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Abstract. Multifidelity approximation is an important technique in scientific computation and
simulation. In this paper, we introduce a bandit-learning approach for leveraging data of varying
fidelities to achieve precise estimates of the parameters of interest. Under a linear model assumption,
we formulate a multifidelity approximation as a modified stochastic bandit, and analyze the loss for
a class of policies that uniformly explore each model before exploiting. Utilizing the estimated
conditional mean-squared error, we propose a consistent algorithm, adaptive Explore-Then-Commit
(AETC), and establish a corresponding trajectory-wise optimality result. These results are then
extended to the case of vector-valued responses, where we demonstrate that the algorithm is efficient
without the need to worry about estimating high-dimensional parameters. The main advantage of our
approach is that we require neither hierarchical model structure nor a priori knowledge of statistical
information (e.g., correlations) about or between models. Instead, the AETC algorithm requires only
knowledge of which model is a trusted high-fidelity model, along with (relative) computational cost
estimates of querying each model. Numerical experiments are provided at the end to support our
theoretical findings.
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1. Introduction. Computational models are ubiquitous tools in different as-
pects of science and engineering, from the discovery of new constitutive laws in physics
and mechanics to the design of novel systems such as multifunctional materials. Such
models are primarily developed to describe the system of interest accurately such that
they can replace time-consuming real-life experiments. In addition to accuracy, an
important aspect to consider is the computational cost of model evaluations, which
typically increases as the accuracy of the model increases. The trade-off between cost
and accuracy constitutes a fundamental challenge in computational science that has
been the subject of active research. This challenge has given rise to a widely studied
class of methods that involves several computational models with various levels of
accuracy and cost. In different contexts and formulations, such methods are called
multifidelity, multilevel, multiresolution, etc. The common theme among all these
methods is the availability of several models that describe the same system of interest
but with varying accuracy and computational cost.

1.1. Multifidelity models. The notion of fidelity may have different meanings
in different problems. A typical scenario corresponds to the level of discretization
for solving PDEs, where the finest mesh is referred to as the high-fidelity model
and coarser meshes are lower fidelity models. Other common multifidelity settings
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include the interpolation and regression models [21, 22], projection-based reduced-
order models [52, 48, 29, 10], machine learning models [57, 18, 16] and other reduced-
order models [43, 39]. The multifidelity setting considered in this paper is a general
abstraction that includes low-fidelity models instantiated as coarse discretizations, via
reduced-order models (e.g., reduced-basis methods), or other types of emulators such
as Gaussian processes [32, 47].

Combining the low-fidelity models with the high-fidelity model to accelerate com-
putational efficiency is a fruitful idea in engineering science [46]. It can be construed
as a model management strategy with three main categories of approaches: 1) Adap-
tation of the low-fidelity model to the high-fidelity model by the use of high-fidelity
information; approaches based on model correction fall into this category [20, 1, 2], 2)
fusion of multiple fidelity modes such as control variate approaches [12, 30, 42, 35, 28];
and 3) filtering approaches such as importance sampling where low-fidelity models
serve as filters and determine when to use the high-fidelity model [17, 23, 41, 44]. The
method developed in this paper belongs to the realm of fusion approaches, where we
assume in particular that a subset of low-fidelity models can be combined in a linear
way to effectively predict the value of the high-fidelity model.

1.2. Bandit learning. The idea of bandit learning first appeared in a study [54]
of treatment design problems in clinical trials. It was later developed as a powerful
tool to study sequential decision-making problems in an uncertain environment. The
primary goal of bandit learning is to find an adaptive strategy that produces close-to-
optimal decisions by minimizing the loss or regret. The uncertainty in an environment
can be modeled using different mechanisms, such as random feedback [36, 6, 19, 49],
adversarial manipulation [8, 7, 14], Markov chains [3, 27, 33], etc., giving rise to
a wealth of bandit setups that find use in numerous applications in practice [11,
60]. Regret, which plays a similar role as a loss function in statistical learning, can
be chosen in various forms, often depending on the specific application of interest.
For example, cumulative loss [6, 8] is widely used as regret to measure the overall
performance of a strategy, and a discounted version [27] can be used to account for
elapsed time during the strategy. In other situations where only the final decision
matters, the loss at a fixed (final) step is adopted [15, 5, 24]. Despite the diversity
of choices for regret, the overall goal is quite thematic: find a strategy that performs
similarly to an oracle by investing a reasonable amount of computational complexity
in a procedure that adaptively learns. The key philosophy behind bandit learning
thus lies in efficiently learning a competitive strategy and then utilizing the learned
knowledge for future use. A comprehensive treatment of the subject can be found in,
for instance, [38, 13].

1.3. Related work. Our approach in this article centers around using non-
hierarchical linear regression for constructing a multifidelity estimator. The idea of
using linear regression for multifidelity approximation is not completely new. For
instance, recent work has introduced a general linear regression framework to study
telescoping-type estimators in multifidelity inference [51, 50]. This work treats dif-
ferent fidelities as factor models with heterogeneous noise structure. Assuming that
the covariance matrix of the noise is known, the authors proposed a re-weighted least
squares estimator which is shown to be the best linear unbiased estimator for the quan-
tity of interest (under a fixed allocation choice). This framework offers a uniform per-
spective on many well-studied multifidelity and multilevel estimators [25, 26, 28, 45]
and provides certain limits on their theoretical performance. However, the construc-
tion utilizes oracle information about model correlations, which are often not known
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beforehand and must first be learned from the data, placing practical restrictions on
immediate deployment of such procedures. There is limited work on multifidelity
methods with non-hierarchical dependence, i.e., methods that do not necessarily as-
sume an ordering of models based on cost/accuracy [?], and algorithms for identifying
non-hierarchical relationships are an area of active research.

In [59], the authors proposed to compute a high-fidelity model using a linear
combination of low-fidelity surrogates corrected by a deterministic discrepancy func-
tion. This approach is easy to implement and allows classical tools to be used in the
analysis. Nevertheless, certain drawbacks exist: The assumption on the discrepancy
function can be restrictive when noise pollutes data in a random fashion, and realizing
the optimal performance of the method requires selecting the ‘best’ surrogate model
in practice, which is a nontrivial task when the computational budget is limited.

The work [34] has a similar title to this paper, but the setup and goals considered
there are completely different.

1.4. Contributions of this paper. This paper provides techniques to address
some of the challenges identified in Section 1.3 that limit the applicability of current
approaches. Under a type of linear model assumption (that is slightly stronger than
what is assumed in [51]), we introduce a bandit-learning approach that, under a budget
constraint, facilitates computational learning of the relation between different models
before an exploitation choice is committed. Our algorithm seeks to identify the best
selection of regressors by investing a portion of the budget in an exploration phase.
This selection is then utilized in an exploitation phase to construct a surrogate for
the high-fidelity model, which is significantly less expensive but exhibits comparable
accuracy.

We make three contributions in this paper:
• We formulate multifidelity approximation as a bandit-learning type prob-

lem under a linear model assumption. In particular, we introduce a class of
policies called uniform exploration policies and define their associated loss
(regret). We also derive an asymptotic formula for their loss as the compu-
tational budget goes to infinity.

• We propose an adaptive Explore-Then-Commit (AETC) algorithm (Algo-
rithms 5.1) that automatically identifies a trade-off point between exploration
and exploitation. We prove that the estimator produced by the algorithm is
consistent and asymptotically matches the best regression model with optimal
exploration. In particular, this algorithm requires only model cost informa-
tion and identification of a high-fidelity model. No model correlations or
statistics are needed as input.

• We initially consider scalar-valued responses, but subsequently generalize to
vector-valued high-fidelity models, and demonstrate that the algorithm is
efficient despite some potentially high-dimensional parameter estimation pro-
cedures.

Our numerical results strongly support for our theoretical findings. Our methodology
enjoys great generality as it does not require any particular knowledge of the mod-
els, i.e., hierarchical structure or correlation statistics. The procedure requires only
the identification of a trusted high-fidelity model, the ability to query the models
themselves, and a relative cost estimate of each model relative to the high-fidelity
model.

The rest of the paper is organized as follows. In Section 2, we introduce the
abstract setup of multifidelity approximation with which we will be working in the
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rest of the paper, followed by a brief review of the key ideas behind stochastic bandits.
In Section 3, we formulate multifidelity approximation as a modified bandit-learning
problem, and in Section 4, we prove consistency of the estimators used during the
exploitation phase and derive a nonasymptotic convergence rate. In Section 5, we
propose an adaptive algorithm, AETC, based on the estimated conditional mean-
squared errors from the analysis and establish a trajectory-wise optimality result for
it. In Section 6, we extend our results developed in the previous sections to the
case of vector-valued high-fidelity models, and justify the efficiency of the estimation
procedures where high-dimensional parameters are involved. In Section 7, we provide
a detailed study of the novel AETC algorithm via numerical experiments that verifies
our theoretical statements and demonstrates the utility of the AETC algorithm. In
Section 8, we conclude by summarizing the main results in the paper.

2. Background.

2.1. Notation. Fix n ∈ N. We let Y,X1, · · · , Xn be random vectors (possibly of
different dimensions) representing the high-fidelity model and n surrogate low-fidelity
models, respectively. Let ci (i ∈ [n]) and c0 be the respective cost of sampling Xi

and Y . For example, in parametrized PDEs, Xi is the approximate solution given
by the i-th solver under random coefficients of a PDE, and Y is the solution given
by the most accurate solver, which is assumed to be the ground truth. The cost ci
corresponds to the computational time. We make no assumptions about the accuracy
or costs of Xi relative to those of Xi+1. In particular, the index i does not represent
an ordering based on cost, accuracy, or hierarchy. For Xi (i ∈ [n]) and Y , let fi and f
be output quantity of interest maps that bring Xi and Y , respectively, to fi(Xi) ∈ Rki
and f(Y ) ∈ Rk0 , which are the quantities of practical interest. Understanding the
mean of f(Y ) is crucial for many simulation problems in engineering.

Computing the expectation of f(Y ) may not seem challenging at all: Under mild
assumptions on the distribution of Y , a Monte Carlo (MC) procedure exploits the law
of large numbers using an ensemble of independent samples to accurately estimate
the mean of f(Y ). However, in practice, obtaining numerous samples of Y can be
computationally expensive if c0 is large. This motivates the idea of estimating E[f(Y )]
using low-fidelity model outputs fi(Xi), which often contain some information about
f(Y ) and are cheaper to sample. For instance, when fi(Xi) and f(Y ) are scalars and
the correlation between them is high, one can construct an unbiased estimator for
E[f(Y )] by taking a telescoping sum of the low-fidelity models plus a few samples of
the ground truth f(Y ). Optimizing over the allocation parameters under a minimum
variance criterion leads to the Multi-Fidelity Monte-Carlo (MFMC) estimator. It
is shown in [45] that the MFMC method outperforms MC by a substantial margin
on several test datasets. However, successful implementation of the method requires
both knowledge of statistical information of and between the models, as well as a
hierarchical structure, neither of which may be known beforehand. More precisely, in
MFMC, a training stage is required to learn correlations between models, and guidance
on how to perform this training is heuristic. Our procedure is a principled approach
that effects a similar type of training in an automated way, and is accompanied by
theoretical guarantees. In the rest of this section, we introduce a general framework
in terms of learning the high-fidelity model from its surrogates. Our method utilizes
ideas from bandit learning and therefore is less reliant on any existing knowledge of
the models. We will need a general linear model assumption that has been widely
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used in statistics. For simplicity, we assume ki = 1 for i ∈ [n] and denote

X(i) := fi(Xi) ∈ R.(2.1)

We will first deal with the case where f(Y ) is a scalar, i.e., k0 = 1. The result will be
generalized to the vector-valued responses in Section 6.

2.2. Linear regression. Let S ⊂ [n] be a selection of low-fidelity models with
|S| = s > 0. Suppose f(Y ) and {X(i)}i∈S satisfy the following linear model assump-
tion:

f(Y ) = XT
S βS + εS ,(2.2)

where
XS = (1, (X(i))i∈S)T ∈ Rs+1

is the regressor vector, which includes a constant (intercept) term; βS ∈ Rs+1 is the
coefficient vector; and εS ∈ R is model noise, which we assume is independent of
XS . More precisely, we assume in the following discussion that εS is a centered sub-
Gaussian random variable with variance σ2

S . Note that even though (2.2) considers
only linear interactions, it is not overly restrictive since nonlinear interaction terms
in the ambient dimension can be added as new regressors to a larger linear model.
Identifying an optimal set of appropriately expressive regressors (features) is a much
harder problem that goes beyond the scope of this paper.

Our goal is to seek an efficient estimator for E[f(Y )], so taking the expectation
of (2.2) yields

E[f(Y )] = E[XT
S ]βS .(2.3)

The term E[XS ] on the right-hand side of (2.3) can be estimated by averaging the
independent joint samples of XS , which is the same as the Monte Carlo applied to
the conditional expectation E[f(Y )|XS ].

What is gained from sampling from f(Y )|XS instead of f(Y )? The two major
advantages are:

• TheN -sample Monte Carlo estimator for E[f(Y )] based on sampling f(Y ) has
mean-squared error V[f(Y )]/N , where V[·] denotes the variance. The same
procedure via sampling f(Y )|XS has mean-squared error V[E[f(Y )|XS ]]/N .
Since conditioning does not increase variance, the numerator of the latter is
bounded by the numerator of the former for any fixed N .

• Given a fixed budget, when
∑
i∈S ci � c0, the number of affordable samples

for f(Y )|XS is much larger than f(Y ), which can significantly reduce the
variance of the estimator.

Both observations provide some heuristics that (2.3) may give rise to a better estima-
tor for E[f(Y )] under certain circumstances.

In practice, neither the best model index set S (which is referred to as model S
in the rest of the article) nor the corresponding βS is known. Thus, we cannot avoid
expending some resources to estimate βS for every model S ⊂ [n] before deciding
which model can best predict E[f(Y )]. One possible way to achieve this is via bandit
learning.

2.3. Stochastic bandits. This section provides a brief overview of the philos-
ophy behind bandit learning, and in particular we focus on stochastic bandits, which
is the subfield most relevant to our procedure.
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Consider a multiarmed bandit setup: we are faced with k slot machines or arms,
where k ∈ N is fixed. At each integer time t, a player pulls exactly one arm and
this player will receive a reward. Rewards generated from the same arm at different
times are assumed to be independent and identically distributed; rewards generated
from different arms are independent and their distributions are stationary in time.
Given a fixed (time) horizon N , the goal of stochastic bandit learning is to seek a
policy with small ‘regret’. A policy π = (π1, · · · , πN ) ∈ [k]N is a random sequence
of choices adapted to the natural filtration generated by the past observations and
actions. ‘Regret’ is a special type of loss function that measures the quality of a policy.
In the classical setup, the regret of a policy π is defined as

RN (π) : = Nµmax − E

∑
t∈[N ]

zt(π)


=
∑
i∈[k]

TN (i)∆i TN (i) = E [#{t ≤ N, πt = i}] ,(2.4)

where zt(π) is the reward received at time t under policy π (i.e., corresponds to reward
πt at time t), µi is the expectation of the reward distribution of arm i, µmax :=
maxi∈[k] µi, and ∆i := (µmax−µi) is the suboptimality gap of arm i. Intuitively, (2.4)
measures the difference between the average total reward under π compared to the
best (oracle) mean reward, which is generally not known.

In practice we assume that the true reward distributions are not available, and
so it is necessary to expend effort estimating the expected reward of each arm. A
simple idea to estimate these average rewards is to pull each arm a fixed number of
times m, and use the gathered data to estimate the mean rewards. Such a process
is called an exploration stage in bandit learning. Based on the estimated rewards,
we can then make a decision about which arm performs the best and repeatedly
select it for the remaining time (the exploitation phase) until the horizon is reached.
A direct combination of the exploration and exploitation gives the Explore-Then-
Commit (ETC) algorithm, shown in Algorithm 2.1.

Algorithm 2.1 Explore-then-Commit (ETC) algorithm for stochastic bandits

Input: m: the number of exploration on each arm
Output: π = (πt)t∈[N ]

1: if t ≤ mk then
2: πt = dt mod ke
3: else
4: πt = arg maxi∈[k] µ̂i(mk), where µ̂i(mk) = 1

m

∑m·i
t=m·(i−1)+1 zt(π)

5: end if

The success of the ETC algorithm closely depends on the input parameter m,
which dictates how many times each arm is pulled in the exploration phase, and is
therefore indicative of the cost of this phase. A small m may result in poor estimation
(and thus poor exploration), and in this case there is a considerable chance that the
chosen exploitation strategy will be suboptimal. A large m, on the other hand, leaves
little room for exploitation, and regret will then be dominated by the exploration
phase. A good choice of m lies in finding the right trade-off point between explo-
ration and exploitation. When k = 2 and reward distributions are sub-Gaussian, a
near-optimal m can be explicitly computed [38, Chapter 6]. However, such explicit
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expressions often rely on the knowledge of the suboptimality gaps ∆i, which are not
available in general. More useful algorithms which can be viewed as adaptive gener-
alizations of the ETC include the Upper-Confidence Bound (UCB) algorithm [6] and
the Elimination algorithm [9].

One generalization of stochastic bandits pertaining to the multifidelity approxi-
mation problem of our interest is budget-limited bandits [55], where each arm has a
cost for pulling, and the number of pulls is constrained by a total budget instead of
the time horizon. Similar algorithms as well as the regret analysis in the stochastic
bandits can be carried out in the budget-limited setup [55, 56].

3. A bandit-learning perspective of the multifidelity problem. In this
section, we demonstrate that multifidelity approximation fits into a modified frame-
work of bandit learning, which we exploit to develop an algorithm. Since our multi-
fidelity goal is different from that in classical stochastic bandits, both the action set
and the loss function (regret) must be tailored. We begin with the former.

3.1. Action sets and uniform exploration policies. Our goal is to construct
a regression-based MC estimator for E[f(Y )] using the best regression model. How-
ever, the relationship between f(Y ) and XS is unknown, requiring us to first estimate
the coefficient vector βS in (2.3) for each S and then decide which model is opti-
mal. As a consequence, the action set contains both the exploration and exploitation
options for each S ⊂ [n]. Denote by A the set of actions. Then, we can write A as

A = {aepr(S), aept(S)}S⊂[n](3.1)

where

aepr(S) : collect a sample of (XS , f(Y ))

aept(S) : use the remaining budget to sample XS .

As opposed to stochastic bandits, actions here are highly correlated. For example,
exploration will not be allowed whenever an exploitation action is triggered (which
exhausts the budget), separating exploration and exploitation into two distinct phases.
In addition, action aepr(S) yields data for every S′ satisfying S′ ⊂ S. For simplicity,
we specialize our action set to consider only uniform exploration policies, i.e, each
exploration yields a sample of all regressors, incurring the cost

cepr :=

n∑
i=0

ci.(3.2)

This procedure is similar to the ETC algorithm (Algorithm 2.1) where arms are
explored to the same degree during exploration.

Let B > 0 be a given, fixed total budget, and let m > n + 1 be the number of
exploration actions. (We will specify how m is chosen later.) The budget Bepr spent
on exploration under a uniform exploration policy π and the budget Bept remaining
for exploitation are given by

Bepr = ceprm, Bept = B −Bepr.

During exploration, each action yields a sample of the form

Xepr,` =
(

1, X
(1)
` , · · · , X(n)

` , f(Y`)
)T

` ∈ [m],
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where the subscript ` is a sampling index. For S ⊂ [n], let Xepr,`|S ∈ Rs+1 (including
the intercept term) and Xepr,`|Y ∈ R be the restriction of Xepr,` to model S and f(Y ),
respectively. The coefficient vector βS in (2.2) can be estimated by a standard least
squares procedure:

β̂S = Z†SXepr|Y(3.3)

where

ZS = (Xepr,1|S , · · · , Xepr,m|S)
T
, Xepr|Y = (Xepr,1|Y , . . . Xepr,m|Y )

T

is the design matrix and data vector, respectively, and Z†S is the Moore-Penrose
pseudoinverse of ZS . For simplicity, we will assume that the design matrix has full

rank in the following discussion, so that Z†S :=
(
ZTS ZS

)−1
ZTS . In exploitation, one

selects an action aept(S) for some S ⊂ [n] and uses (2.3) to build an MC estimator for
E[f(Y )]. The true coefficient vector βS is unknown but can be replaced by the estimate

β̂S , yielding the Linear Regression Monte-Carlo (LRMC) estimator associated with
model S:

LRMCS =
1

NS

∑
`∈[NS ]

XT
S,`β̂S ,(3.4)

where NS is the number of affordable samples to exploit model S:

NS =

⌊
Bept

cept(S)

⌋
=

⌊
B − cexpm

cept(S)

⌋
cept(S) :=

∑
i∈S

ci,

and XS,` are i.i.d. samples of XS which are independent of the samples in the explo-
ration stage. Here we choose not to reuse samples from the exploration phase during
the exploitation process for convenience of analysis.

Remark 3.1. A similar analysis of the LRMC estimator that reuses or recycles
the exploration data can be carried out but with more complicated notation. For most
applications that we consider, where m/NS � 1 (since the high-fidelity model is often
substantially more expensive than the low-fidelity emulators), reuse has little impact
on the estimator in general. Regardless of analysis, one can always recycle exploration
samples in a practical setting; our numerical results show that recycling exploration
samples has negligible impact on the performance of our procedure for the examples
we have tested. See Appendix A for a theoretical justification, and Figure 2 in Section
7 for numerical evidence.

We will show in Section 4 that for fixed S ⊂ [n], LRMCS defined in (3.4) is, almost
surely, a consistent estimator for E[f(Y )], and we will provide a convergence rate.

3.2. Loss function. The loss function used in bandit learning is called regret,
which is often defined by the reward difference between a policy and an oracle. In our
case, it is more convenient to define loss as a quantity that we wish to minimize. Note
that the output of a uniform exploration policy π is an LRMC estimator (3.4), where
the selected model S satisfies πm+1 = aept(S). One way to measure the immediate

quality of (3.4) is through the following conditional mean-squared error (MSE) on β̂S :

MSES |β̂S = E
[
(LRMCS − E[f(Y )])

2 ∣∣β̂S] .(3.5)
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The LRMCS alone, despite being an unbiased estimator (which is easily verified using

independence), is not a sum of i.i.d. random variables unless conditioned on β̂S .
Once conditioned, LRMCS becomes a sum of i.i.d. random variables that is a biased
estimator for E[f(Y )]. Define the following statistics of XS ,

xS = E[XS ], ΣS = Cov[XS ].

By writing MSES |β̂S using the bias-variance decomposition, we obtain

MSES |β̂S = (xTS (β̂S − βS))2 + V
[
LRMCS

∣∣β̂S]
= (β̂S − βS)TxSx

T
S (β̂S − βS) +

1

NS
β̂TSΣS β̂S ,(3.6)

where V[·|β̂S ] is the β̂S-conditional variance operator. Note that (3.6) decomposes the
loss incurred in the exploration and exploitation phases by the bias term and variance
term, respectively. The average conditional MSE of the LRMC is defined as (3.6)
averaged over the randomness of the model noise εS in exploration:

MSES |β̂S := EεS
[
MSES |β̂S

]
=

1

NS

[
βTSΣSβS + σ2

S tr
(
ΣS(ZTS ZS)−1

)]
+ σ2

S tr
(
xSx

T
S (ZTS ZS)−1

)
.(3.7)

Note that MSES |β̂S defined in (3.7) is random, and one could alternatively define it

by averaging all the randomness (both εS and ZS). However, this approach is more
difficult to analyze due to the term E[(ZTS ZS)−1]. In the following discussion, we
will use (3.7) as the loss function associated with the uniform exploration policy π to
examine its average quality in terms of estimating E[f(Y )].

4. Consistency of the LRMC estimator. In this section, we will show that
the LRMC estimators constructed in the previous section are consistent estimators
for E[f(Y )]. The result can be derived as a corollary of a nonasymptotic estimate of

the convergence rate of the β̂S-conditional MSE. The following definition will be used
in the subsequent analysis:

Definition 4.1 (α-Orlicz norm). The α-Orlicz (α ≥ 1) norm of a random vari-
able W is defined as

‖W‖ψα := inf{C > 0 : E[exp(|W |α/Cα)] ≤ 2}.

Theorem 4.2. Fix S ⊂ [n]. Suppose XS satisfies

max

{
sup
‖θ‖2=1

E[〈XS , θ〉4]1/4, ‖‖XS‖2‖ψ1

}
≤ K <∞ K ≥ 1,(4.1)

where ‖ · ‖ψ1
is the 1–Orlicz norm, and ΛS := E[XSX

T
S ] = xSx

T
S + ΣS is invertible.

Then, for large m, with probability at least 1−m−2,

MSES |β̂S .
βTSΣSβS
NS

+ (s+ 1)σ2
S

logm

m
,(4.2)

where the implicit constant in . is independent of m.
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Proof. See Appendix B.

Theorem 4.2 implies the following consistency result of the LRMC estimator,
which follows immediately from (4.2) and an application of the Borel-Cantelli lemma:

Corollary 4.3 (consistency of the LRMC). Let {Bk}∞k=1 satisfy limk↑∞Bk =
∞, and let mk, Nk be the respective exploration round and exploitation samples sat-
isfying min(mk, Nk) → ∞. For fixed S ⊂ [n], denote LRMCS,k the LRMC estimator

under budget Bk, and β̂S,k the corresponding estimator for βS. Then, for almost every

sequence {β̂S,k}∞k=1, LRMCS,k
P−→ E[f(Y )] as k →∞.

Without a nonasymptotic convergence rate, a strong consistency result for the
LRMC estimator can be established using existing results in [37, Theorem 1]. In fact,

a sufficient condition for the estimator β̂S (hence σ̂2
S) to be strongly consistent is that

the largest and smallest eigenvalues of (ZTS ZS)−1, λmax and λmin, satisfy λmin → ∞
and log λmax/λmin → 0 as m→∞ a.s., which is verifiable under the condition (4.1).

5. Algorithms. In this section, we first analyze the asymptotic loss associated
with uniform exploration policies. Then, we propose an adaptive ETC (AETC) al-
gorithm based on the estimated average MSEs, which selects the optimal exploration
round and the best model to commit for large budget almost surely. For convenience,
we will ignore all integer rounding effects in the rest of the discussion.

5.1. Oracle loss of uniform exploration policies. A uniform exploration
policy spends the first m rounds on exploration and then chooses a fixed model S
among the subsets of [n] for exploitation. Fixing B and for each S, the optimal explo-
ration mS(B) balances the terms in expression (3.7). The best uniform exploration
policy is the one that stops exploring at time mS(B) and then picks model S for
exploitation, where model S has the smallest average conditional MSE computed at
the optimal exploration round mS(B). In order to develop computable expressions,
we will be mainly concerned with the case when B tends to infinity.

To find the optimal m for fixed S, note that for sufficiently large m, the law of
large numbers tells us that almost surely from (3.7),

MSES |β̂S =
1

NS

(
βTSΣSβS + σ2

S tr
(
ΣS(ZTS ZS)−1

))
+ σ2

S tr
(
xSx

T
S (ZTS ZS)−1

)
' cept(S)

B − ceprm

(
βTSΣSβS +

1

m
σ2
S tr
(
ΣSΛ−1

S

))
+

1

m
σ2
S tr
(
xSx

T
SΛ−1

S

)
' 1

B − ceprm
cept(S)βTSΣSβS +

1

m
σ2
S tr
(
xSx

T
SΛ−1

S

)
,(5.1)

where A1(m) ' A2(m) means that A1(m)/A2(m)→ 1 as m→∞ with probability 1.
Denoting

k1(S) = cept(S)βTSΣSβS k2(S) = σ2
S tr
(
xSx

T
SΛ−1

S

)
≤ (s+ 1)σ2

S ,(5.2)

the asymptotically best m for exploiting model S can be found by minimizing (5.1) :

mS = arg min
1<m<B/cepr

k1(S)

B − ceprm
+
k2(S)

m
=

B

cepr +
√

ceprk1(S)
k2(S)

,(5.3)

where the latter equality can be computed explicitly since (5.1) is a strictly convex
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function of m in its domain. The MSES |β̂S corresponding to m = mS is

MSE
∗
S |β̂S =

(
√
k1(S) +

√
ceprk2(S))2

B
∝
(√

k1(S) +
√
ceprk2(S)

)2

.(5.4)

The best model is the one that has the smallest MSE
∗
S |β̂S under the optimal explo-

ration round:

S∗ = arg min
S⊂[n]

MSE
∗
S |β̂S = arg min

S⊂[n]

(√
k1(S) +

√
ceprk2(S)

)2

,(5.5)

where the right-hand side is assumed to have a unique minimizer. The uniform ex-
ploration policy π∗ with exploration round count m = mS∗ (more precisely (bmS∗c))
and exploitation action aept(S

∗) achieves the smallest asymptotic loss among all uni-
form exploration policies; such a policy is referred to as a perfect uniform exploration
policy. Note that determination of this optimal policy requires oracle information,
thus cannot be directly applied in practice. We will provide a solution for this in the
next section.

Remark 5.1. For every S ⊂ [n], one can verify that the numerator in (5.4) is
bounded by 2(k1(S)+ceprk2(S)). On the other hand, the MC estimator using the high-
fidelity samples alone has MSE of a similar form with numerator c0V[f(Y )] (Section
2.2). Taking the quotient of the two quantities yields

2(k1(S) + ceprk2(S))

c0V[f(Y )]

(5.2)

≤ 2(cept(S)βTSΣSβS + cepr(s+ 1)σ2
S)

c0V[f(Y )]

(2.2)

≤ 2

(
cept(S)

c0
+
cepr(s+ 1)

c0

σ2
S

V[f(Y )]

)
.

This can be unconditionally bounded by 2(n + 1)(n + 2) for all S ⊂ [n], and can be
significantly smaller than 1 if both

cept(S)

cepr
� 1

σ2
S

V[Y ]
� 1.(5.6)

This implies that the best uniform exploration policies are at most a constant (which
only depends on n) worse than the classical MC, and can be significantly better if
(5.6) is satisfied for at least one S (which is often the case in practice).

5.2. An adaptive ETC algorithm. Finding a uniform exploration policy is
impossible without oracle access to βS ,ΣS , xS , σ

2
S and Λ−1

S . These quantities, despite
being unknown, can be estimated at any particular time t in exploration (t > s+ 1):

β̂S(t) = Z†SXepr|Y (using the first t samples) x̂S(t) =
1

t

∑
`∈[t]

Xepr,`|S

(5.7)

Σ̂S(t) =
1

t− 1

∑
`∈[t]

(Xepr,`|S − x̂S(t))(Xepr,`|S − x̂S(t))T

σ̂2
S(t) =

1

t− s− 1

∑
`∈[t]

(
Xepr,`|Y −Xepr,`|S β̂S

)2

Λ̂−1
S (t) =

(
1

t
ZTS ZS

)−1
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Note that σ̂2
S(t) is an unbiased estimator for σ2

S when the noise is Gaussian. Plugging
(5.7) into (3.7) and ignoring the higher order term σ2

S tr
(
ΣS(ZTS ZS)−1

)
yields the

sample estimator for MSES |β̂S at time t:

M̂SES |β̂S (t) =
1

B − ceprt
β̂TS (t)Σ̂S(t)β̂S(t) +

1

t
σ̂2
S(t) tr

(
x̂S(t)x̂TS (t)Λ̂−1

S (t)
)
.(5.8)

We call (5.8) the empirical average conditional MSE of model S at time t, which
we subsequently call the empirical MSE. Correspondingly, we define more empirical
estimates of quantities that were previously defined in terms of oracle information:

k1,t(S) = cept(S)β̂TS (t)Σ̂S(t)β̂S(t), k2,t(S) = σ̂2
S(t) tr

(
x̂S(t)x̂TS (t)Λ̂−1

S (t)
)
,

(5.9)

mS(t) =
B

cepr +
√

ceprk1,t(S)
k2,t(S)

, MSE
∗
S |β̂S (t) =

(
√
k1,t(S) +

√
ceprk2,t(S))2

B
.

To mimic the idea of a perfect uniform exploration policy, we start by collecting
the smallest necessary number of exploration samples to make the above estimation
possible, which requires |S| + 2 exploration rounds. For t ≥ |S| + 2, we use the
collected exploration data to compute (5.7), (5.8), (5.9), from which we can estimate
the best empirical MSE for each model S . At this point, if mS(t) > t, then more
exploration is needed for model S, and the optimal empirical MSE is approximately

MSE
∗
S |β̂S (t) = M̂SES |β̂S (mS(t)). Otherwise, the best trade-off point has passed and

stopping immediately yields the minimal empirical MSE, which equals M̂SES |β̂S (t).
An algorithm could use the estimated optimal expected MSEs to determine which
model is currently most favorable for exploitation. But another exploration round
should transpire if mS(t) for this favorable model is larger than the current step t.

During implementation, we use the above procedure once t exceeds a relatively
small number, i.e., the maximum number of regressors plus one. The estimation error
of the second term in (5.8) is of constant order and cannot be ignored at the beginning.
If it becomes pathologically close to zero during the initial stages of the algorithm,
exploration may terminate after only a few rounds. To combat this deficiency, we
employ a common regularization in bandit learning: For every S, we additively aug-
ment k2,t(S) with a small regularization parameter αt, which decays to 0 as t → ∞.
For large B, adding αt encourages the algorithm to explore at the beginning, but the
encouragement becomes negligible as αt → 0. Putting the ideas together yields the
following adaptive ETC (AETC) algorithm for multifidelity approximation:

5.3. AETC consistency and optimality. Algorithm 5.1 ensures that both
exploration and exploitation go to infinity as B →∞. (See Appendix C.) As a conse-
quence, almost surely, the model chosen by Algorithm 5.1 for exploitation converges
to S∗ and the corresponding exploration is asymptotically optimal.

Theorem 5.2. Let m(B) be the exploration round chosen by Algorithm 5.1 under
budget B, and S(B) be the model for exploitation, i.e., S(B) = S∗(m(B)). Suppose
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Algorithm 5.1 AETC algorithm for multifidelity approximation (single-valued case)

Input: B: total budget, ci: cost parameters, αt ↓ 0: regularization parameters
Output: (πt)t

1: compute the maximum exploration round M = bB/ceprc
2: for t ∈ [n+ 2] do
3: πt = aepr([n])
4: end for
5: while n+ 2 ≤ t ≤M do
6: for S ⊂ [n] do
7: compute k1,t(S), k2,t(S) using (5.7), (5.9), and set k2,t(S)← k2,t(S) + αt
8: compute mS(t) using (5.9)

9: compute the optimal MSE using (5.8): hS(t) = M̂SES |β̂S (mS(t) ∨ t)
10: end for
11: find the optimal model S∗(t) = arg minS⊂[n] hS(t)
12: if mS∗(t)(t) > t then
13: t← t+ 1 and set πt = aepr([n])
14: else
15: t←M + 1 and set πt = aept(S

∗(t))
16: end if
17: end while

(4.1) holds uniformly for all S ⊂ [n], and limt→∞ αt = 0. Then, with probability 1,

lim
B→∞

m(B)

mS∗
= 1,(5.10a)

lim
B→∞

S(B) = S∗,(5.10b)

where S∗ and mS∗ are the model choice and exploration round count given oracle
information defined in (5.5) and (5.3), respectively.

Proof. See Appendix C.

Theorem 5.2 concludes that as the budget goes to infinity, both the exploration
round count and the chosen exploitation model will converge to the optimal ones given
by the perfect uniform exploration policies for almost every realization. However, this
does not imply that the loss of the corresponding policy π asymptotically matches the
loss of the perfect uniform exploration policy. Indeed, the formula defining the loss in
(3.7) assumes m is deterministic and cannot be applied when m = m(B) is chosen in
an adaptive (and random) manner. Selecting αt is often considered an art in bandit
learning, and for us is mostly used for theoretical analysis. In practice, we observe
that it is sufficient to choose αt as a sequence with exponential decay in t.

Remark 5.3. Let N(B) denote the number of affordable samples for exploiting
under budget B. (5.10a) implies that both m(B) and N(B) diverge as B goes to
infinity. In addition, one can see from the proof that S∗(t) = S∗ for sufficiently large
t almost surely. These combined with Theorem 4.2 imply that the estimators produced
by Algorithm 5.1 are almost surely consistent.

6. Vector-valued responses and efficient estimation.
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6.1. Vector-valued high-fidelity models. We now generalize the results in
the previous section to the case of vector-valued responses, i.e., k0 > 1. Let

f(Y ) = (f (1)(Y ), · · · , f (k0)(Y ))T ∈ Rk0

denote the response vector. The linear model assumption in (2.2) is modified as
follows:

f(Y ) = βSXS + εS ,(6.1)

where εS = (ε
(1)
S , · · · , ε(k0)

S )T ∼ N (0,ΓS) is a centered multivariate normal distri-

bution with covariance matrix ΓS , and βS = (β
(1)
S , · · · , β(k0)

S )T ∈ Rk0×(s+1) is the
coefficient matrix for model S. For fixed S, one may use (3.3) to estimate the coeffi-

cients β
(j)
S by β̂

(j)
S for j ∈ [k0], and the corresponding LRMC estimators can be built

similarly as in (3.4). To generalize the MSE, we consider a common class of quadratic
risk functionals to measure the quality of the LRMC estimators. Let Q ∈ Rq×l, and
let θ̂ be an estimator for θ ∈ Rl where q is arbitrary. The Q-risk of θ̂ is defined as

Risk(θ̂) = E
[∥∥∥Q(θ̂ − θ)

∥∥∥2

2

]
= E

[
(θ̂ − θ)TQTQ(θ̂ − θ)

]
,(6.2)

where we suppress the notational dependence of Risk on Q. We use the following
conditional Q-risk on the estimated coefficient matrix β̂S in place of (3.5):

RiskS |β̂S := Risk(LRMCS)|β̂S = E
[
‖Q(LRMCS − E[f(Y )])‖22 |β̂S

]
(6.3)

where above Q ∈ Rq×k0 for arbitrary q. A similar result as Theorem 4.2 can be
obtained for the LRMC estimator under (6.3):

Theorem 6.1. Under the same conditions as in Theorem 4.2 and the joint nor-
mality assumption (6.1), the following result holds: For large m, with probability at
least 1−m−2,

RiskS |β̂S .
1

NS
tr
(
ΣSβ

T
SQ

TQβS
)

+ (s+ 1) tr
(
QΓSQ

T
) logm

m
,(6.4)

where the implicit constant in . is independent of m.

Other results in the previous section (including Algorithm 5.1 and Theorem 5.2)
can also be generalized to the vector-valued case; since the ideas are similar, we do not
restate them here. An extended discussion of the results and the proof of Theorem
6.1 can be found in Appendix D. The corresponding algorithm is Algorithm D.1.

6.2. Efficient estimation. Estimation for vector-valued responses is more chal-
lenging due to the presence of high-dimensional parameters. Nevertheless, we are only
interested in some functionals of the high-dimensional parameters, i.e., tr

(
QΓSQ

T
)

for instance instead of ΓS itself. For these functionals, the plug-in estimators are
relatively accurate for t & s + 1. See Appendix D for a discussion that theoretically
establishes this point.

7. Numerical simulations. In this section we demonstrate performance of the
AETC algorithms (Algorithms 5.1 and D.1). The regularization parameters αt are
set as αt = 4−t in all simulations. We will utilize four methods to solve multifidelity
problems:
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(MC) Classical Monte Carlo, where the entire budget is expended over the
high-fidelity model.

(MFMC) The multifidelity Monte Carlo procedure from [45], which is provided
with oracle correlation information in Table 1.

(AETC) Algorithm 5.1 (for scalar responses) or D.1 (for vector responses).
(AETC-re) Algorithm 5.1 or D.1, but we recycle samples from exploration when

computing exploitation estimates. See Remark 3.1.
To evaluate results, we compute and report an empirical mean-squared error over
500 samples. Since both the AETC and AETC-re produce random estimators due to
the exploration step, the experiment (including both exploration and exploitation) is
repeated 200 times with the 0.05-0.50-0.95-quantiles recorded.

7.1. Multifidelity finite element approximation for parametric PDEs.
In the first example, we investigate the performance of our approach on multifidelity
parametric solution of linear elastic structures. We consider two scenarios associated
with different geometries of the domain, namely square and L-shape structures. The
geometry, boundary conditions, and loading in these structures are shown in Figure 1.

F

1

F

1

Fig. 1. Geometry, boundary conditions, and loading for two linear elastic structures, the
square and the L-shape. The regions in which the vector-valued quantities are investigated
are highlighted with the light blue color.

The model is an elliptic PDE that governs motion in linear elasticity. In a para-
metric setting, we introduce the parametric/stochastic version of this governing equa-
tion. In a bounded spatial domain D with boundary ∂D, the parametric elliptic PDE
is

(7.1)

{
∇ · (C(p,x)∇u(p,x)) = f(x) ∀(p,x) ∈ P ×D
u(p,x) = 0 ∀(p,x) ∈ P × ∂D

where C, the elasticity matrix dependent on state variables x, is parameterized with
the random variables p, and f is the forcing function. We assume that p ∈ P is a d-
dimensional random variable with independent components {pi}di=1. The solution of
this parametric PDE is the displacement u ≡ u(p,x) : P×D → R. The displacement
is used to compute the scalar quantity of interest, the compliance, which is the measure
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of elastic energy absorbed in the structure as a result of loading,

cpl :=

∫
D

∇u(p,x)TC(p,x)∇u(p,x)dx(7.2)

The linear elastic structure is subjected to plane stress conditions and the uncertainty
is considered in the material properties, namely the elastic modulus, which manifests
in the model through the random parameters p. To model the uncertainty, we consider
a random field for the elastic modulus via a Karhunen-Loéve (KL) expansion:

(7.3) E(p,x) = E0(x) + δ

[
d∑
i=1

√
λiEi(x)pi

]

where δ = 0.5, Ē = 1 are constants, and the random variables pi are uniformly
distributed on [−1, 1] and the eigenvalues λi and basis functions Ei are taken from
the analytical expressions for the eigenpairs of an exponential kernel on D = [0, 1]2.
The Poisson’s ratio is ν = 0.3, and we use d = 4 parameters. We solve the partial
differential equation (7.1) for each fixed p via the finite element method with standard
bilinear square isotropic finite elements on a rectangular mesh.

In this example, we form a multifidelity hierarchy through mesh coarsening: Con-
sider n = 7 mesh resolutions with mesh sizes h = {1/(28−L)}7L=1 where L denotes
the level. The mesh associated with L = 1 yields the most accurate model (highest
fidelity), which is taken as the high-fidelity model in our experiments. To utilize the
notation presented earlier in this article, our potential low-fidelity regressors is formed
from the compliance computed form various discretizations,

X(i) = cpl(i) ∈ R, i ∈ [6],

where cpl(i) is the compliance of the solution computed using a solver with mesh size
h = 2i−7. We provide more details about the discretization and the uncertainty model
of this section in Appendix E.

The cost for each model is the computation time, which we take to be inversely
proportional to the mesh size squared, i.e., h2. (This corresponds to employing a
linear solver of optimal linear complexity.) We normalize cost so that the model with
the lowest fidelity has unit cost. The total budget B ranges from 105 to 4× 105, and
our simulations increment the budget over this range by 0.5× 105 units.

7.1.1. Scalar high-fidelity output. In the first experiment, the response vari-
able is chosen as the compliance of the high-fidelity model, i.e.,

f(Y ) = cpl(0) ∈ R.

Therefore, for AETC we use Algorithm 5.1. The oracle statistics of f(Y ) and X(i)

are computed over 50000 independent samples, and shown in illustrated in Table 1.

In both cases, the expensive models are more correlated with the high-fidelity
model than the cheaper ones. Such hierarchical structure is often a necessary as-
sumption for the implementation of multifidelity methods, the MFMC, for instance.

Accuracy results for various multifidelity procedures is shown in the first two plots
in Figure 2. As the budget goes to infinity, the model selected by AETC converges to
the minimizer given by (5.5), which can be explicitly computed using oracle informa-
tion. Particularly, solutions to (5.5) in the case of the square domain and the L-shape
domain are respectively as follows:
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Models f(Y ) X(1) X(2) X(3) X(4) X(5) X(6)

Corr(·, f(Y )) 1 0.998 0.992 0.976 0.940 0.841 -0.146
Mean 9.641 9.197 8.749 8.287 7.782 7.141 6.160
Standard deviation 0.127 0.113 0.099 0.086 0.072 0.052 0.027
Cost 4096 1024 256 64 16 4 1

Models f(Y ) X(1) X(2) X(3) X(4) X(5) X(6)

Corr(·, f(Y )) 1 0.999 0.995 0.980 0.932 0.733 -0.344
Mean 25.940 24.256 22.902 21.180 19.054 16.072 12.275
Standard deviation 0.290 0.242 0.195 0.149 0.104 0.061 0.070
Cost 4096 1024 256 64 16 4 1

Table 1
Oracle information of f(Y ) and X(i) (approximated with 3 digits) in the case of the

square domain (Top) and the L-shape domain (Bottom).

• Square domain: f(Y ) ∼ X(4) +X(5) +X(6) + intercept
• L-shape domain: f(Y ) ∼ X(3) +X(4) +X(5) +X(6) + intercept.

Neither limiting model above will be used by the MFMC estimator as the relationship
between cost and correlation does not satisfy the assumption [45, condition (20)]. For
every budget level B under our test, we compute the empirical probability (as a
percentage) that the limiting model is selected by AETC and plot this in rightmost
panel in Figure 2.
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Fig. 2. Comparison of the (log10) mean-squared error of the LRMC estimator given by
the AETC algorithm, the AETC algorithm reusing the exploration samples (AETC-re), the
MC estimator, and the MFMC estimator as the total budget increases from 105 to 4× 105 in
the case of the square domain (Left) and the L-shape domain (Middle). The 0.05-0.50-0.95-
quantiles are plotted for the LRMC estimator to measure its uncertainty. We also compute
the probability (plotted as a percentage) that the AETC algorithm selects the limiting model
given by (5.5) (Right).

Figure 2 shows that for both domain geometries, the AETC algorithm outper-
forms both the MC and the MFMC by a notable margin, even though the latter has
access to oracle correlation statistics that are not provided to AETC. Little difference
between AETC and AETC-re is visible, which is not surprising since the number of
the exploitation samples is much larger than the number of exploration rounds. The
mean-squared error of AETC is smaller in the case of the square domain than in the
L-shape domain under the same budget, for which a possible explanation is that the
variance of the surrogate models in the former is smaller than in the latter (Table 1),
making the exploration procedure more efficient in the square domain case. Finally,
note that as the budget goes to infinity, the mean-squared error of the AETC algo-
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rithm decays to zero, and the frequency of the AETC exploiting the limiting model
given by (5.5) converges to 1, verifying the asymptotic results in Theorem 5.2.

7.1.2. Vector-valued high-fidelity output. The same experiment is repeated
when f(Y ) is taken as a vector-valued response, and hence we utilize Algorithm D.1.
We take f(Y ) to be defined by 9 randomly selected components of the magnitude of
the discrete solution (displacement) given by the high-fidelity model within a region
shown with the highlighted (blue) color in Figure 1, i.e.,

f(Y ) := ū(0)|T ū(0) =

√(
u

(0)
x

)2

+
(
u

(0)
y

)2

∈ R2601
+

where T is a subset of coordinates in the highlighted region in Figure 1 with |T | = 9,
and the arithmetic operations above are taken componentwise. The full spatial domain
of the structures depicted in Figure 1 is in [0, 1]2, and the highlighted regions are
squares with the size 0.5 × 0.5 in the center and lower left corner of the square and
L-shape structures, respectively. In order to compute the vector-valued quantity at
the same points across all resolutions, we evaluate ū on a fixed 51 × 51 mesh across
different resolutions, where the evaluations are accomplished by using the continuous
solution from the finite element approximation.

For the square domain, T is taken as a randomly selected 3 × 3 block of pixels
from the 51 × 51 solution vector corresponding to the highlighted region in Figure
1. For the L-shape domain, T is taken as 9 randomly sampled components from the
51× 51-dimensional solution vector corresponding to the highlighted region in Figure
1. For both cases, Q is the identity matrix I9, so the Q-risk defined in (6.3) is simply
the sum of the mean-squared error of each response. We show oracle information of
the correlations between X(i) and f (j)(Y ), i ∈ [6], j ∈ [9] in Figure 3.

Fig. 3. Correlations between X(i) and f (j)(Y ), i ∈ [6], j ∈ [9] in the case of the square
domain (Top) and the L-shape domain (Bottom). The entry associated to indices (Xi, Yj)

is the value of Corr(X(i), f (j)(Y )).

For both domain structures, cheaper models have some strong correlations with
the high-fidelity model, implying that the cost-correlation hierarchical structure (an
assumption for the MFMC) is violated. We thus compare only the MC estimator
with the AETC (for vector-valued high-fidelity output). The oracle limiting models
to which AETC will converge are:
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• Square domain: f(Y ) ∼ X(4) +X(5) +X(6) + intercept
• L-shape domain: f(Y ) ∼ X(3) +X(4) +X(5) +X(6) + intercept.

The details of the results are given in Figure 4, which are consistent with the conclusion
drawn from Figure 2.
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Fig. 4. Comparison of the (log10) Q-risk of the LRMC estimator given by the AETC
algorithm and the MC estimator as the total budget increases from 105 to 4 × 105 in the
case of the square domain (Left) and the L-shape domain (Middle). The 0.05-0.50-0.95-
quantiles are plotted for the LRMC estimator to measure its uncertainty. We also compute
the probability (plotted as a percentage) that the AETC algorithm selects the limiting model
given by (D.11) (Right).

7.2. Mixture of reduced-order models. In this example, we consider a multi-
fidelity problem using the same model as in the previous section on the square domain,
but we generate different types of reduced-order models (or surrogate models) which
approximate the compliance of the solution to (7.1). We will use the compliance com-
puted via the Finite Element Method on a 26× 26 mesh as the ground truth, i.e., the
surrogate model X(1) in the first table in Table 1 is treated as the high-fidelity model
Y . We explore two classes of choices for reduced-order models:

• Gaussian process (GP) emulators. Low-fidelity regressors X(i) for i ∈ [6]
are generated as the mean of GP emulators built on compliance data from
Y . We use an exponential covariance kernel and optimize hyperparameters
by maximizing the log-likelihood. For nT = 10, 100, 1000 training points
in parameter space, this defines models X(1), X(3), X(5), respectively. We
then select non-optimal hyperparameters with the same training data nT =
10, 100, 1000, which defines models X(2), X(4), X(6), respectively. The cost of
these models is given by the cost of training, optimization, and evaluation the
GP averaged over 2× 104 different values of p. We perform each experiment
five times and report the average time (cost) for each model in Table 2.

• Projection-based model reduction with proper orthogonal decomposition (POD).
We generate k POD basis functions from high-fidelity displacement data, use
this to form a rank-k Galerkin projection of the finite element formulation,
and models X(i) for i = (7, . . . , 12) are the compliances computed from the
projected systems of rank k = (1, 2, 3, 4, 5, 10), respectively. The cost of this
procedure is taken as only the cost of solving the rank-k projected system,
and does not include the time required to collect POD training data or the
time required to compute the POD modes.

More details about the experimental setup above are given in Appendix F. The oracle
statistics and costs for the GP and POD low-fidelity models are shown in Table 2.
Note that here we have not normalized the cost relative to the low-fidelity model.

We now apply the (scalar response) AETC algorithm to this multifidelity setup,
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Models f(Y ) X(1) X(2) X(3) X(4) X(5)

Corr(·, f(Y )) 1 0.993 0.414 1-2e-05 0.401 1-1e-06
Mean 9.197 9.195 9.147 9.197 9.045 9.197
Standard deviation 0.113 0.122 0.556 0.113 0.335 0.113
Cost 9233.69 0.31 0.31 2.31 2.33 30.79
(5.4) with S = {i} – 4.202 203.025 0.358 214.676 3.574

Models X(6) X(7) X(8) X(9) X(10) X(11) X(12)

Corr(·, f(Y )) 1-2e-04 0.999 1-2e-04 1-5e-05 1-8e-06 ≈ 1 ≈ 1
Mean 9.196 9.189 9.194 9.195 9.197 9.197 9.197
Standard deviation 0.114 0.113 0.113 0.113 0.113 0.113 0.113
Cost 31.29 0.18 0.45 0.68 0.85 1.03 2.02
(5.4) with S = {i} 6.226 0.732 0.243 0.180 0.137 0.119 0.230

Table 2
Oracle information of f(Y ) and X(i). The numerator of the asymptotic average condi-

tional MSE estimate (5.4) is also shown.

with the total budget ranging from 105 to 2 × 105, incremented by 0.2 × 105 in our
experiments. We have 12 low-fidelity models in total, and exhausting all of them for
selection would require complexity on the order of 212−1. Since the AETC algorithm
generally produces an efficient combination of relatively cheap regressors, we set the
maximal number of regressors in the model to be 5 to accelerate computation, i.e.,
we explore only for s = |S| ≤ 5. (We could have used the full model, which would
not incur too much an increase in computation time but would require taking more
exploration samples to start with, which is a waste of resources.)

The performance of AETC is compared to the direct MC estimator applied to
f(Y ), and the results are reported in the first plot in Figure 5. The figure shows that
AETC is more efficient than the MC estimator by a substantial margin in terms of
the mean-squared error. To better see how this is reflected in practice, we fix the
budget to be B = 105, run 200 experiments of both AETC and the MC, and compute
the difference between the estimated values of E[f(Y )] and the ground truth. This
is illustrated in the second plot in Figure 5. Since this multifidelity setup contains
surrogates obtained from different types of methods, we investigate which are chosen
by AETC for exploitation. This information is given in the last plot in Figure 5. The
most frequent models chosen by the AETC are between model X(10) and X(11), both
of which have near-perfect correlation with f(Y ) with only a moderate cost. In fact,
X(11) is also the oracle limiting model given by (5.5), although the convergence is
rather slow due to the competitor X(10), which has an extremely high correlation but
a slightly cheaper cost. The other models which have been selected by the AETC are
the other POD models as well as their combinations with models X(1) andX(2). These
models correspond to the lowest fidelity models in each method of approximation, and
are often cheap to sample from with reasonably high correlation.

8. Conclusions. We have proposed a novel algorithm for the multifidelity prob-
lem based on concepts from bandit learning. Our proposed AETC procedures, Al-
gorithms 5.1 and D.1, operate under the assumption of a linear relationship between
low-fidelity features and a high-fidelity output. Their exploration phase expends re-
sources to learn about model relationships in order to discover an effective linear
relationship. The exploitation phase leverages the cost savings by regressing on low-
fidelity features to produce an LRMC estimate of the high-fidelity output. Under the
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Fig. 5. The left plot is the (log10) mean-squared error of the estimators as the budget
increases, with the 0.05-0.5-0.95 quantiles plotted for the AETC algorithm to measure the
uncertainty in the exploration. The middle plot compares the estimation error of the AETC
algorithm by plotting instances of the error over each of 200 experiments for a fixed total
budget B = 105. The right plot shows the empirical probability (plotted as a percentage) of
certain models being selected by AETC for exploitation.

linear model assumption, we show the consistency of the LRMC, whose MSE can be
partitioned into a component stemming from exploration, and another from exploita-
tion. This partition allows us to construct the AETC algorithm, which is an adaptive
procedure operating under a specified budget that decides how much effort to expend
in exploration versus exploitation, and also identifies an effective linear regression
low-fidelity model. We show that, for a large budget, our AETC algorithms explore
and exploit optimally.

The main advantage of our approach is that no a priori statistical information
or hierarchical structure about models is required, and very little knowledge about
model relationships is needed: AETC needs only an identification of which model is
the trusted high-fidelity one, along with a specification of the cost of sampling each
model. The algorithm proceeds from this information alone, which is a distinguishing
feature of our approach compared to alternative multifidelity and multilevel methods,
and can be used to tackle situations when a natural cost versus accuracy hierarchy is
difficult to identify, and when relationships between models are not known.

Appendices.

A. The LRMC reusing the exploration data. The goal of this section is
to provide a quantitative discussion that accompanies Remark 3.1. Our analysis in
this paper computes coefficients β̂S in exploitation using only the NS samples that
are taken during exploitation. This analysis neglects the possibility of reusing the
m samples from exploration in the estimation of β̂S . All our numerical results fall
into a regime where m � NS , corresponding to the case when there are many more
exploitation samples (of low-fidelity models) than exploration rounds (which require
querying the high-fidelity model). This section demonstrates that in this multifidelity
regime of interest, recycling of exploration samples during exploitation has negligible
impact.

Fix a model S ⊂ [n]. The LRMC estimator with the exploration samples reused
is defined as

LRMCS,re =
1

NS +m

 ∑
`∈[NS ]

XT
S,` +

∑
j∈[m]

XT
epr,j |S

 β̂S .(A.1)
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It follows from a similar calculation as in (3.6) that the conditional mean-squared
error of LRMCS,re on the exploration data (including both the exploration samples
and the model noise) is

NS
(NS +m)2

β̂SΣS β̂S +

 NS
NS +m

xTS +
1

NS +m

∑
j∈[m]

XT
epr,j |S

 β̂S − xTSβS

2

.

(A.2)

Denote

X̃m =
NS

NS +m
xTS +

1

NS +m

∑
j∈[m]

XT
epr,j |S

(5.7)
=

NS
NS +m

xS +
m

NS +m
x̂S(m).

(A.3)

Clearly, X̃m → xS as m → ∞ almost surely. Averaging the model noise in (A.2)
yields the average conditional MSE of LRMCS,re:

EεS [(A.2)]

(3.7),(B.1)
=

NS
(NS +m)2

(
βTSΣSβS + σ2

S tr
(
ΣS(ZTS ZS)−1

))
+ VεS

[
X̃T
mβ̂S

]
+
(

(X̃T
m − xTS )βS

)2

=
NS

(NS +m)2

(
βTSΣSβS + σ2

S tr
(
ΣS(ZTS ZS)−1

))
+ σ2

SX̃
T
m(ZTS ZS)−1X̃m

+
(

(X̃T
m − xTS )βS

)2

' NS
(NS +m)2

βTSΣSβS +
1

m
σ2
Sx

T
SΛ−1

S xS .(A.4)

One can verify that,

(A.4) ≤ 1

NS
βTSΣSβS +

1

m
σ2
S tr
(
xSx

T
SΛ−1

S

)
≤
(

1 +
m

NS

)2

· (A.4).(A.5)

While according to (5.1), the middle term in (A.5) converges to MSES |β̂S almost surely.

Thus, providing m/NS � 1, reusing exploration samples results in the estimate (A.4),
which asymptotically behaves like the estimate MSES |β̂S that does not reuse samples.

B. Proof of Theorem 4.2. We start by conditioning on ZS . Note that

β̂S − βS = Z†SηS ,(B.1)

where ηS is the model noise vector with each component being the model noise εS in
the corresponding exploration sample, i.e., ηS/σS ∈ Rm is an isotropic sub-Gaussian
random vector with E[ηSη

T
S ] = σ2

SIm. Substituting (B.1) into (3.6) and applying the
Cauchy-Schwarz inequality (|2〈x, y〉| ≤ 2‖x‖2‖y‖2 ≤ ‖x‖22 + ‖y‖22) yields

MSES |β̂S =
1

NS

(
βTSΣSβS + ηTS (Z†S)TΣSZ

†
SηS + 2βTSΣSZ

†
SηS

)
+ ηTS (Z†S)TxSx

T
SZ
†
SηS

≤ 2

NS

(
βTSΣSβS + ηTS (Z†S)TΣSZ

†
SηS

)
+ ηTS (Z†S)TxSx

T
SZ
†
SηS

≤ 2

NS

(
βTSΣSβS + ‖ΣS‖2‖Z†SηS‖

2
2

)
+ ‖BSηS‖22 BS =

√
xSxTSZ

†
S .(B.2)
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Both ‖Z†SηS‖22 and ‖BSηS‖22 are the quadratic forms of sub-Gaussian random vectors
and can be bounded with high probability using the Hanson-Wright inequality [58,
Theorem 6.3.2]:

P
(
‖Z†SηS‖

2
2 > C1σ

2
S‖Z

†
S‖

2
F logm

)
≤ 1

3m2

P
(
‖BSηS‖22 > C1σ

2
S‖BS‖2F logm

)
≤ 1

3m2
,(B.3)

where C1 is an absolute constant depending only on the sub-Gaussian norm of εS/σS ,
and

‖Z†S‖
2
F = tr

(
Z†S(Z†S)T

)
=

1

m
tr
(
(m−1ZTS ZS)−1

)
‖BS‖2F = tr

(
BTSBS

)
=

1

m
tr
((
m−1ZTS ZS

)−1
xSx

T
S

)
.(B.4)

Since ZTS ZS is a sum of i.i.d. outer products, appealing to a deviation result in [40,
Theorem 2.1], we obtain that under assumption (4.1) and for m > s+ 1,

P
(∥∥∥∥ 1

m
ZTS ZS − ΛS

∥∥∥∥
2

> C2
K2 log5m√

m

)

= P

∥∥∥∥∥∥ 1

m

∑
`∈[m]

Xepr,`|SXT
epr,`|S − E[XSX

T
S ]

∥∥∥∥∥∥
2

> C2
K2 log5m√

m

 <
1

3m2
,(B.5)

where C2 is an absolute constant. Combining (B.5) with the matrix perturbation
equality for an invertible matrix A

(A+ ∆A)−1 = A−1 −A−1∆AA−1 + o(‖∆A‖2)

yields with high probability,

(
m−1ZTS ZS

)−1
= Λ−1

S + ES ‖ES‖2 .
K2 log5m

σ2
min(ΛS)

√
m
,(B.6)

where σmin(ΛS) is the smallest singular value of ΛS . Putting (B.6), (B.5), (B.4), (B.3)
and (B.2) together, we have with probability at least 1−m−2,

MSES |β̂S .
2

NS

(
βTSΣSβS + C1σ

2
S‖ΣS‖2 tr

(
Λ−1
S +

K2 log5m

σ2
min(ΛS)

√
m
Is

)
logm

m

)
+ C1σ

2
S tr

(
Λ−1
S xSx

T
S +

K2 log5m

σ2
min(ΛS)

√
m
xSx

T
S

)
logm

m

.
1

NS
βTSΣSβS + σ2

S tr
(
Λ−1
S xSx

T
S

) logm

m

≤ 1

NS
βTSΣSβS + σ2

S tr
(
Λ−1
S (xSx

T
S + ΣS)

) logm

m

=
1

NS
βTSΣSβS + (s+ 1)σ2

S

logm

m
.(B.7)

This finishes the proof.
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C. Proof of Theorem 5.2. We first show that m(B) diverges as B →∞ almost
surely. To this end, it suffices to show that with probability 1,

sup
t>n+1

max
S⊂[n]

β̂TS (t)Σ̂S(t)β̂S(t) <∞.(C.1)

Indeed, if (C.1) is true, by definition (5.9), for almost every realization ω, there exists
an L(ω) <∞ such that

sup
t>n+1

max
S⊂[n]

k1,t(S;ω) < L(ω),(C.2)

where ω is included to stress the quantity’s dependence on realization. The exploration
stopping criterion of Algorithm 5.1 requires that

m(B;ω) ≥ mS∗(t;ω)(t;ω) =
B

cepr +
√

ceprk1,t(S∗(t;ω);ω)
k2,t(S∗(t;ω);ω)

(C.2)

≥ B

cepr +
√

ceprL(ω)
αm(B;ω)

Note that m(B;ω) is nondecreasing in B. If m(B;ω) did not diverge, then there would
exist an integer C > 0 such that supBm(B;ω) < C. Meanwhile, this also suggests
that infB αm(B;ω) > αC > 0, forcing the right-hand side of the above inequality to
diverge; hence m(B;ω). A contradiction. Thus,

lim
B→∞

m(B;ω) =∞.(C.3)

To show (C.1), note that Σ̂S(t) converges to ΣS almost surely due to the strong law

of large numbers. For β̂S , the sub-exponential assumption on the distribution of XS

for all S ⊂ [n] (condition (4.1)) ensures (B.5) (with m replaced by t) for all S ⊂ [n],
which combined with the Borel-Cantelli lemma implies that with probability 1,

log λmax,S(t) = o(λmin,S(t)) ∀S ⊂ [n],

where λmax,S(t) and λmin,S(t) are respectively the largest and smallest eigenvalue of

ZTS ZS . Appealing to the Theorem 1 in [37], with probability 1, β̂S(t)→ βS as t→∞
for all S ⊂ [n]. Thus we have proved (C.1).

We now work with a fixed realization ω along which m(B;ω) → ∞ as B → ∞,
and all estimators in (5.7) converge to the true parameters as t→∞. Fix δ > 0 and
note again that m(B;ω) is a nondecreasing function in B. Since (5.5) is assumed to
have a unique minimizer, by a continuity argument, there exists a sufficiently large
B(δ;ω) such that for B > B(δ;ω) and m(B;ω)/2 ≤ t ≤ m(B;ω),

S∗ = arg min
S⊂[n]

hS (t;ω)(C.4)

1− δ ≤ mS(t;ω)

mS
≤ 1 + δ ∀S ⊂ [n].(C.5)

(C.4) implies that in the second half of the exploration, S∗ will be used at the end of
each round to determine whether more exploration is needed, i.e., S∗ is the best model
identified by the algorithm. This proves (5.10a). On the other hand, the stopping
criterion in Algorithm 5.1 combined with (C.4) and (C.5) implies

m(B;ω) ≥ mS(B;ω)(m(B;ω))
(C.4)
= mS∗(m(B;ω))

(C.5)

≥ (1− δ)mS∗

m(B;ω)− 1 ≤ mS(B;ω)(m(B;ω)− 1)
(C.4)
= mS∗(m(B;ω)− 1)

(C.5)

≤ (1 + δ)mS∗ .
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Hence,

1− δ ≤ m(B;ω)

mS∗
≤ 1 + δ +

1

mS∗
.

Taking B →∞ followed by δ → 0 yields (5.10b), finishing the proof.

D. Proof of Theorem 6.1. In this section, we provide some omitted details
of the analysis in the case of vector-valued high-fidelity models. We first complete
the proof of Theorem 6.1, which establishes a similar nonasymptotic convergence rate
of the LRMC estimator under the Q-risk. Then, we give a detailed description of
AETC algorithm for vector-valued high-fidelity models, and examine the estimation
efficiency in the exploration phase. We end this section by providing a numerical
example where very high-dimensional high-fidelity output is considered.

D.1. Proof of Theorem 6.1. Let rS = rank(ΓS) and Q ∈ Rq×k0 . Similar to
the calculation in (B.2), we first rewrite RiskS |β̂S as

RiskS |β̂S =
1

NS
tr
(

ΣS β̂
T
SQ

TQβ̂S

)
+ xTS (β̂S − βS)TQTQ(β̂S − βS)xS

≤ 2

NS

(
tr
(
ΣSβ

T
SQ

TQβS
)

+ tr
(

ΣS(β̂S − βS)TQTQ(β̂S − βS)
))

+ xTS (β̂S − βS)TQTQ(β̂S − βS)xS .(D.1)

Conditional on ZS ,

Q(β̂S − βS) = Q(εS,1, · · · , εS,m)(Z†S)T ,(D.2)

where εS,` ∼ N (0,ΓS) are i.i.d. random vectors representing the noise vector in the `-
th exploration sample. Since rS = rank(ΓS), by the properties of multivariate normal
distributions, there exists a PS ∈ Rk0×rS such that

εS,` = PSξS,` PSP
T
S = ΓS(D.3)

where ξS,` are i.i.d. normal distributions N (0, IrS ). Thus,

(β̂S − βS)TQTQ(β̂S − βS) = Z†S(ξS,1, · · · , ξS,m)TPTS Q
TQPS(ξS,1, · · · , ξS,m)(Z†S)T .

(D.4)

Note that (ξS,1, · · · , ξS,m) is a Gaussian random matrix, and multiplying it on the left
by a unitary matrix yields a matrix whose rows are i.i.d. N (0, Im). Thus, taking the
eigendecomposition PTS Q

TQPS = V diag(λ1, · · · , λrS )V ∗ and plugging it into (D.4)
yields

(β̂S − βS)TQTQ(β̂S − βS)T =

rS∑
i=1

λiZ
†
Sgig

T
i (Z†S)T(D.5)

where gi are i.i.d. N (0, Im). Substituting (D.5) into (D.1) yields

RiskS |β̂S ≤
2

NS

(
tr
(
ΣSβ

T
SQ

TQβS
)

+ ‖ΣS‖2
rS∑
i=1

λi‖Z†Sgi‖
2
2

)
+

rS∑
i=1

λi‖BSgi‖22,

where BS is as defined in (B.2). For ‖Z†Sgi‖22 and ‖BSgi‖22, the proof of Theorem 4.2
tells us that for large m, with probability at least 1−m−2,

‖Z†Sgi‖
2
2 .

logm

m
= o(1) ‖BSgi‖22 . (s+ 1)

logm

m
∀i ∈ [rS ].(D.6)

The proof is complete by observing
∑rS
i=1 λi = tr

(
PTS Q

TQPS
)

= tr
(
QΓSQ

T
)
.
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D.2. AETC for vector-valued high-fidelity models. We now describe the
analog of Algorithm 5.1. The only modification occurs when we estimate the model
variance structure. Instead of estimating the model variance σ2

S in (5.7), we need
to estimate the model covariance matrix ΓS , which can be computed as the sample
covariance of the residuals:

Γ̂S(t) =
1

t− s− 1

∑
`∈[t]

(
f(Y`)− β̂SXepr,`|S

)(
f(Y`)− β̂SXepr,`|S

)T
.(D.7)

Similar empirical estimates in (5.9) can be defined as

k̃1,t(S) = cept(S) tr
(

Σ̂S(t)β̂TS (t)QTQβ̂S(t)
)

(D.8)

k̃2,t(S) = tr
(
QΓ̂S(t)QT

)
tr
(
x̂S(t)x̂TS (t)Λ̂−1

S (t)
)

and

m̃S(t) =
B

cepr +

√
ceprk̃1,t(S)

k̃2,t(S)

, R̂iskS |β̂S (t) =
k̃1,t(S)

B − ceprt
+
k̃2,t(S)

t
,(D.9)

Risk
∗
S |β̂S (t) =

(√
k̃1,t(S) +

√
ceprk̃2,t(S)

)2

B
.(D.10)

The analog of Algorithm 5.1 for vector-valued high-fidelity models can be summarized
as follows:

Algorithm D.1 AETC algorithm for multifidelity approximation (vector-valued
case)

Input: B: total budget, ci: cost parameters, αt ↓ 0: regularization parameters
Output: (πt)t

1: compute the maximum exploration round M = bB/ceprc
2: for t ∈ [n+ 2] do
3: πt = aepr([n])
4: end for
5: while n+ 2 ≤ t ≤M do
6: for S ⊂ [n] do
7: compute k̃1,t(S), k̃2,t(S) using (5.7), (D.7) and (D.8), and set k̃2,t(S) ←

k̃2,t(S) + αt
8: compute m̃S(t) using (D.9)

9: compute the optimal Q-risk using (D.9): hS(t) = R̂iskS |β̂S (m̃S(t) ∨ t)
10: end for
11: find the optimal model S∗(t) = arg minS⊂[n] hS(t)
12: if m̃S∗(t)(t) > t then
13: t← t+ 1 and set πt = aepr([n])
14: else
15: t←M + 1 and πt = aept(S

∗(t))
16: end if
17: end while
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Applying a similar argument as the proof of Theorem 5.2, one can show that the
exploitation model produced by Algorithm D.1 converges almost surely to

S̃∗ = arg min
S⊂[n]

(√
k̃1,t(S) +

√
ceprk̃2,t(S)

)2

(D.11)

with optimal exploration as B →∞, where

k̃1(S) = cept(S) tr
(
ΣS(t)βTS (t)QTQβS(t)

)
k̃2(S) = tr

(
QΓS(t)QT

)
tr
(
xS(t)xTS (t)Λ−1

S (t)
)
.

D.3. Efficient estimation. For large k0, both βS and ΓS are high-dimensional,
which may not admit a good global estimation for small exploration rate m. However,
the parameters k̃1(S) and k̃2(S) used in decision-making are scalar-valued and only
involve marginals of the high-dimensional parameters. In the following theorems, we
will justify that relative accuracy of the plug-in estimators for both quantities defined
in (D.8) is independent of k0 under suitable assumptions.

Theorem D.1. Under the same condition as Theorem 6.1 and for large t >
max{s+ 1, 5}, it holds with probability at least 1− t−2 that∣∣∣tr(QΓ̂S(t)QT

)
− tr

(
QΓSQ

T
)∣∣∣

tr(QΓSQT )
.

log t√
t− s− 1

,(D.12)

where the implicit constant in . is universal.

For the estimation of tr
(
QβSβ

T
SQ
)
, for convenience we consider a model S without

intercept:

Theorem D.2. Assume that (4.1) holds for the 2-Orlicz norm, and

tr
(
QΓSQ

T
)

tr
(
QβSβTSQ

) . O(1).(D.13)

Suppose that S does not include the intercept term and the corresponding covariance
matrix ΣS is nonsingular. Under the same condition as Theorem 6.1 and for large t,
it holds with probability at least 1− t−2 that∣∣∣tr(Σ̂S(t)β̂TS (t)QTQβ̂S(t)

)
− tr

(
ΣSβ

T
SQ

TQβS
)∣∣∣

tr
(
ΣSβTSQ

TQβS
) . κ(ΣS)

√
log t

t
,(D.14)

where κ(ΣS) is the condition number of ΣS, and the implicit constant is independent
of t and k0.

Remark D.3. Under additional assumption on the Frobenius norm of QβS and
its submatrices, similar results can be obtained for S containing the intercept, with
κ(ΣS) replaced by κ(M1,1(ΣS)), where Mi,j(·) denotes the (i, j) minor of a matrix.

Remark D.4. The constant κ(ΣS) in (D.14), despite depending on the singular
values of ΣS, is independent of k0. This combined with (D.12) implies that the es-
timation in Algorithm D.1 is relatively efficient regardless of the response dimension
k0.
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Proof of Theorem D.1. Rewriting (D.7) using (D.2) and (6.1), we have

QΓ̂S(t)QT =
1

t− s− 1
Q(εS,1, · · · , εS,t)(It − ZSZ†S)(εS,1, · · · , εS,t)TQT

(D.3)
=

1

t− s− 1
QPS(ξS,1, · · · , ξS,t)(It − ZSZ†S)(ξS,1, · · · , ξS,t)TPTS QT .(D.15)

Note that It − ZSZ
†
S is a (t − s − 1)-dimensional (random) orthogonal projection

matrix, i.e., It − ZSZ†S = UUT for some U ∈ Rt×(t−s−1) with orthonormal columns.
Thus, by the rotational invariance of multivariate normal distributions,

(ξS,1, · · · , ξS,t)(It − ZSZ†S)(ξS,1, · · · , ξS,t)T

D
= (ζS,1, · · · , ζS,t−s−1)(ζS,1, · · · , ζS,t−s−1)T ,(D.16)

where ζS,`, ` ∈ [t − s − 1] are (fixed) i.i.d. normal vectors N (0, IrS ), and
D
= denotes

equality in distribution. Substituting (D.16) into (D.15) and taking the trace yields

tr
(
QΓ̂S(t)QT

)
D
=

1

t− s− 1
tr
(
QPS(ζS,1, · · · , ζS,t−s−1)(ζS,1, · · · , ζS,t−s−1)TPTS Q

T
)

=
1

t− s− 1
tr
(
(ζS,1, · · · , ζS,t−s−1)TPTS Q

TQPS(ζS,1, · · · , ζS,t−s−1)
)

=
1

t− s− 1

t−s−1∑
i=1

ζTS,iP
T
S Q

TQPSζS,i

=
1

t− s− 1
ζTS,t−s−1Ωt−s−1ζS,t−s−1

where ζS,t−s−1 = (ζTS,1, · · · , ζTS,t−s−1)T is a standard multivariate normal vector in

RrS(t−s−1) and

Ωt−s−1 =

P
T
S Q

TQPS
. . .

PTS Q
TQPS


︸ ︷︷ ︸

t− s− 1 diagonal blocks

(D.17)

Apply the Hanson-Wright inequality [58, Theorem 6.2.1] to ζTS,t−s−1Ωt−s−1ζS,t−s−1

and we yield that for every t > s+ 1 and δ ≥ 4‖Ωt−s−1‖F ,

P
(
|ζTS,t−s−1Ωt−s−1ζS,t−s−1 − (t− s− 1) tr

(
PTS Q

TQPS
)
| > δ

)
≤ 2 exp

(
− Cδ

4‖Ωt−s−1‖F

)
,

where C ≤ 1 is an absolute constant, and 4 comes from an upper bound for the square
of the sub-Gaussian norm of the standard normal distribution. For t > max{s+1, 5},
taking

δ = C−1‖Ωt−s−1‖F log
(
2t2
)

yields that with probability at least 1− t−2,∣∣ζTS,t−s−1Ωt−s−1ζS,t−s−1 − (t− s− 1) tr
(
PTS Q

TQPS
)∣∣ ≤ C−1 log

(
2t2
)
‖Ωt−s−1‖F
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Dividing both sides by (t−s−1) tr
(
QΓSQ

T
)

and using tr
(
PTS Q

TQPS
)

= tr
(
QΓSQ

T
)

finishes the proof of (D.12):∣∣∣tr(QΓ̂S(t)QT
)
− tr

(
QΓSQ

T
)∣∣∣

tr(QΓSQT )
≤ ‖Ωt−s−1‖F

tr(QΓSQT )
√
t− s− 1

C−1 log
(
2t2
)

√
t− s− 1

=
‖QΓSQ

T ‖F
tr(QΓSQT )

C−1 log
(
2t2
)

√
t− s− 1

≤ 3C−1 log t√
t− s− 1

.(D.18)

The proof is complete.

Proof of Theorem D.2. By the triangle inequality and Cauchy-Schwarz inequality,∣∣∣tr(Σ̂S(t)β̂TS (t)QTQβ̂S(t)
)
− tr

(
ΣSβ

T
SQ

TQβS
)∣∣∣

≤
∣∣∣tr(Σ̂S(t)β̂TS (t)QTQβ̂S(t)

)
− tr

(
Σ̂S(t)βTSQ

TQβS

)∣∣∣
+
∣∣∣tr(Σ̂S(t)βTSQ

TQβS

)
− tr

(
ΣSβ

T
SQ

TQβS
)∣∣∣

≤ ‖Σ̂S‖F ‖β̂TS (t)QTQβ̂S(t)− βTSQTQβS‖F + ‖Σ̂S(t)− ΣS‖F ‖βTSQTQβS‖F
≤ ‖Σ̂S‖F ‖β̂TS (t)QTQβ̂S(t)− βTSQTQβS‖F + ‖Σ̂S(t)− ΣS‖F tr

(
βTSQ

TQβS
)

≤
√
s
(
‖Σ̂S‖2‖β̂TS (t)QTQβ̂S(t)− βTSQTQβS‖F + ‖Σ̂S(t)− ΣS‖2 tr

(
βTSQ

TQβS
))
.

(D.19)

Let ai and bi denote the i-th column of QβS and Qβ̂S(t), respectively, i.e., QβS =

(a1, · · · , as) and Qβ̂S(t) = (b1, · · · , bs). Then,

‖β̂TS (t)QTQβ̂S(t)− βTSQTQβS‖2F
=

∑
i,j∈[s]

(〈ai, aj〉 − 〈bi, bj〉)2

=
∑
i,j∈[s]

(〈ai − bi, aj〉+ 〈bi, aj − bj〉)2

≤ 2
∑
i,j∈[s]

(
〈ai − bi, aj〉2 + 〈bi, aj − bj〉2

)
≤ 2

∑
i,j∈[s]

(
‖ai − bi‖22‖aj‖22 + ‖bi‖22‖aj − bj‖22

)
≤ 2

∑
i,j∈[s]

(
‖ai − bi‖22‖QβS‖22 + ‖Qβ̂S(t)‖22‖aj − bj‖22

)
≤ 4s

(
‖QβS‖2 + ‖Qβ̂S(t)‖2

)2

‖QβS −Qβ̂S(t)‖2F

Substituting this into (D.19) yields∣∣∣tr(Σ̂S(t)β̂TS (t)QTQβ̂S(t)
)
− tr

(
ΣSβ

T
SQ

TQβS
)∣∣∣

≤ 2s‖ΣS‖2
(
‖QβS‖2 + ‖Qβ̂S(t)‖2

)
‖QβS −Qβ̂S(t)‖F

+
√
s‖Σ̂S(t)− ΣS‖2 tr

(
βTSQ

TQβS
)
.(D.20)
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Under the strengthened assumption of (4.1), we can obtain a better bound for the

relative error of the sample covariance estimator Σ̂S by appealing to [58, Exercise

9.2.5]: With probability at least 1 − 1/2t2, ‖Σ̂S(t) − ΣS‖2/‖ΣS‖2 .
√

log t/t, i.e.,

‖ΣS‖2 + ‖Σ̂S(t)‖2 . ‖ΣS‖2. On the other hand,

‖QβS −Qβ̂S(t)‖F =

√
tr
(

(β̂S(t)− βS)TQTQ(β̂S(t)− βS)
)

(D.5),(D.6)

.
√

tr(QΓSQT )

√
log t

t
,(D.21)

where (D.21) holds with probability at least 1− 1/2t2 for large t. In this case we can
verify that,

‖QβS‖2 + ‖Qβ̂S(t)‖2 ≤ 2‖QβS‖F + ‖Qβ̂S(t)−QβS‖F(D.22)

. ‖QβS‖F

(
2 +

√
tr(QΓSQT )

tr
(
QβSβTSQ

) log t

t

)
(D.13)

. ‖QβS‖F =
√

tr(βSQTQβS).

Thus, with probability at least 1− t−2,∣∣∣tr(Σ̂S(t)β̂TS (t)QTQβ̂S(t)
)
− tr

(
ΣSβ

T
SQ

TQβS
)∣∣∣

. ‖ΣS‖2
√

tr(βSQTQβS)
√

tr(QΓSQT )

√
log t

t
+ tr

(
βTSQ

TQβS
)
‖ΣS‖2

√
log t

t
(D.13)

. ‖ΣS‖2 tr
(
βTSQ

TQβS
)√ log t

t
.(D.23)

Dividing (D.23) by tr
(
ΣSβ

T
SQ

TQβS
)

finishes the proof:∣∣∣tr(Σ̂S(t)β̂TS (t)QTQβ̂S(t)
)
− tr

(
ΣSβ

T
SQ

TQβS
)∣∣∣

tr
(
ΣSβTSQ

TQβS
) .

‖ΣS‖2 tr
(
βTSQ

TQβS
)

tr
(
ΣSβTSQ

TQβS
) √

log t

t

≤ κ(ΣS)

√
log t

t
.

E. Numerical simulation of Section 7.1. In Section 7.1, the partial differen-
tial equation (7.1) for a fixed p is frequently solved with the Finite Element Method.
We use standard bilinear square isotropic finite elements on a rectangular mesh. After
spatial discretization, this results in a linear system in the form of

Ku = f(E.1)

where K and f are stiffness matrix and force vector, respectively, and u is the vector
of nodal displacements. Our output quantity of interest is the scalar compliance,
defined as

cpl = uTKu.(E.2)

In this example, we form a multifidelity hierarchy through coarsening of the discretiza-
tion: Consider n = 7 mesh resolutions with mesh sizes h = {1/(28−L)}7L=1 where L
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denotes the level. According to this hierarchy of meshes, the mesh associated with
L = 1 yields the most accurate model (highest fidelity), which is taken as the high-
fidelity model in our experiments. The Poisson’s ratio is ν = 0.3. The finite element
computations in this paper are performed in MATLAB using part of the publicly
available code for topology optimization [4].

To model the uncertainty, we consider a random field for the elastic modulus via
the Karhunen-Loéve (KL) expansion (7.3). where δ = 0.5, Ē = 1 are constants. The
random variables pi are uniformly distributed on [−1, 1] and the eigenvalues λi and
basis functions Ei are taken from the analytical expressions for the eigenpairs of an
exponential kernel on D = [0, 1]2. In one dimension, i.e., D1 = [0, 1], the eigenpairs
are

(E.3) λ1D
i =

2

w2
i + 1

b1Di = Ai(sin(wix) + wi cos(wix)) i ∈ N

where wi are the positive ordered solutions to

(E.4) tan(w) =
2w

w2 − 1
,

See, e.g., [53]. In our simulations, we use the approximation wi ≈ iπ, which is the
asymptotic behavior of these solutions. We generate two-dimensional D = [0, 1]2

eigenpairs via tensorization of the one-dimensional pairs,

(E.5) λij = λ1D
i λ1D

j Eij = b1Di ⊗ b1Dj i, j ∈ N

where ⊗ denotes the tensor product. In this example, we retain d = 4 terms in the KL
expansion, corresponding to the tensor-product indices (i, j) ∈ [2]× [2]. To compute
the elastic modulus for different resolutions, we evaluate the analytical basis functions
in (E.3) at different resolutions.

F. Low-fidelity models of Section 7.2. Models X(i) for i ∈ [6] in Section
7.2 are formed as GP predictors. We construct a GP emulator for C as a function
of the parameters p, and use the GP mean as a low-fidelity emulator. Given D◦ =
{(p◦i ,Y (p◦i ))}

nT
i=1 training samples with P ◦ = {p◦i }

nT
i=1 the sampling nodes and Y ◦ =

{Y (p◦i )}
nT
i=1 the observational data, let KGP denote a kernel matrix with entries

[KGP ]ij = k(pi,pj ,θ) for a given kernel function k(p,p′) : Rd×Rd → R is the kernel
function and θ is a hyperparameter that tunes the kernel. We adopt a standard
GP training procedure, which determines θ by maximizing a log-likelihood objective
function,

(F.1)

L(θ) = log p(Y |P ) = logN (Y |0,KGP (P ,θ) + λI)

=
1

2
Y T (KGP + λI)−1Y +

1

2
log |KGP + λI|+ n

2
log(2π)

where I is the identity matrix and λ ≥ 0 is a constant. The parameter λ is introduced
to model the effect of noise in the data, but in this example we do not consider any
noise and therefore we set λ = 0. We choose an exponential kernel function,

(F.2) k(p,p′) = exp(−‖p− p′‖2/θ)

with a scalar hyperparameter θ. Once the optimal hyperparameter θ∗ is obtained from
optimization of the log likelihood (F.1), we compute the approximate GP sample on
the test node p∗ via

(F.3) X(p∗) = Ȳ ◦ +KT
i◦K

−1
GP (Y ◦ − Ȳ ◦),
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where Ki◦ = k(p∗,P ◦) is a vector obtained by evaluating the kernel function with the
training samples P ◦ and the particular test sample p∗, and Ȳ ◦ is the sample mean
of the training data.

Our training data are generated via compliance samples from the high-fidelity
model. The fidelity of each GP emulator in this case are determined by the number of
training samples nT as well as the optimal/nonoptimal choice of hyperparameters. We
generate three fidelities by choosing nT = 10, 100, 1000 training samples and compute
the optimal hyperparameter θ via the minimization of (F.1). The approximated
models from the optimal hyperparameter calculation are indexed by X(1), X(3), X(5)

for nT = 10, 100, 1000, respectively. We then generate three more models with the
same number of training samples as before, but with a nonoptimal hyperparameter
as θ∗ ← 0.1θ∗. We index these nonoptimal models as X(2), X(4), X(6). The cost of
all 6 of these models is given by the cost of training, optimization, and evaluation of
(F.3) averaged over 2× 104 different values of p∗.

Models X(i) for i = 7, . . . , 12 are defined via projection-based model reduction
using proper orthogonal decomposition (POD). Let the matrix

UH = [uH(p(1))|uH(p(2))| . . . |uH(p(n))] ∈ RNh×Ns

be comprised of high-fidelity nodal displacement vectors on parametric samples P =
{p(i)}Nsi=1. In this notation, and the current example, Nh is the number of high-fidelity
finite element degrees of freedom and Ns is the number of parametric samples. We
form emulators by projecting uH onto k basis vectors collected as columns vectors
into a matrix Vk,

uH(p(i)) ≈ Vkw(p(i)), Vk ∈ RNh×k.(F.4)

As in typical POD approaches, we choose Vk as the dominant k left-singular vector
of UH .

The POD coefficients w are computed as a Galerkin projection of the original
high-fidelity finite element system,

(F.5) (V T
k KVk)w = V T

k f .

Using the notation Kk ≡ V T
k KVk, we compute an approximate compliance via cpl =

UTKU ' wTKkw.
We generate six more models, X(7), . . . , X(12), using the procedure above by

making five choices for the reduced dimension k: k = {1, 2, 3, 4, 5, 10}. We
ignore the cost of generating the matrix UH and take as cost only the computation
time for solving the linear system Kkw = Fk as well as the approximate compliance
calculation cpl ' wTKkw averaged 2× 104 realizations of p as in the GP case.

G. A larger scale problem. Under the same setup as the numerical experi-
ments in Section 7.1, we now apply Algorithm D.1 to a larger scale problem where
the high-fidelity output is high-dimensional. Fix the budget as B = 2× 105, and let

f(Y ) = ū(0) ∈ R2601
+ Q = I2601.

In this case, the number of affordable samples by the (high-fidelity) MC estimator is
bB/4096c = 48. We compare AETC and MC algorithms for approximating E[f(Y )].
In our experiment, the number of exploration rounds m chosen by the AETC algo-
rithm in the case of the square domain and the L-shape domain is 26 and 12, respec-
tively. The respective exploitation models are f(Y ) ∼ X(4) +X(5) +X(6) + intercept
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and f(Y ) ∼ X(3) + X(4) + X(5) + X(6) + intercept, and the affordable exploitation

samples for the chosen model are 2762 and 1581, respectively.
tr(QΓSQ

T )
tr(QβSβTSQ)

in both

cases are of order 10−6, which satisfies the assumption (D.13). The condition number
of the (1, 1) minor of ΣS are 712.03 and 6486.57 for the square and the L-shape do-
main, respectively. Although these relatively large quantities appear in the worst-case
estimate (D.14), we observe that the performance of the algorithm in practice is more
accurate than these estimates suggest.

We investigate exploitation error conditioned on the exploration above: We apply
the trained model (the model selected during exploration) for exploitation 500 times,
and for each estimate we compute the total error (computed in relation to a ground
truth MC run over 50000 independent high-fidelity samples, which is visualized in
Figure 6), i.e., the squared `2 norm of the difference between E[f(Y )] and its estimate.
We then find the 0.05-0.5-0.95 quantiles of this scalar total error, and plot the spatial
pointwise error at the realization identified by the total error quantiles. The results
are compared to the budget-B MC estimator in Figure 7. Within the uncertainty, the
AETC algorithm enjoys a superior performance overall, on both geometries.

Fig. 6. Visualization of the ground truth E[f(X)] computed by the MC over 50000 inde-
pendent samples in the case of the square domain (Left) and the L-shape domain (Right).
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