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Abstract. Multifidelity methods are widely used for statistical estimation of quantities of interest (QoIs) in
uncertainty quantification using simulation codes of differing costs and accuracies. Many methods
approximate numerical-valued statistics that represent only limited information of the QoIs. In this
paper, we introduce a semi-parametric approach that aims to effectively describe the distribution
of a scalar-valued QoI in the multifidelity setup. Under a linear model hypothesis, we propose an
exploration-exploitation strategy to reconstruct the full distribution of a scalar-valued QoI using
samples from a subset of low-fidelity regressors. We derive an informative asymptotic bound for the
mean 1-Wasserstein distance between the estimator and the true distribution, and use it to adap-
tively allocate computational budget for parametric estimation and non-parametric reconstruction.
Assuming the linear model is correct, we prove that such a procedure is consistent, and converges to
the optimal policy (and hence optimal computational budget allocation) under an upper bound cri-
terion as the budget goes to infinity. A major advantage of our approach compared to several other
multifidelity methods is that it is automatic, and its implementation does not require a hierarchical
model setup, cross-model information, or a priori known model statistics. Numerical experiments
are provided in the end to support our theoretical analysis.
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1. Introduction. Estimation of output quantities of interest (QoIs) from complex and
large-scale simulations is an important task in many areas of computational science. A con-
crete example is a forward uncertainty quantification setup, where the QoI is an output of a
physical system subject to modeled uncertainty, and the goal is to identify the typical behavior
of the QoI by computing its expectation. A universal solution for this specific task is through
Monte Carlo (MC) simulation [12], which in practice requires many repeated evaluations of
an accurate forward model, and can be computationally infeasible for expensive models.

A modern collection of approaches for addressing this computational challenge is multifi-
delity methods [22]. Instead of operating on a single (high-fidelity) model alone, multifidelity
methods combine several models of different accuracies and costs to accelerate computation.
The lower fidelity models used in multifidelity methods typically arise from simplification or
reduction of the high-fidelity model, and thus are cheaper but less accurate. However, they
typically contain information which, if utilized properly, can contribute to characterizing QoIs.

A prototypical example of a multifidelity method is the multilevel approach [7, 21, 10],
which approximates the expectation of a scalar-valued QoI given by the high-fidelity model.
Leveraging a telescoping sum using hierarchical models, multilevel estimators make use of
cross-model correlations and typically attain smaller variance compared to a single-model MC
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estimator. Recent work has introduced a uniform perspective for many existing methods
within the multilevel framework, and provided a way to realize the optimal variance reduction
among all linear unbiased estimators [28, 27]. Multilevel estimators are considered universal
in the sense that they rely only on correlation, which is used as an input for the estimator
construction. A similar approach has recently been developed in [33] which assumes a linear
model assumption but does not require a priori knowledge of correlation statistics.

Since multifidelity methods have been so successfully applied to parametric estimation of
QoIs, it is natural to ask if it is possible to extend the same technique to also characterize
their distributions, or equivalent statistics such as characteristic functions. This question has
been studied in recent works [8, 9, 18, 16], where the major application under consideration
is solving stochastic differential equations, and strong coupling assumptions and hierarchical
structure are assumed for models of different fidelities. For more general (i.e., non-hierarchical)
mutlifidelity setups, paradigms for efficiently learning distributions of QoIs are nascent.

Learning a distribution is possible when independent and identically distributed (i.i.d.)
samples are available: Given enough samples, universal approaches using empirical measures
estimate the true distribution [29]. However, the general nonparametric nature of this ap-
proach is balanced by rather slow convergence rates, which considerably limit direct usage
of this approach in applications where sampling is costly. Alternative parametric methods
limit the space of expressible distributions, but enable use of classical tools such as maximum
likelihood estimation to accelerate estimation. In practice, models are often so complex that
it is difficult to identify an appropriately expressive parametric family.

1.1. Contributions of this paper. In this paper, we adopt a semi-parametric approach
based on ideas from multifidelity methods. In particular, we assume that the high-fidelity
model and the lower fidelity surrogates interact in a way that can be described using a para-
metric framework, but we do not make specific assumptions on the distribution of the model
outputs. (This is different from the commonly used semi-parametric framework in regression
analysis [26].) In an exploration phase, we learn the interaction between the high and lower
fidelity models via parametric strategies, and we construct a linear regression emulator for
the high-fidelity output using a selection of the inexpensive low-fidelity models. Once this
parametric emulator is computed, our exploitation phase utilizes the nonparametric approach
of empirical measures to approximate the high-fidelity distribution by collecting a sufficient
number of low-fidelity samples that are passed to the learned emulator. Such an approach
leverages models of different fidelities and costs as well as various statistical procedures to
produce an efficient estimator for the unknown distribution, which is difficult and costly to
estimate directly. Our procedure does not require an established hierarchy of models (only a
high-fidelity model must be identified), and does not require a priori knowledge of any model
or cross-model statistics.

In summary, our contributions in this article are threefold:
• We introduce a semi-parametric formulation of the multifidelity problem for the budget-

limited learning of distributions of scalar-valued QoIs, and propose a general exploration-
exploitation strategy.
• We define a loss function for the estimator produced by an exploration-exploitation

strategy using Wasserstein metrics, and derive an asymptotically informative and es-
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timable upper bound for the estimator error.
• We utilize the upper bound to design a consistent and adaptive algorithm, AETC-d,

which optimally balances exploration and exploitation along every trajectory under a
sufficiently large budget.

We numerically investigate the proposed algorithm on several datasets, and demonstrate its
consistency when the model assumptions hold. We also discuss procedures that can be used
to mitigate the the impact of model misspecification, when our assumed linear regression
assumptions are violated. Our methodology enjoys great generality as it does not require any
particular knowledge of the models, i.e., nested structure or specific coupling assumptions
to guarantee convergence. The implementation requires only the identification of a trusted
high-fidelity model, the ability to query the models themselves, and a cost estimate of each
model relative to the high-fidelity model.

The rest of the paper is organized as follows. In Section 2, we set up the budget-limited
distribution learning problem. In Section 3, we briefly review results of convergence of em-
pirical measures under Wasserstein metrics, and prove a required technical result regarding
the difference between the cumulative distribution functions of linear sketches of a jointly
sub-exponential random vector. In Section 4, we propose an exploration-exploitation strategy
for distribution learning, and derive an asymptotically informative upper bound for the mean
1-Wasserstein error of the estimator. We then utilize this upper bound in Section 5 to de-
vise an adaptive algorithm, AETC-d, and establish a trajectory-wise optimality result for it.
In Section 6, we provide a detailed numerical study of the AETC-d algorithm, investigating
consistency, model misspecification, and optimality of exploration rates. In Section 7, we
conclude by summarizing the main results in the paper. Several technical details and proofs
are collected in Appendix 8.

Xi output of the i-th low-fidelity model

Y output of the high-fidelity model

n the number of low-fidelity models

m exploration rate

B the total budget

S the model index set

(ci)
n
i=0/cepr/cept(S) cost parameters/unit exploration cost/unit exploitation cost for model S

NS exploitation rate for model S

ZS the design matrix for model S

βS the coefficient vector for model S

σ2
S the model variance for model S

FY the CDF of Y

Table 1
Notation used throughout this article.

2. Problem setup.

2.1. Notation. Let Y,X1, . . . , Xn ∈ R be scalar-valued random outputs (QoIs) associated
with the high-fidelity model and n low-fidelity surrogates, respectively. Let c0 and ci (i ∈ [n])
be the respective cost of sampling Y and Xi. The costs are assumed known and deterministic.
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No additional assumptions about the accuracy or costs of Xi relative to those of Xi+1 are
assumed in the following discussion. In particular, the index i does not represent an ordering
based on cost, accuracy, or hierarchy.

Many recent advances on the multifidelity methods centered around the efficient estimation
of the expectation of scalar-valued QoIs associated with the high-fidelity model [7, 21, 10, 28,
27, 33]. Under appropriate correlation/cost conditions and for a fixed budget, the estimators
from these methods are significantly more accurate than the classical MC estimator using
i.i.d. samples of Y . However, for some applications, obtaining precise estimates for only
statistics is not sufficient. A complete description of the randomness (the distribution) of
a QoI is needed to quantify the uncertainty of interest. Letting FY (y) = P(Y ≤ y) be the
cumulative distribution function (CDF) of Y , we wish to find an efficient estimate for FY
instead of only certain functionals (statistics) of it. To make use of the low-fidelity models
to this end, assumptions on cross-model correlations are not enough for this purpose. As
opposed to imposing strong hierarchical assumptions on the models as in [8], we introduce
an alternative parametric assumption on the relationship Xi, i ∈ [n] and Y such that efficient
estimation of FY (y) is possible through Xi’s.

2.2. Linear regression. A simple yet useful assumption relating Xi and Y is through
linear regression. For any S ⊂ [n], we assume that

Y = XT
S βS + εS XS =

(
1, (Xi)i∈[S]

)T
,(2.1)

where εS is a centered random variable (noise) with variance σ2
S and is independent of XS .

Under this assumption, (2.1) provides an alternative way to simulate Y using only samples of
XS and a noise generator for εS . Using samples generated under a fixed budget, this could
potentially lead to an estimator for FY with better accuracy compared to directly sampling Y
alone. More details about the construction of the estimator will be discussed in Section 4.1.

Even though (2.1) considers only linear interactions, it is not overly restrictive since addi-
tional regressors that are nonlinear functions of the models can be added. For many applica-
tions of interest, the high-fidelity model approximately satisfies (2.1) with a sufficient number
of appropriately chosen regressors. Nevertheless, identifying an optimal set of such regressors
is often problem-dependent, which is beyond the scope of this paper.

We close this section by noting that we do require some additional technical assumptions
(see Assumptions 4.1, 4.2, 4.3) about the models Xi, Y and the noise εS for some of our
theoretical results. Our numerical results investigate the performance of our algorithm when
some of these assumptions are violated.

3. Distribution metrics and related results. Before directly addressing the multifidelity
problem, this section provides some necessary technical discussion regarding empirical distri-
butions, metrics, and error bounds.

3.1. Distance between distributions. The goal of distribution learning is to approximate
a probability measure on R. In this section, we discuss metrics to measure the discrepancy
between FY and an estimated distribution. For two Borel probability measures µ, ν on R,
numerous metrics are available to measure discrepancy [6], such as the Kolmogorov distance,
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Wasserstein distances, Kullback-Leibler divergence, etc. In this article, we will focus on the
Wasserstein metrics, which are defined below.

Definition 3.1 (p-th Wasserstein distance). Let 1 ≤ p ≤ ∞. The p-th Wasserstein distance
between two Borel probability measures µ, ν on R is defined as

Wp(µ, ν) = inf
π

Eπ [|x− y|p]1/p ,

where infimum is taken over all Borel probability measures π on R2 with marginals satisfying
πx ≡ µ, πy ≡ ν.

Intuitively, W p
p (µ, ν) corresponds to the minimal amount of work needed to transform µ

to ν, with the cost function given by the p-th power of the moving distance. Hence it is
frequently labeled as the optimal transport distance. A comprehensive study of the subject
can be found in [31]. In the following discussion we are mostly concerned with p = 1.

Wasserstein distances are hard to compute in general. But when the metric space is the
real line equipped with the Borel algebra, explicit formulas exist using inverse CDFs [4]:

W p
p (µ, ν) =

∫ 1

0

∣∣F−1
µ (t)− F−1

ν (t)
∣∣p dt,

where F−1
µ (t) := inf{x ∈ R : Fµ(x) ≥ t} is the inverse CDF of µ. When p = 1, W1(µ, ν) is the

L1(R)-norm of Fµ(t)− Fν(t):

W1(µ, ν) =

∫ 1

0

∣∣F−1
µ (t)− F−1

ν (t)
∣∣ dt =

∫
R
|Fµ(t)− Fν(t)| dt.(3.1)

A classical result in optimal transport is the Kantorovich-Rubinstein duality [31], which
provides an alternative characterization for W1(µ, ν) using Lipschitz test functions:

W1(µ, ν) = sup
‖f‖Lip≤1

∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ ,(3.2)

where ‖ · ‖Lip is the Lipschitz constant. Assuming Fµ has a uniformly bounded density fµ,
one can bound the Kolmogorov distance between µ and ν by W1(µ, ν) using (3.2) [5]:

dK(µ, ν) := sup
x∈R
|Fµ(x)− Fν(x)| ≤ 2

√
‖fµ‖∞W1(µ, ν).

In the situations of this article, at least one of the measures under comparison has a uniformly
bounded density. Thus, in what follows we will work with the Wasserstein metrics, i.e., the
W1-metric.

3.2. Convergence of empirical measures. Our analysis in Section 4 relies on sharp pre-
asymptotic convergence rates of one-dimensional empirical measures under the mean Wp met-
ric. Given i.i.d. samples of µ : Z1, . . . , ZN , the associated empirical measure is

µN =
1

N

∑
i∈[N ]

δZi .(3.3)
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The question is to quantify the average convergence rate for E[W p
p (µN , µ)]1/p at fixed N . A

comprehensive analysis quantifying E[W p
p (µN , µ)]1/p for fixed N can be found in [2]. Here we

only collect relevant results to be used later.

Theorem 3.2 ([2]). Suppose µ is a Borel probability measure on R with finite (2 + δ)-th
moment for some δ > 0, i.e.,

∫
|x|2+δdµ(x) <∞. Let µN be the empirical measure defined in

(3.3). Then for every N ≥ 1,

J0(µ)√
2

1√
N
≤ E[W1(µN , µ)] ≤ J1(µ)√

N
,(3.4)

where

J0(µ) :=

∫
R
Fµ(x)(1− Fµ(x))dx J1(µ) :=

∫
R

√
Fµ(x)(1− Fµ(x))dx.(3.5)

The moment assumption on µ ensures that J1(µ) < ∞ so that the upper bound in (3.4) is
nonvacuous. For completeness, we give the proof here:

Proof of Theorem 3.2. The upper bound follows from (3.1) and Jensen’s inequality:

E[W1(µ, µN )] =

∫
R
E[|Fµ(x)− FµN (x)|]dx ≤

∫
R
E[|Fµ(x)− FµN (x)|2]1/2dx =

J1(µ)√
N

,

where the last equality follows by noting that for fixed x, NFµN (x) ∼ Binomial(N,Fµ(x)), i.e.,
Fµ(x) − FµN (x) = N−1

∑
i∈[N ] ξi, where ξi = Fµ(x) − 1Xi≤x. For the lower bound, let εi be

i.i.d. symmetric Bernoulli random variables which are independent of ξi, and ξN = (|ξi|)Ni=1.
Applying the symmetrization technique [30] combined with Khinchine’s inequality [11], we
have

E[|Fµ(x)− FµN (x)|] =
1

N
E

∣∣∣∣∣∣
∑
i∈[N ]

ξi

∣∣∣∣∣∣
 ≥ 1

2N
E

∣∣∣∣∣∣
∑
i∈[N ]

εiξi

∣∣∣∣∣∣
 ≥ E [‖ξN‖2]

2
√

2N
≥ ‖E[ξN ]‖2

2
√

2N
.

Integrating against x yields the desired lower bound.

A refinement of the result in Theorem 3.2 based on a two-sided bound is given below:

Theorem 3.3 ([2]). Under the same assumptions as in Theorem 3.2, for every N ≥ 1,

TN

1250
√
N
≤ E[W1(µN , µ)] ≤ TN√

N
,(3.6)

where

TN =

∫
IN

√
Fµ(x)(1− Fµ(x))dx+ 2

∫
IcN

Fµ(x)(1− Fµ(x))dx,

IN =

[
F−1
µ

(
1

2
− 1

2

√
N − 1

N

)
, F−1

µ

(
1

2
+

1

2

√
N − 1

N

)]
.
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Note that for large N , the interval IN covers most of the mass of µ, implying that the upper
bound in (3.4) is asymptotically tight.

Similar nonasymptotic results for E[W p
p (µN , µ)]1/p when p > 1 can be found in [2, Corol-

lary 5.10]. In those cases, the sufficient and necessary condition to achieve the optimal con-
vergence rate has a more subtle dependence on the moments of a distribution [2, Corollary
6.14].

3.3. A CDF estimate for marginals of a random vector. We have seen in (3.1) that if
two one-dimensional random variables have ‘similar’ CDFs, then they are close in the W1-
metric. In this section, we will prove a type of converse of this statement. In particular, we
show that two close marginals of a jointly sub-exponential vector have similar CDFs.

Let X ∈ Rk be a jointly sub-exponential random vector, i.e., sup‖a‖2=1 ‖aTX‖ψ1 < ∞,
where ‖ · ‖ψ1 is the 1-Orlicz norm [30]. Equivalently, there exists an C1 > 0 such that

sup
‖a‖2=1

P
(
|aTX| > x

)
≤ 2 exp(−x/C1) ∀x ≥ 0.(3.7)

Consider two marginals Z1, Z2 of X:

Z1 = aT1 X Z2 = aT2 X,(3.8)

where a1, a2 ∈ Rk. Denote by F1(x) and F2(x) the CDFs of Z1 and Z2, respectively. If
‖a1 − a2‖2 is small, then F1(x) ≈ F2(x) for every fixed x ∈ R. Since (3.7) ensures that the
CDFs of both Z1 and Z2 quickly decay to zero as |x| → ∞, the distance between F1(x) and
F2(x) can be bounded in a uniform sense.

Theorem 3.4. Let X ∈ Rk be a sub-exponential random vector satisfying (3.7), and Z1, Z2

be the marginals defined in (3.8). Denote by

δ := ‖a1 − a2‖2 < 1 C2 :=
√
‖a1‖22 + ‖a2‖22 <∞.

Suppose the CDFs of Z1 and Z2, F1(x) and F2(x), are globally Lipschitz continuous; i.e.,
max{‖F1‖Lip, ‖F2‖Lip} ≤ C3 for some C3 < ∞. Then, for any p ∈ (0,∞), there exists a
constant K > 0 depending only on Ci, i ∈ [3], such that

‖F1(x)− F2(x)‖Lp(R) ≤ Kδ log
p+1
p (1/δ)

δ↓0−−→ 0.(3.9)

Proof. See Appendix A.

4. Empirical CDF estimator under linear regression. In this section, we develop a rigor-
ous framework for efficient estimation of FY (y) under the linear regression assumption (2.1).
We begin with the basic idea assuming oracles statistics are available.

4.1. Basic idea. Suppose that (2.1) holds and is known a priori. Then for fixed S ⊂ [n],
one may expend a given and fixed total budget B to sample XS and build an empirical CDF
estimator for FY :

1

N

∑
i∈[N ]

1Zi≤y Zi
iid∼ XT

S βS + εS ,(4.1)
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where

N =

⌊
B

cept(S)

⌋
cept(S) =

∑
i∈S

ci.(4.2)

As opposed to the direct construction of the empirical CDF from i.i.d. samples of Y , the
emulator (4.1) will admit a much larger sampling rate under a fixed budget if cept(S) � c0,
which can substantially accelerate convergence. However, practical issues exist:

• Oracle information of the parameters in (2.1) is often not available.
• The most effective model choice S ⊂ [n] is not known without exploration.
• Simulating εS is difficult without making further assumptions.

We resolve the first two problems by taking a similar bandit-learning approach as in [33],
with the loss function articulated in Section 4.2 and 4.3. For the third issue, we will assume
that εS is Gaussian to make the estimation procedure more convenient and efficient. This
assumption may be hard to verify/satisfy in practice. However, analyzing this simplified model
provides valuable insight into the general case, and the resulting procedures are observed to
enjoy certain robustness regarding the Gaussian assumption. (See Section 6.2 for numerical
evidence.) In general one can always resort to nonparametric procedures when the normality
assumption is severely violated or the exploration rate is large.

4.2. Exploration and exploitation. In this section, we introduce an exploration-exploitation
strategy following the ideas in [33]. Since neither the best parametric model nor the corre-
sponding coefficients are known, it is necessary to expend some effort (budget) to decide on S
before committing to (4.1). We split the total budget into two parts, one for exploration and
the other for exploitation. In the exploration stage, we collect m independent joint samples of
all fidelities to estimate βS and σ2

S for every S ⊂ [n], based on which we decide the best model
for exploitation. In the exploitation stage, we follow the decision made in the exploration
phase and use (4.1) to construct an estimator for FY by plugging in the estimated coefficients.

Denote

(exploration samples) Xepr,` := (1, X1,`, · · · , Xn,`, Y`)
T ` ∈ [m]

(design matrix for S) ZS :=

1, (Xi,1)i∈S
...

1, (Xi,m)i∈S

 ∈ Rm×(s+1)

(exploration responses) Yepr := (Y1, · · · , Ym)T ,

where ` is the sampling index, and NS = b(B − ceprm)/cept(S)c is the number of affordable
samples for exploiting S, where cepr =

∑n
i=0 ci is the cost for an exploration sample. For

m > |S| + 1, βS and σ2
S can be estimated using standard least-squares and the average of

residuals squared, respectively. Assuming that ZS has full column rank, then the estimators
for βS and σ2

S are given by

β̂S = Z†SYepr =
(
ZTS ZS

)−1
ZTS Yepr σ̂2

S =
1

m− |S| − 1

∥∥∥Yepr − ZS β̂S
∥∥∥2

2
,
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where the scaling constant in σ̂2
S ensures that this estimator is unbiased. The resulting em-

pirical estimator from model S is

F̂Y,S(y) :=
1

NS

∑
j∈[NS ]

1Aj≤y Aj
iid∼ Y ′ := XT

S β̂S +N (0, σ̂2
S).(4.3)

To measure the average quality of (4.3) as an estimator for FY , we use the following mean
1-Wasserstein distance as the loss function:

LS(m) := EAj ,εS
[
W1(F̂Y,S , FY )

]
,(4.4)

where the expectation averages out the randomness in exploitation as well as the noise in
exploration. Note that the LS(m) defined in (4.4) is random due to the remaining randomness
in ZS , and one could alternatively define it by averaging all the randomness. But this would
lead to the term E[(ZTS ZS)−1], which is difficult to analyze. Thus we will pursue (4.4) in this
article and consider the case when B →∞.

Obtaining exact asymptotically equivalent expressions for (4.4) is difficult. To find com-
putably informative substitutes, we compute sharp estimates for an upper bound of (4.4) in
the next section.

4.3. Upper bounds. We start by writing (4.4) in two parts using the triangle inequality:

LS(m) ≤ EAj ,εS [W1(FY , FY ′)] + EAj ,εS
[
W1(F̂Y,S , FY ′)

]
,(4.5)

where FY ′ is the CDF of Y ′ (see (4.3) for the definition of Y ′). According to Sanov’s theorem
in large deviation theory [25, 3], the probability that empirical measures are ‘closer’ to a
different distribution than the sampling distribution is exponentially small with respect to the
sampling rate, which heuristically suggests that (4.5) is tight.

We provide some intuition for the bound (4.5). The first term measures the mean W1

distance between XT
S βS +N (0, σ2

S) and XT
S β̂S +N (0, σ̂2

S), which depends on the accuracy of

β̂S and σ̂2
S , hence on the exploration rate m. The second term measures the mean convergence

rate of empirical measures, which depends on the exploitation rate NS . A good exploration-
exploitation strategy (i.e., determination of m) will balance these quantities. We will now
produce a computable asymptotic upper bound for (4.5) that can be used to find such an m.
We formalize our needed assumptions:

Assumption 4.1. For every S ⊂ [S], ΛS := E[XSX
T
S ] is invertible.

Assumption 4.2. X = (X1, · · · , Xn) is jointly sub-exponential in the sense of (3.7). More-
over, denoting by Fa(x) the CDF of aTX for a ∈ Rn, we assume that sup‖a‖2=1 ‖Fa‖Lip <∞.

Assumption 4.3. For S ⊂ [n], the model noise εS is Gaussian, i.e., εS ∼ N (0, σ2
S).

Lemma 4.4. Under Assumption 4.1, 4.2 and 4.3, and given any δ > 0, the following is
true with probability 1: For large enough m (realization-dependent) and every B > ceprm,

EAj ,εS [W1(FY , FY ′)] ≤ (1 + δ)σS

√
s+ 2

m
,(4.6a)

EAj ,εS
[
W1(F̂Y,S , FY ′)

]
≤ (1 + δ)

J1(FY )√
NS

.(4.6b)
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The proof of Lemma 4.4 is given in Appendix B. We now state an immediate consequence,
that LS can be estimated by a more computable quantity that serves as an asymptotic upper
bound. This fact will be used for algorithm design in Section 5.

Theorem 4.5. Under Assumptions 4.1, 4.2 and 4.3, with probability 1,

lim sup
B,m↑∞

LS(m)

GS(m)
≤ 1 GS(m) :=

√
k1(S)

m
+

√
k2(S)

B − ceprm
,

where

k1(S) = σ2
S · (s+ 2) k2(S) = cept(S)J2

1 (FY ).

Proof. Combining Lemma 4.4 and (4.5) yields that for any δ > 0,

lim sup
B,m↑∞

LS(m)

GS(m)
≤ 1 + δ a.s.

The proof is finished by sending δ ↓ 0.

5. Algorithm. In this section, we first use the asymptotic upper bound GS to analyze the
optimal exploration rate for each exploitation choice S ⊂ [n] in an exploration-exploitation
policy, which allows us to find a deterministic strategy that explores and exploits optimally.
Then we propose an adaptive procedure which, along each trajectory, resembles the best
exploration-exploitation policy. Integer rounding effects defining NS are subsequently ignored
to simplify analysis.

5.1. Optimal exploration based on GS. The quantity GS(m) defined in Theorem 4.5
provides a computable criterion to evaluate the model S as a simulator for Y . For fixed S,
GS(m) is a strictly convex function of m in the domain, attaining its minimum at

m∗(S) =
B

cepr +
(
c2eprk2(S)

k1(S)

)1/3
,(5.1)

with optimum value

G∗S := GS(m∗(S)) =

[
(ceprk1(S))1/3 + k2(S)1/3

]3/2
√
B

∝
[
(ceprk1(S))1/3 + k2(S)1/3

]3/2
.(5.2)

(5.2) is the (asymptotic) minimum loss of exploiting model S with optimal exploration rate
(5.1). The model with the smallest value G∗S is considered the optimal model under the “upper
bound criterion”, which is our terminology for using GS as a criterion. We assume the optimal
model is unique and denoted by Sopt, i.e.,

Sopt = arg min
S⊂[n]

[
(ceprk1(S))1/3 + k2(S)1/3

]3/2
.(5.3)
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We call the policy that spends m∗(Sopt) rounds on exploration and then selects model Sopt

for exploitation a perfect exploration-exploitation policy. This is similar to the perfect uniform
exploration policies in [33] where exact asymptotics of the loss function are used.

To investigate the performance of a perfect exploration-exploitation policy, we compare
it to the empirical CDF estimator for Y using samples of Y only. Let F̂Y,dir(B) denote the
empirical CDF of Y with the whole budget devoted to sampling Y . The number of admissible
samples for F̂Y,dir(B) is B/c0, which, combined with (3.4), implies the following lower bound

for the mean W1 distance between F̂Y,dir(B) and FY : For every B > c0,

E
[
W1

(
F̂Y,dir(B), FY

)]
≥
√
c0J2

0 (FY )

2B
.(5.4)

Under the same budget, the average W1 distance between FY and the estimator given by the
perfect exploration-exploitation policy is asymptotically bounded by G∗Sopt

, as guaranteed by

Theorem 4.5. This motivates us to introduce the ratio r between the lower bound in (5.4)
and G∗Sopt

as a measure for the efficiency of perfect exploration-exploitation policies relative

to F̂Y,dir(B):

r :=

√
c0J2

0 (FY )
2B

G∗Sopt

=

√
c0J2

0 (FY )

2
[
(ceprk1(Sopt))1/3 + k2(Sopt)1/3

]3 Jensen
≥

√
c0J2

0 (FY )

8(ceprk1(Sopt) + k2(Sopt))

≥ 1√√√√8

[(
σSopt (n+1)

J0(FY )

)2

+

(√
cept(Sopt)

c0

J1(FY )
J0(FY )

)2
] =

1

4 max{κ0, κ1}
,

where

κ0 =
σSopt(n+ 1)

J0(FY )
κ1 =

√
cept(Sopt)

c0

J1(FY )

J0(FY )
.

If max{κ0, κ1} � 1, then r � 1. (This condition implies that the exploration is efficient and
exploitation sampling rate is large.) In this case, the perfect exploration-exploitation policy
is expected to demonstrate a superior performance over the empirical CDF estimator based
only on the samples of Y .

5.2. An adaptive algorithm. Finding perfect exploration-exploitation policies requires
evaluation of (5.1) and (5.2), which uses oracle information of model statistics such as σ2

S

and J2
1 (FY ). These statistics are not available in practice but can be computed in an online

fashion using exploration data. At each step t ≥ n+ 2 in exploration, we define

σ̂2
S(t) =

1

t− |S| − 1

∥∥∥Yepr(t)− ZS(t)β̂S(t)
∥∥∥2

2
Ĵ1(t) = J1(FYepr(t)(y)),(5.5)

where the parameter t indicates that estimates/data are based on the first t rounds of explo-
ration, and FYepr(t)(y) is the empirical CDF of Y based on the exploration samples Yepr(t).
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Plugging (5.5) into GS and (5.1) allows us to estimate the optimal loss for each model S at
exploration step t:

ρS = ĜS(t ∨ m̂∗(S)),(5.6)

where

k̂1(S) = σ̂2
S(t) · (s+ 2), k̂2(S) = cept(S)Ĵ1(t)(5.7)

ĜS(t) =

√
k̂1(S)

t
+

√
k̂2(S)

B − ceprt
m̂∗(S) =

B

cepr +

(
c2eprk̂2(S)

k̂1(S)

)1/3
.(5.8)

(5.6) can be used to decide which model is optimal to exploit at time t, and the corresponding
estimated optimal stopping time m̂∗ will indicate if more exploration is needed. The details
are given in Algorithm 5.1, the adaptive Explore-Then-Commit algorithm for multifidelity
distribution learning (AETC-d), where regularization parameters αt are added to k̂2(S) to
encourage exploration at the beginning (as is common in bandit learning algorithms). In our
case, the regularization parameters are mostly used for theoretical analysis. In practice, we
observe that setting them as a rapidly decreasing sequence (i.e., exponential decay) is often
sufficient. An asymptotic analysis of Algorithm 5.1 will be given in the next section.

Algorithm 5.1 AETC algorithm for multifidelity distribution learning (AETC-d)

Input: B: total budget, ci: cost parameters, αt ↓ 0: regularization parameters
Output: An estimate for FY

1: compute the maximum exploration round M = bB/ceprc
2: collect (n+ 2) samples for exploration
3: while n+ 2 < t ≤M do
4: for S ⊂ [n] do
5: compute k̂1(S) and k̂2(S) using (5.7), and k̂2(S)← k̂2(S) + αt
6: compute m̂∗(S) and ρS as in (5.8) and (5.6)
7: end for
8: find the optimal model S∗ = arg minS⊂[n] ρS
9: if m̂∗(S∗) > t then

10: take a new exploration sample, and set t← t+ 1
11: else
12: compute the estimate for FY using (4.3) with S = S∗, and set t←M + 1
13: end if
14: end while

5.3. Asymptotic performance of the AETC-d. Regularization parameters used in Algo-
rithm 5.1 encourages m→∞ as the total budget B →∞. This, combined with the fact that
all estimators used in the algorithm are strongly consistent and αt ↓ 0, implies the following
asymptotic performance guarantee for Algorithm 5.1:
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Theorem 5.1. Let αt ↓ 0. Let m(B) and S(B) denote the exploration rate and selected
model in Algorithm 5.1, respectively. Under Assumptions 4.1, 4.2 and 4.3, with probability 1,

lim
B↑∞

m(B)

m∗(Sopt)
= 1 lim

B↑∞
S(B) = Sopt,(5.9)

where Sopt is defined in (5.3).

Proof. See Appendix C.

Remark 5.2. Theorem 5.1 tells us that as the budget goes to infinity, almost every policy re-
alization of Algorithm 5.1 resembles a perfect exploration-exploitation policy. This establishes
a trajectory-wise optimality result for the AETC-d under the upper bound criterion. However,
this does not imply that the loss associated with the AETC-d is also asymptotically bounded
by G∗Sopt

, due to the adaptive selection of m(B). In fact, m is assumed deterministic in the
analysis in Section 4.3.

As a consequence, we have the following consistency result for the CDF estimator produced
by the AETC-d algorithm:

Corollary 5.3. Denote the CDF estimator produced by Algorithm 5.1 as F̂Y,aetcd(B). Under
Assumptions 4.1, 4.2 and 4.3, then with probability 1,

lim
B↑∞

W1

(
F̂Y,aetcd(B), FY

)
= 0.

Proof. See Appendix D.

6. Numerical experiments. In this section, we demonstrate the performance of the AETC-
d (Algorithms 5.1) for multifidelity estimation of univariate distributions. We will focus on
consistency, model misspecification, and optimality of exploration rates. The regularization
parameter αt is set as αt = 4−t in all simulations. Five methods will be considered for
estimating FY (y):

• (ECDF-Y): Empirical CDF estimator for FY based on the samples of Y only.
• (AETC-d): Algorithm 5.1.
• (AETC-d-em): A modification of Algorithm 5.1, where the noise in (4.3) is generated

using the empirical measure of the residuals in exploration (i.e., bootstrapping).
• (AETC-d-no): A modification of Algorithm 5.1, where the noise in (4.3) is omitted.
• (AETC-d-q): A modification of Algorithm 5.1 using quantile regression. See Appendix

E for a detailed description of the algorithm.
To evaluate results, we compute and report an empirical mean W1 distance (error) between

FY and the estimated CDF given by the algorithms over 200 samples. Since AETC-d produces
random estimators due to the exploration phase, the experiment is repeated 100 times with
the 5-50-95-quantiles recorded to measure this extra uncertainty.

6.1. Ishigami function. In this example, we investigate the performance of the proposed
AETC-d algorithm (Algorithm 5.1) on a multifidelity algebraic system consisting of Ishigami
functions [13]. We adopt a modified version of the setup in [23]. The high-fidelity model
output corresponds to the following random variable:

Y = sinZ1 + a sin2 Z2 + bZ4
3 sinZ1 + cZ4 + dZ5,(6.1)
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where a, b, c, d are deterministic constants, and Zi, i ∈ [5] are independent random variables,

Z1,2,3
iid∼ Unif(−π, π) Z4,5

iid∼ N (0, 1).

In the following experiments, we set a = 5 and b = 0.1. For the low-fidelity models, we will
consider two different scenarios with different model assumptions.

6.1.1. Perfect model assumptions. Let c = 1, d = 0.1. We first consider a synthetic
dataset consisting of two low-fidelity models:

X1 = sinZ1 + a sin2 Z2 + bZ4
3 sinZ1 + cZ4 + 5(6.2)

X2 = sinZ1 + a sin2 Z2 + bZ4
3 sinZ1 + 5.

In this case, both the linear model assumption (2.1) and the noise normality assumption
(Assumption 4.3) are satisfied, i.e., E[Y |X2] = X2− 5, E[Y |X1] = E[Y |X1, X2] = X1− 5. The
correlation between Y and X1, X2 are approximately 0.999 and 0.956, respectively. The cost
of sampling Y,X1 and X2 are assumed hierarchical, assigned as (c0, c1, c2) = (1, 0.05, 0.001).

We first compare the performance of AETC-d with ECDF-Y. The total budget B in the
experiment ranges from 10 to 105. The ground truth is taken as an empirical CDF of Y
computed using 107 independent samples. Accuracy results for ECDF-Y and AETC-d are
reported in Figure 1. In this example, the AETC-d consistently outperforms ECDF-Y by a
factor of around 3.8. The average estimation error decays to 0 as the budget goes to infinity,
verifying the consistency result in Corollary 5.3.

To inspect the optimality of exploration rates selected by AETC-d, we fix the total budget
at B = 103, and consider a deterministic version of Algorithm 5.1 with fixed exploration rate
m. The new algorithm collects m exploration samples to estimate the parametric coefficients,
and then selects Sopt for exploitation. In this example, Sopt = {1}, and the maximum ex-
ploration round is bB/1.051c = 951. We apply the deterministic algorithm and compute the
average W1 distance between the resulting estimator and FY over 100 independent experi-
ments for m = (10, 30, 50, 100, 200, 300, 400, 500, 600). According to Theorem 4.5, for fixed
m, the average error of the estimator given by the deterministic algorithm is asymptotically
bounded by a function of the form

f(m;α1, α2) =
α1√
m

+
α2√
B
cepr
−m

0 < m <
B

cepr
,(6.3)

for some constants α1, α2 > 0. Assuming the analysis in Theorem 4.5 is tight, we would expect
the mean error of the deterministic algorithm, as a function of m, to fit a curve of the form
(6.3). We use a nonlinear least-squares procedure to obtain such as a curve by optimizing over
α1, α2. We also run the AETC-d 100 times and record the 5-50-95 quantiles of the exploration
rates. The results are illustrated in Figure 1.

By comparing the mean errors committed by the deterministic algorithm at various fixed
exploration rates, we find that the 5-50-95 quantiles of the exploration rate chosen by the
AETC-d algorithm, 188-202-218, is relatively close to the optimal trade-off point, which is
around 130. This empirically suggests that the upper bound criterion is informative in terms
of balancing the exploration and exploitation errors.
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Figure 1. Numerical results for Model (6.2) (Top panel) and Model (6.4) (Bottom panel).
Comparison of the (log10) mean W1 distance between FY and the estimated CDFs given by the ECDF-
Y and the AETC-d as the total budget increases from 10 to 105. The 5-50-95 quantiles are plotted
for the AETC-d to measure its uncertainty in the exploration phase (Left). Fixing the total budget
B = 103, we compute the mean W1 error of the deterministic algorithm at different exploration rates
m, and the quantiles of the exploration rate from AETC-d (Right).

6.1.2. Approximate linear assumptions. Let c = d = 0. We now consider the same
low-fidelity models which were used in [23] for sensitivity analysis:

X1 = sinZ1 + 0.95a sin2 Z2 + bZ4
3 sinZ1(6.4)

X2 = sinZ1 + 0.6a sin2 Z2 + 9bZ2
3 sinZ1.

The correlation between Y and X1, X2 are approximately 0.999 and 0.950, respectively, which
is similar to the previous example. However, under the current setup, neither the linear model
relation (2.1) nor the Gaussian noise assumption is satisfied. Nevertheless, the correlations
between Y and X1, X2 suggest that the relationship between the high-fidelity and low-fidelity
models is approximately linear. The cost of sampling Y,X1 and X2 as well as the budget range
are the same as in the previous section. We repeat the same experiments (both the accuracy
and the optimality of exploration rates) and report the corresponding results in Figure 1.

Despite model misspecification, the AETC-d still demonstrates reasonable performance
until the total budget exceeds 104. When the budget is sufficiently large, both exploration
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and exploitation errors are so small that model misspecification errors start to dominate. A
further investigation of the model misspecification effects will be carried out in Section 6.2.
The optimal model selected by the AETC-d is Sopt = {1, 2}. By comparing the two plots in
the right panel in Figure 6.2, we can see that the AETC-d exploration rate is only slightly
above the optimal trade-off point.

Finally, to visualize the estimated CDFs, we conduct an instance study under three dif-
ferent budgets, B = 10k, k ∈ {3, 4, 5}. We apply AETC-d and ECDF-Y to the same training
dataset to estimate FY . The estimated CDFs are empirical CDFs of i.i.d. data points. We use
a kernel density estimator 1 to obtain a mollified version of their histograms. For consistency,
we apply the density function in R [24] with the default bandwidth (data-dependent), and
the Gaussian kernel for smoothing. The results are given in Figure 2. We see that, despite
model specification, AETC-d can more quickly capture certain features of the density such as
the symmetric hump structures near x = 0 and x = 5 compared to ECDF-Y.
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Figure 2. Three instances of density estimates based on the ECDF-Y and the AETC-d at budget
B = 103 (Left), B = 104 (Middle), and B = 105 (Right).

6.2. Short column. To further discuss the model misspecification effects, we consider an
analytic multifidelity model of a short column with cross-sectional area subject to bending
and axial force, which were originally used in [14, 21]. The high-fidelity model is,

Y = 1− 4Z4

Z1Z2
2Z3
−
(

Z5

Z1Z2Z3

)2

,

where Zi, i ∈ [5] are independent random variables, and their respective distributions are

Z1 ∼ Unif(5, 15) Z2 ∼ Unif(15, 25)

Z3 ∼ Lognormal(5, 0.5) Z4 ∼ N (2000, 4002)

Z5 ∼ N (500, 1002).

1Kernel density estimators commit additional approximation errors, but they are more illustrative than
CDFs, which are difficult to inspect visually.
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The three low-fidelity model outputs are

X1 = 1− Z4

Z1Z2
2Z3
−
(

Z5

Z1Z2Z3

)2

X2 = 1− Z4

Z1Z2
2Z3
−
(
Z5 + Z4Z5

Z1Z2Z3

)2

X3 = 1− Z4

Z1Z2
2Z3
−
(
Z5 + Z4Z5

Z2Z3

)2

.

The correlation between Y and Xi, i ∈ [3] are approximately 0.991, 0.829, and 0.712, respec-
tively. The cost of sampling Y and Xi, i ∈ [3], are assumed as 1 and 0.01, respectively, i.e.,
c0 = 1, c1 = c2 = c3 = 0.01.

We compare the performance of AETC-d and ECDF-Y at four different budgets, B =
10k, k ∈ [4], and report accuracy in the first plot of Figure 3. In this example, the estimation
error of AETC-d plateaus when the budget is only moderately large. A possible explanation,
as discussed in Section 6.1, is due to model misspecification. Such effects are often ubiquitous
in practice, suggesting that AETC-d has dubious practical value for a sufficiently large budget.

To mitigate the impact of model misspecification, we identify the misspecified assumptions
that prevent the model from converging. For every S ⊂ [n], the following decomposition holds:

Y = E[Y |XS ]︸ ︷︷ ︸
fS(XS)

+ (Y − E[Y |XS ])︸ ︷︷ ︸
εS

,

where fS : R → R is a measurable function, and εS is a centered random variable which is
uncorrelated with fS(XS). Assumption (2.1) assumes that fS a linear function of XS and εS
is independent of fS(XS). It was further imposed later that εS is Gaussian. Violation of any
of these hypotheses may cause the inconsistent behavior of the AETC-d in this example.

To inspect the linearity assumption, we expand the feature space by incorporating nonlin-
ear terms of the existing regressors to fit a larger linear model. To test the noise independence
condition, we can either drop the noise in (4.3) to reduce the erroneous noisy effect2, or use a
different method such as quantile regression to model the potential heteroscedasticity of the
noise. A brief description of using quantile regression combined with AETC-d in our setup
is given in Appendix E. We investigate the Gaussian assumption by replacing the Gaussian
noise emulator in (4.3) by an empirical measure sampler generated by residuals collected in
the exploration phase.

In the following experiment, we expand the original model by including higher order (poly-
nomial) terms of the existing features. We include additional regressors Xj

1 , j ∈ {2, 3, 4, 5},
and call this enlarged model L. (Note that Y ∼ X1 + intercept is the limiting model selected
by AETC-d in the original case.) Note that in L, an exploitation model is no longer defined by
the subset of regressors, but instead by the σ-field generated by the regressors. In fact, since
both X1 and X2

1 generate the same σ-field, E[Y |X1] = E[Y |X2
1 ]. As a result, the linear model

assumption (2.1) cannot hold simultaneously for both regressors as two distinct models unless
X1 is a constant. Thus, for each σ-field, we define its associated model as the union of the

2When the variance ratio between εS and Y is small, Y ≈ XT
S βS , so that adding the noise emulator has little

impact on the accuracy of the resulting estimator. When the ratio is moderate, adding εS as an independent
component will degrade the quality of the estimator if the independence assumption is violated.
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subsets of regressors that generate the σ-field, with exploitation cost given by the total cost
of the low-fidelity models used to compute the regressors3. In this case, any model generating
the same σ-field can be viewed as a sub-model under our definition. Also, in the exploitation
stage of AETC-d, we consider three alternative methods to estimate FY : AETC-em (empir-
ical noise), AETC-no (no noise), and AETC-q (quantile regression noise). The performance
of these modified estimators in both the original and the expanded models (L) are compared
in the second plot in Figure 3. For illustration, we plot the mean errors instead of the 5-50-95
quantiles region in the 100 experiments.

Figure 3 shows that the overall performance of all the methods under comparison improves
in the enlarged model L when the budget exceeds 102. This implies that adding nonlinear
terms of the existing regressors can help reduce the model misspecification effect that limit
the asymptotic accuracy of AETC-d. The improvement for AETC-d in model L diminishes
when the budget reaches a new threshold, after which the noise misspecification effect starts to
emerge. By comparing the exploitation methods, we find that the independence assumption,
as opposed to the Gaussian assumption, plays a more relevant role in causing the inconsistent
behavior of the model. In this example, either dropping the noise or using the quantile
regression for reconstruction is beneficial for mitigating the noise misspecification effects.

We end this section by providing an instance of the pointwise absolute error between FY
and the estimated CDFs given by the ECDF-Y, the AETC-d, the AETC-d (L), the AETC-
d-no (L), and the AETC-d-q (L) when B = 104, as in the last plot in Figure 3.
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Figure 3. Comparison of the (log10) mean W1 distance between FY and the estimated CDFs given
by the ECDF-Y and the AETC-d as the total budget increases from 10 to 104. The 5-50-95 quantiles
are plotted for the AETC-d to measure its uncertainty in the exploration phase (Left). Average esti-
mation errors of the estimated CDFs given by the ECDF-Y and the AETC-d with different exploitation
strategies in both the original and the expanded model L (Middle). An instance of pointwise absolute
errors of the CDFs given by the ECDF-Y, the AETC-d, the AETC-d (L), the AETC-d-no (L), and
the AETC-d-q (L) when B = 104 (Right).

3For example, if S = {1}, then the corresponding regressors are 1, Xj
1 , j ∈ [5], and the exploitation cost per

sample is simply c1, not 5c1, since sampling X1 with cost c1 allows one to generate the corresponding sample
of Xj

1 , j = 2, 3, 4, 5 at no additional cost.
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6.3. Parametrized PDEs. In the last experiment, we consider a multifidelity setup given
by a parametric elliptic equation. The particular setup is taken from [33, Section 7.1]: We
consider an elliptic PDE over a square spatial domain D = [0, 1]2 that governs displacement
in linear elasticity.

The parametric version of this problem equation seeks the solution u to the PDE,

(6.5)

{
∇ · (κ(p,x)∇u(p,x)) = f(x) ∀(p,x) ∈ P ×D
u(p,x) = 0 ∀(p,x) ∈ P × ∂D

where p ∈ R4 is a random vector with independent components uniformly distributed on
[−1, 1], and κ is modeled as a truncated Karhunen-Loéve expansion, given by

κ(p,x) = 1 + 0.5

4∑
i=1

√
λiφi(x)pi,

where (λi, φi) are ordered eigenpairs of an exponential covariance kernel on D. (See [33,
Section 7.1] for more details.) The displacement u is used to compute a scalar QoI, the
compliance or energy norm of the solution, which is the measure of elastic energy absorbed
in the structure as a result of loading,

cpl :=

∫
D
κ(x,p)∇u(p,x)T∇u(p,x)dx.(6.6)

We solve (6.5) for each fixed p via the finite element method with standard bilinear square
isotropic finite elements on a rectangular mesh.

In this example, we form a multifidelity hierarchy through mesh coarsening through mesh
parameter h. The model solved with mesh size h = 2−7 is the high-fidelity model. We create
three low-fidelity models based on more economical discretizations: h = 2−3, 2−2, 2−1. The
outputs of these models are the compliance QoI computed from the respective approximate
solutions.

The cost for each model is the computational time, which we take to be inversely propor-
tional to the mesh size squared, i.e., h2. (This corresponds to using a linear solver of optimal
linear complexity.) We normalize cost so that the model with the lowest fidelity has unit
cost, i.e., c0 = 4096, c1 = 16, c2 = 4, c3 = 1. The correlations between the outputs of Y and
X1, X2, X3 are 0.940, 0.841,−0.146, respectively. The total budget B ranges from 105 to 107.

To mitigate the potential model misspecification effects, we include the second-order in-
teractions between Xi, i ∈ [3] as additional regressors, i.e., XiXj , i, j ∈ [3]. In this case, we
have ten different σ-fields generated by the regressors, namely,

σ(Xi1Xj1 , Xi2Xj2 , Xi3Xj3) i1, i2, i3, j1, j2, j3 ∈ [3].

Their corresponding models are the maximal subsets of regressors generating the σ-fields, with
exploitation cost defined as the sum of the cost of the low-fidelity models used to build the
regressors. The oracle FY is taken as an empirical CDF constructed from 1.8×106 independent
samples of the high-fidelity model. Accuracy results for ECDF-Y, AETC-d, AETC-d-no and
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Figure 4. Comparison of the (log10) mean W1 distance between FY and the estimated CDFs given
by the ECDF-Y, the AETC-d, the AETC-d-no and the AETC-d-q as the total budget increases from
105 to 107. The 5-50-95 quantiles are plotted for the AETC-d algorithm to measure its uncertainty
in the exploration phase (Left). An instance of the densities given by the ECDF-Y and the AETC-d
when B = 106 (Right).

AETC-d-q are reported in the first plot in Figure 4. For visualization, we provide an instance
of the estimated densities (default density function in R applied to the estimated CDFs)
given by ECDF-Y and AETC-d using the same training dataset when B = 106 in Figure 4.

Figure 4 shows that within the budget range of this experiment, AETC-d is asymptotically
consistent and outperforms ECDF-Y by a substantial margin. The estimated density given
by AETC-d at B = 106 almost matches the density obtained from 1.8 × 106 independent
samples of Y , which approximately costs 1010 budget units. Little difference between AETC-
d, AETC-d-no and AETC-d-q is visible. A possible explanation for this is that the magnitude
of the variance of the model selected for exploitation (which is the full model in this example)
is much smaller than the variance of Y , making the potential noise misspecification effect
negligible under the budget range of this example. We substantiate this hypothesis by fitting
a linear model using the complete training data, and we approximately compute the variance
ratio between the model noise and Y , which is 3× 10−5 � 1.

7. Conclusions. In this paper, we introduce an efficient strategy for learning the distri-
bution of a scalar-valued QoI in the multifidelity setup. Under a linear model assumption, we
propose a semi-parametric approach for approximating the distribution by leveraging sam-
ples of models of different resolutions/costs. The main novelty in our analysis is to provide
an asymptotically informative and computationally estimable upper bound for the average
1-Wasserstein distance between the estimator and the true distribution, and using it to devise
an adaptive algorithm, AETC-d, for efficient budget allocation. We show that, for a large
budget, the AETC-d is consistent, and explores and exploits optimally under a proposed up-
per bound criterion. Our setup and algorithm require neither a model hierarchy nor an a
priori estimate of cross-model correlations. We also discuss various approaches to mitigating
the model misspecification impact when the linear regression, independence, and/or normality
assumptions are violated.

Distribution learning is considered a much harder problem compared to parameter es-
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timation. Our method takes an initial step towards addressing this problem, and provides
a potentially effective way to fully quantify the uncertainty of the QoI associated with a
high-fidelity model. The implementation of our algorithm is automatic, and enjoys certain
robustness when the model noise is relatively small.

Acknowledgement. Y. Xu thanks Xiaoou Pan for clarifying a uniform consistency result
in quantile regression under a random design setup. We also thank Ruijian Han for a careful
reading of an early draft, and for providing several comments that improved the presentation
of the manuscript.

8. Appendices.

A. Proof of Theorem 3.4. Without loss of generality, we assume F1(x) ≥ F2(x) for all
x ∈ R, otherwise one can divide into two cases and discuss separately. We first give a bound
for |F1(x)− F2(x)| which is tight in the asymptotic regime |x| → ∞:

|F1(x)− F2(x)| = F1(x)− F2(x) ≤ min{F1(x), 1− F2(x)} ≤ 2 exp

(
− |x|
C1C2

)
.(A.1)

To utilize the coupling information, note that for t > 0,

{Z1 ≤ x} ⊆ {Z2 ≤ x+ t} ∪ {Z2 − Z1 > t},

which implies

F1(x)− F2(x) ≤ F2(x+ t)− F2(x) + P (Z2 − Z1 > t) ≤ C3t+ 2 exp

(
− t

C1δ

)
,(A.2)

where the first inequality follows from applying (3.7) to the normalized sub-exponential ran-
dom variable (Z1 − Z2)/δ. Combining estimates (A.1) and (A.2), we can bound ‖F1(x) −
F2(x)‖pLp(R) as follows: Fixing T > 0 (which will be determined later),

‖F1(x)− F2(x)‖pLp(R) =

∫
|x|>T

|F1(x)− F2(x)|pdx+

∫
|x|≤T

|F1(x)− F2(x)|pdx

(A.1),(A.2)

≤
∫
|x|>T

2p exp

(
− p|x|
C1C2

)
dx+

∫
|x|≤T

[
C3t+ 2 exp

(
− t

C1δ

)]p
dx

≤ 2p+1C1C2

p
exp

(
− pT

C1C2

)
+ 2T

[
C3t+ 2 exp

(
− t

C1δ

)]p
.(A.3)

Setting t = C1δ log (1/δ) , T = C1C2
p log

(
2p+1C1C2

pδp

)
and substituting back into (A.3) yields

‖F1(x)− F2(x)‖pLp(R) ≤ δ
p +

2C1C2

p
log

(
2p+1C1C2

pδp

)[
C1C3δ log

(
1

δ

)
+ 2δ

]p
. log

(
1

δ

)[
δ log

(
1

δ

)]p
.(A.4)

Taking the p-th root on both sides of (A.4) completes the proof.
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B. Proof of Lemma 4.4. We first prove (4.6a). Since it is easier to work with the W2

distance when independence is assumed, we start by deriving an estimate for the W2 distance
between FY and FY ′ . Conditional on β̂S and σ̂2

S , the natural coupling (V1, V2) for FY and FY ′

V1 = XT
S βS + σSξ V2 = XT

S β̂S + σ̂Sξ ξ ∼ N (0, 1) ⊥⊥ XS

yields an upper bound for the average W2 distance between FY and FY ′ :

W 2
2 (FY , FY ′) ≤ EXS ,ξ

[
|V1 − V2|2

∣∣β̂S , σ̂2
S

]
= E

[
(XT

S (β̂S − βS))2
∣∣β̂S]+ |σ̂S − σS |2 · E[ξ2]

= (β̂S − βS)TΛS(β̂S − βS) + |σ̂S − σS |2.(B.1)

Note that (B.1) does not involve exploitation samples. We now average out the randomness
of noise in exploration for both terms in (B.1). For the first term, the fact

β̂S − βS ∼ N (0, σ2
S(ZTS ZS)−1)(B.2)

and the strong law of large numbers (SLLN) together yields that

EεS
[
(β̂S − βS)TΛS(β̂S − βS)

]
=
σ2
S

m
tr
(
ΛS(m−1ZTS ZS)−1

) SLLN'
σ2
S(s+ 1)

m
.(B.3)

For the second term, note that when εS is Gaussian, Cochran’s theorem tells us that the
distribution of σ̂S is independent of ZS (or exploration samples), i.e.,

σ̂S
D
=

σS√
m− |S| − 1

χm−|S|−1,(B.4)

where χm−|S|−1 is the Chi-distribution with (m− |S| − 1) degrees of freedom. Consequently,
using the exact moment formulas for χm−|S|−1, we have

EεS [|σ̂S − σS |2](B.5)

=
σ2
S

m− |S| − 1
E
[(
χm−|S|−1 −

√
m− |S| − 1

)2
]

=
σ2
S

m− |S| − 1

[
V[χm−|S|−1] +

(
E[χm−|S|−1]−

√
m− |S| − 1

)2
]

=
σ2
S

m− |S| − 1

m− |S| − 1−

(√
2Γ(m−|S|2 )

Γ(m−|S|−1
2 )

)2

+

(√
2Γ(m−|S|2 )

Γ(m−|S|−1
2 )

−
√
m− |S| − 1

)2


=
2σ2

S

m− |S| − 1

(
m− |S| − 1−

√
2(m− |S| − 1)

Γ(m−|S|2 )

Γ(m−|S|−1
2 )

)

≤
2σ2

S

m− |S| − 1

(
m− |S| − 1−

√
(m− |S| − 1)(m− |S| − 2)

)
≤

σ2
S

m− |S| − 1
·

√
m− |S| − 1

m− |S| − 2
'

σ2
S

m
.
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(B.3), (B.5) combined with Jensen’s inequality finishes the proof of (4.6a).
We next prove (4.6b). Conditional on β̂S and σ̂2

S , the sub-exponential assumption ensures
that Y ′ is a random variable with bounded r-th moments for all r > 0, i.e., for r > 2.
Appealing to the non-asymptotic estimates on the convergence rate of empirical measures in
Theorem 3.2 and averaging over exploration noise εS , we have

EAj ,εS
[
W1

(
F̂Y,S , FY ′

)]
≤ EεS [J1(FY ′)]√

NS
,(B.6)

where J1 is defined in (3.5). The desired result would follow if we can show that EεS [J1(FY ′)]→
J1(FY ) almost surely as m→∞.

Note from (B.4) that σ̂2
S ’s distribution does not depend on ZS . The strong consistency

of σ̂2
S follows immediately from tail probability estimates of Chi-distributions and the Borel-

Cantelli lemma. On the other hand, under the sub-exponential assumption on XS , for suf-
ficiently large m, with overwhelming probability, say 1 − m−2, that the largest and small-
est eigenvalues of ZTS ZS , λmax and λmin, are both of order m [19], i.e., λmin → ∞ and
log(λmax) = o(λmin) as m → ∞. An application of the Borel-Cantelli lemma yields that
log(λmax) = o(λmin) a.s. According to a result in [17, Theorem 1], β̂S is a strongly consistent
estimator for βS . Hence, with probability 1,

Y ′ := XT
S β̂S + σ̂Sξ

m→∞−−−−→
a.s.

XT
S βS + σSξ := Y ξ ∼ N (0, 1).(B.7)

Now define VS = (XS , ξ). It can be verified using independence between XS and ξ that
under Assumption 4.2, VS is a jointly sub-exponential random vector and satisfies the global
Lipschitz condition for all unit marginals. Write Y and Y ′ in a coupled form using VS :
Y = aT1 VS , Y

′ = aT2 VS , where a1 = (βS , σS)T , a2 = (β̂S , σ̂S)T . Conditional on ZS , the strong

consistency of β̂S and σ̂S implies that for large m (realization-dependent), ‖a2−a1‖2 < 1. We
are now in a position to apply Theorem 3.4 to bound EεS [J1(FY ′)]− J1(FY ): For large m,

|EεS [J1(FY ′)]− J1(FY )| ≤ EεS

[∫
R

∣∣∣√FY ′(y)(1− FY ′(y))−
√
FY (y)(1− FY (y))

∣∣∣ dy]
(i)

≤ EεS

[∫
R

√
|FY ′(y)(1− FY ′(y))− FY (y)(1− FY (y))|dy

]
(ii)

≤ EεS

[∫
R

√
|FY ′(y)− FY (y)|dy

]
(3.9)

. EεS
[
(‖β̂S − βS‖22 + ‖σ̂S − σS‖22)1/6

]
Jensen
≤ EεS

[
‖β̂S − βS‖22 + ‖σ̂S − σS‖22

]1/6

(B.5)

.

[
σ2
S

m

(
tr
(
m−1ZTS ZS

)−1
+ 1
)]1/6

m→∞−−−−→
a.s.

0,(B.8)

where (i) follows from the elementary inequality
√
a −
√
b ≤

√
|a− b|, and (ii) follows from
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the calculation

|FY ′(y)(1− FY ′(y))− FY (y)(1− FY (y))| = |FY ′(y)− FY (y)||1− (FY ′(y) + FY (y))|
≤ |FY ′(y)− FY (y)|.

The proof is finished by plugging (B.8) into (B.6).

C. Proof of Theorem 5.1. We only sketch the proof as the details are similar to [33,
Theorem 5.2]. First note that the strong consistency of the estimators used in the procedure
and the regularization step force m(B) ↑ ∞ as B ↑ ∞ with probability 1. Whenever B
is so large that m(B)/2 is greater than some threshold, the estimated ĜS function will be
sufficiently close to GS for every S ⊂ [n], so that the Sopt will be selected as the candidate for
exploitation afterwards. Since the threshold arrives before the exploration stops, the model
selected in the end is optimal. This proves the second part of (5.9). The first part of (5.9)
follows from a continuity perturbation argument.

D. Proof of Corollary 5.3. For fixed B, let N(B) be the exploitation sampling rate in
Algorithm 5.1, and denote the parametric model used for exploitation as Y ′(B), i.e.,

Y ′(B) = XT
S(B)β̂S(B)(m(B)) +N

(
0, σ̂2

S(B)(m(B))
)
,(D.1)

where the two terms on the right-hand side of (D.1) are independent. By Theorem 5.1,
with probability 1, S(B) = Sopt for all sufficiently large B, and m(B)/m∗(Sopt) → 1, i.e.,
m(B) → ∞ and N(B) → ∞ as B → ∞. Under Assumption 4.2, we apply (3.9) with p = 1
together with the strong consistency of β̂Sopt and σ̂2

Sopt
to conclude that W1(Y ′(B), Y )→ 0 as

B →∞ almost surely. (The randomness here only depends on exploration.)
Now fix a realization along which N(B) → ∞ and W1(Y ′(B), Y ) → 0 as B → ∞. Let

{Bk} be an arbitrary sequence such that Bk ↑ ∞ as k ↑ ∞. Since convergence in W1

implies convergence in distribution, {FY ′(Bk)} is δ-tight4 [32, Section 17.5]. This observation,

combined with the fact that F̂Y,aetcd(Bk) is an empirical measure of Y ′(Bk) consisting of N(Bk)

samples, implies that F̂Y,aetcd(Bk) converges to FY in distribution almost surely [1, Theorem

1]. To lift the convergence to W1, it only remains to show
∫
|x|dF̂Y,aetcd(Bk) →

∫
|x|dFY as

k →∞, which can be verified using (D.1) and the strong law of large numbers. The proof is
finished by noting that {Bk} is arbitrary.

E. A quantile regression framework. Quantile regression offers an alternative approach
to simulating Y through a random coefficient interpretation [15]. For any S ⊂ [n] and τ ∈
(0, 1), we assume the conditional τ -th quantile of Y on XS satisfies

F−1
Y |XS (τ) = XT

S βS(τ),(E.1)

where βS(τ) the τ -th coefficient vector. (E.1) is a standard quantile regression formulation,
and can be used to model heteroscedastic noise effects. βS(τ) can be computed by minimizing

4A sequence of probability measures {Pk} defined on a metric space is called δ-tight if for every ε > 0,
there exist a compact measurable set K and a sequence δk ↓ 0 such that Pk(Kδk ) > 1 − ε for every k, where
Kδk := {x : dist(x,K) < δk}.
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the following empirical ρτ -risk:

β̂S(τ) = arg min
β∈Rs+1

1

m

∑
`∈[m]

ρτ (Y` −XT
epr,`β) ρτ (x) = x(τ − 1x<0).

Thus, (E.1) approximately equals

F̂−1
Y |XS (τ) = XT

S β̂S(τ).(E.2)

As opposed to (4.3), (E.2) provides a way to simulate Y based on XS via inverse transform
sampling:

Y ≈ XT
S β̂S(U). U ∼ Unif(0, 1) ⊥⊥ XS .(E.3)

In our case, Xepr,`, ` ∈ [m] are i.i.d. samples so (E.1) fits into a random design quantile
regression framework as analyzed in [20], where the authors established a strong consistency
result for β̂S(τ) under mild conditions. The consistency result can be further proven to hold
uniformly for all τ ∈ [δ, 1− δ] for any fixed δ > 0, which justifies the asymptotic behavior of
the procedure in (E.2) as m,NS →∞.

In the quantile regression framework, obtaining the optimal choices for m and S is much
harder than in the linear regression setup. The AETC-d-q algorithm in Section 6 implements
(E.3) with m set as the adaptive exploration rate given by the AETC-d, S as the corresponding
model output for exploitation, and U approximated via 1

K

∑
j∈[K] δ j

K+1
with K = 100.
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