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Abstract—Supercomputing applications are increasingly adopting the MPI+threads programming model over the traditional “MPI
everywhere” approach to better handle the disproportionate increase in the number of cores compared with other on-node resources.
In practice, however, most applications observe a slower performance with MPI+threads primarily because of poor communication
performance. Recent research efforts on MPI libraries address this bottleneck by mapping logically parallel communication, that is,
operations that are not subject to MPI’s ordering constraints to the underlying network parallelism. Domain scientists, however, typically
do not expose such communication independence information because the existing MPI-3.1 standard’s semantics can be limiting.
Researchers had initially proposed user-visible endpoints to combat this issue, but such a solution requires intrusive changes to the
standard (new APIs). The upcoming MPI-4.0 standard, on the other hand, allows applications to relax unneeded semantics and
provides them with many opportunities to express logical communication parallelism. In this paper, we show how MPI+threads
applications can achieve high performance with logically parallel communication. Through application case studies, we compare the
capabilities of the new MPI-4.0 standard with those of the existing one and user-visible endpoints (upper bound). Logical
communication parallelism can boost the overall performance of an application by over 2×.
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1 INTRODUCTION

SUpercomputing applications are no longer able to run
efficiently on modern distributed systems with the tra-

ditional MPI everywhere (typically one MPI process per
core) programming model. The amount of memory per
core has decreased over the past decade because of the
disproportionate increase in the number of cores per pro-
cessor compared with other on-node resources, such as
memory, TLB space, and network registers [1], [2], [3]. MPI
everywhere, on the other hand, has high memory require-
ments because the processes on a node host duplicated
data [4]. The memory-hungry nature of MPI everywhere
coupled with the decreased share of resources per core has
resulted in applications running out of memory with large
domains [5], [6]. To directly address this issue, the MPI
Forum had introduced MPI Shared Memory [7] in MPI-
3 (MPI+MPI), but such a solution is specific to sharing
memory and is not a generic solution for sharing other
on-node resources. Moreover, other aspects of MPI+MPI
programming, such as on-node synchronization, can be
more complex when compared with data parallel abstrac-
tions provided by alternative shared-memory programming
models, such as OpenMP (e.g., dynamic load balancing
with compiler directives) [8]. Hence, domain scientists have
introduced a “new normal” in their programming model
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of choice: MPI+threads (typically an MPI process per node
or NUMA domain, and a thread per core) [9]. MPI+threads
(e.g., MPI+OpenMP) enables applications to efficiently share
all of the limited resources of a node between cores while
minimizing duplication of data on a node. As a result, many
applications are now able to scale to large domain sizes on
modern systems with MPI+threads [5], [10], [11].

MPI+threads is a critical model for programming mod-
ern processors in a scalable fashion; in practice, how-
ever, most applications tend to observe a slower perfor-
mance compared with the application’s MPI everywhere
counterpart [5], [6], [12], [13]. MPI+threads programming
raises many challenges over MPI everywhere. These in-
clude mitigating synchronization overheads of the shared-
memory programming model [14], [15], [16], and preventing
performance-degrading memory accesses (e.g., false shar-
ing). But the most important challenge is the dismal commu-
nication performance of an MPI+threads application. The
slow multithreaded MPI communication performance is a
critical challenge to tackle since most scientific simulation
campaigns run close to the strong-scaling limit where com-
munication occupies a significant part of the application’s
runtime [17], [18], [19]. The MPI+threads version of the
HYPRE solver [20], for instance, spends 2.81× more time in
MPI than does its corresponding MPI everywhere version.

One of the reasons for poor multithreaded MPI commu-
nication ( i.e., MPI_THREAD_MULTIPLE) performance is that
state-of-the-art MPI libraries use conservative approaches,
such as a global critical section, to maintain thread safety
and MPI’s ordering constraints. Recently, however, through
the proactive use of the network parallelism available on
modern interconnects, MPI libraries have made significant
strides by demonstrating scaling MPI_THREAD_MULTIPLE
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communication performance that matches that of MPI ev-
erywhere [21], [22], [23]. If an MPI library is to funnel paral-
lel MPI communication through distinct network channels,
it needs to know which messages are unordered. Hence, a
key requirement to reap the improved multithreaded MPI
performance is the exposure of the independence between
communication operations from parallel threads. The ad-
vanced MPI libraries are helpless if the application does not
expose logically parallel communication—operations that are
not subject to MPI’s ordering constraints. Only the applica-
tion can provide such information to the MPI library. State-
of-the-art MPI+threads applications, however, typically do
not express such logical communication parallelism.

A reason why domain scientists have not been exposing
logical communication parallelism is that the semantics of
the existing MPI-3.1 standard can either prevent the user
from exposing all of the communication independence or
make doing so cumbersome. With respect to combating
these limitations, the MPI community holds two schools of
thought. The earlier school of thought believes in providing
domain scientists with user-visible endpoints to expose the
logically parallel communication of an MPI+threads appli-
cation [24], [25]. Endpoints are flexible interfaces and enable
an application to express the maximum level of communi-
cation independence, but the challenge in introducing them
is intrusive changes to the MPI standard in the form of
new APIs [26], [27]. The more recent school of thought
advocates a less-intrusive approach: MPI Info hints to relax
the MPI semantics that are not needed by an application.
Such relaxation allows domain scientists to use existing MPI
mechanisms in a manner that matches the upper bound
set by user-visible endpoints in terms of both performance
and resource usage. In fact, the next iteration of the MPI
standard, MPI-4.0, features new Info hints that provide
domain scientists with new opportunities to express logical
communication parallelism using existing MPI mechanisms.

In this paper, we showcase how domain scientists
can eliminate the communication bottleneck in their
MPI+threads applications using the different mechanisms
of exposing logical communication parallelism. Using three
application case studies, we compare the new opportunities
of expressing logical communication parallelism in MPI-
4.0 with the strengths and limitations of the existing MPI-
3.1 standard and the upper bound set by user-visible end-
points. We study the Uintah computational framework, the
WOMBAT astrophysics code, and the Legion programming
system since they have been designed specifically to scale
on upcoming exascale machines. We utilize and build on the
fast MPI+threads library that we previously developed [21].
Unlike our previous work, we evaluate the impact of uti-
lizing network parallelism on the end-to-end runtime of
applications. Our evaluations show that the benefits of
exposing logical parallelism go beyond the utilization of
network parallelism. Removing the communication bottle-
neck enables applications to reap the maximum benefits of
MPI+threads over MPI everywhere, significantly boosting
performance (up to 2×) over MPI everywhere. Specifically,
we make the following contributions.
(1) For the three MPI+threads application case studies, in

Section 3, we present the bottlenecks in their design and
performance and the challenges involved in addressing

the bottlenecks.
(2) We provide a fast MPI+threads library (Section 5) that

is capable of exploiting all the different mechanisms
(described in Section 4) of expressing logically parallel
communication. This is an extension of our previous
work [21].

(3) In Section 6, we address the communication bottleneck
in each case study and showcase how to unlock the full
potential of the MPI+threads programming model.

2 SOFTWARE AND TESTBEDS

Our MPI implementation is based on the highly optimized
CH4 [28] device of the MPICH library. The CH4 device is
a combination of three components: a core (ch4_core), a
network module (netmod), and a shared-memory module
(shmmod). For most network operations, CH4 offloads func-
tionalities, such as tag matching, to the low-level communi-
cation library, such as OpenFabrics Interfaces (OFI) [29] or
Unified Communication X (UCX) [30]. When the network
hardware cannot independently handle operations, CH4
falls back to using an active message implementation of the
operation in its ch4_core.

We develop and evaluate our MPI implementation on
the Intel Skylake and Intel Haswell testbeds at the Joint Lab-
oratory for System Evaluation (JLSE) at Argonne National
Laboratory (ANL). The Skylake nodes are interconnected
with Intel Omni-Path (OPA) while the Haswell nodes are
interconnected with Mellanox InfiniBand (IB) EDR. Since
these testbeds comprise of a small number (< 10) of nodes,
we use different, larger systems to evaluate the applica-
tions in this work. We evaluate the applications on the
Bebop HPC cluster at ANL, and the HPC3 cluster at the
University of California, Irvine. Bebop features a partition
of Intel Knights Landing (KNL) nodes and a partition of
Intel Broadwell nodes. Both partitions are interconnected by
Intel OPA. The HPC3 cluster features Intel Skylake nodes
that are interconnected using Mellanox IB EDR. For OPA,
we use MPICH’s OFI netmod in conjunction with PSM2
(OFI/OPA); for IB, we use the UCX netmod with Verbs
(UCX/IB). For the same interconnect, the communication
performance behaviors of the large-scale systems and the
small-scale testbeds are similar.

We do not evaluate RMA operations on systems con-
nected with Intel OPA since it emulates one-sided opera-
tions in software. This emulation hurts performance; our
previous work analyzed the consequences of such emula-
tion in detail [21]. Mellanox IB, on the other hand, provides
direct hardware support for common RMA operations.
Hence, we evaluate applications with RMA operations on
systems using IB, and we use OPA-based systems only for
applications with point-to-point operations.

3 THREADS HURTING APPLICATIONS

In this paper, we study applications and computational
frameworks from three different domains: computational
fluid dynamics (Uintah and HYPRE), astrophysics (WOM-
BAT), and data-centric programming systems (Legion). We
discuss the distinct MPI+threads challenges associated with
each case study.
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3.1 Uintah and HYPRE

Since its inception at the University of Utah, the Uintah
computational software framework has been used to solve
a variety of fluid, solid, and fluid-structure interaction prob-
lems from diverse domains [31]. Its most notable application
has been in the simulation of next-generation combustion
problems to aid the design process of coal boilers. Boiler
simulations enable engineers to build, test, and optimize
designs that achieve a less-polluting coal burn. Uintah simu-
lates the thermal radiation in such boilers using its ARCHES
component, a three-dimensional large eddy simulation code
that simulates heat, mass, and momentum transport in
reacting flows using a low-Mach number approximation.

Two components play key roles in ARCHES’ boiler sim-
ulations: Reverse Monte Carlo Ray Tracing (RMCRT) [32]
that solves the radiation transport equation, and the HYPRE
library [33] that solves a large system of linear equations
projecting pressure at every timestep. RMCRT has been
extensively developed to scale [34], [35], [36], and a key
contributor to its scalability has been the adoption of the
MPI+threads programming model. RMCRT is a memory-
intensive algorithm since each process requires global do-
main information for the traversal of its share of rays
through the entire domain. Given the data duplication per
node with MPI everywhere, RMCRT runs out of memory
for large domains. For example, Figure 1 shows that even
with 1 patch per core, Uintah runs out of memory with
MPI everywhere for a domain containing 163 patches (64
nodes) with 643 cells per patch. On the other hand, Uin-
tah scales to much larger domain sizes with MPI+threads
since MPI+threads dramatically reduces the copies of global
data on a node [37]. But the performance of Uintah with
MPI+threads is slower because the HYPRE library per-
forms slower with MPI+threads than with MPI everywhere.
Hence, although ARCHES needs MPI+threads to scale, it
suffers from a loss in performance compared with MPI
everywhere. In this work, we address the MPI+threads
challenges in HYPRE so that ARCHES can achieve both high
scalability and high productivity with MPI+threads.

The older version of HYPRE performed 3–8× worse
than MPI everywhere, but recent efforts by Sahasrabudhe et
al. [38] analyze the synchronization overheads of OpenMP
in HYPRE and redesign the library so that multiple threads
are able to call HYPRE in parallel with their respective
patches. The threads asynchronously process their own
patches inside HYPRE, similar to the way MPI processes
process their patches in parallel in MPI everywhere. Unlike
MPI everywhere, however, threads bypass MPI and directly
use shared memory for intranode communication. Such re-
structuring eliminates all thread-synchronization overheads
and all single-thread sections that previously existed in the
HYPRE library. In this current version of HYPRE, each
thread naturally conducts its own MPI communication in
parallel with other threads (i.e., MPI_THREAD_MULTIPLE).

HYPRE’s communication pattern is that of a 3D 27-
point stencil. Although the communication of each thread
is independent in this pattern, HYPRE still performs slower
with MPI+threads than with MPI everywhere because of
a higher MPI time (see Figure 2). HYPRE spends more
time in MPI with MPI+threads because it does not expose
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Fig. 1: MPI everywhere vs. MPI+threads in Uintah.
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Fig. 2: Higher MPI time in MPI+threads HYPRE.

logical communication parallelism to the MPI library in a
way that works for the existing MPI-3.1 standard. The MPI
messages of all threads use the same MPI communicator,
subjecting them to MPI’s ordering constraints, such as the
non-overtaking order.

HYPRE refrains from using multiple communicators be-
cause, at high thread counts, the number of communicators
required for expressing all of the available independent
communication can easily surpass the limited number of
hardware contexts on the network (e.g., by over 5× with
64 threads on Intel OPA; see Section 6.1). Thus, even
though HYPRE could expose communication parallelism
with communicators, it would not practically achieve ded-
icated communication channels since the underlying net-
work resources are limited.

HYPRE instead encodes the thread IDs of the sending
and receiver threads into the MPI tag of the communication
to differentiate operations targeting different threads on the
destination process. The MPI library cannot exploit this
encoded parallelism information in the tags because of the
possibility of wildcards on receive operations. Even though
HYPRE does not use any wildcards, the current MPI-3.1
standard does not provide any mechanisms for applications
such as HYPRE to inform the MPI library that they do not
use wildcards.

Since the MPI library does not observe any logically
parallel communication in HYPRE, it funnels the commu-
nication from all threads through a single communication
channel, serializing all of the otherwise independent com-
munication operations. Even though the current version of
HYPRE addresses many challenges of MPI+threads pro-
gramming, the critical challenge of eliminating the commu-
nication bottleneck remains to be addressed. Successfully
addressing this challenge by exposing logically parallel
communication would unlock the true performance poten-
tial of MPI+threads for Uintah.
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3.2 WOMBAT

Modern radio telescopes have provided us with new obser-
vations about the cosmological behaviors in the Universe.
Given the complexity of the physical mechanisms involved
in galactic interactions, interpreting these new observa-
tions is a challenging task. The CosmoPlasmas project, a
partnership between academic institutions and HPE Cray,
aims to better understand these new telescopic observations
through numerical simulations that are designed to scale
and run efficiently on modern high-performance computing
systems [39]. The project participants have developed a
new numerical framework, WOMBAT, that is geared to
handle cosmological structure formation on the many-core
architectures of exascale computing.

WOMBAT is a grid-based magnetohydrodynamic
(MHD) code that simulates astrophysical phenomena to
study the dynamics of highly conductive ionized astrophys-
ical plasmas [40]. While numerous codes exist for astrophys-
ical fluid simulations, they have not been adopted to run
on the architectures of upcoming exascale machines. The
primary guiding principle of WOMBAT, on the other hand,
was to design an MHD code environment that scales well
with high numbers of cores. It uses the MPI+threads pro-
gramming model over MPI everywhere for many reasons:
less expensive dynamic load balancing of computational
tasks, a more symmetric workload between multithreaded
processes, and more efficient use of the processor’s shared
resources. For example, Figure 3 shows that WOMBAT runs
out of memory with MPI everywhere for large patch sizes
but is able to run with MPI+threads because of the lesser
amount of duplicated halo data.

WOMBAT’s code structure features a single OpenMP
parallel region as opposed to multiple OpenMP parallel-
for loops. Each iteration of the simulation consists of dif-
ferent sections, and threads of a process collaboratively
work on the computational and communication tasks of
each section through dynamic load balancing. In terms
of communication, WOMBAT uses MPI’s RMA (MPI_Put
and MPI_Get) operations to utilize the high-throughput,
low-latency RDMA features of modern interconnects. In
spite of these performance-oriented design choices, Figure 3
shows that WOMBAT achieves a lower scientific throughput
with MPI+threads than with MPI everywhere, especially
for smaller patch sizes. The primary reason for a slower
MPI+threads performance is a higher boundary-data ex-
change time.

Threads in WOMBAT retrieve the boundary data
for the patches of an MPI process in parallel (i.e.,
MPI_THREAD_MULTIPLE). Each thread first packs the
boundary data of its local patch into a communication mail-
box and signals readiness of this data to the corresponding
MPI rank using an MPI_Put operation. A thread from the
neighboring MPI rank then fetches the boundary data into
its local mailbox using an MPI_Get operation. After un-
packing the data into the patch’s boundary zone, the thread
signals the completion of its retrieval of the boundary data
to the source MPI rank using another MPI_Put operation.

The communication of each thread in WOMBAT
is independent, but WOMBAT does not explicitly ex-
press any of the independence in its multithreaded MPI
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communication—all operations use a single window. By de-
fault, not all operations on a window are unordered. Hence,
due to the conservative approaches in existing MPI libraries,
WOMBAT spends more time in MPI with MPI+threads than
with MPI everywhere (see Figure 4). To eliminate the com-
munication bottleneck in MPI+threads, WOMBAT needs to
efficiently expose the logical parallelism in its multithreaded
communication.

3.3 Legion

In modern heterogeneous computing environments, the cost
of data movement dictates the overall computational ef-
ficiency of an application. Hence, to achieve high perfor-
mance, application developers need to allocate and move
data efficiently, in addition to expressing parallelism. More
important, they need to do so for every new architecture
the application needs to run on. The penalty of not doing
so is very poor performance. Legion, a data-centric parallel
programming system, reduces this programming burden on
domain scientists [41]. It is targeted for writing portable
high-performance applications to run on distributed hetero-
geneous architectures. Given its advantages of automated
data movement mechanisms and user-controlled mapping
to architectures, Legion has become a prominent program-
ming model for HPC applications.

The low-level runtime providing portability to the Le-
gion system is Realm [42]. The Realm interface provides
primitives that can be implemented on a wide range of
technologies including a variety of high-performance in-
terconnects and GPUs. Since Legion applications describe
dependencies between operations, Realm is able to exploit
opportunities to overlap operations in scenarios that are too
difficult for the domain scientists to express by themselves
and thus obtain higher performance. Realm uses an event-
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based system to dynamically represent the control graph of
a parallel program described by the Legion runtime. Such
an event-based system allows Realm to flexibly execute
strategic mappers of different architectures as well.

The Realm runtime is multithreaded and is implemented
by using Pthreads. The internode communication of this
multithreaded runtime has been designed around GASNet’s
active messages [43]. Active messages from the multiple
task threads of a node contain a command, a payload, or
both (for small payloads) for the target node, which, upon
receiving the message, processes the payload through a
corresponding handler. Recent efforts from Argonne Na-
tional Laboratory implement an MPI module for Realm’s
internode communication. These efforts are in line with
Legion’s mission of portability and high performance since
MPI, compared with GASNet, is more widely supported
and adopted to obtain high performance on HPC systems.
The MPI backend implements Realm’s active-message-style
communication using MPI’s point-to-point operations. Like
the GASNet backend, it maintains a single polling thread
on each node to process the incoming messages from other
nodes. While there can be multiple task threads initiating
active messages (i.e., MPI_THREAD_MULTIPLE), the theoret-
ical bottleneck in communication performance is the single
receiving polling thread. More important, communication is
a major constituent of Legion applications especially at the
limits of strong scaling [41], [44].

Since the communication of each parallel thread is in-
dependent, in theory each thread’s operations could funnel
through a distinct network context. However, the current
MPI backend does not expose the available parallelism. All
threads issue their operations on MPI_COMM_WORLD. Fully
exposing the logically parallel communication, however, is
not possible with the existing MPI semantics. Although the
task threads can send messages through distinct commu-
nicators, the receiving polling thread cannot use its own
communicator. The matching semantics of MPI force the
polling thread to iterate over the communicators to check for
all incoming messages. Thus, on a single node, the polling
thread uses the same communicators as those of the task
threads. Such usage of communicators does not express all
of the available logical parallelism in Legion’s internode
communication. In order to unlock the performance poten-
tial of Legion applications, it is important that the polling
thread does not contend with other threads and that it gets
its own dedicated communication channel to the network.

4 THE TWO SCHOOLS OF THOUGHT

Exposing logically parallel communication is a critical chal-
lenge in all three application case studies of this work.
How can MPI+threads applications expose communication
independence so as to map to the parallel network channels?
In this regard, two schools of thought exist in the MPI
community. Both agree on a critical precursor: MPI libraries
must implement parallel communication channels, each
mapping to a distinct network context. The two ideologies
differ, however, in the mechanisms of expressing logical
parallelism. We describe the two schools of thought below.

4.1 User-Visible Endpoints
To help with the expression of logical parallelism, re-
searchers initially proposed to extend the MPI standard to
introduce user-visible MPI Endpoints [27]. New APIs would
allow the user to create communicators and windows with
multiple endpoints [26]. Each endpoint would take on the
semantics of an MPI rank and be directly addressable, giv-
ing users explicit control over the communication between
endpoints. If the user mapped each thread to a distinct end-
point, then all threads could have dedicated communication
paths to the network. We note, however, that endpoints are
not handles to network resources; rather, they are a means
to express logically parallel communication. The MPI library
would map the communication from different endpoints to
its internal communication channels, which could be fewer
than the number of endpoints depending on the availability
of network resources.

Given their flexible interface (ability to specify both the
local endpoint to issue an operation from and the remote
endpoint to target), user-visible endpoints represent the
upper bound in expressing the communication parallelism
available in an application. Several efforts indeed show
scaling communication throughput with user-visible end-
points through multiple communication channels inside the
MPI library [24], [25], [45], but the very nature of flexible
communication control requires intrusive extensions to the
standard in order to introduce the new concept of endpoints
to MPI users.

4.2 Existing MPI Mechanisms
More recent efforts advocate using existing MPI mecha-
nisms such as communicators, tags, and windows to express
logically parallel communication [21], [22]. This ideology
stems from the fact that the existing MPI standard already
allows users to express parallelism in their communication.
An efficient MPI library could then map the user-expressed
parallelism to its internal communication channels. We de-
scribe the mechanisms to express parallelism in the existing
MPI-3.1 standard and the upcoming MPI-4.0 standard.

4.2.1 MPI-3.1
The existing MPI standard allows logically parallel commu-
nication for both point-to-point and RMA operations [21].

Communicators. Point-to-point operations in distinct
communicators can never match with each other and hence
are fully independent. Thus, users can use distinct com-
municators to express the communication independence
between point-to-point operations from parallel threads.

Windows. All types of RMA operations do not main-
tain any ordering of operations across windows. Although
nonatomic operations are unordered regardless of whether
or not they are on different windows, users should be
wary of mixing synchronization and initiation operations in
parallel on the same window. For example, if one thread is
waiting inside MPI_Win_flush and another continuously
issues MPI_Get operations, the first thread might block
indefinitely. To overcome such constraints and explicitly
expose parallelism for any type of RMA operation, users
have the option of mapping operations from distinct threads
though different windows.
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4.2.2 MPI-4.0 draft
Some of the existing semantics of MPI-3.1 prevent appli-
cations from using certain mechanisms to expose logically
parallel communication. For example, MPI-3.1 allows point-
to-point parallelism to be expressed only through com-
municators because of the possibility of wildcards (e.g.,
MPI_ANY_TAG) within a communicator. Such semantics can
be limiting to the application especially when the applica-
tion does not rely on the non-overtaking order or wildcard
features of MPI. To overcome such limitations in the next
iteration of the standard, MPI-4.0, the MPI Forum has voted
in new MPI Info hints that will allow an application to
relax the MPI semantics it does not need. Not only does
such relaxation of semantics yield new opportunities for
performance optimizations, but it also opens up new op-
portunities for the application to express logically parallel
communication.

Tags with hints. Relevant Info hints from the draft MPI-
4.0 standard include mpi_assert_no_any_source,
mpi_assert_no_any_tag, and
mpi_assert_allow_overtaking [46]. The first
two, when set, inform the MPI implementation that
the application will not use wildcards on the given
communicator. The third informs the MPI library that the
operations do not need to be matched in the order that
they were posted (relaxing the non-overtaking order).
These hints mean that users can express logically parallel
communication within a communicator by using a distinct
tag for each thread. While the matching semantics of
MPI still apply, a tag-based parallelism approach is more
tractable than a communicator-based one since existing
MPI+threads applications using MPI_THREAD_MULTIPLE
tend to already encode communication parallelism
information in their MPI tags [11], [38].

5 A FAST MPI+THREADS LIBRARY

Both schools of thought regarding the expression of logical
communication parallelism rely on the fundamental idea
that the MPI library must maintain parallel communication
channels, each mapping to a distinct network context. In this
section, we summarize our previous work that establishes
fast parallel communication channels inside the MPI library
using virtual communication interfaces (VCIs). In addition,
we evaluate and discuss the multi-VCI infrastructure in
the context of the draft MPI-4.0 standard. The multi-VCI
MPICH library designed and used in this work is open
source for both the OFI [47] and UCX [48] netmods.

5.1 A Virtual Communication Interface

A VCI is an abstract representation of a communication
channel. Each VCI maps to a distinct network context
and contains its own independent set of communication
resources: a transmit queue and a receive queue to issue
operations and a completion queue to poll for progress of
issued operations. These resources maintain a FIFO order of
the MPI operations that map to it. The physical realization of
a VCI depends on the netmod and the underlying intercon-
nect. A VCI in the OFI netmod is an OFI endpoint bound to
an OFI completion queue. For Intel OPA, the OFI endpoint

maps to a hardware context on the Intel HFI network
adapter [49]. A VCI in the UCX netmod is a UCP worker.
For Mellanox IB, the UCP worker contains Verbs resources:
a queue pair (QP) for transmission, a shared receive queue
for reception, and a completion queue for progress. The
QP maps to the micro UARs (hardware registers) on the
Mellanox adapter [50].

5.2 Fast Parallel Communication Channels
With a pool of VCIs, we establish parallel communication
channels in the MPI library. Since threads need to be able
to access the VCIs in parallel, fine-grained critical sections
are an important precursor to extract the benefits of VCIs.
Balaji et al. [51], [52] and Amer et al. [53] have designed
fine-grained critical sections for an MPI library by splitting
the responsibility of the global lock such that each class
of objects is protected by its own lock. We extend their
designs such that the resources of each VCI are protected by
a lock belonging to the VCI. In this way threads that map to
different VCIs can access the VCIs without contention.

Simply employing multiple VCIs in an MPI library
with fine-grained critical sections, however, yields no per-
formance benefit (see Figure 5). Together they perform
similarly to the original version of the MPI library that
employs a global critical section and uses a single VCI. To
enable a fast MPI+threads library, we need to restructure the
internals of the MPI library to provide contention-free paths
to threads mapped to different VCIs. We identify three sets
of optimizations that eliminate bottlenecks present in the
architectures of MPI libraries.

Per-VCI progress. The first optimization deals with
the progress of multiple VCIs during operations such as
MPI_Waitall. The naı̈ve approach would be to blindly poll
for progress on all VCIs (global progress) during a progress
function, but such an approach hurts performance drasti-
cally especially when multiple threads progress operations
in parallel. What we need is per-VCI progress: progress
functions that poll for progress only on the VCI associated
with the operation. There are, however, cases of correct MPI
programs (examples in [21]) where pure per-VCI progress
leads to a deadlock because the program relies on shared
progress between threads—thread A needs to progress the
operations of thread B that were issued on VCI B. To
accommodate for such communication patterns, the MPI
library must execute global progress to ensure correctness
of the implementation. We therefore adopt a hybrid per-
VCI progress model where we first poll only the VCI of the
operation, and if progress has not been made after a certain
number of attempts, we switch to one round of global
progress. Figure 6 shows that communication throughput
is 6.97× lower without per-VCI progress (All w/o per-VCI
progress) compared with the case where all optimizations
are used.

Per-VCI request management. MPI libraries typically
maintain a global memory pool for requests. Thus, even
when operations from multiple threads map to different
VCIs, they contend on the lock of the global request pool
when they need to acquire a request (e.g., during an
MPI_Isend) or release it (e.g., during an MPI_Wait). To
address this contention, we employ as the main optimiza-
tion a per-VCI request cache, which is a cache of requests
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from the global pool. Access to each per-VCI request cache is
protected by the lock of the VCI. Thus, in the common case,
threads mapped to different VCIs do not contend on the
lock of global request pool; instead, they acquire and release
requests to the VCI’s cache of requests. Figure 7 shows the
benefits of the per-VCI request management. Without it,
throughput is 39.98× lower (All w/o per-VCI req-mgmt)
compared with all optimizations.

Per-VCI cache-line awareness. As is the case with any
multithreaded code, the multi-VCI infrastructure is prone
to effects of false sharing. Threads mapped to consecutive
VCIs could witness false sharing between the locks of the
VCIs; hence, we use compiler attributes to cache-align each
VCI. Figure 8 shows that without a cache-aware VCI, the
message rate is 1.49× lower (All w/o cache-aware VCI).

Summary. Fine-grained critical sections, multiple VCIs
and all the above optimizations together enable a fast
MPI+threads library. Without any of these features, multi-
threaded communication performance is dismal.

5.3 Mapping Logical Parallelism to Network Parallelism

As we saw in Section 4, users can express logically parallel
communication either through user-visible endpoints or
through existing mechanisms. In the endpoints mechanism,
we map the communication from the distinct endpoints to
distinct VCIs. This mapping gives users full control over
communication between endpoints. Since users use existing
MPI objects such as communicators and tags for other
purposes apart from expressing communication parallelism,
the possibility of a mismatch in expected mapping to VCIs is
more likely with existing MPI mechanisms than with user-
visible endpoints [21].

To allow users to better control the mapping of their
logically parallel communication to VCIs, we introduce a
new set of MPI Info hints complementing those introduced
in the draft MPI-4.0 standard. The new set of hints does
not influence any MPI semantic; rather, it is specific to our
MPI implementation.* The hints allow domain scientists to
relay application-specific communication parallelism infor-
mation to the MPI library to achieve the best mapping
of the logically parallel communication to the underlying
network parallelism. By default, if the user provides no
MPI Info hints, all communicators and windows map to the
same single VCI. By using hints, however, applications can

*. Introducing new implementation-specific Info hints does not vio-
late the MPI-3.1 standard.

request a new VCI or multiple new VCIs for a communicator
or window.

In point-to-point communication, if the user requests a
single VCI for a communicator, all operations using that
communicator will funnel through the VCI mapped to that
communicator. This allows users to expose logically parallel
communication using communicators. If communicators are
insufficient to expose parallelism in an application’s com-
munication pattern, domain scientists may request multiple
VCIs for a communicator and supply the appropriate MPI-
4.0 hints (e.g., mpi_assert_no_any_tag) to expose the
communication parallelism within a communicator using,
for example, tags. We provide Info hints for users to inform
the MPI library which bits of the tag they will use to express
logical parallelism. In this way the MPI library can optimize
the mapping of tags to VCIs by using only the reserved tag
bits hinted by the user. Note that these hints do not break
MPI’s matching requirements. In any case, the user must
ensure that the 〈comm, rank, tag〉 envelopes of operations
match for successful communication to occur.

To express RMA communication parallelism with exist-
ing MPI mechanisms, users have the option either to let
the MPI library automatically exploit their multithreaded
RMA operations (non-atomic only) or to explicitly express
the communication parallelism using separate windows
(wherever the MPI semantics allow them to do so). The
nature of automatic mapping, however, suffers from funda-
mental performance and semantic limitations. For example,
an automatic mapping that hashes the thread ID to the
limited network resources suffers from hash collisions. More
important, as we described in Section 4.2.1, mixing synchro-
nization and initiation operations on the same window is
tricky. Hence, we focus our analysis on the explicit option
of expressing parallelism with windows. As is the case with
communicators, users can request a new VCI for a window
through a hint.

Fallback mechanisms. In either mechanism of express-
ing communication parallelism, the VCI pool may be empty
during the creation of communicators, windows, or end-
points since the number of contexts on the network hard-
ware is limited (e.g., Intel OPA features only 160 hardware
contexts on the HFI adapter [49]). For such cases, the MPI
library must maintain fallback mechanisms. For example,
once all VCIs have been allocated, the library could use
a round-robin approach over the already allocated VCIs
for any new communicators or windows requesting new
VCIs. When the user frees a window or communicator, its
associated VCIs are returned to the pool.
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5.4 Microbechmark Evaluation

In this section, we demonstrate the performance of the
fast MPI+threads library on communication-intensive mi-
crobenchmarks using the different mechanisms of express-
ing parallelism. The benchmarks demonstrate the maximum
rate at which multiple cores can inject messages into the
network simultaneously. Each core on the host node targets
a distinct core on the remote node.

For MPI+threads, we compare the different mechanisms
of expressing communication parallelism against the state
of the art where either the user does not express logical
parallelism or the MPI library conservatively maintains
MPI’s ordering constraints using a global critical section and
a single communication channel. Our previous study shows
that in either case of the state of the art in MPI+threads, com-
munication throughput does not scale [21]. We also compare
against the transparent utilization of network parallelism in
MPI everywhere. In MPI+threads, we spawn one rank per
node with an OpenMP thread per core; MPI everywhere
uses one rank per core.

5.4.1 Point-to-Point
With the existing MPI-3.1 standard, users can express logi-
cally parallel communication using a distinct communicator
for each host-target thread pair. With MPI-4.0, users may
also use communicators, but they have the additional op-
tion of relaxing the unneeded semantics of MPI and using
tags to express communication parallelism within a single
communicator. They can do so by using a distinct tag for
each communicating thread-pair. In the microbenchmark,
for example, encoding the thread IDs of the sending and
receiving threads into the tag of the MPI message exposes
the logically parallel communication to the MPI library. With
user-visible endpoints, each thread uses its own endpoint
and directs its communication to the target remote endpoint.

For the different mechanisms of expressing parallelism,
Figure 9 shows the message-rate scalability of a small-
message MPI_Isend, and Figure 10 shows the message
rate of MPI_Isend with 16 cores across varying message
sizes on OFI/OPA. The communication throughput scales
equally well for all different mechanisms of expressing
parallelism. Even with exposed communication parallelism,
however, MPI+threads performs slower than the corre-
sponding MPI everywhere version. The level of network
utilization is the same in both cases, but MPI+threads incurs
overheads of thread safety over MPI everywhere even in
the uncontended case. These overheads include lock acqui-
sitions, atomics for completion, and reference counting [21].

5.4.2 RMA
We express communication parallelism in the microbench-
mark with existing MPI mechanisms using a distinct win-
dow per thread. With user-visible endpoints, all threads
issue operations on the same window but each uses a
distinct endpoint.

Similar to Figures 9 and 10, Figures 11 and 12 demon-
strate, for the different mechanisms of expressing RMA
communication parallelism, the throughput scalability of
a small-message MPI_Put and the 16-core message rate
of MPI_Put across varying message sizes, respectively, on
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UCX/IB. Mellanox InfiniBand implements most contigu-
ous RMA operations completely in hardware; hence, the
communication throughput scales equally well with both
windows and endpoints.
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6 LOGICAL COMMUNICATION PARALLELISM FOR
MPI+THREADS APPLICATIONS

In this section, we address the challenges of the three
applications (described in Section 3) by exposing logical
communication parallelism. For each application, wherever
possible, we compare the performances of MPI everywhere
(a rank per core) and MPI+threads (a rank per node/socket;
a thread per core) parallelism. For MPI+threads, we discuss
the ways in which we express parallelism through existing
MPI mechanisms and compare their performances with
those of the original version of the MPI library and the
upper-bound set by user-visible endpoints.

6.1 Uintah and HYPRE
In Section 3.1, we learned that the MPI+threads version of
Uintah’s ARCHES component suffers from a loss in perfor-
mance because the HYPRE library does not expose logical
communication parallelism to the MPI library. So, we first
evaluate the different mechanisms of exposing logical paral-
lelism in HYPRE on Bebop’s KNL OFI/OPA cluster. HYPRE
decomposes its domain in a cubical fashion and distributes
its cubical patches (each patch in our evaluation contains
643 cells) between cores statically for both MPI+threads and
MPI everywhere parallelism.

User-visible endpoints. We can express maximal com-
munication independence with user-visible endpoints by
creating as many endpoints as there are threads. Each
thread uses its local endpoint to issue operations, and it
communicates with the remote thread using the rank of the
target endpoint. On a KNL node with 1 MPI process and 64
threads, 64 endpoints per node exist. Since the underlying
OPA network features 160 hardware contexts, user-visible
endpoints do not exhaust the network resources.

Communicators. Expressing the communication paral-
lelism within the confines of the existing MPI-3.1 standard
is theoretically possible using communicators. However,
the communicator-based approach is complex for a 27-
point 3D stencil because of MPI’s matching constraints—
both the sender and receiver thread must use the same
communicator. To express parallelism with this constraint,
we need as many communicators as there are threads si-
multaneously participating in MPI communication for each
direction. If we consider [x, y, z] to be a vector represent-
ing the cubic arrangement of threads in an MPI process,
the least number of communicators we need to express
all of the available logical communication parallelism is
2xy + 2yz + 2xz + 8(xy + yz + xz − 1) + 4(xz + yz −
z) + 4(xy + yz − y) + 4(xy + xz − x). The first three terms
represent the directions perpendicular to the 6 faces, the
fourth term represents the 8 corner diagonals, and the last
three terms represent the edge diagonals. For a KNL node
with [4, 4, 4] threads, we need at least 808 communicators
each with a distinct VCI for contention-free communication.
Such use of network resources is highly inefficient since
the number of VCIs required is over 12× higher than that
required by user-visible endpoints. Additionally, since the
number of network hardware contexts on OPA is limited
to 160, the MPI library is forced to funnel the communi-
cation from independent communicators through the same
network channels. For our evaluation, we use a round-robin
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policy to assign VCIs to communicators. Arguably, if the
limit of underlying network resources was higher (e.g., 8k
on Mellanox IB), a round-robin policy would not come into
effect, but the problem of inefficient resource usage would
still remain.

Tags with hints. A less complex way to expose logical
parallelism using existing MPI mechanisms is to leverage
the parallelism information that HYPRE already encodes
in its MPI tags to differentiate matching information for
messages targeting different threads on the same target
process (see Section 3.1). What prevents MPI libraries from
mapping tags to distinct VCIs is the possibility of wildcards
on receive operations. Since HYPRE does not use wildcard
communication, however, we can use the new Info hints in
the draft MPI-4.0 standard to convey this information to the
MPI library so that the library can exploit the parallelism
information in the tags while mapping operations to VCIs.
We create a new communicator that requests as many VCIs
as there are threads, and we inform the MPI library, through
the hints described in Section 5.3, which bits of the tag
encode information about logically parallel communication.
With a one-to-one mapping between thread IDs and the
underlying VCIs, this approach uses VCIs in a manner
similar to that of user-visible endpoints.

We implemented the different mechanisms of expressing
logically parallel communication in the HYPRE library [54].
Figure 13 compares the performances of these different
mechanisms on 8 KNL nodes with 1 patch per core. Com-
municators perform better than the original (all threads use
the same communicator) version of MPI+threads but do
not perform the best because of conflicts on VCIs that are
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mapped to multiple communicators. Tags (with hints), on
the other hand, efficiently use VCIs and perform as well
as the upper bound set by user-visible endpoints. This
upper bound is faster than not only the original version
of MPI+threads, but also MPI everywhere. The latter is
due to the lack of intranode MPI communication which
results in over 70% lesser volume of MPI communication
in MPI+threads as we can see in Figure 14.

Using the best-performing mechanism of expressing log-
ical communication parallelism (e.g. tags with hints), we
evaluate the impact of dissolving HYPRE’s communication
bottleneck on Uintah’s overall performance [55]. Using 1
patch per core, we vary the domain size from 83 patches
(8 nodes) to 203 patches (125 nodes). Figure 15 shows
that MPI+threads with logically parallel communication
performs, on average, 2.23× faster than the original ver-
sion and 1.82× faster than MPI everywhere (when MPI
everywhere is able to run). Thus, exposing logically parallel
communication enables Uintah to achieve the best of both
worlds: high scalability and high productivity.

6.2 WOMBAT

In Section 3.2, we learned that the parallel issue of RMA
operations is a major bottleneck for the MPI+threads version
of WOMBAT. Since these parallel operations are indepen-
dent, one can eliminate the communication bottleneck by
explicitly exposing the communication independence to a
fast MPI+threads library.

User-visible endpoints. To expose logical parallelism
with user-visible endpoints, we create as many endpoints
as there are threads. Each thread uses a dedicated endpoint
to issue its RMA operations. In this way, we can expose
maximal communication independence between threads.

Windows. With existing MPI mechanisms, we can ex-
press communication parallelism by creating as many win-
dows as there are threads. Similar to user-visible endpoints,
each thread uses its own window to issue RMA operations.

We implemented the different mechanisms of exposing
communication independence on the publicly available ver-
sion of WOMBAT [56], and evaluated their performances
on 27 nodes of the HPC3 cluster (Skylake UCX/IB) with
a workload at the strong-scaling limit (1 patch per core).
Since the nodes consist of 2 sockets with 20 cores each,
we used a process per socket with 20 threads per pro-
cess for MPI+threads. We first studied the communication
performance differences of the different mechanisms of ex-
posing logical parallelism. Figure 16 shows that exposing
logical communication parallelism in MPI+threads reduces
the time spent in MPI communication by over 90%, whether
through user-visible endpoints or windows. Once the com-
munication bottleneck in MPI+threads is eliminated, the
communication time of MPI+threads is less than that in
MPI everywhere because of the lesser amount of intranode
MPI communication in MPI+threads. Figure 17 shows that
the number of MPI_Put operations in MPI+threads is 50%
lesser than that in MPI everywhere. Similarly, we measured
the MPI_Get operations to be 36.15% lesser in MPI+threads.

Figure 18 shows that the reduction in MPI time with
logically parallel communication boosts the overall sci-
entific throughput of MPI+threads, especially for smaller
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patch sizes. Where MPI everywhere is able to run, how-
ever, MPI+threads with exposed communication paral-
lelism is still slower. For example, for a patch size of
323, MPI+threads with logical communication parallelism
performs 13.09% faster than the original version, but per-
forms 7.21% slower than MPI everywhere. This analysis
indicates that other challenges posed by the MPI+threads
programming model remain to be addressed in WOMBAT.
Even though WOMBAT maintains a single OpenMP parallel
region, the current structure of the code requires bulk syn-
chronization between threads on a node at certain points
in the simulation. For example, when the patch size is
323, we measured the average time spent in executing and
waiting in OpenMP barriers to be 5.07% of the total time
per iteration. Removing the barriers is not a trivial task and
requires restructuring the code such that each thread can
operate asynchronously throughout the single OpenMP par-
allel region. Once the next iteration of WOMBAT addresses
the core issue of exposing logical communication paral-
lelism in addition to the other challenges of MPI+threads
programming, it can achieve a higher scientific throughput
than it currently does with MPI+threads while reaping the
scaling benefits that its MPI+threads version exhibits over
MPI everywhere [40].

6.3 Legion

In Section 3.3, we learned that the single polling thread that
processes incoming events from other nodes is the theo-
retical bottleneck in Legion’s communication performance.
Without exposed communication parallelism, the polling
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thread contends with the task threads even though their
operations are logically independent. The ideal situation
would be one where the polling thread is always available to
receive events from the task threads of remote nodes. We can
achieve this ideal by exposing the logical communication
parallelism to a fast MPI+threads library.

User-visible endpoints. With the flexible interface of
user-visible endpoints, we can fully expose communication
independence by using distinct endpoints for the polling
and task threads. Since each endpoint is directly address-
able, the task threads can issue their operations on distinct
local endpoints (e.g., based on their thread IDs) and target
the remote endpoint of the polling thread.

Communicators. On the other hand, as we learned in
Section 3.3, we cannot achieve the ideal exposure of logical
communication parallelism using the existing MPI standard
because of the matching semantics of communicators. The
communicator-based approach, however, is still better than
the original version. In addition to the operations from task
threads being independent, the likelihood of the polling
thread contending with a task thread is less with multiple
communicators. When all threads use MPI_COMM_WORLD,
the operations of the polling thread face contention if any
of the task threads are simultaneously issuing an operation.
With multiple communicators, however, the polling thread’s
contention during the processing of events on a communi-
cator is dependent only on a single task thread—the one
issuing operations on that communicator.

Tags with hints. To eliminate any possibility of con-
tention with the polling thread using existing MPI mech-
anisms, we can leverage the flexibility in Realm’s communi-
cation requirements and express communication parallelism
through tags. Even though the polling thread uses wildcards
to process an event from any node, the order of matching
does not matter. In other words, Realm does not rely on
MPI’s non-overtaking order. The draft MPI-4.0 standard
allows us to convey this information to the MPI library
through Info hints. With this information conveyed, we can
expose the communication parallelism between task threads
by encoding, for example, their thread IDs into the tags
of the MPI operations. More important, if we inform the
MPI library (through hints) that a single polling thread
issues only receive operations and that the task threads
issue only send operations, the MPI library can funnel all
receive operations through a dedicated VCI that is separate
from the multiple VCIs used for the send operations from
different task threads. The MPI library would ensure that
all send operations target the dedicated receiving VCI on
the the target node. In this way, we can achieve maximum
communication independence similarly to user-visible end-
points with existing MPI mechanisms.

We implemented the different mechanisms of expressing
communication parallelism in Legion’s MPI backend [57],
and evaluated the Circuit simulation application [41] on
Bebop’s Broadwell OFI/OPA cluster. Figure 19 shows the
time taken by the polling thread on the critical path to
process incoming events for the different mechanisms of
exposing communication parallelism. This time does not

†. All Legion processes spawn a polling thread and hence there is no
MPI everywhere version.
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include the time for polling; rather, it includes the time
taken after a successful poll (receiving the payload, execut-
ing the event handler, posting a replacement receive, etc.).
We observe that all mechanisms enable the polling thread
to process events faster than the original version, which
does not expose any communication independence. Among
the existing MPI mechanisms, however, tags outperform
communicators because, with tags, the polling thread does
not contend with any other thread. In this way, tags with
hints achieve the upper bound set by user-visible endpoints.
Although our evaluation is centered around the theoretical
bottleneck: a single polling thread, we note that exposing
logically parallel communication reduces the time taken by
the task threads to issue operations as well. The effects
of the different mechanisms on the task threads is similar
to those portrayed in Figure 19, that is, communicators
perform better than the original version but are not as good
as endpoints or tags with hints.

Figure 20 shows the overall performance of the Circuit
simulation with workloads run at the strong-scaling limit
(1 piece per node). Once we are able to expose all of the
available logical communication parallelism by funneling
the operations of Realm’s polling and task threads through
distinct communication channels, Figure 20 shows that we
can improve the Circuit simulation performance by 2.62×
on average. Not only does logically parallel communication
enable the single polling thread design to achieve the best
performance (by eliminating thread contention), but it also
enables the exploration of backend designs with multiple
polling threads. Without it, multiple polling threads would,
in fact, perform slower than a single polling thread because
of higher contention between threads. Exploring the benefits
of multiple polling threads warrants an independent study
that is specific to Legion since the exploration requires in-
trusive changes that also need to respect Legion’s semantics.
Such a study is out of the scope of this paper.
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7 DISCUSSION

A programming perspective. Our performance evaluations
on applications show that the hints in MPI-4.0 enable an ap-
plication to perform as well as the upper bound set by user-
visible endpoints. While setting these hints in applications
is trivial, aligning them with the behavior of the application
can be challenging. To enable fast multithreaded communi-
cation using hints, one needs to understand the MPI seman-
tics that an application relies on for correct behavior. The
consequence of setting hints that disable needed semantics
is erroneous application behavior. Thus, the user requires
expertise in both the application’s communication pattern
and the semantics of MPI communication. Aligning hints
to an application’s behavior is currently a manual process.
Recent research efforts, however, are attempting to automate
this process through, for example, a static analysis of the
program [58]. On the other end, user-visible endpoints have
their own programming challenges. In addition to learning
the new concept of endpoints, users need to use new APIs to
create endpoints. However, given that endpoints take on the
semantics of a rank, an object that users are already familiar
with, we find endpoints to be more intuitive to use than
hints especially for irregular communication patterns such
as that of Legion (see Section 6.3).

Comparison against new alternate threading mod-
els. The draft MPI-4.0 standard features a new type
of operation—Partitioned Communication—which allows
multiple actors (e.g., threads) to contribute distinct data
partitions of a single message in parallel [59], [60]. However,
since threads share a single message ( i.e., a single request),
only a single thread can complete a partitioned communica-
tion operation. In other words, although each thread can
issue its partition of a message as soon as the partition
is ready, all threads need to synchronize before issuing
their partition of the next message. In all the application
case studies in this paper, the threads operate completely
independently of each other. Partitioned communication
would expose more parallelism than the state of the art
(which exposes none), but, unlike existing MPI mechanisms
or endpoints, it cannot expose all of the communication
independence between threads. Because of this theoretical
limitation, we do not evaluate the partitioned communica-
tion model in our study. Solutions to overcome the inherent
synchronization of partitioned communication need to be
explored. A comparison between the mechanisms in this pa-
per and partitioned communication would make a worthy
future study once the implementation of the new interface
becomes available.

8 RELATED WORK

Since MPI libraries have only recently (starting in 2019) been
optimized to utilize network parallelism, the number of
MPI+threads applications that have worked on alleviating
their communication bottleneck is limited. We discuss how
recent efforts both by MPI libraries and by applications
compare to our work with respect to removing the decade-
long communication bottleneck in MPI+threads.

8.1 MPI Libraries
Initial efforts by MPI libraries to improve MPI+threads
communication performance focused primarily on mitigat-
ing lock contention [52], [53], [61]. Recent efforts, however,
address the root of the problem: underutilization of net-
work parallelism. Similar to VCIs in MPICH, Open MPI
introduces Communication Resource Instances (CRIs) to
establish parallel communication channels [22], [62]; and
Intel MPI, since its 2019 release, has utilized Intel Omni-
Path’s network parallelism through its multiple endpoints
support [23]. Both efforts, however, suffer from shortcom-
ings in both performance and correctness.

Open MPI’s CRIs, for instance, are not able to
achieve scaling communication performance for point-to-
point operations even with user-exposed logically paral-
lel communication. Furthermore, CRIs do not take into
consideration the notion of shared progress between
threads, hence sacrificing correctness. Intel MPI’s multiple-
endpoints support is for a nonstandard threading level—
MPI_THREAD_SPLIT—which does not cover all cases pos-
sible in the MPI_THREAD_MULTIPLE threading level. In
contrast to these works, our MPI implementation with VCIs
does not sacrifice correctness for performance and is able to
achieve scaling communication performance for both point-
to-point and RMA operations.

We do not compare against the capabilities of other
MPI libraries since our goal is not to show that we can
do better than they can; rather, our aim is to address the
communication bottleneck present in applications through
logically parallel communication. Comparing against other
MPI libraries is orthogonal to the goal of this work, but such
a comparison would make a worthwhile future study.

8.2 Application Case Studies
Electronic structure codes. The Vienna Ab initio Simulation
Package (VASP) is a legacy code that is widely used for
atomic-scale modeling during the development of new ma-
terials. Wende et al. [63] recently ported VASP’s MPI-only
codebase to MPI+OpenMP to run on the new and upcoming
many-core processor architectures. Noting the bottleneck in
the collective communication of their MPI+OpenMP ver-
sion, they expose logically parallel communication by par-
titioning the large allreduce collective between threads and
using a separate communicator per thread. With Intel MPI’s
multiple-endpoint support, they are able to achieve perfor-
mance up to 1.27× faster than a version of the code without
logical communication parallelism. Their work, however, is
restricted to semi-hybrid configurations since they observed
slower performance with fewer MPI ranks per node, pre-
venting electronic structure codes from achieving the max-
imum potential of MPI+threads. This observation indicates
that other bottlenecks, such as multiple parallel-for loops,
remain to be addressed in legacy electronic structure codes.

Miniapp study. Boyle et al. [64] studied the impact of
using Intel MPI’s multiple endpoint support on the com-
munication patterns of stencil (point-to-point operations in
the Grid library [65]) and machine learning codes (collec-
tive operation in the baidu-allreduce library [66]). For both
patterns, they demonstrated that a single MPI rank is able to
achieve high network utilization through the use of multiple
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communicators in multithreaded MPI communication. Like
our work, they focus on workloads at the strong-scaling
limit, but unlike our work, they do not compare against flat
MPI versions of the miniapps. More important, our work
focuses on the end-to-end runtime of applications rather
than miniapps.

9 CONCLUDING REMARKS

In this work, we eliminate the multithreaded communica-
tion performance bottleneck present today in MPI+threads
applications. We do so by exposing the communication
independence in an application’s multithreaded communi-
cation through logical communication parallelism. We leverage
the new opportunities of using existing MPI mechanisms
that will soon be available in MPI-4.0, the next iteration of
the MPI standard. The mechanisms of MPI-4.0 allow appli-
cations to expose communication independence as well as
user-visible endpoints, the upper bound in exposing log-
ically parallel communication. A communication-intensive
application realizes a significant boost (over 2×) in its
overall performance when a fast MPI+threads library maps
the application’s logically parallel communication to the un-
derlying network parallelism. We emphasize, however, that
the benefits of exposing logical communication parallelism
are most visible when the application has maximized the
independence between threads for both computation and
communication. We encourage domain experts to address
the other challenges of MPI+threads programming in their
codes so that their applications can achieve both higher
scalability and higher productivity over the traditional MPI
everywhere model through logical communication paral-
lelism.

ACKNOWLEDGMENTS

We thank Peter Mendygral from HPE Cray for his help
and guidance for our evaluation with WOMBAT. We grate-
fully acknowledge the computing resources provided on
Bebop, a high-performance computing cluster operated by
the Laboratory Computing Resource Center at Argonne
National Laboratory (ANL), on HPC3, a high-performance
community computing cluster operated by the Research
Cyberinfrastructure Center at the University of California,
Irvine, and by the Joint Laboratory for System Evaluation at
ANL. We thank the continuous feedback from the members
of the PMRS group at ANL, and we thank Gail Pieper
from ANL for her timely edits on this paper. This work is
supported by the U.S. Department of Energy, Office of Sci-
ence, under contract DE-AC02-06CH11357, and the National
Science Foundation under the award number 1750549.

REFERENCES

[1] “Fujitsu Processor A64X,” https://www.fujitsu.com/global/
products/computing/servers/supercomputer/a64fx/.

[2] “Intel and AMD face an Arm’ed onslaught from this 96-
core CPU monster,” https://www.techradar.com/news/
intel-and-amd-face-an-armed-onslaught-from-a-96-core-cpu-monster.

[3] R. Thakur, P. Balaji, D. Buntinas, D. Goodell, W. Gropp, T. Hoefler,
S. Kumar, E. Lusk, and J. L. Träff, “MPI at Exascale,” Proc. of
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