
A Preliminary Port and Evaluation of the Uintah
AMT Runtime on Sunway TaihuLight

Zhang Yang
Institute of Applied Physics and Computational Mathematics

Email: yang zhang@iapcm.ac.cn

Alan Humphrey
Scientific Computing and Imaging Institute

Email: ahumphrey@sci.utah.edu

Damodar Sahasrabudhe
Scientific Computing and Imaging Institute

Email: damodars@sci.utah.edu

Martin Berzins
Scientific Computing and Imaging Institute

Email: mb@sci.utah.edu

Abstract—The Sunway TaihuLight is the world’s fastest su-
percomputer at the present time with a low power consumption
per flop and a unique set of architectural features. Applications
performance depends heavily on being able to adapt codes
to make best use of these features. Porting large codes to
novel architectures such as Sunway is both time-consuming
and expensive, as modifications throughout the code may be
needed. One alternative to conventional porting is to consider
an approach based upon Asynchronous Many Task (AMT)
Runtimes such as the Uintah framework considered here. Uintah
structures the problem as a series of tasks that are executed
by the runtime via a task scheduler. The central challenge in
porting a large AMT runtime like Uintah is thus to consider
how to devise an appropriate scheduler and how to write tasks
to take advantage of a particular architecture. It will be shown
how an asynchronous Sunway-specific scheduler, based upon
MPI and athreads, may be written and how individual task-
code for a typical but model structured-grid fluid-flow problem
needs to be refactored. Preliminary experiments show that it is
possible to obtain a strong-scaling efficiency ranging from 31.7%
to 96.1% for different problem sizes with full optimizations.
The asynchronous scheduler developed here improves the overall
performance over a synchronous alternative by at most 22.8%,
and the fluid-flow simulation reaches 1.17% the theoretical peak
of the running nodes. Conclusions are drawn for the porting of
full-scale Uintah applications.

Index Terms—Asynchronous Many Task Runtime, Asyn-
chronous Scheduler, Uintah, Sunway TaihuLight, Strong Scal-
ability, Performance Evaluation

I. INTRODUCTION

Progress towards Exascale computing is facing the chal-

lenge of needing to obtain performance while keeping power

budgets at an economically feasible level. This has driven the

latest generation of supercomputers to embrace low frequency

many core architectures. Examples of this are current machines

based upon GPUs, Intel Knights Landing, and a number of

novel architectures such as that of Sunway TaihuLight [1], the

current No. 1 in the top 500 list. A central challenge is then

how to port software to a wide variety of such machines and

to their successors at exascale.

For example the 100PF Sunway TaihuLight features a

special architecture consisting of 41K nodes with SW26010

processors, where each processor contains four Core-Groups

(CGs). Each CG is made up of one Management Process-

ing Element (MPE) and 64 Computing Processing Elements

(CPEs) sharing the same main memory as is described below.

Each CPE is equipped with a small user-controlled scratch pad

memory instead of data caches. This architecture has made

it possible to run many real-word applications at substantial

fractions of peak performance, such as the three applications

selected as Gordon Bell finalists in SC16 [2]–[4]. However,

these performance levels were obtained through extensive and

intensive tuning of the code at a level that may not be possible

or affordable for general application codes.

One way to partition the porting is to consider using an

Asynchronous Many Task (AMT) runtime system such as

Uintah [5], Charm++ [6], StarPU [7] or Legion [8], for

example, as this may make it possible to consider modifying

the runtime task mapping system and the tasks themselves

independently. To the best of the authors knowledge, none of

these runtime systems has been adapted to take advantage of

the Sunway TaihuLight architecture at the present time. Given

the use of Uintah on many other top ten systems, this code

will be considered here.

After describing the Uintah software, the model problem

and the Sunway Architecture, in Sections II, III, and IV, the

contributions of this paper in Sections V, VI , and VII are to:

1) Develop an asynchronous scheduler based on MPI

and athread to take advantage of the shared memory

MPE+CPE architecture of Sunway TaihuLight;

2) Port a typical but model fluid-flow simulation to Sunway

TaihuLight with the asynchronous scheduler;

3) Show how many FLOPs a preliminary scheduler is able to

extract for the model problem on the Sunway TaihuLight.

The main motivation of this work was to understand how

to port an asynchronous many task runtime system framework

like Uintah to Sunway and to understand how a model

application can take advantage of the architectural features

of SW26010 with such a system.

II. THE UINTAH FRAMEWORK

Uintah [5], [9] is an open-source software framework that

can be used to solve partial differential equations (PDE) on

1006

2018 IEEE International Parallel and Distributed Processing Symposium Workshops

978-1-5386-5555-9/18/$31.00 ©2018 IEEE
DOI 10.1109/IPDPSW.2018.00155

Fig. 1: Patches and user tasks in Uintah

Fig. 2: Architecture of an Uintah scheduler [5]

adaptively refined structured meshes, which in turn can be used

for problem solving and simulations in multiple application

domains. The Uintah infrastructure is an asynchronous many

task runtime system built on top of a patch-centric dis-

cretization of structured meshes. Beside predefined simulation

components, the Uintah infrastructure provides users APIs to

describe their problems as a collection of dependent coarse

tasks, to create variables and associate them with the tasks,

and to add these tasks into the system. Under the hood, Uintah

builds a distributed task graph and uses a scheduler to run

them in an out of order manner on available resources, as

depicted in Figure 2. In this way, Uintah keeps users insulated

from all of parallel executing details and so allows users to

focus on solving the problem at hand. This decoupling allows

independent and parallel development of infrastructure and

user applications.

Uintah’s task definition and creation are illustrated in Figure

1. As an adaptive mesh refinement (AMR) framework, Uintah

subdivides the computational grid into patches, and assigns

groups of patches to distributed memory computing nodes.

When a task needs values from neighboring patches, a depen-

dency on neighboring patches is created, and MPI messages

are used to transfer the required values. To build the distributed

task graph, the user provided coarse tasks that are mapped to

these patches, where each combination of a task with a patch

defines a task object. The dependencies between task objects

are defined by both the coarse-task dependency specified by

the user and the neighbor-value dependency among patches.

The task graph is naturally distributed since each computing

node builds its portion on its own group of patches. More

details on the task definition and task graph compiling can be

found in [10].

Uintah has built-in support for time-stepping applications.

The task graph defined above is built at the first timestep,

and remains unchanged until the mesh patch partition needs

to be changed, due to load imbalances or adaptively mesh

refinements. The “data warehouse” concept is introduced to

distinguish data in different timesteps. The fundamental mech-

anism is that the old data warehouse holds the data calculated

in the previous timestep. The coarse task takes what it needs

from the old data warehouse and produces results that then

populate the new data warehouse in current timestep. After

the timestep is completed, the new datawarehouse becomes

the old datawarehouse for the next timestep.

Parallel execution is controlled inside the Uintah framework

through a task scheduler. As depicted in Figure 2, the scheduler

takes the local portion of the task graph as its input, executes

the tasks in ordered or possibly out of order fashion while pre-

serving task dependencies, and issues MPI sends and receives

through the data warehouse to drive the progress of dependent

tasks on remote computing nodes. As long as the scheduler

is properly designed and given enough resources, task com-

putations and communication through the data warehouse can

happen concurrently, thus communications and computations

are naturally overlapped. This can effectively improve the

scalability, and has allowed Uintah to scale up to 768K cores

and 16384 GPUs [11]–[13].

The most efficient scheduler in Uintah that is able to overlap

communications with computations is the “Unified Scheduler”.

The Unified Scheduler is built upon a MPI+thread model,

where only one MPI process is started on each computing

node, and multiple threads are started in the process to

make use of multiple CPU cores. Each thread controls a

CPU core and executes serially a task fed by the scheduler.

Unified scheduler uses atomic variables and lock free pools to

fetch tasks and to handle communications, and the lock free

implementation reduces synchronization time. The most recent

Unified Scheduler allows tasks to be fed to both GPUs and

CPUs.

Challenges arising from the Sunway architecture: The Uni-

fied Scheduler requires multiple threads running on different

CPU cores to effectively overlap communications and compu-

1007

tations. However, the Sunway’s SW26010 processor has only

one MPE on each CG, which would limit the scheduler to one

thread. Thus the Unified Scheduler is not able to effectively

overlap communications with computations without a new

design.

III. A MODEL FLUID-FLOW PROBLEM

While it would be possible to port one of the Uintah

application codes mentioned above, in order validate the effort

porting the Uintah infrastructure and to quickly understand

how to write task codes for the Sunway architecture, a

3D time-dependent model problem was constructed. The 3D

model Burgers equation used here is equivalent to many

of the equations in the Uintah applications in terms of its

computational structure and reflects the types of PDEs in many

different applications in areas such as fluid mechanics, molec-

ular acoustics, gas dynamics, and traffic flow. The equation is

given by

∂u

∂t
= −φ(x, t)∂u

∂x
− φ(y, t)

∂u

∂y
− φ(z, t)

∂u

∂z
+ νΔu) (1)

The initial and boundary conditions are give by:

u(x, y, z, t) = φ(x, t)φ(y, t)φ(z, t)

and φ(x, t) is the solution of a 1D Burgers equation given by:

φ(x, t) = 0.1ea+0.5eb+ec

ea+eb+ec
, with a = (−0.05 ∗ (x− 0.5+ 4.95 ∗

t)/ν, b = −0.25(x− 0.5+0.75t)/ν, c = −0.5(x− 0.375)/ν,

and ν = 0.01 is the viscosity of the medium. Dividing the

numerator and denominator of the expression for φ(. . .) by the

largest value of ea, eb, ec reduces the number of exponentials

needed by one.

The problem is discretized within Uintah by using finite

differences on a three dimensional regular grid. The first

order derivatives are discretized using backward differences

and the second order derivatives are discretized using second

order central differences. The forward Euler method is used

to discretize the equation in time. The solution u values are

situated at the centroid of a cell. Given a timestep size dt
and the discretized form of the right side of equation 1 being

denoted by du, the solution is incremented using:

utn+1
= utn + dtdu

where dt is chosen to ensure stability for the forward Euler

time integration. The exact solution of the Burgers equation

u(x, y, z, t) for t = 0 is used to calculate the initial condition.

The main kernel for solving Equation 1 using the above

methods is presented in Algorithm 1. To calculate on a patch,

the kernel requires exactly one extra layer of ghost cells.

A. Performance characteristics

The model problem was so designed that it resembles

typical Uintah applications while remains simple enough

for experimenting performance optimization techniques. The

Burgers kernel combines a low-order stencil structure with

complex coefficient evaluations, which is typical in scientific

and engineering applications. The exponentials and branching

Algorithm 1 Pseudo code for the Burgers kernel

1: for every cell (i, j, k) in current patch do
2: u dudx = φ(i ∗ dx, dt) ∗ (ui−1,j,k − ui,j,k)/dx
3: u dudy = φ(j ∗ dy, dt) ∗ (ui,j−1,k − ui,j,k)/dy;

4: u dudz = φ(k ∗ dz, dt) ∗ (ui,j,k−1 − ui,j,k)/dz;

5: d2udx2 = (−2 ∗ ui,j,k + ui−1,j,k + ui+1,j,k)/(dx
2);

6: d2udy2 = (−2 ∗ ui,j,k + ui,j−1,k + ui,j+1,k)/(dy
2);

7: d2udz2 = (−2 ∗ ui,j,k + ui,j,k−1 + ui,j,k+1)/(dz
2);

8: du = −((u dudx+u dudy+u dudz)+ν∗(d2udx2+
d2udy2 + d2udz2));

9: unew
i,j,k = ui,j,k + dt ∗ du;

10: end for

logic in the φ(. . .) calls in the kernel exclude performance-

oriented choices making extensive use of the regular stencil

structure, while the low order of the stencil prevents excessive

data reuse optimizations. This complexity reflects that of

some of the stencils of real applications in Uintah. With

the presence of exponentials, it is not possible to count

directly the floating point operations of the kernel. Instead,

an experiment was carried out to evaluate the floating point

operations (FLOPs) per cell with varying problem sizes by

counting them directly using precise hardware counters on

SW26010. Table I indicates the FLOPs per cell of the model

problem is around 311, 215 of which is contributed by the

exponentials. Given the 16 byte memory access required per

cell as indicated by Algorithm 1, the arithmetic intensity of the

kernel is approximately 19.4 Flop/Byte, and is still memory-

bounded compared to that of the SW26010 processor.

TABLE I: FLOP per cell for the model problem

Problem Size Total Cells Total FLOPs FLOPs per Cell
16x16x512 17339400 5179553014 299
16x32x512 34412040 10399936968 302
32x32x512 68294664 20881857690 306
32x64x512 136059912 41845438269 308
64x64x512 271065096 83854642144 309

64x128x512 541075464 167873049894 310
128x128x512 1080045576 336073950828 311

IV. ARCHITECTURAL FEATURES OF SUNWAY TAIHULIGHT

Sunway TaihuLight is currently the world’s fastest super-

computer [14], with a theoretical peak performance at 125.4

Pflop/s and HPL benchmark performance at 93 Pflop/s. Like

other supercomputers nowadays, Sunway employs an MPP

(Massively Parallel Processing) architecture. The system is

composed of 40,960 SW26010 processors connected with a

proprietary high speed network. Here architectural features

relevant to this work are described. Some important system

parameters of Sunway are summarized in Table II and more

details can be found in [1], [15].

A. Architectural features of the SW26010 processor

As shown in Figure 3, the SW26010 processor is composed

of four identical core-groups (the CGs) connected by an

on-chip interconnect network. Each CG is a heterogeneous

1008

Fig. 3: Sunway SW26010 architecture [1]

Item Description

Node architecture 1 SW26010 processor
Node cores 4 MPEs + 256 CPEs, 260 cores

Node memory 32GB, 4*128bit DDR3-2133
Node Performance 3.06 Tflop/s

Interconnect Bandwidth Bidirectional P2P 16 GB/s
Interconnect Latency around 1 μs

TABLE II: Major system parameters of Sunway TaihuLight

computing unit consisting of one 128bit-wide DDR3-2133

memory controller (the MC), one Management Processing

Element (the MPE), and a cluster of 64 Computing Processing

Units (the CPEs). The usual and recommended practice is to

use these CGs as separate computing nodes, thus ‘CG’ and

‘computing node’ are used interchangeably in this paper.

The most significant architectural feature of SW26010 is the

“shared-memory MPE+CPE heterogeneous architecture”. The

MPE and CPEs share the same memory space connected to

the memory controller, thus they can communicate directly via

the main memory. This enables light-weight kernel offloading

to the CPEs. Although with different ISAs, the MPE and

CPEs are based on a RISC architecture, 64 bit, SIMD, and

out-of-order microarchitecture, so both can run the user’s

application. Performance of the MPE is 23.2 Gflop/s, and

that is 742.4 Gflop/s for the cluster of CPEs. Since the MPE

only contributes 3% of the aggregated performance, little is

sacrificed if the MPE is excluded from intensive floating

point computing. This architecture is suitable for asynchronous

many task runtimes since overlapping communications (as

well as other runtime-related tasks) and computations with a

low-overhead offloading interface is possible. SW26010 also

provides instructions for CPEs to atomically increase a 4 or

8 byte location in the main memory, which helps the MPE to

monitor the progress of the CPEs with little overhead.

Another interesting feature of the SW26010 is the introduc-

tion of user-controlled scratch pad memory. While the MPE is

equipped with 32KB/256KB hardware-controlled L1/L2 data

cache, the CPEs are cacheless. Instead, an on-chip 64KB

scratch pad memory, dubbed as “Local Data Memory” (the

LDM), is attached to each CPE. The CPE can use both the

main memory and the LDM in computing, but the LDM

enjoys a much higher bandwidth and much lower latency. In

order to get the best performance, the application has to move

data explicitly between the LDM and the main memory and

use only the LDM as working memory. To assist the move,

SW26010 provides DMA mechanisms which can move data

between the LDM and the main memory asynchronously.

Manually overlapping communications with computations,

together with explicitly managing the transfer between the

LDM and the main memory, requires significant coding effort

for general applications, and even more effort is required

to make good use of these features. The expense of this

motivates us to explore alternative porting options based on

asynchronous many task runtimes such as Uintah.

B. The MPI+athread programming interface

Sunway supports MPI for inter-node communications. On

a single computing node, OpenACC is supported to allow the

offload of computations to the cluster of CPEs (see [16]).

However, the Sunway OpenACC interface does not expose

all the features of SW26010 and the current implementa-

tion does not support OpenACC runtime functions such as

acc_async_test. For this reason a more low-level atheads

interface is used here.

The use of athreads provides a low-level offloading interface

for the cluster of CPEs. Conceptually, an athread is a light-

weight thread binding to one CPE. The athread library pro-

vides mechanisms for the MPE to create a group of athreads

running a given function. APIs are provided for the offloaded

function to transfer data asynchronously between the LDM

and the main memory through DMA operations, as well as to

manage the environment on CPEs. athread provides enough

freedom for the runtime system to take full control over the

data transfer, the execution, and the scheduling.

V. ADAPTING UINTAH TO SUNWAY TAIHULIGHT

This section describes how Uintah was adapted to Sun-

way TaihuLight. After describing how Uintah was ported,

1009

�������	
��
	������
���
������ �
����� �������

���
����
�
��
� ��
� ���
����� ����� ��
 ��
��
�

����
 ������
��� ����

���
	�� ! ���" ���	�����
�����	
��
�

�������
������
��
�����"��

#��
 ���
�� �����
��� ���"�
� ��������
���������
���

$%���
� �
��� �����

��
�& �����
����
����� �����
���'

��$

(�%

��� �
��

(�
���

��)����

�� 	*��"�

+

������
��� ����

����	��
��	���	
��
�	������
��

,������	
�	
��$�

����� ������
��� ����

����
���
��
�
� ���

-����
�����
��
���

)
���
��� ��
�

� ������

���
�
��� ���
������
����

���� �"��
����

����
���
��
�
� ���

-����
�����
��
���

)
���
��� ��
�

� ������

���
�
��� ���
������
����

���� �"��
����

����
���
��
�
� ���

-����
�����
��
���

)
���
��� ��
�

� ������

���
�
��� ���
������
����

���� �"��
����

��$
+

��$
.

��$
/0

1 1

��$ #���)��������

(�
��� ��$ ������
��� �� ���������� ������
��� ����

���
 �� ! ���� ���
���
 �� 2����3

)����
 ��� �����
��
�
������� ��$ ���
�
���
�������
�
�� ��$�

4��(�

��$ #��
)��������

Fig. 4: Uintah’s asynchronous scheduler for Sunway TaihuLight

the design of an asynchronous Sunway-specific scheduler is

described.

A. Porting Uintah to Sunway

As introduced in Section II, Uintah is a complex framework

written in C++ , and uses a variety of C++11 features. Some

Uintah components such as Arches include kernels written in

Fortran. In order to port Uintah to Sunway, the following steps

were taken:

1) Uintah was ported to the MPE using Sunway’s GNU

compiler since C++11 is needed;

2) Uintah’s build system was modified to support compil-

ing C and Fortran for the CPE using Sunway’s native

compiler for full CPE functionalities such as SIMD;

3) Support was provided for hybrid linking of the MPE and

the CPE code together with the MPI, OpenACC, and

athread runtime.

Steps 1 and 2 were straightforward. However the complex

toolchain needed caused significant problems in Step 3. Since

a hybrid toolchain is used, dependent libraries of the toolchain

can conflict with each other. The solution was to remove libc

and libgfortran to resolve the conflicits, which then excluded

all Uintah’s gfortran-compiled components.

B. Design of an asynchronous Sunway-specific scheduler

In order to make the best use of the Sunway’s architectural

features, a Sunway-specific task scheduler was introduced in

Uintah. The design of this scheduler originated from the need

to be able to:

• Adapt to the shared-memory MPI+CPE heterogeneous ar-

chitecture and reduce scheduling cost whenever possible;

• Improve kernel performance with the per-CPE scratch

pad memory.

Use of Sunway’s offload-based programming model made

it possible to adapt to the shared-memory MPE+CPE ar-

chitecture. All tasks except compute-intensive kernels run

on the MPE, including main control, task management, and

communications. Computing-intensive kernels are offloaded

to the cluster of CPEs using athread. The offload is light-

weight due to the shared-memory design of Sunway. To

further overlap computation with other tasks, an asynchronous

offloading mechanism is introduced in the scheduler. The

scheduler sets up a completion flag in the main memory just

before offloading a kernel and then continues with jobs such as

communication and reduction tasks, and checks the completion

flag at times. The kernel will update the flag when it finishes

computing. When the scheduler detects a kernel is finished,

it offloads another ready kernel in the same way until all

kernels are completed. Given this approach, the scheduler is

“asynchronous”.

To make use of the per-CPE scratch pad memory, tiling is

built into the scheduler. When a kernel is scheduled to run on

the CPEs, the patch is further subdivided into ‘tiles’ like those

in TiDA (see [17]). The tile is defined so that the working

memory of the kernel fits in the 64KB LDM. The tiles are

then assigned evenly to the CPEs before computing starts. In

this way, it is possible to take advantage of the LDM without

incurring an extra burden on the application side.

The scheduler is implemented with MPI and athreads. One

MPI process is started on each CG and uses the athread library

to offload a kernel to the cluster of CGs. A small runtime

library was implemented to allow the kernel to transfer the

1010

data on the tiles using athread_get and athread_put,

and to atomically update the completion flag using the faaw
instruction.

The scheduler schedules both tasks on the MPE and tiles

on the CPEs, and is depicted in Figure 4. The details of the

scheduler follow.

C. Scheduling tasks on the MPE

The MPE part of the scheduler (the MPE task scheduler)

carries out the following steps:

1) Prepare for scheduling, include: compile the task graph,

initialize the athread environment, clear task completion

flag, etc.

2) Distribute tasks among different computing nodes (or

processes) with the help from the load balancer, and build

the set of local tasks, i.e., tasks belonging to the running

process.

3) Schedule tasks until all are finished:

a) Post non-blocking MPI receive requests for tasks de-

pending on remote data;

b) If the completion flag is set:

i) Post non-blocking MPI sends for the completed

task and mark the task as “done”.

ii) Select a ready offloadable task, i.e., a numerical

kernel whose remote data is received and dependent

tasks are finished.

iii) Process the MPE part of the selected task.

iv) Clear the completion flag and offload the CPE part

of a task to the cluster of CPEs for asynchronous
execution and return immediately here.

c) Test the posted MPI sends and receives, update the

status of the depending tasks for any finished receives.

d) Execute any other MPE tasks such as MPI reduce tasks

and small kernels if they are ready.

4) Check to see if recompilation of task graph, load bal-

ancing or regridding is needed as appropriate then when

possible continue to next timestep.

The MPE task scheduler overlaps kernel execution on the

CPEs with communication and other tasks on the MPE, thus

reduces the overall wait time. Testing MPI communication is

done because in most MPI implementations, the non-blocking

sends and receives do not progress without the help of the host

processor (see [18]).

This MPE task scheduler supports two extra operation

modes: the MPE-only mode and the synchronous MPE+CPE

mode. In the MPE-only mode, the ready task at step 3(b)iv is

executed on the MPE without offloading. In the synchronous

MPE+CPE mode, at step 3(b)iv, the scheduler spins until the

completion flag is set, thus no overlapping of computation and

other tasks is possible.

D. Scheduling tiles on the CPEs

The CPE part of the scheduler (the CPE tile scheduler)

carries out the following steps: for each athread (or CPE) in

the group:

1) Calculate assigned set of tiles from the patch and the

tile shape. In the current implementation, the tiles are

assigned to the CPEs by naturally partition the blocks in

the z dimension.

2) Loop over the assigned tiles until every tile is done:

a) Synchronously read the required data field on the tile

into the LDM with athread_get;

b) Apply the numerical kernel on the tile in LDM;

c) Synchronously write back the modified data field to

the main memory with athread_put;

3) Increase the completion flag by faaw.

At the moment, the CPE tile scheduler does not take into

account potential load imbalances among tiles, and does not

make use of the fact that the memory-LDM transfer can be

asynchronous. These issues will be addressed in the future.

VI. OPTIMIZING THE BURGERS KERNEL ON SW26010

While the scheduler takes care of scheduling tasks and tiles,

at the applications level it is only necessary to optimize the

numerical kernel. This section describes this optimization for

the Burgers kernel 1 on the CPEs of SW26010.

A. Determining the best tile size

The first step is to choose a proper tile size. Since the

Burgers kernel requires one layer of ghost cells, larger and

regular tiles are necessary to keep the ratio of ghost cells low.

Within the 64KB LDM limit, a tile size 16x16x8 is chosen

with the u and unew value requires a close to optimal working

memory of 41.3KB.

B. Vectorizing with SIMD intrinsics

The second step is to vectorize the kernel to take advantage

of the SIMD pipelines. At the moment, Sunway does not pro-

vide automatic vectorization options in its toolchain. Instead,

manual vectorization of the kernel with SIMD intrinsics is

needed. Vectorization of the Burgers kernel 1 is done in the x
direction, i.e., the i loop. The loop is unrolled with a width of 4

since the SIMD width is 4. An illustration of this vectorization

is shown in Listing 2 as Fortran code.

Algorithm 2 Snippet of the Burgers kernel vectorized with

SIMD intrinsics

VECTOR256 : : v0 , v1 , v2 , v3 , v d2udz2
! d2udz2 = (−2 ∗ u0 (i , j , k) +u0 (i , j , k−1) &
! + u0 (i , j , k +1)) ∗ (z dx∗ z dx)
v0 = SIMD CMPLX(−2d0 , −2d0 , −2d0 , −2d0)
c a l l SIMD LOADU(v1 , u0 (i , j , k))
c a l l SIMD LOADU(v2 , u0 (i , j , k−1))
c a l l SIMD LOADU(v3 , u0 (i , j , k + 1))
v0 = SIMD VMAD(v0 , v1 , v2)
v0 = SIMD VADDD(v0 , v3)
tmp2 = z dx ∗ z dx
c a l l SIMD LOADE(v2 , tmp2)
v d2udz2 = SIMD VMULD(v0 , v2)

1011

C. Accelerating exponential calculations

The Burgers kernel requires 6 exponentials for each cell.

Sunway lacks hardware instructions for exponentials and em-

ulates it in software using one of two libraries: one is IEEE-

754 conforming and the other is not. As the IEEE conforming

library proved to be slow in tests, the fast library was used.

While this introduces some inaccuracy it does not greatly

impact this benchmark.

VII. PERFORMANCE EVALUATIONS

This section validates our effort porting Uintah and evalu-

ates the performance of the Burgers model fluid-flow simu-

lation on Sunway TaihuLight by measuring strong scalability,

effectiveness of the asynchronous scheduler, performance with

different optimization options, and floating point efficiency.

A. Experimental settings

The Burgers equation is discretized on a rectangular grid

and is run for 10 timesteps for performance evaluation pur-

poses. The grid is partitioned into equally-sized patches for

parallelization. One patch is scheduled for execution on one

CG at a time. As only access to the Sunway experimental

queue at the moment was available, experiments are limited

from 1 to 128 CGs (8320 cores). The grid is partitioned

into 128 patches with a fixed 8x8x2 patch layout, i.e., 8

patches along the x and the y axis, and 2 patches along

the z axis. A full set of patch sizes is chosen to represent

typical cases in the following way: starting from the smallest

possible patch, double the size in a round-robin way among

the x and y axes each time, until a patch size exceeds

the data exceeds the memory limit of one CG. As the tile

size used is 16x16x8, and 64 CPEs per CG are used, the

smallest patch is 16x16x512. The detailed problem settings

are presented in Table III. For each problem in Table III, a

TABLE III: Problem settings in the evaluations

Problem Patch Size Grid Size Mem Min
16x16x512 16x16x512 128x128x1024 256MB 1CG
16x32x512 16x32x512 128x256x1024 512MB 1CG
32x32x512 32x32x512 256x256x1024 1GB 1CG
32x64x512 32x64x512 256x512x1024 2GB 1CG

64x64x512* 64x64x512 512x512x1024 4GB 2CGs
64x128x512* 64x128x512 512x1024x1024 8GB 4CGs

128x128x512* 128x128x512 1024x1024x1024 16GB 8CGs

strong-scalability experiment is run from the smallest possible

number of CGs to 128 CGs. The problem size 64x64x512

crashes with memory allocation errors when using 1 CG so

more than 1 CG is used in such cases (stared in the table). For

each case in the experiments, different variants of the scheduler

and optimization combination as defined in Table IV are run.

Every variant is compiled with the -fPIC -O3 -DNDEBUG
flags to ensure performance. To mitigate the instabilities in

the machine, each case is repeated multiple times and the

best result is selected. The wall time per time step in each

experimental case is used as the performance indicator.

TABLE IV: Experimental variants in the evaluations

Variant Scheduler Mode Tiling Vectorization
host.sync MPE-only No No
acc.sync synchronous MPE+CPE Yes No

acc simd.sync synchronous MPE+CPE Yes Yes
acc.async asynchronous MPE+CPE Yes No

acc simd.async asynchronous MPE+CPE Yes Yes

B. Strong scalability

In evaluating the strong scalability of this simulation the

‘host.sync’ variant is excluded since it uses only the MPE. The

wall time of different variants on different problems are shown

in Figure 5 which indicates that this simulation has good strong

scalability on all problems sizes, with both the synchronous

and the asynchronous scheduler. Strong scalability persists

with the vectorized kernel for which the computing time

is reduced by half. This suggests that the async scheduler

handles the communication and other tasks in a scalable

manner. A quantitative analysis of the strong scalability is

�

�

���

�

�

�

�

�

��

�

�

�

���

�

�

�

�

�

� � � � �	
� 	� ���
�

�

���

�

�

�

�

�

��

�

� � � � �	
� 	� ���

�

�

���

�

�

�

�

�

�	��	�����	��	���� �	�
������	�
�����
��
�����
��
�����
��	�����
��	����� 	��	�����	��	�����

	���������	��������� ����������������������

�
����� �
�����

�
�
�
��
�
��
�
��
�

�
�
�
��
�
��
�
��
�
�������� �������������

��������� ��������������

Fig. 5: Wall time of strong scaling different problems

provided by calculating the strong scaling efficiency of each

problem from the least to 128 CGs in Table V. This table

shows parallel efficiencies from 31.7% to 96.1% for different

problems and variants. Especially, for the ‘acc simd.async’

variant which is the fastest, a strong scaling efficiency from

31.7% to 57.6% when scaling across two orders of magnitudes

the CGs, with small to modest problem sizes is obtained. With

large problems, the strong scaling efficiency goes up to at

most 89.9% for asynchronous scheduling and 96.1% for the

synchronous alternative.

C. Effectiveness of the asynchronous scheduler

The effectiveness the asynchronous scheduler is calculated

using the GFLOP improvement of the scheduler running

in asynchronous mode over synchronous mode as (Tsync −
Tasync)/Tasync.

The performance improvement on the non-vectorized and

vectorized variants are presented respectively in Table VI

1012

TABLE V: Strong scaling efficiency of different problems

Problem acc.sync acc.async simd.sync simd.async
16x16x512 49.7% 46.8% 33.7% 31.7%
16x32x512 59.1% 57.2% 41.2% 43.4%
32x32x512 75.0% 57.5% 55.5% 50.8%
32x64x512 79.3% 82.5% 60.6% 57.6%

64x64x512* 88.2% 65.3% 74.7% 67.8%
64x128x512* 95.7% 73.9% 80.7% 72.9%

128x128x512* 97.7% 83.1% 96.1% 89.9%

��� ���
��� ��� ��� ��� ���

	��

��

��	

��

��
 ��� ���
���

���

� 	 � � �� �	 �� �	�

	

�

�
�
�
�
�

���

	

�

�
�
�
�
�

�

	

�

�
�
�
�
�

��

�

	

�

�

�

��

�	

��

��������
�������� ������������������

����������������������������
��

�����������������
��

��������� �������
��

����������������������
��

�������������� �������

� ��!"�

#
�
�
�$
�
��
#
��
�

%�
�
��
�
�
��
�
�
��

�
�
��
�
�
�
�

Fig. 6: Performance comparisons of optimizations for the small

problem

and VII. The asynchronous mode is a clear winner, as

it out-performs the synchronous mode in almost all cases,

with an average improvement of 13.5%. The improvement

varies for different problems. Medium-sized problems such

as 32x32x512 and 32x64x512 get the most improvements.

The best improvement is 39.3% for non-vectorized kernel and

22.8% for vectorized kernel. Even with only one CG, perfor-

mance improvements are still observed. Smaller improvements

are seen with the vectorized kernel than the non-vectorized

kernel for most of the cases. The results also show that in

the 128-CG runs, asynchronous scheduler downgrades the

performance in three cases. The cause of this anomaly is under

investigation.

D. Performance of different optimization options

Any application port to Sunway must typically go though

the following steps: (i) At first port to run on the MPE, then

(ii) offload critical kernels to the CPEs, after that (iii) vectorize

the kernel, finally (iv) undertake more deep optimizations.

The performance gained by the first three steps with the

model fluid-flow simulation is now described. These opti-

mization steps are represented by the ‘host.sync’, ‘acc.async’,

and ‘acc simd.async’ variants described above. The trends

are illustrated by choosing three typical problems: the small

problem 16x16x512, the medium problem 32x64x512, and the

large problem 128x128x512. Using ‘host.sync’ as a baseline,

the performance boost of the other variants is calculated as

Thost/Tacc.

���

���
���

��� ��� ��� ��	
���

�	

��

���

	�� 	�

��

	��

���

 � � �
� �� ��
��
�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��������
�������� ������������������

����������������������������
��

�����������������
��

��������� �������
��

����������������������
��

�������������� �������

� ��!"�

#
�
�
�$
�
��
#
��
�

%�
�
��
�
�
��
�
�
��

�
�
��
�
�
�
�

Fig. 7: Performance comparisons of optimizations for the

medium problem

���
��� ���

��� ���

����
�	�	 �	��

���

����

� �� 	� �� ���

	

�
�
�

�
�
�

�

	

�
�
�

�
�

��

�

	

�
�
�

�

�

�

�

�

�

��

��

��

��������
�������� ������������������

����������������������������
��

�����������������
��

��������� �������
��

����������������������
��

�������������� �������

� ��!"�

#
�
�
�$
�
��
#
��
�

%�
�
��
�
�
��
�
�
��

�
�
��
�
�
�
�

Fig. 8: Performance comparisons of optimizations for the large

problem

The results of the three typical problems are shown in

Figures 6, 7 and 8. The first observed results is that offloading

kernels to the CPEs improve the performance greatly, and

vectorizing the kernel improves it further. Offloading kernels

provides a 2.7 to 6.0 times performance boost, while vector-

ization provides another boost of between 1.3 to 2.2 times and

gives a final boost of 3.6 to 13.3 times. A higher performance

boost is obtained for larger patches. It is not surprising that

vectorization is also more effective with larger patches.

E. Floating point efficiency

Now the floating point performance achieved with the asyn-

chronous scheduler is shown with the Burgers model fluid-flow

simulation. The ‘acc simd.async’ variant is used to represent

the best of the options studied here and the floating point per-

formance is calculated as Gflops by Nfp/Tstep×10−9, where

Nfp is the floating point operations count per step and Tstep is

the step’s wall time. The floating point operations are counted

with the performance counters on the CPEs. These counters

1013

TABLE VI: Performance improvement of the asynchronous mode for the non-vectorized kernel

Num CGs 1 2 4 8 16 32 64 128
16x16x512 8.3% 9.3% 2.5% 2.9% 6.4% 6.4% 5.4% 1.9%
16x32x512 8.5% 9.5% 1.8% 3.2% 5.7% 6.9% 8.6% 4.8%
32x32x512 39.3% 38.0% 34.9% 29.7% 37.3% 34.5% 33.7% 6.8%
32x64x512 1.4% 24.7% 21.4% 18.4% 26.7% 22.5% 18.3% 5.6%
64x64x512 - 24.4% 22.4% 19.5% 31.1% 28.6% 19.0% -7.9%

64x128x512 - - 27.5% 19.2% 29.1% 20.0% 21.3% -1.5%
128x128x512 - - - 19.5% 27.3% 24.5% 19.8% 1.7%

TABLE VII: Performance improvement of the asynchronous mode for the vectorized kernel

Num CGs 1 2 4 8 16 32 64 128
16x16x512 4.5% 5.1% 0.1% 13.0% 9.3% 4.2% 2.4% -1.7%
16x32x512 4.4% 5.5% 0.0% 8.5% 11.0% 4.2% 4.4% 9.9%
32x32x512 19.5% 18.2% 15.3% 13.0% 16.7% 22.8% 15.2% 9.4%
32x64x512 12.5% 14.6% 10.3% 13.9% 12.1% 16.3% 7.9% 6.9%
64x64x512 - 15.4% 12.6% 13.1% 12.8% 14.4% 14.8% 4.8%

64x128x512 - - 13.0% 12.9% 15.5% 19.8% 4.5% 2.1%
128x128x512 - - - 14.0% 15.7% 14.4% 2.5% 6.6%

� � � � �� �� �� ���
�
�
	
�

��

�

�

�
�
�
	
�

���

�

�

�
�
�
	
�

����

������������������ ������������������ ������������������ ������������������

������������������ �������������������� ����������������������

������

�
�
�
�
�
�
��
�
��
�
�
�

Fig. 9: Floating point performance of different problems

are precise on Sunway, but they count division and square root

as single operations. Thus while the counter is precise, it does

not take into account that divisions requires more cycles, and

can under-estimate the floating point efficiency for division-

intensive codes.

The floating point performance of different problems is

presented in Figure 9. By dividing the observed performance

with the theoretical peak of the running CGs, the floating

point efficiency in Figure 10 is obtained. The Burgers model

simulation reaches 974.545 Gflops with 128 CGs on Sunway,

which is 1.0% of the theoretical peak of the 128 CGs. The best

performance is 1.17% of the peak obtained by the 64x64x512

problem with 2 CGs. Figure 10 also shows a clear trend that

better FP efficiency is obtained with larger problems.

Given the preliminary and primitive nature of the optimiza-

tions applied here, further improvement of the floating point

efficiency is possible, for example by overlapping computing

with memory-LDM transfer and by packing the tiles.

� � � � �� �� �� ���
���

���

���

���

�

���

��	��	
����	��	
�� ��	��	
����	��	
�� ��	��	
����	��	
�� ��	��	
����	��	
��

��	��	
����	��	
�� ��	���	
����	���	
�� ���	���	
�����	���	
��

�
�����

�
�
��
�
�
��
�
�
��
��
�
�
��
�
�
�

Fig. 10: Floating point efficiency of different problems

VIII. RELATED WORK

This research has built heavily upon previous research with

Uintah on other modern architectures such as Stampede. Some

of the scaling experiments run on Stampede clearly showed

need for more sophisticated scheduling and task distribution

mechanisms to best utilize architectural features and also to

strike balance between computation and communication to

hide the communication latency [19]. A number of asyn-

chronous many task runtime systems such as StarPU, Legion,

and Charm++ exist and can scale up to hundreds of thou-

sands of cores. These runtime systems support heterogeneous

architectures involving CPU, GPU, accelerators and Xeon Phi

cores. In Charm++ [6], users create a set of interacting data

objects called chares (roughly analogous to Uintah tasks).

Charm++ provides framework for distributed processing while

users need to program to achieve concurrency of shared data

resources through proper message structuring. Legion [20]

executes concurrent tasks based on the user provided “logical

regions” of data. StarPU [7] provides low level multi-task

scheduling framework portable across heterogeneous archi-

1014

tectures. However, as far is known, none of these runtime

systems is tailored to take advantage of the Sunway TaihuLight

architecture at the present time.

IX. CONCLUSION AND FUTURE WORK

The conclusion is that a general runtime system as typified

by Uintah may be ported to Sunway TaihuLight through a

decomposition of the port into the writing of a modified

runtime system with an asynchronous task scheduler based

on MPI and athreads and with modified task code tailored to

the Sunway CPEs. Experiments show that the design described

here obtains good strong scalability with a node range of two

orders of magnitude. To the best of the authors knowledge,

this appears to be the first attempt to port an asynchronous

many task runtime system to Sunway TaihuLight.

Given the preliminary nature of this work, there is much

potential for making better use of Sunway’s architecture fea-

tures. For example, the CPEs supports asynchronous DMA

transfer between the LDM and the main memory, and so

the async scheduler could schedule memory-LDM transfer

together with computing kernels to further hide data moving.

It is also possible to pack the tiles to improve data transfer

performance. It would also be interesting to group CPEs and

schedule different patches to different groups, to enable both

task and data parallelism on the CGs. With access to more

Sunway resources it should be possible to scale beyond 128

nodes of the experimental queue and, building on Uintah’s

scaling experience with other top ten architectures, possibly up

to full capacity of Sunway TaihuLight. The extension of this

work to one of the full Uintah applications components would

ideally be based on a portability library such as Kokkos as

this would automate the loop transformations. As no Sunway

option exists in any such libraries at present, the alternative

would be a time-consuming but relatively straightforward port

based on the knowledge acquired in this research.

ACKNOWLEDGMENT

The authors would like to thank National Supercomputing
Center in Wuxi for providing computing resources on Sunway

TaihuLight. Fei Wang, Hongtao You, Qian Xiao, and Xin
Liu from National Research Center of Parallel Computer
Engineering and Technology provided invaluable support for

the porting. Zhang Yang was funded through the National Key

R&D Program (No. 2016YFB2021300). The contributions by

Damodar Sahasbarude and Martin Berzins are based upon

work supported by the National Science Foundation under

Grant No. 1337145. Alan Humphrey was funded through the

University of Utah.

REFERENCES

[1] H. Fu, J. Liao, J. Yang, L. Wang, Z. Song, X. Huang, C. Yang et al., “The
Sunway Taihulight Supercomputer: System and Applications,” Science
China Information Sciences, vol. 59, no. 7, Jul. 2016.

[2] F. Qiao, W. Zhao, X. Yin, X. Huang, X. Liu, Q. Shu, G. Wang,
Z. Song, X. Li, H. Liu et al., “A highly effective global surface wave
numerical simulation with ultra-high resolution,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE Press, 2016, pp. 46–56.

[3] J. Zhang, C. Zhou, Y. Wang, L. Ju, Q. Du, X. Chi, D. Xu, D. Chen,
Y. Liu, and Z. Liu, “Extreme-scale phase field simulations of coarsening
dynamics on the sunway taihulight supercomputer,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE Press, 2016, p. 4.

[4] C. Yang, W. Xue, H. Fu, H. You, X. Wang, Y. Ao, F. Liu, L. Gan,
P. Xu, L. Wang et al., “10m-core scalable fully-implicit solver for non-
hydrostatic atmospheric dynamics,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE Press, 2016, pp. 57–68.

[5] Q. Meng, A. Humphrey, and M. Berzins, “The Uintah Framework:
A Unified Heterogeneous Task Scheduling and Runtime System,” in
Proceedings of the International Conference for High Performance
Computing, Networking Storage and Analysis. IEEE Press, Nov. 2012,
pp. 2441–2448.

[6] L. V. Kale and S. Krishnan, “Charm++: A portable concurrent object
oriented system based on c++,” SIGPLAN Not., vol. 28, no. 10,
pp. 91–108, Oct. 1993. [Online]. Available: http://doi.acm.org/10.1145/
167962.165874

[7] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “Starpu:
a unified platform for task scheduling on heterogeneous multicore
architectures,” Concurrency and Computation: Practice and Experience,
vol. 23, no. 2, pp. 187–198, 2011.

[8] J. Bennett, C. R. et al., “ASC ATDM level 2 milestone #5325:
Asynchronous many-task runtime system analysis and assessment
for next generation platforms,” Sandia National Laboratories, Tech.
Rep., 2015. [Online]. Available: http://www.sci.utah.edu/publications/
Ben2015c/ATDM-AMT-L2-Final-SAND2015-8312.pdf

[9] B. Peterson, X. Nan, J. Holmen, S. Chaganti, A. Pakki, J. Schmidt,
D. Sunderland, A. , Humphrey, and M. Berzins, “Developing uintahs
runtime system for forthcoming architectures,” SCI Institute, University
of Utah, Tech. Rep., 2015.

[10] B. Peterson, A. Humphrey, J. Schmidt, and M. Berzins, “Addressing
global data dependencies in heterogeneous asynchronous runtime sys-
tems on GPUs,” in 3rd International IEEE Workshop on Extreme Scale
Programming Models and Middleware. IEEE Press, 2017.

[11] M. Berzins, J. Beckvermit, T. Harman, A. Bezdjian, A. Humphrey,
Q. Meng, J. Schmidt, , and C. Wight, “Extending the uintah framework
through the petascale modeling of detonation in arrays of high explosive
devices,” SIAM Journal on Scientific Computing, vol. 38, no. 5, pp.
S101–S122, 2016.

[12] Q. Meng, A. Humphrey, J. Schmidt, and M. Berzins, “Applications
portability with the uintah DAG-based runtime system on petascale
supercomputers,” in Proceedings of the International Conference for
High Performance Computing, Networking Storage and Analysis. IEEE
Press, Nov. 2013.

[13] A. Humphrey, D. Sunderland, T. Harman, and M. Berzins, “Radiative
heat transfer calculation on 16384 gpus using a reverse monte carlo
ray tracing approach with adaptive mesh refinement,” in Proceedings
of the 2016 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), May 2016, pp. 1222–1231.

[14] “The top500 list,” 2017. [Online]. Available: https://www.top500.org/
lists/2017/06/

[15] J. Dongarra, “Report on the sunway taihulight system,” 2016.
[Online]. Available: http://www.netlib.org/utk/people/JackDongarra/
PAPERS/sunway-report-2016.pdf

[16] “Sunway taihulight compiler system user manual (in chinese),” Tech.
Rep., 2016. [Online]. Available: http://www.nsccwx.cn/ceshi.php?id=19

[17] D. Unat, T. Nguyen, W. Zhang, M. N. Farooqi, B. Bastem, G. Michelo-
giannakis, A. Almgren, and J. Shalf, “TiDA: High-Level Programming
Abstractions for Data Locality Management,” in High Performance
Computing, J. M. Kunkel, P. Balaji, and J. Dongarra, Eds. Springer
International Publishing, 2016, vol. 9697, pp. 116–135.

[18] A. Denis and F. Trahay, “MPI Overlap: Benchmark and Analysis,” in
2016 45th International Conference on Parallel Processing (ICPP), Aug.
2016, pp. 258–267.

[19] J. K. Holmen, A. Humphrey, D. Sunderland, and M. Berzins, “Improving
Uintah’s Scalability Through the Use of Portable Kokkos-Based Data
Parallel Tasks,” in Proceedings of the PEARC 2017 Conference. ACM
Press, 2017, pp. 1–8.

[20] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing
locality and independence with logical regions,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis. IEEE Press, 2012, p. 66.

1015

