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Abstract—Atrial fibrillation (AF) is the most prevalent form of 

cardiac arrhythmia. Current treatments for AF remain 

suboptimal due to a lack of understanding of the underlying atrial 

structures that directly sustain AF. Existing approaches for 

analyzing atrial structures in 3D, especially from late 

gadolinium-enhanced (LGE)-MRIs, rely heavily on manual 

segmentation methods which are extremely labor-intensive and 

prone to errors. As a result, a robust and automated method for 

analyzing atrial structures in 3D is of high interest. We have 

therefore developed AtriaNet, a 16-layer convolutional neural 

network (CNN), on 154 3D LGE-MRIs with a spatial resolution of 

0.625 mm × 0.625 mm × 1.25 mm from patients with AF, to 

automatically segment the left atrial (LA) epicardium and 

endocardium. AtriaNet consists of a multi-scaled, dual pathway 

architecture that captures both the local atrial tissue geometry, 

and the global positional information of LA using 13 successive 

convolutions, and 3 further convolutions for merging. By utilizing 

computationally efficient batch prediction, AtriaNet was able to 

successfully process each 3D LGE-MRI within one minute. 

Furthermore, benchmarking experiments showed that AtriaNet 

outperformed state-of-the-art CNNs, with a DICE score of 0.940 

and 0.942 for the LA epicardium and endocardium respectively, 

and an inter-patient variance of <0.001. The estimated LA 

diameter and volume computed from the automatic 

segmentations were accurate to within 1.59 mm and 4.01 cm³ of 

the ground truths. Our proposed CNN was tested on the largest 

known dataset for LA segmentation, and to the best of our 

knowledge, it is the most robust approach that has ever been 

developed for segmenting LGE-MRIs. The increased accuracy of 

atrial reconstruction and analysis could potentially improve the 

understanding and treatment of AF. 
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I. INTRODUCTION 

trial fibrillation (AF), leading to an irregular and rapid 

heart rate, is the most common sustained heart rhythm 

disturbance. AF is associated with substantial morbidity 

and mortality, causing 1 out of 5 strokes in people aged over 60  
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years [1]. The current overall prevalence of AF is about 2% in 

industrialized countries and is projected to more than double in 

the following couple of decades. Current clinical treatments for 

AF perform poorly due to a lack of basic understanding of the 

underlying atrial anatomical structure, which directly sustains 

AF in the human atria [2, 3]. 

AF, especially persistent AF, is driven by complex 

substrates, which are widely distributed throughout both atrial 

chambers [4]. Repeated episodes of AF also produce further 

changes in the structural properties of the atria, i.e., atrial 

structural remodeling (dilatation, myofiber changes and 

fibrosis) [5-7]. As a result, direct study of the atrial structure 

and its changes in patients with AF is vital to the understanding 

and treatment of AF.   

    Nowadays, gadolinium-based contrast agents are used in a 

third of all MRI scans to improve the clarity of the images of a 

patient's internal structures including the heart, by improving 

the visibility of often disease-associated structures, such as 

fibrosis/scarring, inflammation, tumors, and blood vessels. 

Late gadolinium-enhanced magnetic resonance imaging 

(LGE-MRI) is widely used to study the extent and distribution 

of cardiac fibrosis/scarring [2, 8]. Clinical studies in AF 

patients using LGE-MRI suggest that the extent and 

distribution of atrial fibrosis (Utah stages I-IV) are reliable 

predictors of catheter ablation success rate and can be used for 

patient stratification for medical management [9, 10]. A large 

ongoing clinical trial, LGE-MRI Guided Ablation vs. 

Conventional Catheter Ablation of Atrial Fibrillation 

(DECAAF II), evaluates conventional catheter ablation 

treatment vs. catheter ablation guided by LGE-MRI which 

shows the area of fibrosis in the heart. Furthermore, left atrial 

(LA) diameter and volume computed from 3D LGE-MRIs 

provide reliable information for clinical diagnosis and 

treatment stratification [11].  

Atrial segmentation is a crucial task for aiding medical 

management for AF patients based on structural analysis of the 

segmented 3D geometry and has led to many prior studies 

investigating algorithms for fully automatic atrial 

segmentation, especially for the LA. A benchmark study 

published by Tobon-Gomez et al. compared the performance of 

nine different algorithms for LA segmentation from 

non-gadolinium enhanced MRIs/CT and showed that 

methodologies combining statistical models with regional 

growing approaches were the most effective [13]. Similar 

techniques have also been proposed and further improved upon 

for segmenting the LA from LGE-MRIs in studies by Veni et 

al. [14], Zhu et al. [15] and Tao et al. [16]. Despite these recent 
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efforts, most of the existing structural analysis studies, 

especially those that utilize clinical LGE-MRIs, are still based 

on labor-intensive and error-prone manual segmentation 

approaches [9, 10, 12]. This is mainly due to the limitations of 

current automated methodologies requiring supporting 

information which are often not available, such as shape priors 

for initialization [15, 17] or additional magnetic resonance 

angiography (MRA) sequences to aid the segmentation process 

[16]. The nine algorithms mentioned in the benchmarking study 

[13] were effective in segmenting the LA from non-gadolinium 

enhanced MRIs. However, they are also difficult to apply to the 

LGE-MRIs directly, as the (normal) atrial anatomy is more 

attenuated by the contrast agent and they are based on 

conventional approaches. There is, therefore, an urgent need for 

an intelligent algorithm that can perform fully automatic atrial 

segmentation directly from LGE-MRIs, particularly for LA, for 

accurate reconstruction and measurement of the atrial geometry 

for clinical usage. 

Machine learning is a class of algorithms which learn from a 

given set of data and labels by creating their understanding in a 

process known as feature separation. Classification and 

segmentation are two typical problems solved with machine 

learning algorithms. In traditional machine learning 

classification algorithms such as support vector machines [18], 

random forests [19] and K-nearest neighbor [20], a set of 

features is generated manually from the raw data, and fed into a 

classifier. This requires domain expertise in the field of the task 

at hand, as a rigorous feature selection procedure is required to 

find the optimal feature combination for learning. Optimization 

is then performed on the features to minimize an objective 

function, which results in the linear separation of the data from 

different classes. However, despite the effectiveness of these 

algorithms over the years, the manual feature engineering and 

algorithm selection processes are major bottlenecks for 

improving the performance on classification tasks. 

Neural networks [21] is a category of modern machine 

learning algorithms, and have been applied in many different 

fields including medicine and bioengineering. The 

effectiveness of neural networks lies in their ability to automate 

the feature extraction step. By eliminating the need for domain 

expertise when applying neural networks, the performance of 

these algorithms will only increase with the increasing amount 

of data available. Convolutional neural networks (CNNs) [22], 

which became popularized less than a decade ago, specialize in 

image processing, such as image classification [23], [24], [25], 

[26], object detection [27] and semantic segmentation [28], 

[29]. Thus, CNNs provide the ideal foundation for tackling the 

challenging task of atrium segmentation. 

In this paper, we propose and evaluate a novel CNN for fully 

automatic LA segmentation. Our method is developed and 

validated on the largest 3D LGE-MRI dataset from 154 patients 

with AF from The University of Utah. This exciting 

development is a very important step towards patient-specific 

diagnostics and treatment. 

II. METHODS 

Direct LA segmentation from raw LGE-MRIs is challenging 

due to the massive imbalance between positive (thin wall LA) 

and negative (background) pixels. To overcome this, we 

propose a novel dual fully convolutional neural network 

(FCNN), with the alias AtriaNet (Fig. 1), that contains two 

parallel pathways to process both local and global information. 

The details of the configuration of AtriaNet are provided in 

Table. I. AtriaNet performs 2D patch-wise classification at 

every 15 × 15 region across each slice of a 3D LGE-MRI. The 

inputs into the network are a local 41 × 41 patch, and a global 

279 × 279 patch, both centered on the 15 × 15 prediction region. 

The global pathway captures information about the position 

and gross structure of LA. To reduce the number of parameters 

used in the resultant AtriaNet, the large global patch is pooled 

to a smaller size. The local pathway captures the exact 

geometry of LA for every pixel within its small neighborhood. 

The two patches are separately convolved through 13 

convolutional layers (conv 1 to conv 13) and are merged to 

combine the information by performing an element-wise sum. 

To maintain dimensional consistency, the last layer in the 

global path is unpooled to match the size of the local pathway 

with nearest neighbor interpolation. The network is then 

convolved two more times (conv 14 and conv 15) to further 

process the combined information where the output is produced 

in the final layer with 2 feature maps (conv 16). The Rectified 

Linear activation function is used for all layers apart from the 

last layer which uses a softmax activation function. Dropout is 

applied to convolutional layers 14 and 15 to reduce overfitting 

with a dropout rate of 50%. During testing, the network scans 

through each 15 x 15 region for every slice of a 3D LGE-MRI 

without overlapping, and feeds the corresponding 41 x 41 and 

279 x 279 patches centered around it as input. 

 
TABLE I 

The configurations of AtriaNet 
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Fig. 1.  The architecture of the proposed dual fully convolutional neural network for atrial segmentation (AtriaNet). The size of the image at every second layer is 

shown, further details are in Table. I. The parallel (global and local) pathways process each MRI slice at different resolutions, which are combined at the end of the 

network. The final output has two feature maps, denoting the probability of a positive or negative pixel classification for each 15×15 patch respectively. 

 

III. EXPERIMENTAL SETUP 

A. LGE-MRI Patient Data 

154 3D LGE-MRIs from 60 patients with AF prior to 3 to 27 

months post clinical ablation were provided from the 

University of Utah [9]. The in vivo patient images were 

acquired at a spatial resolution of 0.625 mm × 0.625 mm × 1.25 

mm using either a 1.5 Tesla Avanto or 3.0 Tesla Verio clinical 

whole-body scanner. Each 3D LGE-MRI scan contains 44 

slices along the Z direction, each with an XY spatial size of 640 

× 640 pixels or 576 × 576 pixels. The LGE-MRIs are in 

grayscale whereas the segmentation masks are in binary. The 

LA segmentations include the pulmonary vein regions, the 

mitral valve, and the left atrial appendage. Each 3D LGE-MRI 

patient data (both pre and post ablation) include two manually 

segmented masks of the LA epicardium and endocardium by 

experts [10], which were used as the ground truths in our study. 

B. Pre-Processing 

The 154 3D LGE-MRI dataset was randomly split into 

training (N = 110), validation (N = 22) and testing (N = 22) sets 

in our study (Table. II). Since each patient had multiple 3D 

LGE-MRIs for pre and post ablation, the data was split so that 

all scans from each unique patient were only in one of the 

training, validation or testing sets. Evaluation could, therefore, 

be performed to compare whether pre or post ablation impacts 

the segmentation accuracy. Training, validation, and testing for 

LA epicardium and endocardium segmentation were done 

separately. All individual raw 3D LGE-MRI data was 

normalized by using its mean and standard deviations of color 

intensity. 
TABLE II 

The number of 3D late gadolinium-enhanced (LGE)-MRIs used for training, 

validation and testing. 

 

 

Direct training on the entire LGE-MRI data was ineffective 

due to the small proportion of positive pixels per slice, which 

led to the data being very sparse and unbalanced. To alleviate 

this, smaller patches which contained a balanced number of 

positive and negative pixels were extracted from the training 

set. The same number of patches from the background were 

also sampled to match that of patches containing positive pixels 

used during training. Note that for every 15 × 15 label sampled 

(for evaluation during training), there was a need to generate a 

41 × 41 local patch and a 279 × 279 global patch from original 

raw LGE-MRIs as inputs. Since the input patches of AtriaNet 

(41 × 41 and 279 × 279) were much larger than the 15 × 15 

output patch, there were substantial overlaps when the input 

patches were sampled. 

Data augmentation was also used to artificially increase the 

amount of data. Elastic deformations, affine transformations 

and warping were found to be effective in increasing the 

performance in previous studies [36]. The proportion of the 

training set to augment was tuned as to introduce a sufficient 

amount of new data but not cause overfitting. 

C. Training 

The adaptive moment estimation (ADAM) optimizer [37], a 

type of gradient descent algorithm, was used for optimization. 

The learning rate was kept constant at 0.0001 without 

adjustment and the exponential decay rates of the 1st and 2nd 

moment estimates were set to 0.9 and 0.999 respectively. 

During training, the accuracy was evaluated on the validation 

dataset after each iteration of all the training data through the 

network. This was repeated until the validation accuracy 

stopped increasing, and the best performing model was selected 

for evaluation on the test set. The network was developed in 

TensorFlow [38], an open-source deep learning library for 

Python, and was trained on an NVIDIA Titan X-Pascal GPU 

with 3840 CUDA cores and 12GB RAM. The training phase 
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took approximately four hours and predictions on each 3D 

LGE-MRI took around one minute to compute. 

D. Post Processing and Evaluation 

Since atrial tissue is continuous and smooth, the raw 

segmentation output from AtriaNet was passed through a 3D 

Gaussian filter to enhance the segmented tissue mask. Isolated 

mask islands were removed automatically, keeping only the 

largest connected tissue in 3D as the final LA segmentation. 

Thresholding was applied to restrict the pixels to binary values, 

ensuring the atrial geometry was smooth and sharp. 

Evaluation against the ground truths was done to evaluate the 

accuracy of AtriaNet for each 3D LGE-MRI data. Sensitivity, 

specificity, DICE and Hausdorff distance (HD) [39] 

measurements were used, as well as clinical relevant 

measurements (LA anterior-posterior diameter and 3D LA 

volume). The DICE score is calculated as 

	���� = ��	
��	���	���
��	
��	���	����������	���	����������	����	���

     (15) 

and was used during both validation and testing. The HD is 

defined as the greatest value of the distances from any point in 

one set to its corresponding closest point in another set. It is 

written as 

����, �� = max!∈# $min'∈( )*+� − -�./              (16) 

for the two datasets of ground truth (G) and prediction (P). 

The diameter and volume of the LA endocardium were 

evaluated to compare the potential measurement errors from 

the segmentation between the predictions and ground truths. 

The LA diameter, measured in millimeters, was calculated by 

finding the maximum distance from the anterior to the posterior 

of the LA endocardium. The LA volume, measured in cm³, was 

calculated by counting the total number of voxels within the 

endocardium and then scaling the sum by multiplying the 

original resolution of the LGE-MRI. 

E. Hyper-Parameter Tuning 

The proposed FCNN methodology consisted of multiple 

parameters which were carefully selected and validated through 

extensive experimentation. Various experiments were designed 

to evaluate the effects of different parameter values under 

controlled conditions on the validation and testing sets. The 

parameter values presented in Section II of this study were, 

therefore, the values which yielded the highest performance 

during these hyper-parameter tuning experiments. 

Since the local and global input dimensions directly 

impacted the receptive field of AtriaNet, it was important to 

ensure that optimal values were selected so that AtriaNet was 

provided with sufficient information to efficiently capture the 

local and global features of the LA endocardium and 

epicardium. The input dimensions of the local and global path 

of AtriaNet were tuned by evaluating the network with a range 

of different combinations of local and global resolutions. These 

included local patch sizes ranging from 25 × 25 to 60 × 60 and 

global patches ranging from 252 × 252 to 306 × 306. During 

experimentation, all other parameters not being tuned were kept 

fixed to ensure fairness of comparison. 

Single-step down-sampling was used in our network to 

minimize the computational burden of large input images. 

Comparisons were made between max-pooling and average 

pooling for this step. The pooling factor in the global pathway 

was also tuned to ensure that the network sufficiently retained 

the relevant global information while maintaining a low 

number of parameters. 5, 7, 9 and 11 sized filters were tested 

for pooling the global patch while the local patch remained 

fixed throughout the experiments. Since our proposed network 

required the dimensions of the global and local pathways to 

match during merging, the global input resolution was adjusted 

accordingly when testing different pooling factors. The 

unpooling layer was tested by comparing nearest neighbor, 

bi-linear and bi-cubic interpolation. 

The sequence of values for the number of feature maps used 

for the convolutional layers throughout AtriaNet was tested and 

compared to ensure that the selected values produced the best 

segmentation performance without using excessive 

computation. Specifically, experiments were done comparing 

the proposed number of feature maps (Table I) with different 

versions of AtriaNet containing 0.25×, 0.5× and 2× the number 

of feature maps at each layer. This was expected to draw out the 

effects on the accuracy of segmentation with a network having 

significantly larger or smaller number of parameters. 3 × 3 

filters were used for all convolutional layers due to their low 

computational costs and success in previously proposed 

literature [24, 26, 28, 29, 35, 40, 41]. 

Overfitting was a potential issue in larger neural networks 

due to the large number of parameters. To minimize this issue, 

dropout rates of 0%, 25%, 50% and 75% in AtriaNet were 

evaluated to find the most effective number of nodes to remove 

while still keeping enough nodes for sufficient feature learning. 

F. Comparing Existing FCNNs for LA Segmentation 

The robustness and superiority of AtriaNet was 

demonstrated by comparing its performance with current 

widely used CNN architectures for the task of LA endocardium 

segmentation using the same LGE-MRI dataset and same 

prior/post processing procedures. The networks investigated 

here included U-Net [35], Dilated U-Net [42], DeepOrgan [43] 

and V-Net [44], which are popular for medical image 

segmentation; and VGGNet [24], Inception [25] and ResNet 

[26] which have obtained state-of-the-art performances in 

image classification. Popular FCNNs for semantic 

segmentation such as FCN-8 [28], deconvolutional neural 

network (Deconv-Net) [29] and SegNet [45] were also 

investigated. Since the three classification networks were 

traditional CNNs, they were converted into FCNNs by 

replacing the fully connected layers at the end of the network 

with convolutional layers for pixel-wise segmentation 

prediction. The intermediate pooling layers were also removed 

to avoid significant losses in dimensionality. It should be noted 

that VGGNet with its fully connected layers removed, is the 

single-pathed version of our proposed FCNN, hence, the effect 

of having a dual-pathway was tested implicitly.  

Since the mentioned architectures contained only one 

pathway, the impact of patch size equivalent to the local/global 

resolutions in AtriaNet was tested to evaluate its performance 

during the benchmark study. To ensure for a fair comparison of 

the different architectures, the same training, validation and 

testing datasets were used for LA endocardium segmentation. 

Due to the random initialization of the weight parameters, 

biases can be introduced in different training sessions where the 
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accuracy can differ by a slight margin for the same network 

trained on the same data. To avoid this, each architecture was 

trained three times independently, and the results were 

averaged. All architectures were implemented using 

TensorFlow and trained from scratch to eliminate any source of 

bias from existing implementations. The default 

hyper-parameters, initializations and training schemes 

recommended by the original authors were used. 

For further comparison, a previously proposed method for 

fully automatic LA segmentation was also compared with 

AtriaNet by executing an existing implementation of the 

algorithm on the testing data in our study and evaluating the 

generated segmented masks [15]. This allowed for a direct 

comparison of the effectiveness of our proposed method 

against a previous method used for the same task in terms of 

both the accuracy of segmentation and the computational 

efficiency. 

IV. RESULTS 

A. Optimal Hyper-Parameters 

The results of the hyper-parameter tuning experiments are 

presented in this sub-section to validate the parameter choices 

used in our proposed AtriaNet. Table. III shows that in the case 

of a single path network, 41 × 41 was the optimal value for 

sufficiently capturing local information when used on its own. 

This also shows the importance of selecting the correct local 

patch as it significantly impacts the performance due to it being 

high resolution as opposed to the global patch which was 

pooled to a low-resolution input. 

 
TABLE III 

DICE accuracies of AtriaNet with the single local pathway only, with different 

resolutions of input patches on 22 test data. 

 
*All results shown are after data augmentation and post-processing 

 

Table IV shows the performance of AtriaNet with different 

combinations of global and local input resolutions. It is 

important to note that due to the design of AtriaNet, only 

specific combinations of local and global resolutions are 

feasible such that they can merge together after conv 13. The 

results show that the proposed local (41 × 41) and global (279 × 

279) resolutions produced the highest DICE score as it captured 

the local and global features more effectively than other values. 

These results demonstrate that using small inputs did not 

provide the network with enough information to sufficiently 

learn complex features, yet using large inputs was also 

problematic as they were more susceptible to overfitting.  

 
TABLE IV 

The DICE accuracy on the 22 test data using AtriaNet with different local and 

global patch sizes. 

 
*All results shown are after data augmentation and post-processing 

 

Experimentation with max-pooling and average-pooling for 

the global pathway yielded no significant difference for the 

performance of AtriaNet. Experiments using nearest neighbor, 

bi-linear and bi-cubic interpolation also showed no significant 

difference for the unpooling layer. Results from tuning the 

pooling factors for the global pathway showed that 9 × 9 

resulted in the best performance with a 0.942 DICE score. 

Filters deviating from this size performed worse as it either did 

not sufficiently capture enough global information, or 

important features were lost due to over down-sampling. This 

was reflected in the DICE scores from using 5 × 5, 7 × 7 and 11 

× 11 pooling which were 0.913, 0.921 and 0.927 respectively.  

Table V shows the performance of AtriaNet on the testing set 

with different numbers of feature maps in each layer. The DICE 

scores on the test data shows that the proposed values (Table I) 

produced the best segmentation performance. The models with 

a small number of feature maps did not contain a sufficient 

number of parameters to learn the complex features of the LA 

endocardium, while the models with a larger number of feature 

maps was more prone to over-fitting. Furthermore, increasing 

the number of feature maps significantly increased the 

computational expense, meaning that a model with a moderate 

number of feature maps was the most desirable. 

 
TABLE V 

DICE scores for AtriaNet with different number of kernels at each layer from 

conv 1-13 for the 22 test data. 

 
*All results shown are after data augmentation and post-processing 

Hyper-parameter tuning of the dropout rates at the last layers 

of AtriaNet showed that 50% dropout provided the best balance 

between alleviating overfitting while still maintaining 

sufficient number of nodes in each layer for feature learning. 

This resulted in the 0.942 DICE score. Experiments showed 

that having no dropout produced the lowest DICE score of 

0.927 and having 75% dropout resulted in a DICE score of 

0.937 due to the excessive removal of parameters. 

B. 3D Segmentation Results 

Fig. 2 illustrates the segmentation and reconstruction results 

for the 3D LA epicardium for comparing the ground truth (1st 

and 3rd row) and the prediction segmentation by AtriaNet (2nd 

and 4th row) for 10 of 22 tested 3D LGE-MRIs (5 each for pre 

and post ablation). Overall, LA geometry was accurately 

reconstructed as the prediction captured both the general shape 

and the detailed curvature of the LA wall for each  
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Fig. 2.  The 3D reconstruction of the left atrial (LA) epicardium for pre (blue) and post (green) ablation for 10 test late gadolinium-enhanced (LGE)-MRIs out of 22. 

The 1st and 3rd rows are the ground truths and the 2nd and 4th rows are the segmentation results from AtriaNet. Each column contains LGE-MRI scans from the same 

patient.  
 

test 3D LGE-MRI scan (N = 22). The pulmonary veins were 

successfully captured as well, though the pulmonary veins 

segmented by AtriaNet was often smaller in diameter and did 

not extend out of the LA chamber as much as the ground truths. 

This was possibly due to the veins being relatively small and 

thin compared to LA, making it more difficult to predict. 

The performance of AtriaNet was enhanced with data 

augmentation and post-processing. While elastic deformations 

and affine transformations did not prove to be particularly 

effective, warping 50% of the original data improved the 

model’s performance by 0.005. As a result, the training set was 

increased to 1.5 times its original size as the additional 50% 

consisted of randomly sampled augmented data. 

Post-processing improved the DICE score for both LA 

epicardium and endocardium segmentation by ~0.015. Table. 

VI shows the final evaluation metrics for both of the 

segmentation tasks grouped by pre and post ablation 

LGE-MRIs. The DICE segmentation accuracy was 

approximately equal for both the epicardium and endocardium 

(0.940 vs 0.942), however, the endocardium segmentation had 

a slightly higher sensitivity of 0.918, which implies that a 

slightly greater proportion of the positive pixels were 

successfully detected compared to that of the epicardium 

segmentation. The 0.999 specificity suggests that AtriaNet was 

extremely effective in detecting background pixels, and 

the >0.9 sensitivity shows AtriaNet was also very effective in 

detecting the positive pixels for accurate segmentation. 

 
TABLE VI 

Evaluation metrics for left atrial (LA) epicardium (epi) and endocardium (endo) 

segmentation for the 22 test 3D late gadolinium-enhanced (LGE)-MRIs. 

 
*All results shown are after data augmentation and post-processing 

 

 
Fig. 3.  The DICE score for segmentation of the left atrial (LA) epicardium and 

endocardium for each of the 22 test 3D late gadolinium-enhanced (LGE)-MRIs. 

 

The DICE score for each test patient data is shown in Fig. 3. 

The results show that AtriaNet was very consistent in 

reconstructing both the LA epicardium and endocardium as 

seen from the small variation of the DICE scores across 

different patients. The standard deviation of the DICE scores 

for both epicardium and endocardium segmentation was 0.014. 

Table. VII shows the predicted and ground truth measurements  

for the LA diameter and volume, as well as their absolute and 

relative errors. The predicted masks were accurate within 1.59 

mm and 4.01 cm³ of the ground truths on average for the 

diameter and volume measurements respectively. Overall, the 

segmentations for the pre-ablation patients were more accurate 

as seen from the higher DICE scores and lower relative errors 

of the estimated LA dimensions. 

 
TABLE VII 

The left atrial (LA) diameter and volume measurements and errors for the 22 

test 3D late gadolinium-enhanced (LGE)-MRIs. 

 
*All results shown are after data augmentation and post-processing 
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Fig. 4.  The left atrial (LA) epicardium (orange) and endocardium (green) segmentation results from the proposed AtriaNet compared to the ground truth for 

representative slices on the same 3D late gadolinium-enhanced (LGE)-MRI for test patient #5 (pre-ablation). The 1st row is the raw LGE-MRI scan, the 2nd row is 

the ground truth and the 3rd row is the segmentation produced by AtriaNet. Each column displays the same LGE-MRI slice. The depth of the MRI for each slice is 

shown in mm. AO, aorta; LV, left ventricle; RA, right atrium; RV, right ventricle; RPV, right pulmonary vein.   

 

C. Error Analysis of Segmentation 

A detailed post analysis of the segmentation errors was 

performed for each test patient data to compare the predictions 

to the ground truths for each image slice throughout each 3D 

LGE-MRI.  Fig. 4 illustrates the segmentation results for the 

LA epicardium and endocardium by AtriaNet compared with 

the ground truth for selected slices at the same depth for a test 

3D LGE-MRI. The results shown are representative of the 

errors seen in other test LGE-MRIs. The relative depth of each 

slice from the bottom of the LGE-MRI scan is provided in 

millimeters. 

As seen from Fig. 4, at the depth of 27.5 mm to 40 mm 

(middle sections of the 3D atria), AtriaNet produced more 

accurate reconstructions of the LA geometry. AtriaNet was able 

to successfully capture the curvature of the LA tissue in detail, 

while also showing a clear gap between the epicardium and 

endocardium denoting the LA wall tissue. The pulmonary vein 

regions were the main sources of error within these slices, as 

the segmentation was less accurate as seen from the bottom left 

part of LA at 33.75 mm and the bottom right part of the LA at 

40.00 mm, where the segmentation was non-smooth and the 

thickness of the vein was underestimated. 

D. Comparative Evaluation with Other FCNNs 

Table. VIII compares the performance of different network 

architectures with AtriaNet after data augmentation and 

post-processing for LA endocardium segmentation on the same 

22 3D LGE-MRI test dataset. The metrics of all single pathway 

networks when using the local resolution as input are shown. 

Benchmarking experiments on the architectures using the 

global resolution (not shown) resulted in substantially lower 

performances for all single-path approaches (~0.1 lower DICE 

score) compared with using the local resolution. The 

superiority of the local resolution as input for single pathway 

networks was due to the ability to achieve sharp segmentations 

given the high resolution of the local patches, while the global 

resolution alone is inferior as the image is low in resolution due 

to pooling. 

The popular medical image segmentation architectures [35, 

44] and the recent state-of-the-art image classification 

architectures [24-26] adapted for segmentation were all 

outperformed by AtriaNet in both DICE and HD evaluation. 

The single path version of AtriaNet, VGGNet, was the 

second-best performing architecture, and showed the use of an 

additional pathway in AtriaNet improved the performance by a 

DICE score of 0.078. The evaluation metrics indicated that the 

use of a dual pathway in AtriaNet resulted in a significantly 

more effective architecture for performing accurate LA 

segmentation compared to other existing neural networks. 

Comparisons between AtriaNet and the previously proposed 

LA segmentation algorithm by Zhu et al. also showed 

significant improvements in the accuracy of the endocardium 

reconstruction [15]. Not only did our approach outperform the 

previous study by over 10% in DICE score, runtime 

experiments on the same computing hardware revealed that 

AtriaNet was significantly faster, 1 minute vs. 22 minutes, at 

segmenting each 3D LGE-MRI in the test dataset. 

 
TABLE VIII 

The evaluation metrics between different network architectures using the same 

late gadolinium-enhanced (LGE)-MRI data for training, validation and testing. 
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*LA = left atrium; All results shown are after data augmentation and post-processing 

V. DISCUSSION 

Direct segmentation of atrial chambers from 3D LGE-MRIs 

is a challenging task. This is due to a lack of distinguishing 

features on the LGE-MRIs that enable the separation of atrial 

tissue from non-atrial regions, in addition to the poor image 

quality of LGE-MRIs due to motion artifacts, noise interference 

and significant variations in image intensities. 

Currently, our study is among the few that have attempted at 

direct automatic segmentation of the LA from LGE-MRIs [14, 

46, 47]. Out of all existing attempts, most of the LGE-MRI 

studies, either in-vivo or ex-vivo, have relied heavily on manual 

segmentation [9, 48-50]. There are few studies that have 

attempted to automate the direct segmentation process. The 

study by Veni et al. proposed was a shape-driven approach in 

which the posterior probability of the LA surface was expressed 

via Bayesian equations [14]. Zhu et al. also proposed a shape 

model for segmenting the LA and was enhanced by variational 

regional growth [15]. However, the methodologies of both of 

these studies required a shape prior for initialization which was 

generated either manually or based on strong assumptions from 

observing the data to segment. This is undesirable as it would 

be more time consuming than a fully automated approach and is 

also more susceptible to large variations in the data. Tao et al., 

on the other hand, proposed an approach which used global 

multi-atlas segmentation followed by a local refinement 

algorithm [16]. In contrast to the three previous studies, our 

methods do not require any manual initialization or the use of 

any additional information apart from LGE-MRIs. Furthermore, 

benchmarking results of AtriaNet showed significant 

improvements in the accuracy of the LA endocardium 

reconstruction, as well as significant computational advantages. 

In contrast to direct segmentation, indirect segmentation of 

LA from LGE-MRIs is a more popular approach that can be 

achieved by utilizing paired 3D MRA with the LGE-MRIs from 

the same patient. The 3D MRA images consists of image 

features that are more distinguishable than those in the 

LGE-MRIs, which enable the distinction between atrial tissue 

and background. As a result, the 3D MRA images are relatively 

easy to segment, for which comparably more studies have been 

conducted to develop automatic segmentation approaches [13, 

15, 51, 52]. Although some alternative conventional 

approaches outlined in a segmentation benchmarking study  [13, 

52] and the multi-view CNN approach conducted by Mortazi et 

al. [51] have achieved good LA segmentation performances, a 

mapping/fusion approach was needed in addition to their 

indirect segmentation approach to map the segmented masks of 

MRA images to the LGE-MRIs. This could introduce 

additional errors which limit the accuracy of such approaches 

[52]. In addition, the use of MRA images in indirect 

segmentation of LGE-MRI means that an extra 3D MRA scan 

is needed for each patient, which is time consuming and rather 

costly. In comparison, direct segmentation of LGE-MRIs using 

our proposed CNN is much more straight forward, efficient and 

accurate. 

Nowadays, CNNs are widely used for image classification 

and segmentation tasks. U-Net  [35], dilated U-Net [42] and 

V-Net [44] have been successful in many medical segmentation 

tasks whereas VGGNet [24], Inception [25] and ResNet [26] 

have achieved state-of-the-art performances in image 

classification. However, due to the single scaled 

inputs/information utilized in these aforementioned 

architectures except Inception, all lack the ability to directly 

process multi-scaled information – an aspect AtriaNet excels at. 

The difficult task of LA segmentation from LGE-MRIs 

requires more input information to capture its complex 

geometry. In this aspect, AtriaNet can essentially process twice 

the amount of information due to its dual-pathway, resulting in 

its superior performance. Inception was the only architecture 

that contained multi-scale processing. However, it is done 

internally within only one image patch. This suggests that 

CNNs such as Inception [53], which uses internal multi-scale 

processing, learns substantially less information than explicit 

multi-scale processing, such as those used in AtriaNet. 

Furthermore, our experiments using various CNNs suggest that 

AtriaNet can generalize to many unseen patient data and 

produce robust segmentations, lessening the chance of 

over-fitting, compared with other CNN approaches. 

Multi-scale processing has been explored in previous studies 

for enhancing the performance of neural networks in other 

research fields [54-56]. The CNNs proposed by Dou et al. for 

performing lung nodule classification [57] and by Kamnitsas et 

al. for brain lesion segmentation [58] both contained multiple 

pathways for different input resolutions. Despite the 

similarities of their designs and our proposed approach, 

AtriaNet contains a significantly greater number of layers and 

feature maps in each layer, allowing greater feature learning for 

segmenting more complex geometries such as the LA 

epicardium and endocardium. Furthermore, our experimental 

results showed that AtriaNet was able to perform high quality 

slice-by-slice 2D segmentation to achieve accurate 3D 

reconstruction of the atrial geometry, meaning it is effective for 

both 2D and 3D tasks. 

The accuracy of AtriaNet could possibly be further improved 

by applying shape constraints which would be imposed on the 

either the intermediate layers or the output to control the 

generated 3D geometry. This would especially improve the 

segmentation at the mitral valve which connects the LA with 

the left ventricle as currently, this region is arbitrarily cut by a 

straight line in the ground truth masks. AtriaNet attempts to 

segment the mitral valve region with a smooth rounded shape, 

leads to a poor performance value when evaluated. This issue 

could potentially be alleviated by manually re-labelling the 

ground truths masks to improve the definition of the mitral 
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valve, which in turn, will improve the quality of the samples 

provided to AtriaNet during training. The accuracy of the LA 

3D reconstruction could also be improved by considering the 

3D geometry and continuity between slices. A simple method 

to achieve this is to incorporate multiple slices as additional 

channels at the input of AtriaNet, however, our preliminary 

experiments showed that AtriaNet with three channeled or five 

channeled inputs performed worse and had substantially greater 

computational and memory costs. Further attempts at 

considering the continuity of the LA geometry in 3D warrant 

future investigation. In the future, we would like to apply 

AtriaNet for segmenting both atrial chambers and fibrosis since 

AF is a bi-chamber disease [4, 7, 59, 60]. We are currently 

progressing towards creating a dataset that contains manual 

segmentations of both atrial chamber masks, which could 

potentially be used to train AtriaNet. 

VI. CONCLUSION 

In this study, we have developed and evaluated a dual fully 

convolutional neural network for robust automatic LA 

segmentation from LGE-MRIs. Our algorithm enables the 

reconstruction of LA in 3D with a DICE accuracy of 94% as 

well as accurate estimates of key clinical measurements. The 

extensive evaluation of our pipeline demonstrates that it is 

superior to previously proposed state-of-the-art CNNs, setting a 

new benchmark for future studies. Our study may lead to the 

development of a more accurate and efficient atrial 

reconstruction and analysis approach, which can potentially be 

used for much improved clinical diagnosis, patient 

stratification and clinical guidance during ablation treatment 

for patients with AF. 
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