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Abstract. This paper proposes a novel method for the analysis of anatomical
shapes present in biomedical image data. Motivated by the natural organization of
population data into multiple groups, this paper presents a novel hierarchical gen-
erative statistical model on shapes. The proposed method represents shapes using
pointsets and defines a joint distribution on the population’s (i) shape variables
and (ii) object-boundary data. The proposed method solves for optimal (i) point
locations, (ii) correspondences, and (iii) model-parameter values as a single opti-
mization problem. The optimization uses expectation maximization relying on a
novel Markov-chain Monte-Carlo algorithm for sampling in Kendall shape space.
Results on clinical brain images demonstrate advantages over the state of the art.
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1 Introduction and Related Work

Shape analysis [6, 9] entails the inference of shape models from population data and as-
sociated statistical analyses, e.g., hypothesis testing for comparing groups. The natural
organization of biomedical data into groups, and possibly subgroups, calls for a hier-
archical modeling strategy. Previous works on hierarchical shape modeling typically
concern (i) multi-resolution models, e.g., a face model at fine-to-coarse resolutions, or
(ii) multi-part models, e.g., a car decomposed into body, tires, and trunk. In contrast,
the proposed framework deals with population data comprising multiple groups, e.g.,
the Alzheimer’s disease (AD) population comprising people with (i) dementia due to
AD, (ii) mild cognitive impairment due to AD, and (iii) preclinical AD.

Figure 1 outlines the proposed generative model, where (i) top-level variables cap-
ture the shape properties across the population (e.g., all individuals with and without
medical conditions), (ii) variables at a level below capture the shape distribution in dif-
ferent groups within the population (e.g., clinical cohorts based on gender or type of
disease within a spectrum disorder), and (iii) variables at the next lower level capture
individual shapes, which finally relate to (iv) individual image data at the lowest level.
Moreover, the top-level population variables provide a common reference frame for the
group shape models, which is necessary to enable comparison between the groups.

This paper makes several contributions. (I) It proposes a novel hierarchical gener-
ative model for population shape data. It represents a shape as an equivalence class of
pointsets modulo translation, rotation, and isotropic scaling [6]. This model tightly cou-
ples each individual’s shape (unknown) to the observed image data by designing their
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joint probability density function (PDF) using current distance or kernel distance [8,
17]. The current distance makes the logarithm of the joint PDF a nonlinear function of
the point locations. Subsequently, the proposed method solves a single unified model-
fitting optimization problem to estimate optimal point locations, correspondences, and
parameter values. (II) The proposed model fitting relies on expectation maximization
(EM), treating the individual-shape and group-shape variables as hidden random vari-
ables, thereby integrating them out while estimating parameters (e.g., the population
shape mean and covariance). In this way, the proposed EM algorithm improves over
typical methods that use mode approximation for shape variables. (III) The EM algo-
rithm entails evaluating an expectation over the posterior PDF of the shape variables.
For instance, the posterior PDF for individual-shape variables involves the (i) likelihood
PDF designed using the current distance and (ii) prior PDF conditioned on the group
shape model. To compute the expectation, the proposed EM algorithm relies on a novel
adaptation of Hamiltonian Monte Carlo (HMC) [5] sampling in Kendall shape space.
(IV) The results show that the hierarchical model leads to more compact model fits and
improved detection of subtle shape variations between groups.

Early approaches [2, 6] to statistical shape modeling rely on manually defined ho-
mologous landmarks. Later approaches optimize point positions or correspondences
using statistical compactness criteria such as the (i) logarithm of the determinant of the
model covariance matrix [10], (ii) minimum description length [4, 16], or (iii) minimum
entropy [1]. However, these approaches (i) do not incorporate a generative statistical
model, (ii) introduce adhoc terms in the objective function to obtain correspondences,
and (iii) do not estimate shape-model parameters within the aforementioned optimiza-
tion. Some generative models for shape analysis do exist [3, 7, 12, 14], but these models
rely on a pre-determined template shape with manually placed landmarks.

2 Hierarchical Bayesian Shape Model

We first describe the proposed hierarchical model for multigroup shape data (Figure 1).
Data: Consider a group of I vector random variablesX := {Xi}Ii=1, whereXi is a

vector random variable denoting a given set of points on the boundary of an anatomical
structure in the i-th individual’s image data. That is,Xi := {Xi(n)}Ni

n=1 whereXi(n) ∈
RD is theD-dimensional spatial coordinate of the n-th point in the pointset. Such points
can be obtained from a given segmentation or delineation of the anatomical structure.
In this paper, D = 3. In any individual’s image data, the number of boundary points
Ni can be arbitrary. Similarly, consider other groups of data, e.g., data Y := {Yj}Jj=1

derived from a group of J individuals, data {Zk}Kk=1, etc.
Individual Shape Variables: For the first group (corresponding to data X), con-

sider a group of I hidden random variables U := {Ui}Ii=1, where Ui is a vector random
variable representing the shape of the anatomical structure of the i-th individual. That
is, Ui := {Ui(t)}Tt=1 where Ui(t) ∈ RD is the D-dimensional coordinate of the t-th
point in the shape representation of the i-th individual’s structure. We assume the ob-
servationsXi to be derived from the individual shape Ui. Similarly, we consider hidden
random variables, i.e., V , W , etc., representing shapes for the other groups. To enable
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Fig. 1. Proposed Hierarchical Generative Statistical Model for Multigroup Shape Data.

intra-group and inter-group statistical analysis, we ensure that all shape models lie in
the same space by enforcing the same number of points T in all shape models.

Group Shape Variables: Consider the first group of shapes U to be derived from
a shape PDF having a mean shape M1 and a shape covariance C1. Consider other
groups of shapes modeled analogously, i.e., V derived from a group with shape mean
and covariance (M2, C2), W derived from a group with shape mean and covariance
(Mn, Cn), etc. This paper treats the group means, i.e., M1, M2,· · · ,Mn, as hidden ran-
dom variables and the group covariances, i.e., C1, C2,· · · ,Cn, as parameters. The pro-
posed method can be generalized to treat the group covariances as random variables.

Population Shape Variables: Consider all group shape means, i.e.,M1,M2,· · · ,Mn,
to be derived from a single population of shapes with meanM and covarianceC. In this
paper, without loss of generality, we only consider two groups (n = 2) for simplicity.

Joint PDF: We model the joint PDF with (i) parameters M,C,C1, C2, (ii) group
shape variables M1,M2, (iii) individual shape variables U, V , and (iv) data X,Y as:

P (M1,M2, U, V,X, Y |M,C,C1, C2) := (1)

P (M1|M,C)P (M2|M,C)ΠI
i=1P (Ui|M1, C1)P (Xi|Ui)ΠJ

j=1P (Vj |M2, C2)P (Yj |Vj).

PDF of Individual Data given Individual Shape: We model P (Xi|Ui), P (Yj |Vj)
using current distance. Between pointsetsA := {ai}Ii=1 andB := {bj}Jj=1, the squared
current distance is d2K(A,B) :=

∑I
i=1

∑I
i′=1K(ai, ai′) +

∑J
j=1

∑J
j′=1K(bj , bj′)−

2
∑I
i=1

∑J
j=1K(ai, bj), where K(·, ·) is a Mercer kernel. In this paper, K(·, ·) is the

Gaussian kernel with isotropic covariance σ2ID. We use the current distance to define
P (Xi|Ui) := (1/γ) exp

(
−d2K(Xi, Ui)

)
, over finite support, where γ is the normal-

ization constant. The current-distance model allows the number of points in the shape
models Ui to be different from the number of boundary points in the data Xi.

Group Shape PDF: We model P (Ui|M1, C1) as Gaussian with mean M1 and
covariance C1 and P (Vj |M2, C2) as Gaussian with mean M2 and covariance C2.

PDF of Group Variables given Population Parameters: We model P (M1|M,C)
and P (M2|M,C) as Gaussian with meanM and covarianceC; we choose the Gaussian
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(i) to be maximally non-committal during model design and (ii) as the conjugate prior
for the Gaussian means M1,M2. Under the Gaussian model, strange-looking shapes
can be avoided by preventing over-regularization of the covariance estimate and pre-
venting very large deviations from the mean (which are rare events under the Gaussian).
More importantly, the hierarchical model alleviates this issue by producing covariance
estimates that are more compact and restrict variation over fewer modes (see Figure 3).

3 Fitting the Shape Model to Data using Monte-Carlo EM

This section presents the EM algorithm for the model-fitting optimization problem. The
parameters in our model are: (i) the population mean M and covariance C and (ii) the
group covariances C1, C2. Denoting θ := {M,C,C1, C2}, the optimal model fit is:

argmax
θ
P (x, y|θ) = argmax

θ

∫
P (u, v,m1,m2, x, y|θ)dudvdm1dm2. (2)

3.1 E Step: Sampling in Shape Space by Adapting the Hamiltonian Monte Carlo

In the i-th iteration, with parameter estimate θ̂i, the E step constructs the Q function as

Q(θ|θ̂i) := EP (U,V,M1,M2|x,y,θ̂i) logP (U, V,M1,M2, x, y|θ). (3)

Because of the analytical intractability of this expectation, we approximate Q(θ|θ̂i) .
=

Q̂(θ|θ̂i) :=
∑S
s=1(1/S) logP (u

s, vs,ms
1,m

s
2, x, y|θ) using Monte-Carlo simulation.

To sample the set of individual shapes us, vs and the group-mean shapes ms
1,m

s
2 from

P (U, V,M1,M2|x, y, θ̂i), we propose Gibbs sampling coupled with a novel adaptation
of the HMC sampler [5]. Before describing the adapted HMC sampler, we outline the
proposed shape-sampling algorithm for generating a sample of size S:

1. Set the sample index variable s to 0. Initialize the sampling algorithm with the sam-
ple point s = 0 denoted by u0 := {u0i }Ii=1, v

0 := {v0j }Jj=1,m
0
1,m

0
2.

Given sample point s, sample the (s+ 1)-th sample point as follows.
2. Initialized with usi , ∀i sample us+1

i ∼ P (Ui|vs,ms
1,m

s
2, x, y, θ̂

i).
3. Initialized with vsj , ∀j sample vs+1

j ∼ P (Vj |us+1,ms
1,m

s
2, x, y, θ̂

i).

4. Initialized with ms
1, sample ms+1

1 ∼ P (M1|us+1, vs+1,ms
2, x, y, θ̂

i).
5. Initialized with ms

2, sample ms+1
2 ∼ P (M2|us+1, vs+1,ms+1

1 , x, y, θ̂i).
6. If s+ 1 = S, then stop; otherwise increment s by 1 and repeat the previous 4 steps.

We ensure the independence of samples between Gibbs iteration s and the next s + 1,
by running the HMC algorithm sufficiently long and discarding the first few samples s.

HMC is a Markov-chain Monte-Carlo sampling algorithm. HMC exploits the gradi-
ent of the log PDF for fast exploration of the space of the random variables. The HMC
approach first augments the original random variables with auxiliary momentum vari-
ables, then defines a Hamiltonian function combining the original and auxiliary vari-
ables, and, subsequently, alternates between simple updates for the auxiliary variables
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Fig. 2. Gradient Projection within HMC for Sampling in Shape Space. Left: shows
Kendall’s pre-shape space [9] (dotted hypersphere) that is the intersection of the (bold) hyper-
sphere of fixed radius ρ (i.e.,

∑
t‖ui(t)‖2 = ρ2; fixes scale) and the hyperplane through the

origin (i.e.,
∑

t ui(t) = 0; fixes translation). For a pointset ui, log-posterior gradients r1 are pro-
jected onto the hyperplane to produce r2 that eliminates translation. Right: To remove changes
in scale, the resulting projection r2 is then projected onto the tangent space at ui, tangent to the
pre-shape space, and the resulting tangent-space projection r3 is mapped to the pre-shape space
via the manifold exponential map to give r4. The text describes the last part of the projection.

and Metropolis updates for the original variables. HMC proposes new states by com-
puting a trajectory according to the Hamiltonian dynamics implemented with a leapfrog
method and guarantees the new proposal states to be accepted with high probability. In
our case, HMC requires gradients of logP (U, V,M1,M2|x, y, θ̂i) with respect to the
hidden variables {Ui}Ii=1, {Vj}Jj=1,M1,M2.

Using HMC naively leads to pointset updates that can change the location, scale,
and pose of the pointset, thereby making the sampler very inefficient. For this problem,
we propose to modify HMC by replacing the gradient of the log posterior by a projected
gradient that restricts the updated shape to Kendall shape space. As shown in Figure 2,
starting with pointset ui, the log-posterior gradient r1 is first projected onto the preshape
space to produce r4 that has the same centroid and scale as ui. Then, to remove rotation
effects, the resulting pre-shape r4 is rotationally aligned with the ui, yielding r5 (not
shown in figure). These steps project the log-posterior gradient at ui, within HMC, to
generate an updated shape r5 as part of the trajectory within HMC.

3.2 M Step: Parameter Estimation

In iteration i of the EM optimization, the M step maximizes Q̂(θ|θ̂i) over θ and sets
θ̂i+1 ← argmaxθ

∑S
s=1 logP (u

s, vs,ms
1,m

s
2, x, y|θ). Equating the gradient of this

objective function to zero gives closed-form optimal estimates for all parameters.

4 Group Comparison using Permutation Testing

After the model is fit to the data, we can perform hypothesis testing to compare any pair
of groups; the null hypothesis is that the two groups of data were drawn from the same



6 Yen-Yun Yu, P. Thomas Fletcher, and Suyash P. Awate

PDF. Since the shape PDF in each group is modeled using Mahalanobis distances based
on means M1,M2 and covariances C1, C2, we use Hotelling’s two-sample T 2 statistic
to measure dissimilarity between any pair of groups. However, in 3D medical image
data, the dimensionality TD can be very high compared to the number of individuals.
Low sample sizes can render the F-distribution unusable. Simulating shapes with sam-
ple sizes higher than the dimensionality TD can be computationally expensive. Thus,
we propose to employ distribution-free hypothesis testing, namely, permutation testing,
using Hotelling’s T 2 as the test statistic. Permutation testing is conservative in reject-
ing the null hypothesis and enhances robustness to specific modeling choices, e.g., the
cardinality of the shape-model pointsets and internal model free parameters.

5 Results and Discussion

This section shows results on simulated and real data. We assume the input images,
undergoing shape analysis, to be binary or soft masks, having intensities in the range
[−1, 1], that segment the image into the object of interest and the background. For
hypothesis testing, it is less interesting to compare the performances of methods when
the two groups are (i) exactly similar or (ii) differ extremely. The real challenge is in
being able to reject the null hypothesis when the two groups differ in subtle ways.

For the proposed hierarchical model, we initialize the pointsets that model shape as
follows. First, we solve a groupwise registration problem on the mask images, using a
similarity transform, to (i) register the images, representing shape, to a common space
and (ii) find an average (mask) image in that space. We assume the data to be the set of
voxels on the zero crossing of the mask images warped to the common space. Then, we
(i) threshold the average mask to get an object boundary, (ii) embed it as the zero level
set of a signed distance-transform image, and (iii) generate a 3D triangular mesh for the
zero level set using [13]. Finally, we use this mesh-vertex pointset as the initial value for
M , m0

1, m0
2, {u0i }Ii=1, and {v0j }Jj=1. We set C,C1, C2 to (scaled) identity. We set the σ

for the Gaussian kernel, underlying the current distance, to be the average edge length
in the mesh. With this initialization, we compare the proposed method with a state-of-
the-art algorithm [1], implemented in the open-source software ShapeWorks [15].

5.1 Validation on Simulated 3D Shapes

We simulate 2 groups of ellipsoidal shapes (ellipsoids in canonical form; 20 pointsets
per group), where the groups are subtly different from each other. Two of the axes have
length 1. The lengths of the third axis for the (i) 1st group are drawn from a Gaussian
with mean 0.9 and variance 0.01 and (ii) 2nd group are drawn from a Gaussian with
mean 1.1 and variance 0.01. The pointsets are then rescaled to constant norm.

The proposed method as well as ShapeWorks (i) both employ T = 64 points per
pointset for shape modeling and (ii) both take as input equivalent information, i.e., while
ShapeWorks takes as input a signed-distance-transform image (Figure 3) representing
the ellipsoids implicitly, the proposed method takes as input the corresponding zero-
crossing image. With T = 64, the average distance between a point and its nearest
neighbor, in the shape pointset, is around 10 voxels. For both methods, the covariance
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Fig. 3. Results. Top Row: Ellipsoidal Shapes in Simulated Data. Bottom Row: Hippocampal
Shapes in Clinical Brain MR images. Left to Right: Distance transform image data (2D slice);
Eigenspectra of the population covariance C and the group covariances C1, C2; Permutation
distribution of Hotelling’s T 2 test statistic for ShapeWorks (green) and the proposed method
(blue); the red circle shows the value of the test statistic for the unpermuted group labeling.

estimates are regularized by addition of a scaled identity matrix δI , where δ is a free
parameter; the experiments explore the robustness of both approaches to changes in δ.

Figure 3 (Top Row) shows the results from the proposed method compared to
ShapeWorks, for the regularization parameter δ set to 10−4. The proposed method leads
to a fitted model that has smaller variances, at the group level as well as the population
level. This indicates that the proposed method leads to a model that is more compact
and fits the data better; this stems from improvements in optimal point placement and
estimation of correspondences/parametrization. For the permutation distribution of the
Hotelling’s T 2 statistic, the p value for ShapeWorks is 0.05 and that for the proposed
method is 0.001. Varying δ over 10−3, 10−4, · · · , 10−10, we find that the p value for the
proposed method stays at 0.001, but the p value of ShapeWorks varies and is never lower
than 0.05. These results were unchanged when value of the current-distance parameter
σ was multiplied by factors ∈ [0.5, 2]. This indicates that, compared to ShapeWorks,
the proposed method was more robust to changes in δ and consistently produces a p
value that tends to (correctly) reject the null hypothesis significantly more strongly.

5.2 Results on Clinical Brain MR Images: Hippocampal Shapes in Dementia

This section employs clinical brain magnetic resonance (MR) images from the OA-
SIS [11] dataset. We use 10 randomly selected OASIS brains that uniformly sample
the age span, including 4 cases with very-mild to mild Alzheimer’s dementia and 6
controls, having hippocampus segmentations manually performed by a radiologist.

The proposed method and ShapeWorks, both, employ T = 128 points per pointset;
the average distance between a point and its nearest neighbor is around 5 voxels. Fig-
ure 3 (Bottom Row) shows the results using δ = 10−4. These results were unchanged
when value of the current-distance parameter σ was multiplied by factors ∈ [0.5, 2]. The
proposed method leads to a fitted model that has smaller variances, indicating a compact
better-fitting model. The p value for ShapeWorks is 0.07. The p value for the proposed
method is 0.03 that indicates a relatively stronger rejection of the null hypothesis.

Discussion: The results show that the proposed hierarchical model and unified-
optimization approach leads to compact-fitting shape models that can differentiate sub-
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tle variations in hippocampal shapes (open-access data) better than the state of the art
(open-source software). The main originality in the paper is in being able to solve the
three problems of point placement, correspondence, and model-parameter estimation
(given data from one or more groups) as a single optimization problem. Another key
originality is in being able to sample in Kendall shape space, using a novel adaptation
of HMC sampling using restricted gradients. The proposed framework can benefit from
more accurate and efficient schemes for modeling and estimation.
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