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Numerous brain imaging studies indicate that the corpus callosum is smaller in older children and adults with autism spectrum

disorder. However, there are no published studies examining the morphological development of this connective pathway in infants

at-risk for the disorder. Magnetic resonance imaging data were collected from 270 infants at high familial risk for autism spectrum

disorder and 108 low-risk controls at 6, 12 and 24 months of age, with 83% of infants contributing two or more data points.

Fifty-seven children met criteria for ASD based on clinical-best estimate diagnosis at age 2 years. Corpora callosa were measured

for area, length and thickness by automated segmentation. We found significantly increased corpus callosum area and thickness in

children with autism spectrum disorder starting at 6 months of age. These differences were particularly robust in the anterior

corpus callosum at the 6 and 12 month time points. Regression analysis indicated that radial diffusivity in this region, measured by

diffusion tensor imaging, inversely predicted thickness. Measures of area and thickness in the first year of life were correlated with

repetitive behaviours at age 2 years. In contrast to work from older children and adults, our findings suggest that the corpus

callosum may be larger in infants who go on to develop autism spectrum disorder. This result was apparent with or without

adjustment for total brain volume. Although we did not see a significant interaction between group and age, cross-sectional data

indicated that area and thickness differences diminish by age 2 years. Regression data incorporating diffusion tensor imaging

suggest that microstructural properties of callosal white matter, which includes myelination and axon composition, may explain

group differences in morphology.
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Introduction
Autism spectrum disorder (ASD) emerges early in life, un-

folding during a time of dynamic brain and behavioural

development. Though severity varies greatly across affected

individuals, ASD is characterized by core symptoms of im-

paired social communication and restricted and repetitive

behaviours, as well as associated features including intellec-

tual disability and impaired sensorimotor function.

Although less established than many of the behavioural

markers associated with the disorder, there has been re-

markable progress made toward identifying replicable

neural features of ASD. Prominent findings include evi-

dence of cerebral enlargement, evident particularly in

early childhood (Piven et al., 1995; Sparks et al., 2002;

Redcay and Courchesne, 2005; Schumann et al., 2010;

Hazlett et al., 2011; Shen et al., 2013; Zielinski et al.,

2014), as well as dynamic, age-dependent patterns of atyp-

ical structural and functional connectivity (Just et al., 2007;

Wolff et al., 2012; Khan et al., 2013; Nair et al., 2013;

Lewis et al., 2014). Identifying the neural markers of ASD

specific to infancy, before the consolidation of core behav-

ioural symptoms, may elucidate pathogenesis and provide

novel targets for screening and intervention.

Among the most replicated brain imaging findings in

ASD is that of a disproportionally small corpus callosum

relative to overall brain size. Early MRI studies of autism

found significant reductions in the corpus callosum, par-

ticularly among posterior regions, in children and adults

with autistic disorder relative to control subjects (Egaas

et al., 1995; Piven et al., 1997; Manes et al., 1999).

More recent work using higher resolution imaging proto-

cols have identified similar reductions in corpus callosum

size in adults (Freitag et al., 2009) and both children and

adults (Waiter et al., 2005; Just et al., 2007; Hardan et al.,

2009; Keary et al., 2009) with ASD. A meta-analysis of this

work indicates that decreased corpus callosum size asso-

ciated with ASD is observed in terms of total corpus callo-

sum area as well as most subdivisions (Frazier and Hardan,

2009). In addition to area and volume, differences have

also been observed in corpus callosum thickness, with the

splenium and genu particularly ‘thinner’ in school-age chil-

dren with the disorder (Vidal et al., 2006). Others have

found an inverse relationship between corpus callosum

size and symptom severity in addition to reduced corpus

callosum area in school-age children (Hardan et al., 2009)

and children and adults with ASD (Prigge et al., 2013). A

notable exception to this body of work comes from

Lefebvre et al. (2015), who found no evidence for corpus

callosum differences in a large sample of 7 to 40 year olds

with ASD obtained from the ABIDE database of multicen-

tre imaging data. While a notable null finding, that study

included only high-functioning individuals whose Autism

Diagnostic Observation Schedule (ADOS) severity was at

the threshold for ASD cut-off, and did not examine age

effects beyond its inclusion as a covariate.

Despite a wealth of cross-sectional data on the corpus

callosum in older children and adults with ASD, very

little is known about the early development of this struc-

ture. The closest exception comes from a study of 4-year-

olds indicating decreased total corpus callosum area in chil-

dren with ASD relative to typically developing peers

(Boger-Megiddo et al., 2006). This finding, which was evi-

dent only with adjustment for brain volume, extended to

five of seven corpus callosum subdivisions. A longitudinal

study of corpus callosum morphology in ASD by Frazier

et al. (2012) identified relatively stable trajectories of

decreased corpus callosum volume from ages 8 to 16

years in males with ASD relative to control subjects.

Together, these studies provide evidence that atypical

corpus callosum morphology may be present from pre-

school age in ASD, and that the phenomenon is relatively

fixed thereafter.

The past two decades of published literature includes

over a dozen independent studies identifying a relatively

smaller corpus callosum in children and adults with ASD.

It is yet unknown whether this morphological difference is

evident over the first years of life, during which time the

core symptoms of autism first emerge. It is also unknown

the extent to which corpus callosum differences extend to

unaffected family members who may share features of gen-

etic risk. Neural markers of ASD that emerge early and

persist across development may represent promising endo-

phenotypes (Gottesman and Gould, 2003; Iacono and

Malone, 2011). Family designs comparing probands with

unaffected siblings and control participants are uniquely

suited to identify heritable features of psychiatric disorders

such as ASD. In this study, we aimed to characterize
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developmental trajectories of corpus callosum morphology

from ages 6 to 24 months in a prospective sample of in-

fants at low and high familial risk for ASD. We were spe-

cifically interested in determining: (i) if and when corpus

callosum size in infants with ASD diverged from a typical

pattern of development; (ii) whether features of corpus cal-

losum morphology are unique to ASD or shared among

high-risk infants; and (iii) whether and how early morpho-

logical differences related to later behavioural features. As

an ancillary aim, we leveraged diffusion tensor imaging

(DTI) data to investigate microstructural properties contri-

buting to observed differences in morphology.

Materials and methods

Participants

Participants were part of the Infant Brain Imaging Study, an
ongoing longitudinal study of infants at low- and high-familial
risk for ASD. Infants were recruited, screened, and assessed at
one of four sites: University of North Carolina, University of
Washington, Children’s Hospital of Philadelphia, and
Washington University in St. Louis. Initial exclusion criteria
included: (i) evidence of a genetic condition or syndrome; (ii)
significant medical condition affecting development; (iii) signifi-
cant vision or hearing impairment; (iv) children with birth
weight 52000 g or gestational age 536 weeks; (v) significant
perinatal adversity or pre-natal exposure to neurotoxins; (vi)
contraindication for MRI; (vii) predominant home language
other than English; (viii) children who were adopted or half
siblings; (ix) first degree relative with psychosis, schizophrenia,
or bipolar disorder; and (x) twins.

Infants at high familial risk were defined as such if they had
an older sibling with a community diagnosis of ASD, con-
firmed by the SCQ (Social Communication Questionnaire;
Rutter et al., 2003) and Autism Diagnostic Interview-Revised
(Lord et al., 1994). Infants at low familial risk were defined by
virtue of having a typically developing older sibling who
screened negative on the SCQ and no first degree relatives
with a developmental disability. All study procedures were
approved by institutional review at each site, and informed,
written consent was obtained from all participants.

This study included children with imaging data for at least
one time point and a complete diagnostic assessment at age 2
years. Participants were grouped by familial risk status (low-
or high-risk sibling) and diagnostic outcome based on clinical
best estimate made by experienced, licensed clinicians using the
DSM-IV-TR (Diagnostic and Statistical Manual of Mental
Disorders, 4th Edition, Text Revision) checklist and supported
by all available behavioural assessment data. Diagnostic clas-
sification for each case was independently verified based on
video and record review by a second clinician naı̈ve to risk
and initial classification. Three low-risk children meeting cri-
teria for ASD were excluded as this group was too small to
analyse separately. One child from the low-risk control group
was excluded for evidence of severe/profound global develop-
mental delay. This approach to group classification yielded
378 total participants: 108 low-risk controls without ASD,
213 children classified as high-risk ASD negative, and 57

children classified as high-risk ASD-positive. Children meeting
criteria for ASD or autism on the ADOS but who were deter-
mined by clinicians not to have the disorder were included in
the high-risk ASD-negative group to maintain naturally occur-
ring hetereogeneity. The majority of participants (83%) con-
tributed imaging data for two or more time points. There were
no group differences in proportion of scan failures between
risk or diagnostic groups. Descriptive and demographic data
for study participants are presented in Table 1.

Clinical measures

The ADOS (Lord et al., 2000) is a semi-structured assessment
of behavioural symptoms associated with ASD. It provided
information contributing to clinical best estimate determin-
ation as well as an overall severity score (Gotham et al.,
2009), a standardized measure reflecting social affect and re-
petitive behaviour symptoms observed during administration
of the ADOS. The ADOS also yields domain scores for
Social Affect and Restricted and Repetitive Behaviours, the
former of which was used to characterize the relationship of
morphological features to social-communicative symptoms
associated with ASD. The Repetitive Behaviour Scales–
Revised (RBS-R; Bodfish et al., 2000) is a parent rated measure
of severity and repertoire of repetitive behaviour. RBS-R ‘total
repetitive behaviours endorsed’ shows good dimensionality at
age 2 and was selected over the ADOS to characterize this
symptom domain in relation to imaging measures (Wolff
et al., 2014). The Mullen Scales of Early Learning (Mullen,
1995) is a standardized developmental assessment for
children from birth to 68 months. The Mullen provides an
Early Learning Composite score, which reflects overall
cognitive and motor skill development. Mullen scores from
age 12 months were used for two participants missing com-
plete data at 24 months. Clinical assessment reliability was
established and maintained through monthly cross-site
calibration.

Image acquisition

MRI scans were acquired on identical 3 T Siemens TIM Trio
scanners equipped with 12-channel head coils during natural
sleep. The imaging protocol included: sagittal T1 MPRAGE
(repetition time = 2400 ms, echo time = 3.16 ms, slice thick-
ness = 1 mm, field of view = 256 mm, 256 � 160 matrix), 3D
T2 fast spin echo (repetition time = 3200 ms, echo
time = 499 ms, slice thickness = 1 mm, field of view = 256 mm,
256 � 160 matrix), and 25-direction ep2d_diff sequence with
field of view = 190 mm (6 and 12 months) or field of
view = 209 mm (24 months), 75–81 transversal slices, slice
thickness = 2 mm isotropic, 2 � 2 � 2 mm3 voxel resolution,
repetition time = 12 800–13 300 ms, echo time = 102 ms,
variable b-values between 0 and 1000 s/mm2. Intra- and inter-
site reliability was initially established and maintained across
clinical sites over time through traveling human phantoms
(Gouttard et al., 2008).

Corpus callosum segmentation

Initial preprocessing of T1-weighted images provided a rigid
alignment to normative atlas space where the cross-section of
the corpus callosum was aligned with the midsagittal plane.
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Sagittal slices within �2 mm of the midsagittal plane (five total
slices) were averaged to create the single 2D image within
which the corpus callosum was segmented. Segmentation was
performed via the CCSeg tool (Vachet et al., 2012) which uses
a statistical model of contour shape and image appearance of
the corpus callosum (Székely et al., 1996; Vachet et al., 2012)
based on the concept of active appearance models (Cootes
et al., 2001). Starting from the average shape, the corpus cal-
losum contour is iteratively deformed to match the image
intensities while restricting deformations to the model shape
statistics. In a final step, the contour is deformed without re-
strictions but only within a close neighbourhood. The model
used here was trained with image data from an independent
paediatric study (Cascio et al., 2006). Through the model de-
formation, this approach provides a direct point-to-point cor-
respondence of corpus callosum boundaries for all subject
images. Contours were visually inspected by a blind rater
(T.S.) for quality of segmentation and manually corrected
through re-initialization or insertion of a repulsion point to
restrain the model (Vachet et al., 2012). Approximately 12%
of cases required manual correction based on visual quality
control. About 5% of image data required simple re-initializa-
tion (i.e. the initial translation and rotation that aligns the
average corpus callosum contour to the image prior to deform-
ation), while for 7% manual expert refinement of contour seg-
mentation was applied by adding a repulsion point (Kass,
1988) to allow the contour to find a state of minimum
energy. Within- and between-rater reliability for manual refine-
ment of corpus callosum contours has been previously re-
ported for this sample as 0.99 (Vachet et al., 2012).
There were no significant differences among groups for pro-
portion of data requiring manual correction.

Brain volume segmentation

Brain tissue volumes were obtained through a framework of
atlas-moderated expectation-maximization with co-registration

of T1- and T2-weighted MRI images, bias correction, skull
stripping, and multimodal tissue classification using the
AutoSeg toolkit (http://www.nitrc.org/projects/autoseg/).
Population average templates and corresponding probabilistic
brain tissue priors for grey and white matter were created for
the 6, 12, and 24 month old brain. Grey and white matter
volumes were summed to yield an estimate of total brain
volume.

Medial axis representation

Variability in corpus callosum shape is subject to extrinsic
factors such as rotation or bending, resulting from variance
in brain shapes or type of image alignment, as well as intrinsic
shape properties as measured by object length and local thick-
ness, i.e. measurements that are invariant to the anatomical
coordinate system. Whereas traditional methods of corpus cal-
losum shape measurement are subject to both sources of vari-
ance, our analysis focused on intrinsic shape properties. We
followed the framework of medial axis transformation, which
results in a representation that is invariant to rotation, trans-
lation and bending (Styner et al., 2003). Following Sun et al.
(2007), the corpus callosum contour parameterization is trans-
formed into a process-induced symmetric axis where corpus
callosum shapes are represented by the medial axis between
the end points of genu and splenium (length), with local width
(or thickness) attributed to each medial axis point. Starting
from 100 equidistant contour points and after resampling of
the medial axis into equidistant length intervals, we computed
25 medial axis points with attributed local thickness. It is im-
portant to note that our segmentation results in parametric
representations of corpus callosum boundaries which after
conversion to invariant shapes leads to one-to-one point cor-
respondences across subjects and age groups (Székely et al.,
1996). Supplementary Fig. 1 illustrates corpus callosum
boundaries, medial axis definition and location, and thickness
measurements across age intervals.

Table 1 Descriptive and demographic data

High-risk ASD-positive High-risk ASD-negative Low-risk-Neg Pa

Total participants 57 213 108

6 m scan 9 14 8

12 m scan 1 18 7

24 m scan 6 8 4

6 and 12 m scans 2 32 33

6 and 24 m scans 5 15 11

12 and 24 m scans 10 42 8

6, 12 and 24 m scans 24 84 37

Age (Time 1) 6.6 (0.7) 6.6 (0.7) 6.7 (0.7) 0.78

Age (Time 2) 12.9 (0.8) 12.6 (0.6) 12.7 (0.7) 0.13

Age (Time 3) 24.8 (1.2) 24.8 (1.0) 24.7 (0.8) 0.92

ADOS severityb 5.8 (1.8) 1.6 (1.1) 1.5 (0.9) 50.001

IQc 79.8 (17.6) 101.7 (15.9) 110.9 (16.0) 50.001

Sex (% male)d 82.5 57.3 61.1 0.001

Mother’s educatione (% college or higher) 59.6 68.5 83.3 0.002

aOmnibus ANOVA (Age, ADOS severity, IQ) and Fisher’s exact tests (mother’s education, sex).
bAvailable for 99% of total sample. Pairwise: high-risk ASD-positive4 high-risk ASD-negative, low-risk ASD-negative.
cMullen Early Learning Composite. Pairwise: low-risk ASD-negative4 high-risk ASD-negative4 high-risk ASD-positive.
dProportion of males: high-risk ASD-positive4 high-risk ASD-negative, low-risk-negative.
eProportion of mothers with college degree or higher: low-risk ASD-negative4 high-risk ASD-negative, high-risk ASD-positive.
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DTI data processing

Diffusion-weighted images were first processed with DTIprep
to automatically detect common artefacts, correct for motion
and eddy current deformations, and exclude bad gradients (Liu
et al., 2010; Oguz et al., 2014). Following this step, expert
raters manually removed gradients presenting residual arte-
facts. Data sets with fewer than 18 remaining gradients were
excluded from further processing to ensure consistent signal-
to-noise ratio. Post-processing analysis found no significant
differences between diagnostic outcome groups in terms of
motion or other artefacts affecting image quality. Group ana-
lysis of diffusion weighted data used a previously reported
pipeline which provides consistent spatial parameterization
within and between individual data sets across age groups in
a common atlas space (Goodlett et al., 2009; Verde et al.,
2014).

Corpus callosum tractography was accomplished through
seed label mapping of the midsagittal atlas image using 3D
Slicer (www.slicer.org), with acquired data limited to the
three centremost slices. Label maps for three subdivisions of
the corpus callosum were created based on segmentations
described by Witelson (1989). Resulting fibre track definitions
were processed for spurious or incomplete streamlines using
3D Slicer and FibreViewerLight prior to fibre parameterization
and generation of fibre track data using DTIAtlas
FibreAnalyzer (Verde et al., 2014). The open-source tools
constituting this DTI processing pipeline are publically
available through the UNC-Utah NA-MIC DTI fibre tract ana-
lysis framework (www.nitrc.org/projects/namicdtifibre).

Statistical analysis

Longitudinal trajectories of corpus callosum morphology
across 6, 12 and 24 months of age were analysed using re-
peated measures mixed models with unstructured covariance
matrices. This analytic approach allows for different patterns
of missing data and accommodates an unbalanced design. Our
primary set of dependent variables included total area, mean
thickness, and mean length. Independent variables of interest
included group, age, and the group � age interaction. A quad-
ratic age term (age2) was added to the model for length based
on a priori visual analysis of graphed data. Total brain volume
was included as a covariate given its known relationship to
corpus callosum size as well as published data suggesting
increased brain volume among young children with ASD
(Hazlett et al., 2011; Shen et al., 2013). Other control vari-
ables included site, to account for possible variance related to
scan sites, as well as factors which differed significantly be-
tween groups: sex, Mullen Early Learning Composite,
and mother’s education (Table 1). Potential effects of an
age � site interaction were vetted and ultimately excluded
from the primary analysis (Supplementary material). To
elucidate the effect of total brain volume on primary model
results, follow-up analyses omitting this factor were also
generated.

Estimated marginal means for each imaging time point (6,
12 and 24 months) were generated from our primary model
described above and tested for cross-sectional group differ-
ences. Following significant omnibus results, Bonferroni cor-
rected pairwise comparisons were performed and estimates of
effect size generated based on estimated marginal means and

standard errors. In a separate set of analyses, correlations con-
trolling for total brain volume were generated to investigate
whether corpus callosum morphology (6 and 12 months) was
associated with later clinical outcomes measured at age 24
months. Clinical variables of interest included Mullen Early
Learning Composite scores, ADOS social affect scores, and
total inventory of repetitive behaviour from the RBS-R.
These latter two measures were selected to disaggregate
social affect and repetitive behaviour symptom domains. All
tests excepting post hoc comparisons were two-tailed with
� = 0.05.

Results
Demographic and clinical characteristics for participants

are presented in Table 1. Groups did not differ by age at

any of the three time points. Omnibus results indicated that

autism symptom severity based on the ADOS at age 2 dif-

fered significantly among groups, F(2,372) = 313.9,

P5 0.001. Consistent with classification according to clin-

ical outcome, autism severity was significantly higher

among children classified as high-risk ASD-positive relative

to either high-risk or low-risk ASD-negative groups

(P5 0.001), but did not differ between children classified

as high-risk ASD-negative and low-risk ASD-negative

(P = 0.61). There were significant group differences with

respect to sex (Fisher’s exact test, P = 0.001) and Mullen

Early Learning Composite score, F(2,375) = 69.4,

P5 0.000 (Table 1). Groups also differed in terms of

mother’s education (Fisher’s exact test, P = 0.002), with

low-risk controls having a higher proportion of mothers

with a college degree or greater.

Longitudinal and cross-sectional
comparisons of corpus callosum
morphology

Our primary set of analyses compared trajectories of mid-

sagittal corpus callosum total area, length, and thickness

between outcome groups over the 6- to 24-month age inter-

val with adjustment for total brain volume, sex, mother’s

education, site, and Mullen Early Learning Composite.

For total area, there was a significant effect for group,

F = 3.4, P = 0.036 and age, F = 538.7, P5 0.001, but not

group � age, F = 0.22, P = 0.80. Post hoc comparisons for

total area � group did not survive correction for multiple

comparisons.

We next proceeded to the primary components constitut-

ing area: length and thickness. For length, there was a sig-

nificant effect for age2 (F = 8.5, P = 0.004) but not group

(F = 0.4, P = 0.69) or the group � age2 interaction (F = 0.5,

P = 0.64). For thickness, there was a significant effect for

group (F = 6.1, P = 0.002) and age (F = 514.6, P = 50.001)

but not the group � age interaction (F = 0.42, P = 0.66).

Mixed-model adjusted trajectories for corpus callosum

total area, length, and thickness are presented in Fig. 1.
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Post hoc results indicated that thickness was significantly

greater for high-risk ASD-positive children relative to low-

risk ASD-negative (P = 0.008, d = 0.57) and near the

threshold for significance relative to high-risk ASD-negative

(P = 0.07, d = 0.40). High-risk- and low-risk ASD-negative

groups did not significantly differ from one another

(P = 0.29, d = 0.20).

Primary model results, as well as secondary analyses

omitting adjustment for total brain volume, are presented

in Table 2. Cross-sectional comparisons based on model

data made at each imaging time point (6, 12, and 24

months) indicated that the group effect for thickness was

strongest at age 6 months and statistically non-significant

by age 24 months (Table 3).

Localization of thickness differences

The main set of analyses pinpointed thickness as the pri-

mary driver of group differences in midsagittal corpus cal-

losum shape. To characterize this phenomenon in greater

detail, we generated effect size estimates (Cohen’s d) based

on primary model adjusted data for 25 regions comprising

the totality of the corpus callosum (Fig. 2). Cross-sectional

pair-wise comparisons for these regions did not survive

false-discovery rate correction. Per cent difference in

model-adjusted thickness values were also generated

(Supplementary Fig. 2). Pairwise differences were particu-

larly robust between high-risk ASD-positive and low-risk

ASD-negative groups at ages 6 and 12 months (Fig. 2).

At age 6 months, the strongest of these effects corres-

ponded to regions implicated in prefrontal, pre-/supplemen-

tary motor, and posterior-parietal connectivity (Hofer and

Frahm, 2006). At age 12 months, an increased effect was

seen in regions corresponding with primary motor connect-

ivity, while posterior differences became less robust. By age

24 months, effect sizes were weak overall, with posterior

regions showing an inverse pattern relative to that observed

at age 6 months.

Contribution of microstructural
properties to thickness

Thickness results indicated that the anterior portion of the

corpus callosum was particularly enlarged in ASD from

ages 6 to 12 months. Based on previous work, we hypothe-

sized that corpus callosum overgrowth for this region in

human infants could stem from an excess of thin axons

secondary to excessive axon branching or deficient pruning

(Cowan et al., 1984; LaMantia and Rakic, 1990; Aboitiz

et al., 1992) as well as differences in myelination. To ad-

dress this hypothesis, we examined the contribution of

radial diffusivity in the centremost three slices of the anter-

ior third of the corpus callosum to thickness in this region.

We centred this analysis at the approximate midpoint of 12

months of age, which also represented the time point with

the largest number of subject scans. Radial diffusivity re-

flects diffusion orthogonal to the primary axis of the fibre

bundle. While not a direct measure of axon composition or

density, radial diffusivity was selected over alternative

measures (e.g. axial or mean diffusivity) given its higher

sensitivity to these factors (Klawiter et al., 2011). The an-

terior corpus callosum was selected given both its relevance

in the current findings as well as previous work suggesting

that size in this region is particularly linked to axon com-

position (Aboitiz et al., 1992; Hofer and Frahm, 2006).

A three-step hierarchical multiple regression analysis was

performed with mean thickness of the anterior third of the

corpus callosum fit as the dependent variable. Independent

variables entered into Step 1 included age, sex, site, total

brain volume, and Mullen Early Learning Composite. Step

2 added radial diffusivity for the anterior third of the

corpus callosum. Collinearity diagnostics indicated good

model stability (all VIF5 1.4, tolerance4 0.7). Variables

included in Step 1 accounted for R2 = 0.04 and differed

significantly from zero, F(5,258) = 2.3, P = 0.046. In Step

2, radial diffusivity of the anterior third of the corpus cal-

losum was added as an independent variable. The addition

of this variable resulted in a significant change in R2,

Figure 1 Mixed model adjusted trajectories for corpus callosum morphological features across risk-by-diagnosis groups.
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F(1,258) = 209.8, P5 0.001. The full model for Step 2 was

significantly greater than zero, F(6,258) = 38.5, P5 0.001,

R = 0.69, R2 = 0.48. Radial diffusivity in the anterior por-

tion of the corpus callosum significantly predicted thickness

of this region, standardized b = �0.69, P50.001. A scat-

terplot of unadjusted radial diffusivity and corpus callosum

thickness values is presented in Fig. 3. As an exploratory

Step 3, we examined the addition of the interaction of

group � radial diffusivity. The addition of this term re-

sulted in a significant change in R2, F(1,258) = 10.1,

P = 0.002, and a model which differed significantly from

zero, F(6,258) = 35.6, P5 0.001, R = 0.71, R2 = 0.50,

suggesting that diagnostic group status moderates the rela-

tionship between radial diffusivity and corpus callosum

thickness.

To further vet these results, we conducted two follow-up

analyses. First, we examined axial diffusivity (diffusivity

along the primary fibre orientation) in relation to anterior

corpus callosum thickness. This factor significantly predicted

thickness albeit with smaller effect size than for radial diffu-

sivity (R2 = 0.15 for axial diffusivity versus 0.48 for radial

diffusivity). Second, we examined the contribution of radial

diffusivity to thickness in the splenium, or posterior fifth, of

the corpus callosum given its potential role in the early devel-

opment of ASD (Elison et al., 2013). A regression model

including splenium radial diffusivity significantly predicted

posterior corpus callosum thickness, F(6,258) = 11.8,

P5 0.001, R = 0.47, R2 = 0.22, suggesting a similar albeit

attenuated relationship between microstructure and thickness

relative to that observed in the anterior corpus callosum. See

Supplementary material for full model results for anterior

axial diffusivity and splenium radial diffusivity.

We next expanded upon the results for radial diffusivity in

relation to anterior thickness by broadening our analysis to

all three time points using repeated measures mixed models.

First, we sought to determine whether radial diffusivity was

associated with corpus callosum thickness across all three

time points by fitting a model with anterior corpus callosum

radial diffusivity, age, sex, site, total brain volume, and

Mullen Early Learning Composite fit as independent vari-

ables and anterior corpus callosum thickness as the depend-

ent variable. There was a significant effect for radial

diffusivity in the anterior portion of the corpus callosum

over 6, 12, and 24 months, F = 101.1, P50.001, indicating

that radial diffusivity is inversely associated with thickness

Table 3 Cross-sectional estimated marginal means by group for midsagittal corpus callosum shape

Corpus callosum feature High-risk

ASD-positive

(A)

High-risk

ASD-negative

(B)

Low-risk

ASD-negative

(C)

Omnibusa Post hocb Cohen’s d

EMM SE EMM SE EMM SE F P (A) vs. (B) (A) vs. (C)

Time 1 (6 months)

Total area 307.44 6.97 299.56 3.28 293.69 4.39 1.4 0.26

Length 139.03 1.85 141.58 0.87 141.95 1.17 0.9 0.41

Thickness 8.92 0.15 8.56 0.07 8.35 0.10 4.7 0.01 a4 b,c 0.42 0.61

Time 2 (12 months)

Total area 346.52 8.00 339.80 3.27 329.04 4.95 2.2 0.12

Length 148.71 1.81 150.58 0.74 149.69 1.12 0.6 0.54

Thickness 9.38 0.17 9.12 0.07 8.86 0.10 3.5 0.03 a4 c,

b4 c

0.28 0.55

Time 3 (24 months)

Total area 402.48 8.41 405.16 4.18 408.50 6.61 0.2 0.85

Length 155.06 1.73 156.68 0.86 158.74 1.36 1.4 0.25

Thickness 10.44 0.18 10.44 0.09 10.35 0.14 0.2 0.87

aMixed effects model. Two-sided significance level of 0.05.
bBonferroni corrected.

EMM = estimated marginal mean; SE = standard error.

Table 2 Longitudinal mixed-model results with and

without adjustment for total brain size1

Corpus

callosum

feature

Adjusted for

total brain volume

Unadjusted for

total brain volume

F P F P

Total area

Group 3.4 0.04 3.8 0.02

Age 538.7 50.001 2859.4 50.001

Group � Age 0.2 0.80 0.3 0.75

Length

Group 0.4 0.69 0.3 0.72

Age 8.5 0.004 1214.6 50.001

Group � Age 0.5 0.64 0.5 0.95

Thickness

Group 6.1 0.002 6.0 0.003

Age 514.6 50.001 1660.6 50.001

Group � Age 0.4 0.66 0.4 0.70

1All models adjusted for sex, site, mother’s education, and Mullen Early Learning

Composite.

Early corpus callosum development in ASD BRAIN 2015: Page 7 of 13 | 7

by guest on M
ay 4, 2015

D
ow

nloaded from
 

http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awv118/-/DC1


across these ages. Second, we fit a model with radial diffu-

sivity as the dependent variable, and age, sex, site, and

Mullen Early Learning Composite as independent variables.

Total brain volume was omitted from this model as local

diffusion properties should not theoretically vary as a func-

tion of brain size. We identified a significant effect for group

(F = 3.5, P = 0.03) characterized by higher radial diffusivity

among children with ASD, with group � time near the crit-

ical value, F = 2.9, P = 0.059 (Fig. 4). While appearing ini-

tially counter to the inverse relationship between radial

diffusivity and thickness, the pattern seen in Fig. 4 is con-

sistent with Step 3 of our regression model, wherein diag-

nostic group status exerts a significant moderating effect on

the relationship between radial diffusivity and corpus callo-

sum thickness.

Relationship of corpus callosum
thickness to behavioural outcomes

Correlations controlling for total brain volume were gener-

ated for primary corpus callosum measures at ages 6 and

12 months, as well as change rate across this interval, with

select clinical outcome measures at age 24 months among

children with ASD. Mullen Early Learning Composite and

ADOS Social Affect domain scores at age 24 months were

not significantly correlated with 6 or 12 month measures of

total corpus callosum area, length, or thickness. Total re-

petitive behaviour endorsed on the RBS-R at age 24

months was significantly correlated with both corpus callo-

sum area (r = 0.52, P = 0.005) and thickness (r = 0.50,

P = 0.007), but not length (r = 0.29, P = 0.14), at the

6-month time point. Repetitive behaviour endorsed was

significantly correlated with thickness (r = 0.44, P = 0.03),

but not area or length, at age 12 months. For children with

data at both 6 and 12 months of age, monthly change rate

was not significantly associated with behavioural measures.

Discussion
The corpus callosum is a prominent and highly-organized

white matter structure comprised of long-range nerve fibres

Figure 2 Longitudinal effect size. Longitudinal effect size data (Cohen’s d) for pairwise corpus callosum thickness differences among high-

risk infants who developed autism spectrum disorder (ASD), high-risk infants without ASD (HR-Neg), and low-risk controls (LR-Neg).

Figure 3 Unadjusted scatterplot of midsagittal radial

diffusivity values in relation to thickness for the anterior

third of the corpus callosum for total study sample centred

at age 12 months.
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providing functional coordination between homologous

brain regions. Though implicated by studies of older chil-

dren and adults with ASD, little is known about its role in

the early emergence of the disorder. In this prospective,

longitudinal study, we found significantly increased midsa-

gittal corpus callosum area in infants who later developed

ASD. These differences were driven by in-plane thickness

rather than length, with thickness of the anterior corpus

callosum particularly greater in babies who developed

ASD relative to comparison children who did not

(Fig. 2). Differences in corpus callosum size appeared stron-

gest at age 6 months, with the effect diminishing by age 2

years (Fig. 2). Unaffected high-risk siblings differed from

controls in corpus callosum thickness at age 12 months

only, suggesting either the presence of a subpopulation

who may later meet criteria for a neurodevelopmental dis-

order or the low-level expression of a shared but develop-

mentally variant phenotypic feature. The presence of

disease-specific morphological differences at 6-months of

age is of particular significance and suggests that corpus

callosum overgrowth could be among the earliest neural

signatures of autism.

It is noteworthy that the present results are in distinct

contrast to findings of a disproportionally smaller corpus

callosum among older individuals with ASD (Frazier et al.,

2012). While not consistent among studies (Lefebvre et al.,
2015), smaller corpus callosum size has been observed even

among preschool aged children who are but a few years

older than those in our sample (Boger-Megiddo et al.,

2006). That we found increased corpus callosum size in

ASD, regardless of adjustment for total brain volume, sug-

gests the interplay of neurodevelopmental processes unique

to infancy. At the macro level, this includes the rapid

growth of callosal white matter and cerebral cortex over

the first year of life, after which time development of these

regions gradually wanes (Deoni et al., 2012; Gilmore et al.,
2012; Sadeghi et al., 2013). These early changes, observed

through MRI, stem from micro-level events including pro-

genitor cell proliferation and differentiation, apoptosis, pro-

cess elimination, as well as arborization, myelination, and

axon growth (Low and Cheng, 2006). Disruption to one or

more of these developmental events during infancy—which

occur in advance of the clinical presentation of autism—

may set the stage for the later-emerging patterns of callosal

undergrowth. Considered within a developmental frame-

work, morphological findings which initially appear incon-

gruent may in fact reflect early versus later neural features

of ASD (Uddin et al., 2013).

Given the robust nature of axonal pruning known to

occur in the corpus callosum early in life (Cowan et al.,

1984; LaMantia and Rakic, 1990), we hypothesized, based

on the correspondence of timing to this unique develop-

mental event (Workman et al., 2013), that overgrowth in

infants who developed ASD may reflect an excess of thin

axons secondary to axon over-production or dampened de-

velopmental elimination. As an initial test of this hypoth-

esis, we explored the relationship between callosal

microstructure, measured using DTI, and callosal morph-

ology. We found a significant inverse relationship between

local radial diffusivity and anterior callosal thickness, with

a full model including covariates accounting for nearly

50% of variance. This suggests that corpus callosum size

in early childhood varies as a function of microstructure

possibly linked to axon composition, an interpretation in-

line with post-mortem (Aboitiz et al., 1992) and other DTI

findings (Hofer and Frahm, 2006; Klawiter et al., 2011).

We further identified an interaction between diagnostic

status and radial diffusivity on corpus callosum thickness,

suggesting that an as yet unknown mechanism may mod-

erate the nature of the relationship between radial diffusiv-

ity and corpus callosum growth among babies who later

develop ASD.

While early increases in corpus callosum size may stem

from an overabundance of thin axons, increased myelin-

ation, or both, inadequate experience-dependent axon

growth and refinement may explain later findings of

corpus callosum undergrowth associated with ASD

(Markham et al., 2009; Paus, 2010; Zikopoulos and

Barbas, 2010). In typically developing children, rapid

corpus callosum growth has been observed through adoles-

cence (Giedd et al., 1999; Lenroot et al., 2007). This

growth, which outpaces apoptosis and axon elimination,

occurs absent a strong effect for myelin content on matur-

ation for both typically developing children (Perrin et al.,
2009; Paus, 2010) and children with ASD (Gozzi et al.,

2012). This implicates plasticity involving axonal refine-

ment rather than either aberrant myelination or atypical g

ratio (Paus and Toro, 2009). An early overabundance of

thin axons, followed by suboptimal refinement and growth,

Figure 4 Linear mixed model results for midsagittal radial

diffusivity of anterior portion of the corpus callosum from 6

to 24 months for risk-by-diagnosis groups.
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could plausibly explain the contrast between the present

findings and those from older children with ASD. While

we did not identify a statistically significant effect for

group � age, group differences in corpus callosum thick-

ness decreased from ages 6 to 24 months (Fig. 2). We an-

ticipate that typically developing children may ‘catch up’

with and surpass children with ASD in terms of corpus

callosum size by school age as increased axon calibre and

myelin content begins to outpace overgrowth initially asso-

ciated with thin axon over-abundance (Boger-Megiddo

et al., 2006). There is some evidence of this possibility in

our data at age 2 years, wherein the posterior corpus cal-

losum appears marginally thinner in children with ASD,

consistent with findings from older children (Vidal et al.,

2006).

With regard to the relationship between the corpus cal-

losum and clinical features among infants who developed

ASD, we found that morphological features at both 6 and

12 months of age positively predicted repetitive behaviours

measured at age 2 years. We did not, however, see a rela-

tionship between corpus callosum morphology and either

IQ or social symptoms despite precedence for this later in

life (Hardan et al., 2009; Keary et al., 2009; Prigge et al.,

2013). The link between corpus callosum morphology and

repetitive behaviour may reflect the scaffolding of neural

architecture and behaviour in support of functional special-

ization involving more complex skills. For example, recent

work from our group has implicated posterior corpus cal-

losum microstructure in basic visual orienting function in

7-month-old infants, an early structure–function relation-

ship likely supporting distal social skill development

(Elison et al., 2013). The relationship between morphology

and repetitive behaviour features of ASD in infants may

similarly reflect a fundamental but age-dependent role for

the corpus callosum in early sensory-motor development.

The robust differences in the anterior corpus callosum

lend credence to this interpretation. These regions, which

are involved in pre-/supplementary motor and orbitofrontal

circuitry, have been implicated in sensory function and be-

havioural inhibition generally and repetitive behaviours

specifically (Giedd et al., 1994; Langen et al., 2011).

Evidence for altered corpus callosum morphology in in-

fants who develop ASD is in keeping with evidence of

increased brain volume (Hazlett et al., 2011; Shen et al.,

2013) as well as prevailing theory concerning the essential

yet indeterminate role of connectivity (Uddin et al., 2013;

Lewis et al., 2014). Recent evidence of cortical surface area

expansion in the first year of life (Hazlett et al., submitted

for publication) and accounts of aberrant neurogenesis and

neuronal migration (Casanova et al., 2006; Courchesne

et al., 2011) implicate events unique to prenatal and early

postnatal development. For infants who develop ASD, these

neurodevelopmental events, including postnatal remodelling

of the corpus callosum, are co-occurring in an altered con-

text. The aberrant corpus callosum growth observed in the

present study, concomitant with brain enlargement, may

induce later conduction delays (Lewis and Elman, 2008)

and decreased network efficiency, particularly among

long-distance connections such as those supported by

corpus callosum fibres (Lewis et al., 2014).

Limitations

Participants in this study were grouped based upon clinical

best-estimate diagnosis made at age 2 years. While similar

work has found strong diagnostic stability from age 2 (e.g.

Shen et al., 2013), it is feasible that some children judged

high-risk ASD-negative or high-risk ASD-positive may

change diagnostic classification by school-age. Following

children past early childhood would offer the opportunity

to account for dynamic changes in diagnostic status and

more accurately establish patterns of brain–behaviour de-

velopment. Further, while our DTI data suggest axonal de-

velopment may explain morphological differences in the

corpus callosum, factors such as pruning, myelination,

and axon calibre change are not mutually exclusive phe-

nomenon, and each of these processes likely contributes

both to morphology and local diffusion values (Mori and

Zhang, 2006). This, along with other potential sources of

error inherent to DTI, limits the extent to which causal

inferences may be made and necessitates corroboration

through complimentary imaging measures and non-human

animal model work.

Conclusion
Although atypical connectivity associated with autism is

not limited to commissural pathways, numerous studies

have identified corpus callosum differences among individ-

uals with ASD using functional MRI (Just et al., 2007;

Anderson et al., 2011; Schipul et al., 2012), DTI

(Alexander et al., 2007; Kumar et al., 2010; Shukla

et al., 2010; Lewis et al., 2013), magnetization transfer

imaging (Gozzi et al., 2012) and structural MRI (Frazier

and Hardan, 2009). Among toddlers with ASD, there is

evidence from functional MRI during natural sleep of

decreased interhemispheric synchronization associated

with symptom severity and language function (Dinstein

et al., 2011). Findings from multimodal imaging studies

of the corpus callosum have linked structure and function

by demonstrating that size is positively correlated with

functional synchrony in adolescents and adults with ASD

(Just et al., 2007; Schipul et al., 2012) and inversely asso-

ciated with measures of fibre length, suggesting diminished

connectivity (Lewis et al., 2013). On the basis of these

published data, we may conclude that corpus callosum con-

nectivity, broadly defined, is implicated in ASD. However,

given that much of the published literature involves indi-

viduals who already have the disorder, the pathogenic

versus collateral role of corpus callosum development in

ASD cannot be ascertained. The present work adds a

new dimension to existing knowledge by suggesting that

the corpus callosum is indeed temporally implicated in
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the emergence of ASD, but that the nature of this relation-

ship appears to materially differ from what has been re-

ported later in the course of the disorder.
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funded Autism Centre of Excellence project and consists of

a consortium of eight universities in the U.S. and Canada.

Clinical Sites: University of North Carolina: J. Piven (IBIS

Network PI), H.C. Hazlett, C. Chappell; University of

Washington: S. Dager, A. Estes, D. Shaw; Washington

University: K. Botteron, R. McKinstry, J. Constantino, J.

Pruett; Children’s Hospital of Philadelphia: R. Schultz, S.

Paterson; University of Alberta: L. Zwaigenbaum;

University of Minnesota: J. Elison; Data Coordinating

Centre: Montreal Neurological Institute: A.C. Evans, D.L.
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