Dv)Tm+Dmv +m div v

]
, (3)
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where D denotes the Jacobian matrix, and the operator ad∗ is the dual of the
negative Lie bracket of vector fields,

advw = −[v, w] = Dvw −Dwv. (4)

By integrating equation (3) forward in time, we generate a time-varying
velocity vt : [0, 1] → V , which itself is subsequently integrated in time by the
rule (dφt(x)/dt) = vt ◦ φt(x) to arrive at the geodesic path, φt(x) ∈ Diffs(Ω).
Details are found in [14, 15]. Noting that the geodesic φt is fully determined by
the initial condition v0, we can rewrite the LDDMM image matching objective
function (2) in terms of the initial velocity v0 as

E(v0) = (Lv0, v0) +
1

2σ2
‖I0 ◦ φ−11 − I1‖2. (5)
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Fig. 1: Fourier coefficients of the discretized K operator on a 128×128 grid, with
parameters α = 3, s = 3.

3 Finite-Dimensional Lie Algebras of Diffeomorphism

While the Lie algebra V = X∞(Ω) is an infinite-dimensional vector space, we
must of course approximate smooth vector fields in V with finite-dimensional
discretizations in order to represent them on a computer. In this section, we
show that careful choices for the discretization of vector fields and their corre-
sponding Lie brackets leads to a representation that is itself a finite-dimensional
Lie algebra. The key observation is that the K operator is a low-pass filter, and
as such, suppresses high frequency components in the velocity fields (see, for
example, Figure 1). As the K operator appears as the last operation on the
right-hand side of the EPDiff equation (3), we can see that the velocity fields in
the geodesic evolution do not develop high frequency components. This suggests
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that a standard implementation of geodesic shooting, using high-resolution ve-
locity fields, wastes a lot of effort computing the high frequency components,
which just end up being forced to zero by K. Instead, we propose to use a low-
dimensional discretization of velocity fields as bandlimited signals in the Fourier
domain.

More specifically, let Ṽ denote the space of bandlimited velocity fields on Ω,
with frequency bounds N1, N2, . . . , Nd in each of the dimensions of Ω. It will
be convenient to represent an element ṽ ∈ Ṽ in the Fourier domain. That is,
let ṽ ∈ Ṽ be a multidimensional array: ṽk1,k2,...,kd ∈ Cd, where ki ∈ 0, . . . , Ni −
1 is the frequency index along the ith axis. Note that to ensure ṽ represents
a real-valued vector field in the spatial domain, we have the constraint that
ṽk1,...,kd = ṽ∗N1−k1,...,Nd−kd , where ∗ denotes the complex conjugate. There is a

natural inclusion mapping, ι : Ṽ → V , of Ṽ into the space V of smooth vector
fields, given by the Fourier series expansion:

ι(ṽ)(x1, . . . , xd) =

N1∑
k1=0

· · ·
Nd∑
kd=0

ṽk1,...,kde
2πk1x1 · · · e2πkdxd . (6)

Next, we define an operator that is a discrete analog of (4), the Lie bracket
on continuous vector fields. First, we will denote by D̃ṽ the central difference
Jacobian matrix of a discrete vector field, ṽ ∈ Ṽ . This can be computed in the
discrete Fourier domain as a tensor product D̃ṽ = η ⊗ ṽ, where η ∈ Ṽ is given
by

ηk1,k2,...,kd = (i sin(2πk1), . . . , i sin(2πkd)).

Second, we note that pointwise multiplication of matrix and vector field in the
spatial domain corresponds to convolution in the Fourier domain. Because con-
volution between two bandlimited signals does not preserve the bandlimit, we
must follow a convolution operation by truncation back to the bandlimits, Nj ,
in each dimension. We denote this truncated convolution operator between a
matrix and a vector field as ?. Now we are ready to define our discrete bracket
operator for any two vectors ṽ, w̃ ∈ Ṽ as

[ṽ, w̃] = (D̃ṽ) ? w̃ − (D̃w̃) ? ṽ. (7)

The next theorem proves that this operation satisfies the properties to be a
Lie bracket on Ṽ .

Theorem 1. The vector space Ṽ , when equipped with the bracket operation (7),
is a finite-dimensional Lie algebra. That is to say, ∀ x̃, ỹ, z̃ ∈ Ṽ and a, b ∈ R,
the following properties are satisfied:

(a) Linearity: [ax̃+ bỹ, z̃] = a [x̃, z̃] + b [ỹ, z̃],
(b) Anticommutativity: [x̃, ỹ] = −[ỹ, x̃],
(c) Jacobi identity: [x̃, [ỹ, z̃]] + [z̃, [x̃, ỹ]] + [ỹ, [z̃, x̃]] = 0.

Proof. Linearity and anticommutativity are immediate. We have
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(a) Linearity:

[ax̃+ bỹ, z̃] = D̃(ax̃+ bỹ) ? z̃ − D̃z̃ ? (ax̃+ bỹ)

= a(D̃x̃ ? z̃ − D̃z̃ ? x̃) + b(D̃ỹ ? z̃ − D̃z̃ ? ỹ)

= a[x̃, z̃] + b[ỹ, z̃],

(b) Anticommutativity:

[x̃, ỹ] = D̃x̃ ? ỹ − D̃ỹ ? x̃ = −
(
D̃ỹ ? x̃− D̃x̃ ? ỹ

)
= −[ỹ, x̃].

(c) Jacobi identity: The proof of the Jacobi identity follows closely that of the
continuous case. First, note that the iterated central difference operator results
in a third-order tensor:

D̃2x̃ = D̃D̃x̃ = η ⊗ η ⊗ x̃.

Much like the Hessian tensor of a vector-valued function in the continuous case,
the discrete Hessian is also symmetric with respect to contraction with a pair of
vectors. That is,

(D̃2x̃ ? ỹ) ? z̃ = (D̃2x̃ ? z̃) ? ỹ,

where the convolution between D̃2x̃ and ỹ is now analogous to the pointwise
contraction of a third-order tensor field with a vector field in spatial domain.

Next, we note that the product rule of differentiation also carries over to the
discrete Fourier representation, and we have the identity

D̃(D̃x̃ ? ỹ) = D̃2x̃ ? ỹ + D̃x̃ ? D̃ỹ,

where the second convolution operator is analogous to pointwise matrix field
multiplication in the spatial domain. We then have

[x̃, [ỹ, z̃]] = [x̃, D̃ỹ ? z̃ − D̃z̃ ? ỹ]

= D̃x̃ ? (D̃ỹ ? z̃ − D̃z̃ ? ỹ)− D̃(D̃ỹ ? z̃ − D̃z̃ ? ỹ) ? x̃

= D̃x̃ ? D̃ỹ ? z̃ − D̃x̃ ? D̃z̃ ? ỹ − (D̃2ỹ ? z̃) ? x̃− D̃ỹ ? D̃z̃ ? x̃
+ (D̃2z̃ ? ỹ) ? x̃+ D̃z̃ ? D̃ỹ ? x̃ (8)

Similarly, we rewrite the other two terms as

[z̃, [x̃, ỹ]] = D̃z̃ ? D̃x̃ ? ỹ − D̃z̃ ? D̃ỹ ? x̃− (D̃2x̃ ? ỹ) ? z̃ − D̃x̃ ? D̃ỹ ? z̃
+ (D̃2ỹ ? x̃) ? z̃ + D̃ỹ ? D̃x̃ ? z̃ (9)

[ỹ, [z̃, x̃]] = D̃ỹ ? D̃z̃ ? x̃− D̃ỹ ? D̃x̃ ? z̃ − (D̃2z̃ ? x̃) ? ỹ − D̃z̃ ? D̃x̃ ? ỹ
+ (D̃2x̃ ? z̃) ? ỹ + D̃x̃ ? D̃z̃ ? ỹ (10)

Finally, by combining the equations (8), (9), (10), and using the symmetric rule
above, we obtain

[x̃, [ỹ, z̃]] + [z̃, [x̃, ỹ]] + [ỹ, [z̃, x̃]] = 0.
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4 Estimation of Diffeomorphic Image Registration

In this section, we present a geodesic shooting algorithm for diffeomorphic image
registration using our finite-dimensional Lie algebra representation. This is a
gradient descent algorithm on an initial velocity ṽ0 ∈ Ṽ . Geodesic shooting of
ṽ0 proceeds entirely in the reduced finite-dimensional Lie algebra, producing a
time-varying velocity, t 7→ ṽt ∈ Ṽ . Such a geodesic path in Ṽ can consequently
generate a flow of diffeomorphisms, t 7→ φt ∈ Diff∞(Ω), in the following way.
Using the inclusion mapping ι : Ṽ → V defined in (6), we can generate the
diffeomorphic flow as

dφt(x)

dt
= ι(ṽt) ◦ φt(x), x ∈ Ω.

This leads to a modification for the energy function (5) for LDDMM, where
we now parameterize diffeomorphisms by the finite-dimensional velocity ṽ0:

E(ṽ0) = ‖ṽ0‖2L̃ +
1

2σ2
‖I0 ◦ φ−11 − I1‖2. (11)

Here the metric on Ṽ is given by the discretized version of the L̃ operator. The
Fourier transformation of L = (−α∆ + I)s is a diagonal operator. Discretizing
this operator by only keeping the frequencies up to our bandlimits, Nj , we get

a diagonal matrix L̃. Analogous to the L operator, this L̃ : Ṽ → Ṽ ∗ maps a
tangent vector in Fourier domain to its dual momentum vector m̃. For a 3D
grid, the coefficients L̃ijk of this operator at coordinate (i, j, k) in the Fourier
domain are

L̃ijk =

[
−2α

(
cos

2πi

W
+ cos

2πj

H
+ cos

2πk

D

)
+ 7

]s
,

where W,H,D are the dimension of each direction. Vice versa, the Fourier coef-
ficients of the K operator are K̃ijk = L̃−1ijk.

Before describing the details of our diffeomorphic image matching algorithm,
we first provide an outline of the general steps. Beginning with the initialization
ṽ0 = 0, the gradient descent algorithm to minimize the energy (11) proceeds by
iterating the following:

1. Forward shooting of ṽ0: Forward integrate the geodesic evolution equa-
tions on Ṽ to generate ṽtk at discrete time points t1 = 0, t2, . . . , tT = 1.

2. Compute the diffeomorphism φ−11 : Compute the inverse diffeomorphism,
φ−11 , by integrating the negative velocity field backward in time.

3. Compute gradient at t = 1: Compute the gradient, ∇ṽ1E, of the energy
(11) at t = 1.

4. Bring gradient to t = 0 by adjoint Jacobi field: Integrate the reduced
adjoint Jacobi field equations in Ṽ to get the gradient update ∇ṽ0E.
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We note that Steps 2 and 3 are computed at the full resolution of the input images
in the spatial domain. However, Steps 1 and 4 to compute the geodesic and the
adjoint Jacobi fields are computed entirely in the finite-dimensional space Ṽ ,
resulting in greatly reduced computation time and memory requirements. We
now provide details for the computations in each of these steps.

4.1 Geodesic Shooting in the Finite-Dimensional Lie Algebra

In the previous section, we introduced a finite-dimensional Lie algebra. Analo-
gous to the EPDiff equation (3), we define its geodesic evolution equation as

∂ṽ

∂t
= −ad†ṽ ṽ = −K̃ad∗ṽm̃, (12)

where the operator ad∗ : Ṽ ∗ → Ṽ ∗ is the dual of the negative finite-dimensional
Lie bracket of vector fields in the Fourier space, and its discrete formulation is

ad∗ṽm̃ = (D̃ṽ)T ? m̃+ D̃m̃ ? ṽ + m̃ ? (Γ̃ ṽ), (13)

where Γ̃ ṽ is divergence of the discrete vector field ṽ. It is computed as sum of
the point-wise multiplication Γ̃ ṽ =

∑N1

k1=0 · · ·
∑Nd

kd=0 ηiṽi, where ηi is the Fourier
coefficient of the central differential operator on each dimension.

Plugging (13) back into the geodesic evolution equation (12), we have

∂ṽ

∂t
= −ad†ṽ ṽ = −K̃

[
(D̃ṽ)T ? m̃+ D̃m̃ ? ṽ + m̃ ? (Γ̃ ṽ)

]
. (14)

4.2 Adjoint Jacobi Fields

The computation of the gradient term in our model requires the adjoint Jacobi
fields, which are used to integrate the gradient term at t = 1 backward to
the initial point t = 0. To derive this, consider a variation of geodesics γ :
(−ε, ε)× [0, 1]→ Diff∞(Ω), with γ(0, t) = φt and γ(s, 0) = Id. Such a variation
corresponds to a variation of the initial velocity (d/dt)γ(s, 0) = v0 + sδv0. The
variation γ(s, t) produces a “fan” of geodesics, illustrated in Figure 2. Taking
the derivative of this variation results in a Jacobi field: Jv(t) = dγ/ds(0, t).

In this paper, we use a simple version of reduced Jacobi field from Bullo [7],
which is also used by [8]. Under the right invariant metric of diffeomorphisms,
we define a vector U(t) ∈ Ṽ as a right trivialized reduced Jacobi field U(t) =
Jṽ(t)φ(t)−1, and a variation of the right trivialized reduced velocity ṽ is δṽ.

By introducing adjoint variables Û , δv̂ ∈ Ṽ , we have the adjoint Jacobi equa-
tions as

dÛ

dt
= −ad†ṽÛ

dδv̂

dt
= −Û − sym†ṽδv̂ , (15)

where sym†vδv̂ = −advδv̂ + ad†δv̂v. For more details on the derivation of the
adjoint Jacobi field equations, see [7].
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J(x)

Fig. 2: Jacobi fields

5 Results

We demonstrate the effectiveness of our proposed model using real 3D OA-
SIS MRI brain data. The MRI have resolution 128 × 128 × 128 and are skull-
stripped, intensity normalized, and co-registered with rigid transforms. We use
α = 3.0, s = 3.0, σ = 0.03 with T = 10 time-steps in geodesic shooting for all
the experiments in this paper.

Image registration. We tested our algorithm for geodesic shooting for pairwise
image registration at different levels of truncated dimension N = 4, 8, 16, 32, 64.
We compared the total energy formulated in (5), time consumption, and memory
requirement of our model versus the open source implementation of vector mo-
menta LDDMM [11] (https://bitbucket.org/scicompanat/vectormomentum).
For comparison, we use the same integration method and (α, s, σ, T ) parameters
for both models.

Figure 3 displays the comparison of convergence, time, and memory at dif-
ferent levels of truncated dimensions. It indicates that our model gains better
registration accuracy but with much less time and memory. We see that our
method actually achieves a lower overall energy than vector momenta LDDMM
for truncated dimension N = 16 and higher. Note that increasing the dimen-
sion beyond N = 16 does not improve the image registration energy, indicating
that N = 16 is sufficient to capture the transformations between images. We
emphasize that we used the same full-dimensional registration energy from (2)
for all runs so that they would be comparable. In addition, our model arrives at
the optimal solution for N = 16 in 1.59s per iteration, and 168.4 MB memory.
In comparison, vector momenta LDDMM requires 46s per iteration, and 1708.1
MB memory.

Atlas building We also used our algorithm to build an atlas from a set of 3D
brain MRIs from the OASIS database, consisting of 60 healthy subjects between
the age of 60 to 95. We initialize the template I as the average of image intensi-
ties, and set the truncated dimension as N = 16 that was shown to be optimal
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Fig. 3: Comparison between our model at different scale of truncated dimension
and vector momenta LDDMM for (a) convergence of total energy with N = 16
truncated dimension; (b) convergence of image matching with N = 16 truncated
dimension; (c) total energy; (d) time consumption per iteration; (e) memory
requirement.

in the previous section. We used a message passing interface (MPI) parallel pro-
gramming implementation for both our model and vector momenta LDDMM,
and scattered each image onto an individual processor. With 100 iterations for
gradient descent, our model builds the atlas in 7.5 minutes, while the vector
momenta LDDMM in [11] requires 2 hours.

The left side of Figure 4 shows the axial and coronal slices from 8 of the
selected 3D MRI dataset. The right side shows the atlas image estimated by
our algorithm, followed by the atlas estimated by vector momenta LDDMM. We
see from the difference image between the two atlas results that our algorithm
generated a very similar atlas to vector momenta LDDMM, but at a fraction of
the time and memory cost.

6 Conclusion

We presented a fast geodesic shooting algorithm for diffeomorphic image reg-
istration. Our method is the first to introduce a finite-dimensional Lie alge-
bra that can represent discretized velocity fields of diffeomorphisms in a lower-
dimensional space. Another key contribution of this finite-dimensional Lie al-
gebra is that we can compute the geodesic evolution equations, as well as the
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Fig. 4: Top left: axial and coronal slices from 8 of the input 3D MRIs. Middle
to right: atlas estimated by our model and vector momenta LDDMM. Bottom:
axial and coronal view of atlas intensity difference.

adjoint Jacobi field equations required for gradient descent methods entirely in
a low-dimensional vector space. This leads to a dramatically fast diffeomorphic
image registration algorithm without loss in accuracy. This work paves the way
for efficient computations in large statistical studies using LDDMM. Other speed
up strategies, for instance, a second-order Gauss-Newton step, similar to the one
proposed in [4], or a multi-resolution optimization scheme could be added on
top of our algorithm for further speed improvement. Another interesting possi-
bility is that our algorithm could make inference by Monte Carlo sampling of
diffeomorphisms [16] more feasible.
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