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a b s t r a c t 

Challenges in multi-fidelity modelling relate to accuracy, uncertainty estimation and high- 

dimensionality. A novel additive structure is introduced in which the highest fidelity solu- 

tion is written as a sum of the lowest fidelity solution and residuals between the solutions 

at successive fidelity levels, with Gaussian process priors placed over the low fidelity solu- 

tion and each of the residuals. The resulting model is equipped with a closed-form solution 

for the predictive posterior, making it applicable to advanced, high-dimensional tasks that 

require uncertainty estimation. Its advantages are demonstrated on univariate benchmarks 

and on three challenging multivariate problems. It is shown how active learning can be 

used to enhance the model, especially with a limited computational budget. Furthermore, 

error bounds are derived for the mean prediction in the univariate case. 

© 2021 Elsevier Inc. All rights reserved. 

 

 

 

 

 

1. Introduction 

The design, optimization, and control of many systems in science and engineering can rely heavily on computational 

modelling. Different approaches can be adopted, depending upon the problem at hand or the computational budget avail- 

able. One way to categorize a computational model is via its fidelity . Roughly speaking, low-fidelity computational models 

are those of low complexity or resolution in terms of the physics or any adjustable setting of the computer-based approxima-

tion [1] . High-fidelity models are defined in a similar manner. The former are usually associated with a lower computational

burden, the penalty for which is a loss in accuracy. In all computational models, the settings can be adjusted to obtain out-

puts of different fidelities (the grid point spacing, time step, order of an approximating basis, error tolerances, and so on).

It is also usually the case that there is a range of mathematical models to describe a given physical problem, with different

levels of physical detail incorporated into the equations, initial-boundary conditions and geometry that make up the model. 

In some applications, high-fidelity models are impractical, especially when a high number of runs of the model is re- 

quired across a parameter (input) space. In such applications, it is common to replace the model with a computationally- 

inexpensive approximation, termed a surrogate model [2] . Example applications include design optimization [3] , real-time 

control [4] , sensitivity analysis [5] and uncertainty quantification [6] . Surrogate models mainly rely on machine learning 
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[2,7–9] or model order reduction (MOR) [10] . MOR projects numerical formulations onto a low-dimensional subspace of the 

original space in which solutions are sought, and does not extend naturally to nonlinear or parameter-dependent problem. 

Both MOR and machine-learning methods require a large set of data generated from the original high-fidelity model (either 

for training or for constructing a basis), which may not be desirable or even feasible. 

Another route for reducing the computational burden is multi-fidelity modelling, in which models of different fidelity 

are combined [2] . In most cases, multi-fidelity models involve the construction of one or more surrogate models that use

information from the underlying models of different fidelity [11] . Other approaches include corrections to the low-fidelity 

results by leveraging information from a limited number of high-fidelity simulations, using, e.g., a Taylor series expansion 

or a GP model [12] . Many of the multi-fidelity methods that have been developed are specific to certain tasks, especially

optimization and uncertainty quantification. Importantly, the vast majority are concerned with scalar outputs or outputs in 

a low-dimensional space (we refer to [1] for a recent review). 

In the seminal autoregressive (AR) model of Kennedy and O’Hagan [2] for univariate outputs, a linear relationship be- 

tween the different fidelity levels was assumed to hold. Le Gratiet [13] enhanced this method by employing a deterministic

parametric form of the mapping from low- to high-fidelity, together with an efficient numerical scheme to reduce the com- 

putational cost. Despite its advantages, this parametric approach requires expert knowledge for model selection, as well as 

a large training data set. Perdikaris et al. [14] introduced the nonlinear autoregressive model (NARGP) to overcome some of 

these limitations. The authors placed a GP prior over the unknown cross-fidelity mapping, thereby increasing model flexibil- 

ity and alleviating any overfitting issues. NARGP has been applied to a number of low-dimensional problems [14] , and has

been generalized to high-dimensional outputs by Parussini et al. [15] . These methods, on the other hand, lack a systematic

approach to model training and rely on ad-hoc methods to select a basis for outputs in high-dimensional spaces. NARGP 

uses the low-fidelity solution as an input for the high-fidelity GP model, which leads to a concatenating GP structure known

as the deep GP [16] . As a consequence, tractability is lost and expensive sampling or variational methods are required for

training and inference. 

Another prominent multi-fidelity approach uses stochastic collocation (SC). Narayan et al. [17] developed a greedy pro- 

cedure to select low-fidelity samples and identify inputs at which to conduct a low number of high-fidelity simulations. 

The authors then used the low-fidelity results to approximate the coefficients for a high-fidelity SC approximation. This and 

related SC approaches are based on the naive assumption that adjacent fidelities share the same correlation structure, which 

is not always justified for complex models. The most serious drawback of SC approaches is that they require out-of-sample 

executions of the low-fidelity model for making predictions. When, as is frequently the case, the low-fidelity simulations 

are also expensive, SC approaches are not suitable for applications requiring many runs, especially sensitivity/uncertainty 

analyses and optimization. 

NARGP and deep GP approaches becomes impractical or non-viable for multi-fidelity simulations involving outputs in 

high-dimensional spaces; the number of parameters in these approaches scales linearly and quadratically with the out- 

put space dimension, respectively. The recently developed Greedy NAR [18] attempts to bridge the gap between NARGP 

and SC, leveraging the advantages of both methods. This is achieved by a generalised AR model, in which the high-fidelity

solution is given as linear map of the low-fidelity solution in a feature space. The feature map is implicitly defined by

integrating out a weight matrix and kernelizing. Greedy NAR can take advantage of a sequential active learning frame- 

work to select low- and high-fidelity samples efficiently. It was shown to be more efficient and accurate than NARGP, 

and more flexible than SC in terms of making high-fidelity predictions since it does not rely on out-of-sample low-fidelity 

experiments. 

In this work, an additive GP structure for multi-fidelity modelling is proposed, in which the highest fidelity solution 

is treated as the sum of the lowest fidelity solution and residuals between successive fidelities, over each of which a GP

prior is placed. This structure leads to a flexible, tractable and highly-scalable multi-fidelity GP model, termed ResGP. Both 

the likelihood (for model training) and the posterior (for predictions) are given explicitly, so that expensive approximate 

inference methods are avoided, and no additional data is required to make predictions. Importantly, ResGPcan be scaled to 

high-dimensional problems, which are common candidates for surrogate modeling, without any compromise in the predic- 

tion accuracy. 

Equipped with the tractable posterior, an active learning method is implemented so that ResGPcan automatically select 

inputs that maximize the information gain (or any other desired gain) without the need for a special experimental de- 

sign or a priori assumptions about the physical model. For univariate ResGPwe develop error bounds by assuming that the 

underlying high-fidelity solution is a sample from its GP prior [19] , together with additional mild assumptions related to 

the regularities of the solution and kernel. The computational complexity of ResGPis compared with other state-of the-art 

methods, highlighting its advantages in terms of scalability and parameter count. 

ResGPis applied to five synthetic univariate examples and three challenging multivariate examples that involve several 

quantities of interest. In the univariate examples ResGPis demonstrated to outperform AR, NARGP and the multi-fidelity 

deep GP (MF-DGP) model of Cutajar et al. [20] in terms of both prediction accuracy and uncertainty estimation in almost

all cases. Compared to the other methods, the root mean square error on 10 0 0 test points is at least 21%, 28%, 58%, 58%

and 7% lower on the five examples, while the mean negative log likelihood is at least 13%, 79%, 38% and 6% lower on

four of the examples. The results from the multivariate examples are compared to those from NARGP, SC and Greedy NAR, 

demonstrating considerable improvements in prediction accuracy, as well as stable performance for high-dimensional data 

sets. The normalised root mean square errors on the test sets are shown to be lower than those for the other methods
37 
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(by up to 97%) for 7 out of 9 quantities of interest across the three examples. Significantly, ResGP, especially with active

learning, performs particularly well for low numbers of high-fidelity training points. 

2. Statement of the problem 

We are interested in numerical solutions to systems of ordinary or partial differential equations obtained from a compu- 

tational model, and where repeated runs of the computational model for different input parameter values (associated with 

the system of equations and/or the accompanying initial-boundary conditions) are required. Such systems of equations are 

usually derived from conservation laws and, together with initial-boundary conditions, govern quantities of interest such as 

a species concentration or the temperature of a medium. Depending upon the types of equations, we may denote one such

quantity of interest by u (x , t; ξ) , u (x ; ξ) or u (t; ξ) , where x ∈ � ⊂ R 

p , p = 1 , 2 , 3 , is the spatial coordinate and t is time.

ξ ∈ X ⊂ R 

l is a vector of parameters that appear in the system of equations and/or in the initial-boundary conditions. X is

the admissible input space, which is assumed to be a compact subset of R 

l . 

Numerical solutions of the system of equations are obtained from a discretization of the equations, initial-boundary 

conditions and spatio-temporal domain, typically based on the finite element, finite volume, or finite difference method, 

together with a time-stepping scheme for the transient case. In the case of spatially-uniform systems, only a time dis- 

cretization is required. The numerical solution takes the form of one or more quantities of interest at a predefined number

of points in a discrete spatio-temporal grid, x j , j = 1 , . . . , N x , t i , i = 1 , . . . , N t ; in the case of a finite element formulation, the

coefficients in a finite-element basis expansion of the quantity of interest are computed, from which values of the quantity 

at an arbitrary number of spatio-temporal grid points can be extracted. For each input parameter ξ, the obtained values of

the quantity of interest can be vectorized as follows 

y (ξ) = 

(
u (x 1 , t 1 , ξ) , . . . , u (x N x , t 1 , ξ) , u (x 1 , t 2 , ξ) , . . . , u (x N x , t N t , ξ) 

)T 
, (1) 

or in some other manner that is the same for each ξ. We may then treat y (ξ) or any scalar or vector quantity derived from

y (ξ) as the final quantity of interest; that is, as a function y : X → R 

d of the inputs, for some integer d ≥ 1 (for example,

d = N x N t as in Eq. (1) ). Multiple quantities of interest can be modelled using the multi-fidelity method we develop by

separately applying the method to each quantity. We therefore limit discussion to a single quantity of interest y (ξ) in the

presentation of the method below. 

To obtain a high-fidelity/accurate solution for y (ξ) , we generally need to use a fine discretization in space and time,

a high-order stencil, a high-order basis expansion, or tight iteration bounds. Lower-fidelity solutions can be obtained by 

relaxing these criteria or by using simpler physical models, e.g., spatial averaging, considering a 2-d slice or linearizing. 

In this way, we can obtain numerical solutions y f (ξ) at different fidelities f . Other types of numerical outputs such as

those from electronic-structure calculations or molecular dynamics simulations can also be modelled using the framework 

we develop. The requirement is simply a computational model with variable input parameters and options for generating 

different fidelity solutions by adjusting settings as described above. 

In multi-fidelity modelling, we first conduct simulations at different fidelity levels f = 1 , . . . , F using inputs X 

f =
{ ξ f 

n } N f n =1 
⊂ X to obtain outputs { y f n } N f n =1 

, where y 
f 
n = y f (ξ f 

n ) . The outputs can be represented compactly as { Y 

f } F 
f=1 

, where

the rows of Y 

f ∈ R 

N f ×d are the N f solutions y 
f 
n at fidelity level f . In line with the common setting for multi-fidelity emu-

lation [14,20] , we assume that the training inputs for fidelity f are a subset of those for the preceding fidelity f − 1 , i.e.,

X 

f ⊂ X 

f−1 . We introduce an index notation for the extraction of subsets. Let e f ⊂ { 1 , . . . , N f−1 } , f = 2 , . . . , F be the indices

that extract the inputs from X 

f−1 to obtain X 

f . Extraction of the rows e f of Y 

f−1 leads to a matrix denoted Y 

f−1 
e f 

∈ R 

N f ×d .

Each row of Y 

f−1 
e f 

is an f − 1 fidelity solution that shares the same input as the corresponding row (output) in Y 

f . This

allows us to later compactly write residuals by subtracting Y 

f−1 
e f 

from the matrix Y 

f . 

The goal of this paper is to accurately approximate one or more high-fidelity quantities of interest y F (ξ) by efficiently

combining lower-fidelity information. We are especially interested in quantities of interest that lie in high-dimensional 

spaces (large d). Moreover, the method we develop will be able to evaluate the predictive uncertainty efficiently and ef- 

fectively. We also develop an efficient design-of-experiment that leads to optimal surrogates of the quantities of interest 

given limited computational resources. Specifically, the method selects locations at which to conduct the high-fidelity ex- 

periments according to the maximum information gain. We also provide an analysis of the time and space complexity of 

our method and develop error bounds for the univariate case. 

3. Residual Gaussian process model 

In this section we introduce a novel tractable and scalable structure to model multi-fidelity simulation data. Rather than 

imposing a concatenating structure as in NARGP, which forgoes the tractable nature of a GP [21] , we decompose the GP

defined over the high-fidelity output into a sum of GPs relating to the differences between successive fidelities. Specifically, 
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we impose the following residual structure 

y f (ξ) = 

f ∑ 

k =1 

r k (ξ) , f = 1 , . . . , F , (2) 

where r f (ξ) = y f (ξ) − y f−1 (ξ) , f = 2 , . . . , F , are the residual functions between fidelities. The function r 1 (ξ) , on the other

hand, is defined as r 1 (ξ) = y 1 (ξ) . Note that we present the model for the multivariate case. The univariate case can be

obtained from the formulae presented below in an obvious manner. 

The unknown functions r f (ξ) are then treated as random processes that can be approximated using any probabilistic 

data-driven model. We place an independent, zero-mean GP prior over each residual function r f (ξ) , i.e., 

r f (ξ) ∼ GP (r f (ξ) | 0 , k f (ξ, ξ′ | θ f ) � � f + δ(ξ, ξ′ ) τ f I ) , f = 1 , . . . , F , (3)

where � f ∈ R 

d×d is an unknown coregionalization matrix corresponding to the correlations between the components of 

r f (ξ) , � is the Kronecker product and δ(ξ, ξ′ ) is the Kronecker-delta function. Without loss of generality, the mean is

assumed to be identically zero by centering the observations. We note that this is the multivariate GP model of Conti and

O’Hagan [7] , with a separable covariance structure. That is, the covariance matrices assume the forms K 

f 
� � f , in which

[ K 

f ] nm 

= k f (ξn , ξm 

| θ f ) , ξn , ξm 

∈ X 

f , captures the correlations between values of r f (ξ) at different inputs ξ and � f captures

the spatial correlations, i.e., between different components of r f (ξ) . The covariance functions k f (ξ, ξ| θ) contain unknown

hyperparameters θ f . The terms δ(ξ, ξ′ ) τ f I are included to account for zero-mean, i.i.d. measurement error (across inputs and 

spatial coordinates), or, equivalently, as regularization terms to prevent ill-conditioning during training. The τ f are treated as 

hyperparameters or (optionally) fixed to some small values in the regularization interpretation [22] . The distribution (3) is 

conditioned on the full set of hyperparameters { θ f , � f , τ f } but to avoid notational clutter, conditioning on hyperparameters

and inputs or observations is not explicitly indicated. In the measurement error interpretation, the targets, i.e., given values 

of r f (ξ) , are considered to be values of a latent function r 
f 

l 
(ξ) corrupted by the i.i.d. noise εεε f 

r f (ξ) = r f 
l 
(ξ) + εεε f , f = 1 , . . . , F , (4) 

with priors r 
f 

l 
(ξ) ∼ GP (r 

f 

l 
(ξ) | 0 , k f (ξ, ξ′ | θ f ) � � f ) and εεε f ∼ GP ( εεε f | 0 , δ(ξ, ξ′ ) τ f I ) . 

Choosing the right kernel function for a specific application is non-trivial. When there is no prior knowledge to guide 

the choice, the automatic relevance determinant (ARD) kernel [21] 

k f (ξ, ξ′ | θ f ) = θ f 
0 

exp 

(
−(ξ − ξ′ ) diag (θ f 

1 
, . . . , θ f 

l 
)(ξ − ξ′ ) T 

)
, f = 1 , . . . , F , (5) 

with θ f = (θ f 
0 
, . . . , θ f 

1 
) T is often used. The ARD kernel can freely capture the influence of each individual input (coordi-

nate of ξ) on the output. The hyperparameters { τ f , θ f } can be estimated by maximizing the log-marginal likelihood (see

Section 3.1 ). 

The high-fidelity prior in this model can be written as follows 

y F (ξ) ∼ GP 

( 

y F (ξ) 

∣∣∣∣∣0 , 

F ∑ 

f=1 

[
k f (ξ, ξ′ | θ f ) � � f + δ(ξ, ξ′ ) τ f I 

]) 

, (6) 

by virtue of the independence assumption. Again, this is the GP over the noisy observations with cumulative i.i.d. noise 

variance 
∑ 

f τ f , and underlying latent function y F 
l 
(ξ) ∼ GP (y F 

l 
(ξ) | 0 , ∑ F 

f=1 k 
f (ξ, ξ′ | θ f ) � � f ) . 

Beginning with the lowest fidelity level f = 1 , we assume the prior (3) and use inputs X 

1 together with outputs Y 

1 to

learn { τ 1 , θ1 } and find the predictive posterior r 1 
l 
(ξ) ∼ N 

(
r 1 

l 
(ξ) | μ1 

r (ξ) , V 

1 
r (ξ) 

)
. At the next step we use inputs X 

2 and out-

puts r 2 := Y 

2 − Y 

1 
e 2 

in the same procedure to learn { τ 2 , θ2 } , and obtain the posterior for r 2 
l 
(ξ) ∼ N 

(
r 2 

l 
(ξ) | μ2 

r (ξ) , V 

2 
r (ξ) 

)
.

Here we define a matrix of residuals R 

2 using the notation introduced in Section 2 . This procedure is repeated up

to fidelity level f = F , i.e., independently learning the hyperparameters associated with each r f (ξ) , given observations

{ R 

f = Y 

f − Y 

f−1 
e f 

} F 
f=2 

. The predictive posteriors over r 
f 

l 
(ξ) are derived using standard Gaussian conditioning rules [7] , and

the posterior for the high-fidelity latent function y F 
l 
(ξ) can be written compactly as the following sum of GPs 

y F 
l 
(ξ) = 

F ∑ 

f=1 

r f 
l 
(ξ) ∼ N 

(
y F l (ξ) | μF (ξ) , V 

F (ξ) 
)
, 

μF (ξ) = 

F ∑ 

f=1 

μ f 
r (ξ) = 

F ∑ 

f=1 

(� f 
� k 

f (ξ)) T (� f 
� k 

f + τ f I ) −1 vec (R 

f ) , 

V 

F (ξ) = 

F ∑ 

f=1 

V 

f 
r (ξ) = 

F ∑ 

f=1 

[ � f 
� k f (ξ, ξ| θ f ) − (� f 

� k 

f (ξ)) T (� f 
� k 

f + τ f I ) −1 (� f 
� k 

f (ξ))] , 

(7) 

where vec (·) denotes vectorization and k 

f (ξ) = (k f (ξ, ξ1 | θ f ) , . . . , k f (ξ, ξN f 
| θ f )) T is the vector of covariances between the

latent function values r 
f 

l 
(·) at ξ and points in X 

f . We note that since the posteriors over each r f (ξ) are learned indepen-

dently, the training procedure is parallelizable if implemented without active learning (discussed below). 
39 
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The formulation (7) considers a general case in which noise terms τ f I are included. A computational model (of any

fidelity) can, however, be treated as deterministic function without random noise [23] . Thus, we can consider the residual

information to be deterministic and model it using GPs without the noise terms, in which case y F 
l 
(ξ) = y F (ξ) and the

predictive posterior reduces to 

y F (ξ) ∼ N 

(
y F (ξ) | μF (ξ) , V 

F (ξ) 
)
, 

μF (ξ) = 

f ∑ 

f=1 

μ f 
r (ξ) = 

F ∑ 

f=1 

(� f 
� k 

f (ξ)) T (� f 
� k 

f ) −1 vec (R 

f ) 

= 

F ∑ 

f=1 

I � (k 

f (ξ)) T (k 

f ) −1 vec (R 

f ) 

= 

F ∑ 

f=1 

(k 

f (ξ)) T (k 

f ) −1 R 

f , 

V 

F (ξ) = 

f ∑ 

f=1 

V 

f 
r (ξ) = 

F ∑ 

f=1 

� f 
�

(
k f (ξ, ξ| θ f ) − (k 

f (ξ)) T (k 

f ) −1 k 

f (ξ) 
)
. 

(8) 

Note that the coregionalization matrices � f cancel out for the expectation predictions (of any fidelity). This is consistent 

with autokrigeability [24] , which is utilized by Xing et al. [23] to deal with high-dimensional, single-fidelity mechanical de- 

sign simulations. Noiseless data is the usual assumption for simulations (the so-called ground truth approximation), but one 

could attempt to incorporate systematic errors arising from the model formulation (model inadequacy), from the numerical 

approximation (numerical errors), or from parameter uncertainty. 

In the same spirit as Xing et al. [23] , we now simplify the model by setting � f = I for f = 1 , . . . , F . This assumes that the

components of y F (ξ) are mutually independent given { θ f } . Note that the variance of the prediction then ignores the spatial

correlations, which will affect the uncertainty estimation, but the mean prediction is unaffected. We will discuss this issue 

further in Section 3.2 , in which we see that the active learning process is not affected. 

Retaining the noise terms and coregionalisation matrices, i.e., retaining Eq. (7) , requires an additional set of hyperparam- 

eters, namely the τ f and the entries of each � f . We may even use a richer covariance structure, such as the linear model

of coregionalisation [25] with linear combinations of separable covariances. In low-dimensional output spaces, this could be 

of benefit in terms of accuracy and variance capture. In very high-dimensional spaces, on the other hand, these approaches 

lead to problems in terms of maximizing the likelihood (or evidence lower bound) due to the higher number of inputs in

the optimization problem [25] (see Section 3.3 ). If modelling the noise is deemed important for a particular problem (per-

haps because the solutions are known to be corrupted), a compromise could be achieved by retaining the { τ f } terms and

setting � f = I . We discuss this formulation later. We point out, however, that in the examples in Section 4 , the noise terms

are not included. 

For most data sets, N f decreases in size with f, and is typically small for large values of f . The uncertainty in the

predictions for r 
f 

l 
(or r f ) therefore increases with f . We have to keep in mind, however, that that uncertainty is also bounded

by the scales of the residuals between different fidelities. For high values of f, the simulations for adjacent fidelities would

tend to be similar, and therefore the residuals would tend to be small. Thus, the added uncertainties for large f will be small.

For small f, the residuals between adjacent fidelities are expected to be larger but the uncertainties would be smaller by

virtue of the greater number of samples. The additive structure can, therefore, potentially ensure that the final uncertainty 

reflects the true model uncertainty. We discuss this further in the first example in section 4.1 . 

3.1. Model training and high-fidelity predictions 

Given the residual information R 

f , we can derive the residual marginal log-likelihood at fidelity f

L 

f = −1 

2 

| I � k 

f | − 1 

2 

vec (R 

f ) T (I � k 

f ) −1 vec (R 

( f ) − N f 

2 

ln (2 π) , 

= −d 

2 

| k 

f | − 1 

2 

tr ((R 

f ) T (k 

f ) −1 R 

f ) − N f 

2 

ln (2 π) , 

(9) 

while the joint marginal log-likelihood is 

L = 

F ∑ 

f=1 

L 

f = 

F ∑ 

f=1 

−d 

2 

| k 

f | − 1 

2 

tr ((R 

f ) T (k 

f ) −1 R 

f ) − N f 

2 

ln (2 π) . (10) 

The availability of residual information R 

f for each fidelity relies on the fact that X 

f ⊂ X 

f−1 . The marginal log likelihoods

L 

f are independent from each other given the inputs, and thus the training process can be performed separately for each

fidelity, i.e., parallelised. Making predictions using ResGPis straightforward because the posterior for fidelity F is the sum of 
40 
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the posteriors over the residuals, each of which is Gaussian. The prediction is given by Eq. (8) with 

V 

F (ξ) = 

f ∑ 

f=1 

V 

f 
r (ξ) = 

F ∑ 

f=1 

I �
(
k f (ξ, ξ| θ f ) − (k 

f (ξ)) T (k 

f ) −1 k 

f (ξ) 
)
. (11) 

The condition X 

F ⊂ X 

F −1 ⊂ . . . ⊂ X 

1 should in practice not be an issue since the experimental design can be chosen a

priori . If for any reason this condition is not satisfied, the fidelity f − 1 posterior GP 

y f−1 

l 
(ξ) = 

f−1 ∑ 

k =1 

r k (12) 

can be used to approximate y 
f−1 

l 
(ξ) at the inputs in X 

f , which can then used to define the residual data R 

f within the

ResGP framework. In such a case, it may be beneficial to include the noise terms to account for the approximation error in

the residual (possibly setting τ 1 = 0 ). If we assume � f = I , this leads to 

y F 
l 
(ξ) = 

F ∑ 

f=1 

r f 
l 
(ξ) ∼ N 

(
y F l (ξ) | μF (ξ) , V 

F (ξ) 
)
, 

μF (ξ) = 

F ∑ 

f=1 

(k 

f (ξ)) T (k 

f + τ f I ) −1 R 

f , 

V 

F (ξ) = 

F ∑ 

f=1 

I �
(
k f (ξ, ξ| θ f ) − (k 

f (ξ)) T (k 

f + τ f I ) −1 k 

f (ξ) 
)
. 

(13) 

Such a model is still highly scalable with the output space dimension d, requiring only F additional parameters compared to

the basic ResGP(see Section 3.3 ). We do not consider this model in the examples. The efficacy of such an approach depends

upon the disparity between the sets X 

f , and requires a deeper investigation that is beyond the scope of the present work. 

3.2. Active learning via variance reduction 

In practice, data of high fidelity is expensive to obtain. It is desirable to allocate computational resources, especially for 

the high-fidelity simulations, such that the surrogate model can achieve its best performance with the least computational 

cost. We first define the information gain for fidelity f at a new parameter ξ∗ as the uncertainty or variance given the current

data collection X . Maximization of the information gain can then be defined by 

ξ f 
∗ = argmax 

ξ∈ X 
tr 
(
V 

f 
r (ξ) 

)
, (14) 

in which tr denotes the trace operator. The coregionalization matrices in Eq. (8) are irrelevant as far as the information gain

is concerned for any given ξ since 

tr 
(
V 

f 
r (ξ) 

)
= tr 

(
� f 

�

(
k f (ξ, ξ| θ f ) − (k 

f (ξ)) T (k 

f ) −1 k 

f (ξ) 
))

= tr 
(
� f 
)(

k f (ξ, ξ| θ f ) − (k 

f (ξ)) T (k 

f ) −1 k 

f (ξ) 
)
, 

(15) 

and tr 
(
� f 
)

is treated as a constant in the maximization. Thus, setting � f = I does not affect our model either in terms of

making predictions or in terms of utilizing the uncertainty for active learning or Bayesian optimization. For decision making 

or active learning, the uncertainty related to a new sample (for a new input) rather than to a particular component of a

new sample is essential. Eq. (14) now reduces to 

ξ f 
∗ = argmax 

ξ∈ X 

(
k f (ξ, ξ| θ f ) − (k 

f (ξ)) T (k 

f ) −1 k 

f (ξ) 
)
. (16) 

Inspired by the work of Narayan et al. [17] , we propose to build the multi-fidelity surrogate model in a sequential manner,

starting from the lowest fidelity. For each fidelity, based on the available data, we train the GP model and compute the

information gain for each candidate input. Subsequently, the fidelity f experiments corresponding to the candidate inputs 

that yield the maximum information gain are conducted and added to the training data. This process is repeated until a

given condition is met. We present the full details of how to construct the model without requiring the prior execution

of low-fidelity simulations for all candidates (which is required by the classic stochastic collocation model) in Algorithm 1 .

In this algorithm, the stopping criteria is a given number of simulation runs for each fidelity, which should be decided

based on the available computational budget. In the case that we require the system to be fully automatic, we may instead

specify a large candidate set X t and the uncertainty bound for determining the number of iterations. We can also perform an

eigenvalue analysis of each correlation matrix to find the optimal number of samples that fully capture the model behaviour 

within the parameter space. We note that there are more state-of-the-art active learning methods, such as the work of Song

et al. [26] , which utilizes mutual information across different fidelities. The active learning component is not the main focus

of this work, but such recent developments could improve the performance of ResGP. We also point out that parallelization

of the training process is not straightforward if active learning is implemented. 
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Algorithm 1 ResGPSequential Construction 

Require: A finite-cardinality set X t of inputs, and thenumber of experiments allowed for each fidelity N f 

Ensure: A trained ResGP model 

Randomly select a point from X t and form the initial 1-fidelity candidate set X 

1 

Conduct 1-fidelity experiment for X 

1 and collect the solution in matrix Y 

1 

Update residual matrix R 

1 = Y 

1 

for |X 

1 | < N 1 do 

Update 1-fidelity residual GP model by MLE (9) ( f = 1 ) based on inputs X 

1 and residuals R 

1 

Find ξ∗ based on Eq. (16) for X t \ X 

1 

Update 1-fidelity candidate set X 

1 ← X 

1 ∪ { ξ∗} 
Conduct a 1-fidelity simulation to obtain solution y 1 (ξ∗) 
Update low-fidelity solution matrix R 

1 ← [ R 

1 , y 1 (ξ∗)] 

end for 

for f = 2 , . . . , F do 

Randomly select a point from X 

f−1 to form initial candidate set X 

f 

Conduct f -fidelity experiment for X 

f and collect the solution in matrix Y 

f 

Update residual matrix R 

f = Y 

f − Y 

f−1 
e f 

for |X 

f | < N f do 

Update f -fidelity residual GP model by MLE of (9) based on X 

f , R 

f 

Find ξ∗ based on Eq. (16) for X 

f−1 \ X 

f 

Update f -fidelity candidate set X 

f ← X 

f ∪ { ξ∗} 
Conduct an f -fidelity simulation to obtain solution y f (ξ∗) 
Update f -fidelity residual matrix R 

f ← [ R 

f , y f (ξ∗) − y f−1 (ξ∗)] 

end for 

end for 

Table 1 

Model complexity comparison. 

Method Complexity Number of parameters 

ResGPwith � f = I , σ f = 0 O( 
∑ F 

f=1 N 
3 
f 
) F (l + 1) 

ResGPwith � f = I , σ f � = 0 O( 
∑ F 

f=1 N 
3 
f 
) F (l + 2) 

ResGPwith � f � = I , σ f � = 0 O( 
∑ F 

f=1 N 
3 
f 
d 3 ) F (l + 2 + d(d + 1) / 2) 

NARGP O( 
∑ F 

f=1 N 
3 
f 
) F (l + 1) + (F − 1) d

MF-DGP O(F N T M 

2 d) (F − 1)(Md(2 + 

1 
2 
(Md + 1)) + l(M + 1) + 1 + d) + Md + l + 1 

AR1 O(N 3 T ) F (l + 2) − 1 

Greedy NARGP O( 
∑ F 

f=1 N 
3 
f 
) (l + 1) + (F − 1) d

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Computational complexity 

For standard GP models with N training samples, the time (computational) complexity for model training is O(N 

3 ) due to

the inversion of an N × N covariance matrix in the maximum log-likelihood solution (see Eq. (9) ) [21] . Given its structure, as

the sum of conditionally independent GPs, ResGPcan scale well with the output dimension. The computational complexity 

is that for the F GPs with N f , f = 1 , . . . , F , training samples, namely O( 
∑ F 

f=1 N 

3 
f 
) . The total number of model parameters

for ResGPis F (l + 1) with a standard ARD kernel. This follows from the form of the ARD kernel (5) , which requires l + 1

hyperparameters for each f . With added noise, an additional hyperparameter σ f is required for each GP, leading to F (l + 2)

hyperparameters. If � f � = I , the covariance matrix is of size N f d × N f d for each f, and the entries of each symmetric d × d

matrix � f need to be estimated, leading to an additional F d(d + 1) / 2 parameters. 

The computational complexity comparison with other state-of-the-art methods is shown in Table 1 (for ARD kernels), in 

which M is the number of inducing points for MF-DGP and N T = 

∑ F 
f=1 N f is the total number of training samples. For AR,

the covariance matrix is of size N T × N T [2] [section 2.3], thus leading to the computational complexity shown in Table 1 . The

number of hyperparameters is F (l + 1) for F ARD kernels, with an additional F − 1 hyperparameters for constants defining

the relationships between successive fidelities. NARGP involves F GPs with covariance matrices of sizes N f × N f , leading to a

computational complexity equal to that of ResGP [14] . Since the outputs y f−1 (ξ) are treated as inputs alongside ξ for fidelity

f = 2 , . . . , F , there are an additional (F − 1) d hyperparameters compared to ResGPwith � f = I , σ f = 0 . 

Greedy NAR also involves F GP training steps with N f × N f covariance matrices [18] . Like NAR, it uses the f − 1 fi-

delity outputs as inputs for fidelity f = 2 , . . . , F , but only involves the model inputs ξ in the lowest fidelity GP, leading to

(F − 1) d + l + 1 hyperparameters for ARD kernels. Since MF-DGP is equivalent to a deep GP with F layers and outputs in

d−dimensional space in each layer, the computational complexity is dominated by the KullbackLeibler divergence in the 
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evidence lower bound (ELBO) for the variational approximation, namely O(F N T M 

2 d) [27] . The sparse variational approxima-

tion in MF-DGP requires Md(F − 1) + (F − 1) M d(M d + 1) / 2 variational parameters for the means and symmetric covariance

matrices of the distributions over the inducing points (in R 

d ) for fidelities f = 2 , . . . , F , and a further Md + (F − 1) M(d + l)

variational parameters for the inducing inputs at fidelities f = 1 , . . . , F [20] . The kernel hyperparameters for an ARD kernel

are l + 1 for fidelity 1 and (F − 1)(l + 1 + d) for the other fidelities, and a further F hyperparameters are included for the

noise variances. SC does not contain any model parameters and thus no model training is required. It only involves a single

computation of the inverse of the Gram matrix at low fidelity [17] . It does, however, require low-fidelity experiments in

order to make predictions at high fidelity, which is usually far more costly. 

The computational complexity for MF-DGP is prohibitive for high-dimensional problems, and AR also suffers from high 

costs along with ResGPwith � f � = I . The numbers of parameters for NARGP, Greedy NAR and MF-DGP are also excessive,

which can mean that training is problematic for large d. The same is true for ResGPwithout the assumption � f = I ; setting

� f = I and retaining the noise terms, however, leads again to a highly scalable model. 

W-Xing: I have sent earlier 

3.4. Error bounds for the univariate ResGP 

In this section we will prove an error bound on ResGP in the univariate case. We begin with some definitions. A sym-

metric kernel function k : X × X → R is positive semi definite (psd) if the corresponding matrix [ k (ξn , ξm 

)] nm 

for any finite

set { ξ1 , . . . , ξN } ⊂ X ⊂ R 

l is psd. Henceforth, we consider only kernels k that are symmetric, psd and bounded on X . A real-

valued function f : X → R is Lipschitz continuous with Lipschitz constant L ≥ 0 if | f (ξ) − f (ξ′ ) | ≤ L ‖ ξ − ξ′ ‖ , ∀ ξ, ξ′ ∈ X ⊂ R 

l ,

in which the standard Euclidean norm is used ( ‖ · ‖ is used to denote a standard Euclidean norm throughout). We define a

kernel k to be Lipschitz continuous with a Lipschitz constant L k in the sense that 

| k (ξ, ξ) − k (ξ′ , ξ) | ≤ A ( ξ) ‖ ξ − ξ′ ‖ ≤ sup 

ξ

A ( ξ) ‖ ξ − ξ′ ‖ := L k ‖ ξ − ξ′ ‖ , ∀ ξ, ξ′ , ξ ∈ X . (17)

Most commonly used kernels, including the squared-exponential and the Matern class of kernels, are Lipschitz continuous 

in the sense defined above. A function f : X → R admits a monotonic function ω(·) as a modulus of continuity iff | f (ξ) −
f (ξ′ ) | ≤ ω(‖ ξ − ξ′ ‖ ) , ∀ ξ, ξ′ ∈ X . The τ covering number M(τ, X ) of a set X is defined as the minimum number of open

balls with radius τ (with respect to the standard Euclidean metric) that is required to completely cover X . We use ‖ A ‖ 2 =
sup ‖ x ‖ =1 ‖ Ax ‖ to denote the matrix norm of A ∈ R 

n ×m induced by the standard Euclidean norm in R 

m . 

A number of results have been obtained in relation to error bounds for the simplest univariate GP models. Most of the

bounds are derived based on the theory of reproducing kernel Hilbert spaces (RKHS) (a recent review can be found in [28] ).

For every psd kernel k (·, ·) there exists a unique RKHS H k , the functions f in which inherit the smoothness properties of

the kernel. This is easily seen by the following characterization of a RKHS: define an inner product space V

V = 

{ 

f : f (·) = 

∞ ∑ 

n =1 

a n k (·, ξn ) , a n ∈ R , ξn ∈ X 

} 

(18) 

with inner product 〈 f, g〉 H k 
= 

∑ 

n 

∑ 

m 

a n b m 

k (ξn , ξ′ 
m 

) , where g(·) = 

∑ 

m 

b m 

k (·, ξ′ 
m 

) , and induced norm ‖ f ‖ H k 
= 〈 f, f 〉 1 / 2 H k 

. V is

a pre-Hilbert space from which we obtain the unique RKHS as H k = { f ∈ V : ‖ f‖ H k 
< ∞} , where the closure is defined

with respect to the metric induced by ‖ · ‖ H k 
. For the squared exponential and other common kernels, H k ⊂ C ∞ (X ) , while

for Matern kernels, ‖ · ‖ H k 
is norm-equivalent to a Sobolev space W 

s, 2 (X ) , s > l/ 2 . In general, therefore, RKHSs are quite

restrictive, and are small compared to the support of a prior GP distribution with the covariance function (kernel) that 

defines the RKHS. 

Bounds can be derived for the GP regression error using the equivalence between GP regression and stationary kernel 

interpolation [29] , the latter of which can be posed as an optimization problem in the RKHS H k corresponding to the

interpolation kernel k [28] . If the true function in GP modelling is hypothesised to lie in this space, the results can be carried

over. The bounds are given in terms of a power function, which is identified with the posterior variance of an equivalent

GP model. For noisy data, analogous results for kernel ridge regression can be used, in which case the error bounds depend

on the norm ‖ f‖ H k 
of the unknown function f, as well as an empirical covering number with respect to the L 2 (μ) norm,

where μ is the unknown distribution over the data [30] . Again for noisy observations, information theoretic and RKHS 

approaches were used by Srinivas et al. [31] , later improved upon by Chowdhury and Gopalan [32] , to find error bounds for

GP regression. These bounds involve constants that in practice are difficult to obtain. An alternative hypothesis is to take 

the support of the prior distribution of the GP as the belief space from which to seek the true function. This hypothesis has

been employed in stochastic bandit problems based on GPs [33,34] and more recently has been used to establish general

interpretable bounds for basic GP models [19,35] . The sample space is the largest possible space of candidate functions, and

leads to bounds that can be approximated for common settings with relative ease, in comparison to the RKHS approaches. 

In the analysis below, we use the interpolation (noise-free) results of Wang et al. [34] , and, in particular, follow closely the

analysis of Lederer et al. [19] to extend their univariate, single-fidelity probabilistic uniform error bound to ResGP. Such a 

bound is defined as follows 
43 



W.W. Xing, A .A . Shah, P. Wang et al. Applied Mathematical Modelling 97 (2021) 36–56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 3.1. A GP estimate μ(ξ) of an unknown function y (ξ) has a uniformly bounded error on a compact set X ⊂ R 

l 

if there exists a function g(ξ) such that 

| μ(ξ) − y (ξ) | ≤ g(ξ) , ∀ ξ ∈ X . (19) 

If this bound holds with probability of at least 1 − δ for some δ ∈ (0 , 1) , it is called a probabilistic uniform error bound. 

As stated above, we require the following main assumption over the unknown function, in this case y F (ξ) , namely that

it belongs to the sample space of the prior GP. 

Assumption 3.2. y F (ξ) is a realisation (is in the sample space) of the following GP 

GP 

( 

y F (ξ) | 0 , 

F ∑ 

f=1 

k f (ξ, ξ′ | θ f ) 

) 

, (20) 

and observations y F n are evaluations of this function at the design points, that is y F n = y F (ξn ) , ∀ ξn ∈ X 

F . 

The properties of sample paths of this GP (the belief space) are again closely related to the smoothness of the kernel, but

are more difficult to establish and quantify. For stationary kernels k (ξ − ξ′ ) , almost surely (a.s.) or sample path continuity

is ensured by sufficient smoothness of k at the origin [36] (section 2.5). Similar continuity results can be established for

derivatives of the sample paths, essentially requiring 2 k times differentiability of the kernel to establish k times differen- 

tiability of sample paths [36] (section 2.5.2). Although Lipschitz continuity is a rather strong form a continuity, implying 

amongst other things uniform continuity, this assumption is still rather mild in comparison to the RKHS hypothesis. The 

following Lemma (see Appendix A for the proof) enables us to prove the main result on the uniform error bound for the

ResGP approximation of y F . 

Lemma 3.3. Consider the posterior GP process defined by (20) , in which all of the kernels k f (ξ, ξ′ | θ f ) are assumed to be Lipschitz

continuous with Lipschitz constants L 
f 

k 
on the compact sets X 

f ⊂ X , f = 1 , . . . , F . Furthermore, consider a continuous unknown

function y F : X → R with Lipschitz constant L y and N F observations y F n satisfying Assumption 3.2 . Then the posterior mean μF (·)
defined in (8) and the standard deviation σ F (·) = 

√ 

v F (ξ) ( Eq. (11) ) of the GP conditioned on { (ξn , y 
F 
n ) } N F n =1 

are both continuous,

with Lipschitz constant L μF and modulus of continuity ω 

F 
σ (·) on X , respectively, satisfying 

L μF ≤
F ∑ 

f=1 

L f 
k 

√ 

N f ‖ (k 

f ) −1 R 

f ‖ (21) 

ω 

F 
σ (‖ ξ − ξ′ ‖ ) ≤

[ 

F ∑ 

f=1 

2 L f 
k 

(
1 + N f max 

ξ, ξ′ ∈X 
k f (ξ, ξ′ | θ f ) ‖ (k 

f ) −1 ‖ 2 

)
‖ ξ − ξ′ ‖ 

] 1 / 2 

. (22) 

Remark 3.4. Any kernel that is everywhere differentiable and has bounded partial derivatives is Lipschitz continuous and 

any Lipschitz constant satisfies L 
f 

k 
≤ sup ξ, ξ′ ∈X ‖∇ ξk (ξ, ξ′ ) ‖ ∞ 

, where ‖ · ‖ ∞ 

is the l ∞ norm. The Lipschitz constant L y is clearly

not available in practice. However, a probabilistic bound can be obtained as in Theorem 3.2 in [19] . The remaining terms

in these expressions depend only on the training data and kernels, which are explicitly known. Using Cauchy-Schwartz and 

the fact that ‖ · ‖ 2 is subordinate to ‖ · ‖ , the bound for L μF can be elaborated further as follows 

F ∑ 

f=1 

L f 
k 

√ 

N f ‖ (k 

f ) −1 R 

f ‖ ≤
F ∑ 

f=1 

L f 
k 

√ 

N f 

‖ R 

f ‖ 

ρm 

(k 

f ) 
, (23) 

in which ρm 

(k 

f ) = ‖ (k 

f ) −1 ‖ −1 
2 

is the smallest singular value of k 

f . ρm 

(k 

f ) > 0 ∀ f since k 

f is psd. 

The error on any design X 

F 
τ is bounded as in Srinivas et al. [31] [Lemma 5.1], introducing a constant β(τ ) , which depends

on an upper bound τ for the fill distance of X 

F 
τ , defined as h = sup ξ∈X min ξ′ ∈X F τ ‖ ξ − ξ′ ‖ . h represents the radius of the

largest ball in X that does not contain any point in the design X 

F 
τ . In greedy designs that minimise the GP posterior variance

(as in the active learning component), for any kernel k that induces a RKHS that is norm equivalent to W 

s, 2 (R 

l ) with s > l/ 2 ,

Santin and Haasdonk [37] showed that ∀ ε > 0 , ∃ C ε > 0 such that h ≤ C ε |X 

F 
τ | −l/ 2+ ε, in which |X 

F 
τ | is the cardinality of X 

F 
τ . 

The minimum number of grid points satisfying the upper bound on the fill distance is M(τ, X ) , an upper bound for

which is M(τ, X ) ≤ (1 + e/τ ) d , assuming a hypercubic set X with edge length e . By utilizing Lemma 3.3 and the continuity

of y F , the error bound on X 

F 
τ can then be extended to the whole of X , which leads to Theorem 3.5 below 

Theorem 3.5 (Lederer et al. [19] ,Theorem 3.1) . Let the conditions of Lemma 3.3 be satisfied. Pick δ ∈ (0 , 1) , τ ∈ R , τ > 0 , and

set 

β(τ ) = 2 log 

(
M(τ, X ) 

δ

)
(24) 
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Table 2 

Comparisons of the root mean square error (RMSE), R 2 and mean negative log likelihood (MNLL) for ResGPand three state-of-the-art methods on five 

univariate multi-fidelity benchmark problems. The number of training samples is given in the form N 1 − N 2 or N 1 − N 2 − N 3 . 
∗Values were taken from 

[20] [Table 1]. 

AR1 NARGP MF-DGP ∗ ResGP 

BENCHMARK l N f R ∧ 2 RMSE MNLL R ∧ 2 RMSE MNLL R ∧ 2 RMSE MNLL R ∧ 2 RMSE MNLL 

CURRIN 2 20-5 0.918 0.564 11.136 0.947 0.550 14.364 0.935 0.601 0.763 0.967 0.436 0.663 

PARK 4 30-5 0.986 0.552 57.397 0.965 0.883 103.891 0.985 0.565 1.383 0.990 0.397 0.290 

BOREHOLE 8 60-10 0.999 0.012 −2.886 0.998 0.019 −2.668 0.999 0.015 −2.031 1.000 0.005 −3.996 

BRANIN 2 80-30-10 0.912 0.019 −4.019 0.724 0.107 5.487 0.965 0.030 −2.572 0.998 0.008 −3.675 

HARTMANN-3D 3 80-30-10 0.996 0.058 −1.414 0.992 0.083 −0.712 0.994 0.075 −0.731 0.997 0.054 −1.496 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

γ (τ ) = 

(
L μF + L y 

)
τ + 

√ 

β(τ ) ω 

N 
σ (τ ) . (25) 

Then, it holds that 

P 

(
| y F (ξ) − μF (ξ) | ≤√ 

β(τ ) σ F (ξ) + γ (τ ) , ∀ ξ ∈ X 

)
≥ 1 − δ. (26) 

Remark 3.6. Eq. (26) can be computed for fixed τ and δ given the probabilistic upper bound for L y . We note that β(τ )

grows only logarithmically as τ decreases, which limits the growth of γ (τ ) as τ → 0 . 

4. Results and discussion 

In the results presented below, AR, NAR, MF-DGP, Greedy NAR and SC are implemented as per their original formulations. 

In all of the GP methods, zero-mean functions are assumed by centering the data, i.e., no regression functions are employed.

With the exception of MF-DGP, noiseless data is assumed for all fidelities. The original MF-DGP includes noise at all fidelities.

For ResGP, AR and Greedy NAR, ARD kernels are used. For NARGP, the fidelity-1 kernel is an ARD kernel, while the fidelity

f = 2 , . . . , F kernels are of the form introduced by Perdikaris et al. in the original implementation [14] [Eq. (2.12)]. Each of

these kernels is formed from three ARD kernels by factoring the dependence on ξ f and y f−1 (ξ) and adding a third kernel

as a bias term. In MF-DGP, enhanced versions of these kernels (adding an additional linear kernel for the dependence on

y f−1 (ξ) ) are employed as in Cutajar et al. [20] [Eq. (11)]. For MF-DGP we used the authors’ open source code [38] , which is

available on Github 1 . For all other methods, we used our own implementations with the settings stated above to generate

the results. 

4.1. Test problem 1: five univariate benchmark problems 

We first examine the univariate case and compare the results to AR, NARGP and MF-DGP. A selection of well-known 

univariate multi-fidelity problems is used, following [20] . This includes three 2-fidelity and two 3-fidelity examples. The 

functions considered and the definitions of the fildelities are detailed in Appendix B . A comparison of the accuracy of ResGP

(without active learning) with the other methods is shown in Table 2 . This table includes values of the root mean square

error (RMSE), the coefficient of determination ( R 2 ) and the mean negative log likelihood (MNLL) against 10 0 0 randomly

selected test points, following [20] . The MNLL provides the most commonly accepted test for the capture of uncertainty. The

number of training points for each fidelity N f and the number of inputs l (selected randomly) are also given in Table 2 . 

As can be seen, ResGP outperforms all other methods in all examples in terms of the accuracy. For example, the RMSE is

at least 21%, 28%, 58%, 58% and 7% lower than for the other methods on the Currin, Park, Borehole, Branin and Hartmann-3d

examples, respectively. The MNLL is at least 13%, 79%, 38% and 6% lower than for the other methods on the Currin, Park,

Borehole and Hartmann-3d examples, respectively. In the Branin example, the MNLL is 9% more negative for AR. Given their 

high model flexibilities, it is possible that MF-DGP and NARGP tend to overfit the data and underestimate the uncertainty 

in these examples. For ResGP, the uncertainties have an additive structure and increase monotonically. If the scale of the 

residual is large or the sample number small, the uncertainty will likewise be large. In this sense ResGPis more ‘careful’

with uncertainty estimations (in some problems it may overestimate the uncertainty). 

We note that we were unable to reproduce the numbers stated in [20] using the authors’ code [38] . Thus, the values

appearing in Table 1 for MF-DGP are taken from the original paper [20] [Table 1]. For all other methods we used the

training and test data provided by the authors on Github 1 (which they used to generate the results in [20] ). 

4.2. Test problem 2: turbulent mixing flow in an elbow-shape pipe 

A number of models have been developed to study turbulent flows, ranging from simple one-equation models such as 

the Sparllat–Almaras model to sophisticated models such as Large Eddy Simulation (LES). The former can be considered 
1 https://github.com/EmuKit/emukit/tree/master/emukit/examples/multi _ fidelity _ dgp 
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Fig. 1. Computational domain and geometrical configuration of an elbow-shaped pipe and its plane of symmetry (Test Problem 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

low-fidelity whereas the latter can be considered high-fidelity. For the design and optimization of thermal-fluid systems, 

high-fidelity models can be impractical. On the other hand, low-fidelity models will lead to sub-optimal designs. Thus, 

turbulence modelling is prime candidate for combining low- and high-fidelity models. 

We applied ResGPwith and without active learning to a benchmark problem of turbulent mixing flow in a pipe and 

compared it with three state-of-the art methods, namely NARGP, SC (without out-of-sample F1 data, for a fair comparison) 

and Greedy NAR. As illustrated in Fig. 1 , water enters from two inlets, the bottom left end of the pipe and a smaller inlet

located on the elbow. The water exits the pipe vertically upwards from the top right. The input parameter space was chosen

to be the freestream velocity at the large inlet (with a diameter of 1 m), taking values between 0.2 to 2 m s −1 , and the

freestream velocity at the smaller inlet (with a diameter 0.5 m), taking values between 1.2 to 3 m s −1 . The quantities of

interest were vectorised profiles at t = 50 s of the velocity magnitude and pressure in circular cross sections of the elbow

pipe, one located at the elbow junction (oriented at 45 degrees) and the other near the pipe exit (oriented at 0 degrees). In

all cases, the profiles contained 96 values. All multi-fidelity methods were applied separately to each quantity of interest, so 

that d = 96 in all cases. 

The high-fidelity model (F2) was defined as LES while the low-fidelity model (F1) was defined as Sparlart-Allmaras. Both 

were implemented in ANSYS Fluent. The LES model employed the dynamic kinetic Energy subgrid-scale model. For the 

Sparlart-Allmaras model, vorticity-based production together with low-Reynold’s number damping were selected. Default 

schemes in FLUENT were used for both F1 and F2 models, i.e., second-order implicit time stepping and central differencing

for the finite-volume discretization. The meshes contained a total of 36134 nodes and 29399 hexahedral cells, and the time 

step was set to 0.01 s. 

We assess the performance of all multi-fidelity models using a normalized root mean square error (NRMSE) for each 

quantity of interest. The NRMSE for N test points is defined as follows 

NRMSE = 

√ ∑ N 
n =1 

∑ d 
j=1 (y n j − ˆ y n j ) 2 ∑ N 

n =1 

∑ d 
j=1 ˆ y 2 

n j 

in which y n j and ˆ y n j denote the j-th coefficients of the n -th high-fidelity prediction and the n -th ground-truth (test) point,

respectively. 

We conducted tests with up to 40 F1 and 40 F2 training points, generated with randomly selected inputs. For 20 and 40

F1 training points, the number of F2 training samples was gradually increased to assess the performance of ResGP(with and 

without active learning) and the other methods. We computed the NRMSE against 18 F2 test points (generated in the same

way as the training inputs) for each quantity of interest, averaged from a 5-fold cross validation with random shuffling of

training and test data. The results are shown in Fig. 2 and Table C-1 in Appendix C , from which it is seen that ResGPgenerally

outperforms NARGP and SC, especially with active learning and with a small number of F2 training data points; this is a

significant advantage when data is scarce. For example, for 40 F1 and 10 F2 training points in the case of the pressure

profile near the exit, ResGPwithout active learning has a 9%, 41% and 48% lower NRMSE than NARGP, SC and Greedy NAR,

respectively. In the case of the velocity profile near the exit, the equivalent figures are 77%, 41% and 75%, while for the

velocity profile near the pipe junction they are 51%, 80% and 97%. NARGP and ResGP without active learning converge to a

similar level of error for 40 F1 training points, provided NARGP does not fail, as is the case for the velocity profile near the

exit. In the latter case, the NRMSE for NARGP is around 1 for all F2 training point numbers, for both 20 and 40 F1 training

points, whereas ResGPwith (without) active learning attains values of 0.1014 (0.1323) and 0.1267 (0.2039) for 20 F2 and 

40 F2 training points, respectively. ResGP is more accurate with active learning, with the exception of the pressure profile 

near the pipe junction when the number of F2 training samples is low. For this quantity of interest, NARGP and both ResGP

methods exhibit similar levels of accuracy up to 25 F2 training points for 40 F1 training samples. 
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Fig. 2. Normalized root mean square errors (NRMSE) against 18 F2 test values on the two-fidelity turbulent mixing flow simulation for ResGPwith (red) 

and without (blue) active learning, NARGP, Greedy NAR and SC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Greedy NAR performs well in three cases, although, like NARGP, it fails for the velocity profile near the pipe exit. For the

pressure profile near the pipe junction, it exhibits the best performance, especially for a low number of F2 training points

(for 40 F1 and 15 F2 training points it is at least 40% more accurate than the other methods). Noticeable, however, is that

it tends to perform poorly for small numbers of F2 training points on the other quantities of interest. Also evident from

these figures is that ResGPis the most robust of the methods. It is not surprising that both NARGP and Greedy NAR perform

worse when F2 data is scarce, since the number of parameters in these models ( Table 1 ) is high. Only when sufficient data

is available can these parameters be learned with accuracy. 

4.3. Test problem 3: molecular dynamics simulation model 

In this example we consider a molecular dynamics (MD) model based on the Lennard-Jones (LJ) potential u (·) [39] for

the interatomic interactions 

u 

(
r i j 

)
= 4 ε 

[ (
σ

r i j 

)12 

−
(

σ

r i j 

)6 
] 

, (27) 

where r i j is the pairwise distance between particles i and j, ε is the potential well depth and σ is the length scale for

the interatomic interaction. In order to prevent numerical instabilities, which can arise when the time step is too large, the

magnitude of the repulsive interactions for closely approaching atoms was capped when the ratio σ/r i j exceeded 1.2. 

The system parameters were taken to be the temperature and density, which define the phase space. We used values 

of σ = 3 rA and ε = 1 kcal mol −1 to fully define the LJ potential. The domain was a cube with width L = 27 . 05 rA and

periodic boundary conditions were assumed to hold on all sides. The molecular mass of each particle was set to m = 12 . 01

g mol −1 . The temperature T and density ρ = Nm/V were used as the inputs. Here, V = L 3 is the box volume and N is

Avogadro’s number. The dimensionless density ρ∗ = Nσ 3 /V was therefore in the range ρ∗ ∈ [0 . 05 , 0 . 95] , corresponding to a

molecule number in the range 36 to 696. The simulations were performed using the Large-scale Atomic/Molecular Massively 

Parallel Simulator (LAMMPS) code. Integration of the equations of motion is based on the Verlet algorithm, and a micro- 

canonical (NVE) ensemble was used. The quantities of interest were the radial distribution function (RDF), mean squared 
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Fig. 3. Normalized root mean square errors (NRMSE) against 34 F2 test values on the two-fidelity MD simulation for ResGPwith (red) and without (blue) 

active learning, NARGP, Greedy NAR and SC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

displacement (MSD), and self-diffusion coefficient (SDC). All multi-fidelity methods were applied to the quantities of in- 

terest separately. The RDF was recorded at d = 512 points, the MSD at d = 20 0 0 points and the SDC is a scalar ( d = 1 ).

Low-fidelity (F1) and high-fidelity (F2) simulations were defined by time steps of 10 and 1 fs, respectively. We tested all

methods with up 40 F1 and 40 F2 training points, generated with randomly selected inputs in the ranges T ∈ [50 0 , 10 0 0] K

and ρ ∈ [36 . 27 , 701 . 29] kg m 

−3 . For 20 and 40 F1 training points, the number of F2 training points was increased gradually

to assess the performance of each method by calculating the NRMSE against 34 F2 test points, generated in the same way

as the training points. Again, the experiments were repeated 5 times with random shuffling of training and test data and

the average NRMSE was used. 

For each of the quantities of interest, the results for ResGP(with and without active learning), SC, NARGP and Greedy NAR

are shown in Fig. 3 and Table C-2 in Appendix C . In this example the superiority of ResGP(both with and without active

learning) is more obvious, as is the greater accuracy for low numbers of F2 training points. For example, for 40 F1 and 10

F2 training points in the case of the RDF, ResGPwith active learning has an 88%, 38% and 91% lower NRMSE than NARGP, SC

and Greedy NAR, respectively. For the MSD, the equivalent figures are 78%, 70% and 77%, while for the SDC they are 53%,

59% and 57%. Active learning is seen again to enhance the performance of ResGP. For the MSD, the failure of NARGP and

Greedy NAR is due to the linear scaling of the number of parameters in both methods with d (in this case d = 20 0 0 ). For a

high number of F2 training data, the accuracy of both NARGP and Greedy NAR (especially the latter) improves for the RDF

and SDC. Again, this is due to the greater demand for training samples in order to learn the high number of parameters

accurately. 

4.4. Test problem 4: solid oxide fuel cell model 

In the last example we consider a steady-state 3-d solid oxide fuel cell model. The geometry is depicted in Fig. 4 . The

model includes: electronic and ionic charge balances (Ohms law); the flow distribution in the gas channels (Navier-Stokes 

equations); flow in the porous electrodes (Brinkman equation); and gas-phase mass balances in both gas channels and the 

porous electrodes (Maxwell-Stefan diffusion and convection). Butler-Volmer charge transfer kinetics are assumed for the 

reactions in the anode ( H + O 

2 − → H O + 2 e −) and cathode ( O + 4 e − → 2 O 

2 −). The cell operates in potentiostatic mode
2 2 2 
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Fig. 4. Computational domain for the SOFC example: gas channels, electrodes and electrolyte, with the cathode at the top. From top to bottom, the layers 

are a channel, electrode, electrolyte, electrode and channel. The channel dimensions are ( x × y × z) 1 cm × 0.5 mm × 0.5 mm, the electrode dimensions 

are 1 cm × 1 mm × 0.1 mm, and the electrolyte dimensions are 1 cm × 1 mm × 0.1 mm. The anode inlet is located at x = 0 and the cathode inlet at 

x = 1 cm. 

Fig. 5. Normalized root mean square errors (NRMSE) against 40 F2 test values on the two-fidelity SOFC simulation for ResGPwith (red) and without (blue) 

active learning, NARGP, Greedy NAR and SC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(constant cell voltage). The model was solved in COMSOL Multiphysics 2 (Application ID: 514), which is based in the finite-

element method. 

The inputs were taken to be the the electrode porosities ε ∈ [0 . 4 , 0 . 85] , the cell voltage E c ∈ [0 . 2 , 0 . 85] V, the temperature

T ∈ [973 , 1273] K, and the pressure in the channels P ∈ [0 . 5 , 2 . 5] atm. 60 inputs were selected using a Sobol sequence in

the ranges indicated for the low- and high-fidelity simulations. A further 40 points were selected randomly (in the ranges 

above) for high-fidelity tests points. The low-fidelity F1 model used 3164 mapped elements (shown in Fig. 4 ) and a relative

tolerance of 0.1, while the high-fidelity model used 37064 elements and a relative tolerance of 0.001. The COMSOL model 

also uses a V cycle geometric multigrid. The quantities of interest were taken to be profiles of the electrolyte current density

(A m 

−2 ) and ionic potential (V) in the x − z plane located at the centre of the channels ( Fig. 4 ). In both cases, the number

of points recorded was d = 100 × 50 = 50 0 0 and both profiles were vectorised to form the training and test outputs. 

The NRMSE (with five-fold cross validation) for 20 and 40 F1 training samples and an increasing number of F2 training

samples is shown in Fig. 5 and Table C-3 in Appendix C for ResGP(with and without active learning), NARGP, Greedy NAR

and SC. In this example, none of the other methods worked well, which is hardly surprising in the case of NARGP and

Greedy NAR considering that d = 50 0 0 . For SC, without out-of-sample F1 data, the performance is generally poor. ResGP, on

the other hand, shows a steady decline in the NRMSE as the number of F2 training samples is increased. For 40 F1 and 10 F2

training points, ResGPwith active learning has a 97% lower NRMSE than each of the other methods for the electrolyte current

density prediction. For the ionic potential, the equivalent values are almost identical, and these levels of improvement in 

the accuracy are maintained up to 40 F2 training points (over 90% lower NRSME than all of the other methods). 

Predictions of the quantities of interest for 40 F1 and 20 F2 training points using ResGP(without active learning) are 

shown in Figs. 6 and 7 , together with the ground truths (tests) and pointwise absolute differences. The electrolyte current

density predictions in Fig. 6 correspond to the lowest error ( ε = 0 . 67 , E c = 0 . 32 V, T = 1151 . 2 K, P = 1 . 63 atm), the median

error ( ε = 0 . 48 , E c = 0 . 36 V, T = 981 . 7 K, P = 1 . 97 atm) and the highest error ( ε = 0 . 75 , E c = 0 . 74 V, T = 1025 . 7 K, P = 1 . 24
2 https://www.comsol.com/model/current-density-distribution-in-a-solid-oxide-fuel-cell-514 
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Fig. 6. Predictions of the electrolyte current density (A m 

−2 ) in the x − z plane located at the centre of the channels in Fig. 4 for 40 F1 and 20 F2 training 

points. These predictions correspond from the top to bottom row to the lowest error, the median error and the highest error for the 5-fold cross validation. 

The columns from left to right are the prediction using ResGP, the ground truth (test) and the pointwise absolute differences. 

Fig. 7. Predictions of the ionic potential (V) in the x − z plane located at the centre of the channels in Fig. 4 for 40 F1 and 20 F2 training points. These 

predictions correspond from the top to bottom row to the lowest error, the median error and the highest error for the 5-fold cross validation. The columns 

from left to right are the prediction using ResGP, the ground truth (test) and the pointwise absolute differences. 
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atm) for the 5-fold cross validation at 40 F1 and 20 F2 training points in Fig. 5 (a). Likewise, the ionic potential predictions

in Fig. 7 correspond to the lowest error ( ε = 0 . 79 , E c = 0 . 28 V, T = 1191 . 4 K, P = 2 . 12 atm), the median error ( ε = 0 . 59 ,

E c = 0 . 30 V, T = 1080 . 7 K, P = 1 . 87 atm) and the highest error ( ε = 0 . 81 , E c = 0 . 69 V, T = 926 . 6 K, P = 1 . 04 atm) for the

5-fold cross validation at 40 F1 and 20 F2 training points in Fig. 5 (b). Even in the case of the largest error, the qualitative

and quantitative accuracy of ResGP is high. 

5. Summary and conclusions 

In this paper we introduced an additive residual structure for multi-fidelity models in order to capture the connection be- 

tween data at different fidelities. The result is a non-parametric Bayesian model that is equipped with a closed-form solution 

for the predictive posterior. This permits tasks such as uncertainty estimation and Bayesian optimization to be conducted 

efficiently and accurately. Under a noise-free assumption for the multi-fidelity data, the model scales efficiently accurately 

to high-dimensional problems. We derive error bounds for the univariate case, which may be of use in applications such as

control. 

Four benchmark problems in a variety of settings demonstrated that ResGPcan not only provide accurate posterior pre- 

dictions but also faithful estimates of model uncertainty. The great drawback of SC is the requirement of out-of-sample 

simulations for making predictions, which the other methods, including ResGP, avoid. When comparing with NARGP and 

Greedy NAR, the advantages of ResGPare clear, not least in terms of stable and accurate predictions for high-dimensional 

problems. Both of these methods require large numbers of high-fidelity training points to yield accurate predictions, since 

the number of parameters is high. This is a major drawback and a significant advantage of ResGP, which is particularly good

for sparse high-fidelity data. Moreover, the accuracy is further improved for small data sets by appealing to active learning 

via variance reduction. Lastly, the performance of ResGPis found to be markedly superior for high-dimensional problems 

since the number of parameters does not scale with the output space dimensionality. This makes ResGPapplicable to a 

broader range of problems than other state-of-the-art methods. 
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Appendix A. Proofs 

Proof Lemma 3.3. Using the definition of μF (ξ) in (8) for the univariate case, we have 

∣∣μF (ξ) − μF (ξ′ ) 
∣∣ = 

∣∣∣∣∣
F ∑ 

f=1 

(
μ f 

r (ξ) − μ f 
r (ξ

′ ) 
)∣∣∣∣∣

≤
F ∑ 

f=1 

∣∣μ f 
r (ξ) − μ f 

r (ξ
′ ) 
∣∣

= 

F ∑ 

f=1 

∣∣∣[k 

f (ξ) − k 

f (ξ′ ) 
]T 

(k 

f ) −1 r f 
∣∣∣

≤
F ∑ 

f=1 

L f 
k 

√ 

N f ‖ ξ − ξ′ ‖‖ (k 

f ) −1 r f ‖ 

= 

( 

F ∑ 

f=1 

L f 
k 

√ 

N f ‖ (k 

f ) −1 r f ‖ 

) 

‖ ξ − ξ′ ‖ , ∀ ξ, ξ′ ∈ X , 

(A-1) 

from which the bound on the Lipschitz constant L μF is derived. 
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For the standard deviation bound, we use the definitions of v f r (ξ) , the univariate equivalent of V 

f 
r (ξ) , and v F (ξ) , the

equivalent of V 

F (ξ) , in (11) , to obtain 

∣∣v F (ξ) − v F (ξ′ ) 
∣∣ ≤

F ∑ 

f=1 

∣∣v f r (ξ) − v f r (ξ
′ ) 
∣∣

= 

F ∑ 

f=1 

∣∣k f (ξ, ξ| θ f ) − k f (ξ, ξ′ | θ f ) + k f (ξ, ξ′ | θ f ) − k f (ξ′ , ξ′ | θ f ) 

≤
F ∑ 

f=1 

2 L f 
k 
‖ ξ − ξ′ ‖ + ‖ k 

f (ξ′ ) − k 

f (ξ) ‖‖ (k 

f ) −1 ‖ 2 ‖ k 

f (ξ) + k 

f (ξ′ ) ‖ , ∀ ξ, ξ′ ∈ X . 

(A-2) 

Since 

‖ k 

f (ξ′ ) − k 

f (ξ) ‖ ≤
√ 

N f L 
f 

k 
‖ ξ − ξ′ ‖ 

‖ k 

f (ξ) + k 

f (ξ′ ) ‖ ≤ 2 

√ 

N f max ξ, ξ′ ∈X k f (ξ, ξ′ | θ f ) , 
(A-3) 

we obtain 

∣∣v F (ξ) − v F (ξ′ ) 
∣∣ ≤

F ∑ 

f=1 

2 L f 
k 
‖ ξ − ξ′ ‖ + ‖ k 

f (ξ′ ) − k 

f (ξ) ‖‖ (k 

f ) −1 ‖ 2 ‖ k 

f (ξ) + k 

f (ξ′ ) ‖ , (A-4)

To obtain the modulus of continuity for the standard deviation σ F (ξ) = 

√ 

v F (ξ) = 

√ ∑ F 
f=1 v 

f 
r (ξ) we first write 

∣∣v F (ξ) − v F (ξ′ ) 
∣∣ = 

∣∣σ F (ξ) − σ F (ξ′ ) 
∣∣∣∣σ F (ξ) + σ F (ξ′ ) 

∣∣ ≥
∣∣σ F (ξ) − σ F (ξ′ ) 

∣∣2 , (A-5) 

since 
∣∣σ F (ξ) + σ F (ξ′ ) 

∣∣ ≥
∣∣σ F (ξ) − σ F (ξ′ ) 

∣∣ by the positive semidefiniteness of the standard deviation. This yields 

∣∣σ F (ξ) − σ F (ξ′ ) 
∣∣ ≤
[ 

F ∑ 

f=1 

2 L f 
k 

(
1 + N f max 

ξ, ξ′ ∈X 
k f (ξ, ξ′ | θ f ) ‖ (k 

f ) −1 ‖ 2 

)
‖ ξ − ξ′ ‖ 

] 1 / 2 

, ∀ ξ, ξ′ ∈ X , (A-6) 

from which we obtain ω 

F 
σ (·) . �

Proof Theorem 3.5. Pick δ ∈ (0 , 1) . For every design X 

F 
τ ⊂ X with |X 

F 
τ | grid points and for a fill distance for this design

satisfying 

sup 

ξ∈X 
min 

ξ′ ∈X F τ
, ‖ ξ − ξ′ ‖ ≤ τ (A-7) 

it holds with probability of at least 1 − |X 

F 
τ | e −β(τ ) / 2 that [31] [Lemma 5.1] 

| y F (ξ) − μF (ξ) | ≤√ 

β(τ ) σ F (ξ) , ∀ ξ ∈ X 

F 
τ . (A-8) 

Choosing β(τ ) = 2 log 

( |X F τ | 
δ

)
, the inequality 

| y F (ξ) − μF (ξ) | ≤√ 

β(τ ) σ F (ξ) , ∀ ξ ∈ X 

F 
τ (A-9) 

holds with probability of at least 1 − δ. Using Lemma 3.3 and the continuity of y F (ξ) , as well as the monotonicity of ω 

F 
σ (·) ,

for every ξ′ ∈ X 

F 
τ and ξ ∈ X we obtain 

| y F (ξ) − μF (ξ) | ≤ | y F (ξ) − y F (ξ′ ) | + | μF (ξ′ ) − μF (ξ) | + | y F (ξ′ ) − μF (ξ′ ) | 
≤ L y ‖ ξ − ξ′ ‖ + L μF ‖ ξ − ξ′ ‖ + 

√ 

β(τ ) σ F (ξ′ ) 

≤ τ L y + τ L μF + 

√ 

β(τ ) σ F (ξ′ ) 

= τ L y + τ L μF + 

√ 

β(τ ) | σ F (ξ) + σ F (ξ′ ) − σ F (ξ) | 
≤ τ L y + τ L μF + 

√ 

β(τ ) ω 

F 
σ (τ ) + 

√ 

β(τ ) σ F (ξ) . 

(A-10) 

The final result follows from the fact that the minimum number of grid points satisfying condition (A-7) is given by
M(τ, X ) . �
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Appendix B. Synthetic examples 

1. The Currin function is a two-dimensional problem with inputs ξ ∈ [0 , 1] 2 . The high- and low-delity functions are given

respectively by 

y H 
(
ξ
)

= 

[ 
1 − exp 

(
− 1 

2 ξ2 

)] 
230 0 ξ 3 

1 + 190 0 ξ 2 
1 + 2092 ξ1 + 60 

10 0 ξ 3 
1 

+ 50 0 ξ 2 
1 

+ 4 ξ1 + 20 

, (B-1) 

and 

y L 
(
ξ
)

= 

1 

4 

[
y H ( ξ1 + 0 . 05 , ξ2 + 0 . 05 ) + y H ( ξ1 + 0 . 05 , max ( 0 , ξ2 − 0 . 05 ) ) 

]
+ (B-2) 

1 

4 

[
y H ( ξ1 − 0 . 05 , ξ2 + 0 . 05 ) + y H ( ξ1 − 0 . 05 , max ( 0 , ξ2 − 0 . 05 ) ) 

]
. (B-3) 

2. The Park function is a four-dimensional problem with inputs ξ ∈ [0 , 1] 4 . The high- and low-delity functions are given

respectively by 

y H 
(
ξ
)

= 

ξ1 

2 

[√ 

1 + 

(
ξ2 + ξ 2 

3 

) ξ4 

ξ 2 
1 

− 1 

]
+ ( ξ1 + 3 ξ4 ) exp [ 1 + sin ( ξ3 ) ] . (B-4) 

y L 
(
ξ
)

= 

[
1 + 

sin ( ξ1 ) 

10 

]
y H 
(
ξ
)

− 2 ξ1 + ξ 2 
2 + ξ 2 

3 + 0 . 5 . (B-5) 

3. The Borehole example is an eight-dimensional problem with inputs ξ1 ∈ [ 0 . 05 , 0 . 15 ] , ξ2 ∈ [ 10 0 , 50 0 0 0 ] , ξ3 ∈ 

[ 63070 , 115600 ] , ξ4 ∈ [ 990 , 1110 ] , ξ5 ∈ [ 63 . 1 , 115 ] , ξ6 ∈ [ 700 , 820 ] , ξ7 ∈ [ 1120 , 1680 ] , ξ8 ∈ [ 9855 , 12045 ] . The high- and low- 

delity functions are given respectively by 

y H 
(
ξ
)

= 

2 πξ3 ( ξ4 − ξ6 ) 

log ( ξ2 /ξ1 ) 

(
1 + 

2 ξ7 ξ3 

log ( ξ2 /ξ1 ) ξ 2 
1 
ξ8 

)
+ 

ξ3 

ξ5 

, (B-6) 

y L 
(
ξ
)

= 

5 ξ3 ( ξ4 − ξ6 ) 

log ( ξ2 /ξ1 ) 

(
1 . 5 + 

2 ξ7 ξ3 

log ( ξ2 /ξ1 ) ξ 2 
1 
ξ8 

)
+ 

ξ3 

ξ5 

. (B-7) 

4. The three-level Branin function is a two-dimensional problem with inputs [ −5 , 10 ] × [ 0 , 15 ] . Three fidelities are con- 

sidered, defined by 

y 1 
(
ξ
)

= 

(
−1 . 275 ξ 2 

1 

π2 
+ 

5 ξ1 

π
+ ξ2 − 6 

)2 

+ 

(
10 − 5 

4 π

)
cos ( ξ1 ) + 10 , (B-8) 

y 2 
(
ξ
)

= 10 

√ 

y H 
(
ξ − 2 

)
+ 2 ( ξ1 − 0 . 5 ) − 3 ( 3 ξ2 − 1 ) − 1 , (B-9) 

y 3 
(
ξ
)

= y 2 
(
1 . 2 

(
ξ + 2 

))
− 3 ξ2 + 1 . (B-10) 

5. The Hartmann-3d example has inputs in [ 0 , 1 ] 
3 . The fidelity f = 1 , 2 , 3 observations are given by 

y f 
(
ξ
)

= 

4 ∑ 

i =1 

αi exp 

( 

−
3 ∑ 

j=1 

A i j 

(
ξ j − P i j 

)2 

) 

, (B-11) 

where 

A = 

⎡ 

⎢ ⎣ 

3 10 30 

0 . 1 10 35 

3 10 30 

0 . 1 10 35 

⎤ 

⎥ ⎦ 

and P = 

⎡ 

⎢ ⎣ 

0 . 3689 0 . 1170 0 . 2673 

0 . 4699 0 . 4387 0 . 7470 

0 . 1091 0 . 8732 0 . 5547 

0 . 0381 0 . 5743 0 . 8828 

⎤ 

⎥ ⎦ 

. 

ααα is set to (1 . 0 , 1 . 2 , 3 . 0 , 3 . 2) T and is updated to ααα f = ααα + (3 − f ) δδδ for lower fidelities, in which δδδ =
(0 . 01 , −0 . 01 , −0 . 1 , 0 . 1) T . 
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Appendix C. Normalized root mean square errors on the test sets for the multivariate examples 4.1-4.3 

Table C-1 

Normalized root mean square errors (NRMSE) against 18 F2 test values on the two-fidelity turbulent mixing flow 

simulation for ResGPwith (ResGP) and without (ResGP-NA) active learning, NARGP, Greedy NAR and SC (see Fig. 2 ). 

Pressure profile near the pipe exit 

N 1 N 2 = 5 N 2 = 10 N 2 = 15 N 2 = 20 N 2 = 25 N 2 = 30 N 2 = 35 N 2 = 40 

ResGP 20 0.3080 0.2369 0.1409 0.1267 N/A N/A N/A N/A 

ResGP 40 0.2750 0.2428 0.1374 0.1267 0.1171 0.1063 0.0999 0.1014 

ResGP-NA 20 0.3344 0.2250 0.2098 0.2039 N/A N/A N/A N/A 

ResGP-NA 40 0.3074 0.2051 0.1788 0.1706 0.1531 0.1387 0.1412 0.1323 

NARGP 20 0.7096 0.2902 0.2524 0.2481 N/A N/A N/A N/A 

NARGP 40 0.6716 0.2253 0.1939 0.1645 0.1380 0.1395 0.1337 0.1347 

SC 20 0.3694 0.3694 0.3706 0.3706 N/A N/A N/A N/A 

SC 40 0.3474 0.3486 0.3484 0.3507 0.3502 0.3502 0.3504 0.3504 

GreedyNAR 20 0.8927 0.2006 0.1461 0.1335 N/A N/A N/A N/A 

GreedyNAR 40 0.9117 0.3801 0.1222 0.1088 0.1032 0.1014 0.0989 0.0985 

Velocity profile near the pipe exit 

ResGP 20 0.2159 0.2111 0.1803 0.1679 N/A N/A N/A N/A 

ResGP 40 0.2002 0.1973 0.1643 0.1491 0.1406 0.1327 0.1250 0.1197 

ResGP-NA 20 0.2826 0.2495 0.2453 0.2399 N/A N/A N/A N/A 

ResGP-NA 40 0.2515 0.2215 0.2122 0.2051 0.1917 0.1871 0.1823 0.1794 

NARGP 20 1.0145 1.0171 1.0188 1.0221 N/A N/A N/A N/A 

NARGP 40 1.0145 1.0171 1.0188 1.0221 1.0275 1.0320 1.0279 1.0287 

SC 20 0.4606 0.4514 0.4521 0.4522 N/A N/A N/A N/A 

SC 40 0.4297 0.4248 0.4246 0.4237 0.4240 0.4241 0.4239 0.4239 

GreedyNAR 20 1.0165 1.0148 1.0231 1.0232 N/A N/A N/A N/A 

GreedyNAR 40 1.0102 1.0085 1.0178 1.0181 1.0175 1.0181 1.0178 1.0198 

Pressure profile near the pipe junction 

ResGP 20 0.1363 0.1593 0.0898 0.0653 N/A N/A N/A N/A 

ResGP 40 0.1326 0.1665 0.0955 0.0697 0.0475 0.0398 0.0360 0.0351 

ResGP-NA 20 0.1556 0.0923 0.0872 0.0475 N/A N/A N/A N/A 

ResGP-NA 40 0.1523 0.1111 0.1067 0.0690 0.0538 0.0500 0.0441 0.0483 

NARGP 20 0.3360 0.1055 0.1156 0.0812 N/A N/A N/A N/A 

NARGP 40 0.3153 0.1061 0.1197 0.0851 0.0440 0.0711 0.0591 0.0478 

SC 20 0.3088 0.3048 0.3045 0.3041 N/A N/A N/A N/A 

SC 40 0.2904 0.2884 0.2873 0.2879 0.2874 0.2870 0.2876 0.2874 

GreedyNAR 20 0.5140 0.0602 0.0434 0.0371 N/A N/A N/A N/A 

GreedyNAR 40 0.6438 0.0610 0.0463 0.0321 0.0308 0.0293 0.0346 0.0345 

Velocity profile near the pipe junction 

ResGP 20 0.0312 0.0207 0.0177 0.0158 N/A N/A N/A N/A 

ResGP 40 0.0289 0.0180 0.0151 0.0136 0.0133 0.0116 0.0113 0.0099 

ResGP-NA 20 0.0359 0.0310 0.0290 0.0288 N/A N/A N/A N/A 

ResGP-NA 40 0.0336 0.0252 0.0225 0.0214 0.0196 0.0179 0.0153 0.0160 

NARGP 20 0.3080 0.0561 0.0312 0.0338 N/A N/A N/A N/A 

NARGP 40 0.3076 0.0514 0.0252 0.0222 0.0218 0.0193 0.0249 0.0213 

SC 20 0.1373 0.1367 0.1367 0.1367 N/A N/A N/A N/A 

SC 40 0.1238 0.1241 0.1241 0.1242 0.1242 0.1242 0.1242 0.1242 

GreedyNAR 20 0.9421 0.7107 0.0201 0.0177 N/A N/A N/A N/A 

GreedyNAR 40 0.9456 0.8824 0.0199 0.0151 0.0129 0.0120 0.0119 0.0119 
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Table C-2 

Normalized root mean square errors (NRMSE) against 34 F2 test values on the two-fidelity MD simulation for 

ResGP with (ResGP) and without (ResGP-NA) active learning, NARGP, Greedy NAR and SC (see Fig. 3 ). 

Radial distribution function 

N 1 N 2 = 5 N 2 = 10 N 2 = 15 N 2 = 20 N 2 = 25 N 2 = 30 N 2 = 35 N 2 = 40 

ResGP 20 0.3296 0.0823 0.0580 0.0487 N/A N/A N/A N/A 

ResGP 40 0.3318 0.0860 0.0583 0.0428 0.0392 0.0348 0.0310 0.0293 

ResGP-NA 20 0.2290 0.1454 0.1244 0.0527 N/A N/A N/A N/A 

ResGP-NA 40 0.2222 0.1466 0.1269 0.0644 0.0488 0.0434 0.0363 0.0287 

NARGP 20 1.0103 0.8290 0.3844 0.0988 N/A N/A N/A N/A 

NARGP 40 1.0103 0.7109 0.3046 0.0751 0.0505 0.0534 0.0449 0.0319 

SC 20 0.1540 0.1393 0.1374 0.1372 N/A N/A N/A N/A 

SC 40 0.1518 0.1385 0.1367 0.1357 0.1354 0.1352 0.1351 0.1351 

GreedyNAR 20 0.9900 0.9806 0.9565 0.0376 N/A N/A N/A N/A 

GreedyNAR 40 0.9952 0.9658 0.9504 0.9406 0.9218 0.0351 0.0331 0.0303 

Mean Squared Distance 

ResGP 20 0.5999 0.4338 0.4408 0.4223 N/A N/A N/A N/A 

ResGP 40 0.3610 0.2264 0.1855 0.1866 0.1713 0.1675 0.1467 0.1593 

ResGP-NA 20 0.5331 0.5510 0.5101 0.4814 N/A N/A N/A N/A 

ResGP-NA 40 0.3111 0.3143 0.2869 0.2570 0.2180 0.2135 0.2102 0.2213 

NARGP 20 0.9370 1.1201 0.9763 0.8112 N/A N/A N/A N/A 

NARGP 40 0.9383 1.0250 0.9072 0.7806 0.8609 0.7446 0.2478 0.3128 

SC 20 0.7563 0.7500 0.7422 0.7417 N/A N/A N/A N/A 

SC 40 0.7554 0.7434 0.7258 0.7200 0.7145 0.7139 0.7114 0.7107 

GreedyNAR 20 1.0001 0.9783 0.6462 0.6822 N/A N/A N/A N/A 

GreedyNAR 40 1.0062 1.0007 0.9903 0.5576 0.6384 0.7679 0.5913 0.6605 

Self diffusion coefficient 

ResGP 20 0.5757 0.4915 0.4389 0.4017 N/A N/A N/A N/A 

ResGP 40 0.4418 0.3335 0.2765 0.2397 0.2062 0.1940 0.1857 0.1833 

ResGP-NA 20 0.6836 0.5135 0.4491 0.4226 N/A N/A N/A N/A 

ResGP-NA 40 0.5674 0.3646 0.2848 0.2492 0.2198 0.2228 0.2221 0.2160 

NARGP 20 1.0133 0.5587 0.4109 0.4816 N/A N/A N/A N/A 

NARGP 40 1.0226 0.7069 0.5668 0.6271 0.5875 0.4556 0.3093 0.3510 

SC 20 0.8465 0.8497 0.8512 0.8506 N/A N/A N/A N/A 

SC 40 0.8227 0.8109 0.8089 0.8083 0.8086 0.8080 0.8074 0.8072 

GreedyNAR 20 0.9353 0.7357 0.5170 0.5246 N/A N/A N/A N/A 

GreedyNAR 40 0.9277 0.7682 0.2876 0.2433 0.2450 0.2504 0.2513 0.2520 

Table C-3 

Normalized root mean square errors (NRMSE) against 40 F2 test values on the two-fidelity SOFC simulation for 

ResGP with (ResGP) and without (ResGP-NA) active learning, NARGP, Greedy NAR and SC (see Fig. 5 ). 

Electrolyte current density 

N 1 N 2 = 5 N 2 = 10 N 2 = 15 N 2 = 20 N 2 = 25 N 2 = 30 N 2 = 35 N 2 = 40 

ResGP 20 0.0811 0.0375 0.0322 0.0311 N/A N/A N/A N/A 

ResGP 40 0.0752 0.0279 0.0204 0.0183 0.0157 0.0157 0.0152 0.0151 

ResGP-NA 20 0.0711 0.0561 0.0536 0.0494 N/A N/A N/A N/A 

ResGP-NA 40 0.0585 0.0308 0.0275 0.0229 0.0201 0.0204 0.0196 0.0185 

NARGP 20 1.0079 1.0063 1.0142 1.0138 N/A N/A N/A N/A 

NARGP 40 1.0079 1.0063 1.0142 1.0138 0.8145 0.6257 0.6245 0.6247 

SC 20 0.9745 0.9752 0.9752 0.9752 N/A N/A N/A N/A 

SC 40 0.9048 0.9053 0.9054 0.9054 0.9054 0.9054 0.9054 0.9054 

GreedyNAR 20 0.9895 0.9758 0.9641 0.9524 N/A N/A N/A N/A 

GreedyNAR 40 0.9890 0.9778 0.9664 0.9527 0.9409 0.9274 0.9127 0.9359 

Ionic potential 

ResGP 20 0.0549 0.0350 0.0342 0.0302 N/A N/A N/A N/A 

ResGP 40 0.0446 0.0236 0.0209 0.0141 0.0131 0.0132 0.0130 0.0131 

ResGP-NA 20 0.0482 0.0491 0.0479 0.0467 N/A N/A N/A N/A 

ResGP-NA 40 0.0268 0.0219 0.0213 0.0207 0.0175 0.0176 0.0167 0.0163 

NARGP 20 1.0106 1.0078 0.8257 0.4638 N/A N/A N/A N/A 

NARGP 40 1.0106 1.0078 0.8252 0.4573 0.4243 0.2819 1.0458 0.3637 

SC 20 0.9460 0.9464 0.9465 0.9465 N/A N/A N/A N/A 

SC 40 0.8798 0.8800 0.8800 0.8800 0.8800 0.8800 0.8800 0.8800 

GreedyNAR 20 0.9974 0.9861 0.9730 0.9586 N/A N/A N/A N/A 

GreedyNAR 40 1.0038 0.9970 0.9905 0.9745 0.9661 0.9532 0.9399 0.9843 
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