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Figure 1: Halos found on a set of particles from a cosmological simulation: (a) Dataset contains 16.7 million dark matter particles. (b) Halos with
linking length 0.2 and halo size 11. (c) Halos after increasing the linking length to 0.4141. Each set of particles in the same color in (b) and (c)
represents a single halo.

ABSTRACT

State-of-the-art cosmological simulations regularly contain billions
of particles, providing scientists the opportunity to study the evo-
lution of the Universe in great detail. However, the rate at which
these simulations generate data severely taxes existing analysis
techniques. Therefore, developing new scalable alternatives is es-
sential for continued scientific progress. Here, we present a data-
parallel, friends-of-friends halo finding algorithm that provides un-
precedented flexibility in the analysis by extracting multiple linking
lengths. Even for a single linking length, it is as fast as the existing
techniques, and is portable to multi-threaded many-core systems as
well as co-processing resources. Our system is implemented using
PISTON and is coupled to an interactive analysis environment used
to study halos at different linking lengths and track their evolution
over time.

Index Terms: H.3 [INFORMATION STORAGE AND RE-
TRIEVAL]: Information Search and Retrieval—Clustering; J.2
[PHYSICAL SCIENCES AND ENGINEERING]: Astronomy—

1 INTRODUCTION

Modeling and understanding the evolution of the Universe is one of
the fundamental questions in cosmology. In particular, understand-
ing how the observed, hierarchical distribution of dark matter forms
is of significant interest. To explore different hypotheses, numerical
simulations based on different structure formation models are used
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to evolve a dark matter distribution from some initial near-uniform
configuration, and these results are compared to observations. To
increase the fidelity of these models, ever more particles are used,
and the state-of-the-art simulations often contain billions of dark
matter particles. However, analyzing these datasets is becoming
increasingly challenging and can require substantial computational
resources. In particular, some of the baseline analyses, such as halo
finding, require new scalable alternatives to existing techniques.

Finding dark matter halos is a preliminary step to a wide range
of analysis tasks. In this context, a “halo” [18, 10] is defined as an
over-dense region of dark matter particles and represents one of the
common features-of-interest. The two most common definitions of
a halo are based on either a friends-of-friends (FOF) [7] clustering
or a spherical-overdensity (SO) measure [21]. The former com-
bines all particles that are reachable through links shorter than a
predefined distance (the linking length) to be in one halo, while the
SO method estimates the mean particle density and grows spherical
regions around local density maxima. While there exist other def-
initions, these are by and large derivatives or combinations of the
two baseline approaches. Here, we concentrate on the FOF-based
definition as it is less biased towards a particular shape and the pre-
ferred technique of many scientists.

To address a prior bottleneck, scientists at Los Alamos National
Laboratory (LANL) in collaboration with the Hardware Acceler-
ated Cosmology Codes (HACC) team developed a serial halo find-
ing algorithm [13, 26] that currently serves as the technique for
per-node computation in HACC cosmology simulations. This al-
gorithm has also been included in the standard distributions of Par-
aview [12]. When simulated on a massively parallel machine, dark
matter particles are distributed amongst the nodes using MPI with
a sufficient overlap (the ghost zones) such that any halo resides en-
tirely on at least one of the nodes. As a result the halo finding is
typically performed first within a node followed by a clean-up to
ensure each halo is recorded only once. Given a linking length, this
algorithm reports all corresponding halos which are subsequently
filtered by size. However, while there exists a default linking length,



it is well-known that the halo structure may change substantially
for different values and as the structure formation in FOF halo find-
ing is hierarchical these result in “halos-within-halos” (sub-halos).
Consequently, analyzing halos for different parameters is of sig-
nificant interest [11, 24]. Unfortunately, virtually all existing al-
gorithms, including the implementation in Paraview, require a full
re-run for each linking length, rendering a comprehensive explo-
ration of the parameter space infeasible. In an in-situ environment
where re-computation for different linking lengths is not feasible,
current techniques are unable to provide the flexibility to explore
the parameter space of the data.

Instead, we present a new halo finding approach which, unlike
the existing approaches, computes entire halo families by hierar-
chically encoding halos at different linking lengths. This allows
us to analyze a range of parameters interactively, significantly in-
creasing the flexibility overall. Our halo finding operator is im-
plemented in PISTON [17], a cross-platform library of data paral-
lel visualization and analysis operators. Since PISTON makes use
of NVIDIA’s Thrust library [1], it allows codes to be compiled to
different backends, including CUDA, OpenMP, and Intel Thread-
ing Building Blocks (TBB). Nevertheless, using a hybrid strategy
that combines GPU and multi-threaded CPU processing, the per-
formance is comparable to the Paraview implementation for a sin-
gle linking length query, and outperforms it with multiple linking
lengths. The resulting data can be interactively explored in both
space and time, providing a new level of post-processing capa-
bilities previously not feasible. We demonstrate the results using
data from a 2563 cosmological simulation (containing 16.7 million
particles) on Maverick at the Texas Advanced Computing Center
(TACC) and provide detailed comparisons with the Paraview im-
plementation. Furthermore, results from a 10243 cosmological sim-
ulation (containing 1.07 billion particles) tested on the Moonlight
supercomputer at LANL are also presented.

2 RELATED WORK

The FOF [7] and SO [21] methods are the first two halo finding al-
gorithms found in the literature. Although many other halo finding
algorithms have been introduced [14, 15, 19, 9, 20, 23, 26], almost
all of them are derived from either one or both of these methods.

The FOF algorithm constructs halos of arbitrary shape by mak-
ing use of two parameters: linking length and halo size. The under-
lying idea behind this algorithm is to carry out an extended neighbor
search based on the linking length parameter specified. This linking
length parameter is a fraction of the average inter-particle spacing
and is considered as the radius for the neighbor search. It is usually
set to ≈ 0.2 of the mean inter-particle separation. After connect-
ing all pairs of particles which lie closer than the specified linking
length, the FOF algorithm results in a network of linked particles.
Each connected component found in the network is considered as
a single FOF halo. Finally, the discovered halos are filtered based
on the halo size parameter, where all the halos with fewer particles
than the specified value are ignored (Figure 1). The relative ease
in interpretation as well as in implementation and the fact that this
algorithm avoids making any assumptions about the halo shape are
some of the advantages of the FOF halo finding algorithm. How-
ever, one of its main disadvantages is the use of the linking length
parameter, which if too large can merge two separate particle clus-
ters together.

The SO method assumes halos to be spherical in shape. The idea
is to identify spherical regions with an average density defined by
a mean over-density criterion. The spheres are centered on density
peaks and grown until they enclose the specified over-density value.
Each such spherical region found is considered to be a halo. The
main drawback of this algorithm is that the results are somewhat
artificial due to the enforced halo shape. Therefore, the SO method
can yield oversimplifications which could lead to unrealistic results.

As our halo finding operator focuses on the FOF algorithm, the
rest of this section highlights some of the relevant related work
found in this area. An extensive survey of the available halo finding
algorithms can be found in [16].

The core of the Paraview FOF halo finding algorithm [13, 26]
is a balanced kD-tree. Use of this balanced kD-tree reduces the
number of operations needed for the halo finding process. Once the
balanced kD-tree is built from the input particles, a recursive algo-
rithm starts at the leaf nodes (single particles) and merges nodes
into halos by checking if the particles are within a given linking
length. Here, particle tests are reduced by using sub-tree bound-
ing boxes as proxies for points. If a sub-tree bounding box is too
distant, all of the points can be skipped. Conversely, if an entire
bounding box is close enough all of the points can be added to a
halo. To implement efficient parallelization for this algorithm, they
have used a block structured decomposition which minimizes sur-
face to volume ratio of the domain assigned to each process. This
halo finding implementation is used for large-scale structure simu-
lations, where the size of any single halo is much smaller than the
size of the whole box. It uses the concept of “ghost zones” such that
each process is assigned all the particles inside its domain as well
as those particles which are around the domain within a given dis-
tance. After each process runs its serial version of the FOF finder,
MPI-based “halo stitching” is performed to ensure that every halo is
accounted for, and accounted for only once. Using this block struc-
tured decomposition to further split the input data space, this FOF
halo finder can be made to utilize on-node parallelism. However,
the initial data distribution and final clean up steps required create
an overhead cost. In this paper, we compare the performance of our
halo finding operator against this Paraview implementation.

The Ntropy algorithm [9] also uses a kD-tree data structure to
speed up the FOF halo finding distance searches. It also employs
an implementation of a parallel connectivity algorithm to link ha-
los which span across separate processor domains. The advantage
of this method is that no single computer node requires knowledge
of all groups in the simulation volume. However, identifying large
halos which span across many processors requires more time and
computation. This causes the algorithm to scale poorly and to du-
plicate the work required to find these large halos.

In the MPI-based parallel Friends-of-Friends algorithm named
Parallel FOF (pFOF) [22], particles are distributed in cubic sub vol-
umes of the simulation and each processor deals with one cube.
Within each processor, the FOF algorithm is run locally. When a
halo is located closer to the edge of a cube, pFOF checks whether
the particles belonging to the same halo are in a neighboring cube.
This process is iteratively repeated until all halos extending across
multiple cubes are merged. This merging is performed for each
such halo and not implemented in a data-parallel manner as is ours.

The structure formation in FOF halo finding is hierarchical, such
that each halo at one particular linking length contains substruc-
ture which contains halos at lower linking lengths. However, due to
the definitions of the basic FOF algorithm, different linking lengths
need to be specified to identify these “halos-within-halos” (sub-
halos).

Rockstar [2] is a recent halo finding algorithm which makes use
of these “halos-within-halos”. This is a new phase-space based
halo finder which is designed to maximize halo consistency across
time-steps of a time-varying cosmological simulation. This algo-
rithm first selects particle groups for a 3D FOF variant using a very
large linking length. Then, for each main FOF group, this algo-
rithm builds a hierarchy of FOF subgroups in phase space by pro-
gressively and adaptively reducing the linking length. Finally, it
converts these FOF subgroups into halos beginning at the deepest
level of the hierarchy. This algorithm is based on a different halo
definition than ours; specifically it uses the adaptive hierarchical
refinement of FOF groups in six dimensions.



Figure 2: (a)-(e) Construction of hierarchical halo definitions by recording the clustering of dark matter particles as the linking length is swept
top-to-bottom through the full value range. (f) Augmented hierarchy: obtained by removing branches which are shorter than a certain desired
interval.

To our knowledge, all existing FOF-based halo finding algo-
rithms require re-computation of halos whenever the linking length
or halo size parameters are changed. Since we compute a meta-
representation which encodes all possible halos for a wide range of
linking lengths and stores it using hierarchical feature definitions,
our algorithm has the capability to quickly and efficiently compute
halos for a wide range of linking length and halo size parameters.
In an in-situ environment where re-computing for different param-
eters is not practically feasible, our algorithm provides scientists
with significant additional flexibilities in exploring the parameter
space of underlying data.

3 DATA-PARALLEL PROGRAMMING WITH PISTON
Data parallelism is achieved by independent processors performing
the same operation on different pieces of data. With the increasing
amount of data available today, data parallelism is considered to
be an effective method to exploit parallelism on the state-of-the-art
architectures. More details on the data-parallel programming model
can be found in [3].

PISTON [17] is a cross-platform library of visualization and
analysis operators that employ the data-parallel programming
model. It allows operators to be written using only data parallel
primitives (such as scans, transforms, sort etc.) and enables the
same code to be compiled to multiple targets using architecture-
specific backend implementations. Specifically, PISTON makes
use of NVIDIA’s Thrust library [1]. Therefore, it facilitates porta-
bility and avoids the need to re-write algorithms for different archi-
tectures, which is frequently required with other high performance
parallel visualization and analysis operator tools. Visualization op-
erators such as isosurface, cut-surface, and threshold have been im-
plemented in PISTON. This framework is also being used to write
physics code for simulations [8].

Thrust library provides a rich collection of data parallel primi-
tives such as scan, sort, transform, and reduce for multiple backends
including CUDA, OpenMP, and Intel TBB. It allows users to pro-
gram using an interface which is very similar to the C++ Standard
Template Library. Moreover, the two vector types provided, host
vector and device vector (similar to the std::vector in STL), allow
data to be copied efficiently between the host and device. Mak-
ing use of these two vector types and developing operator code us-
ing only the data parallel primitives provided, efficient and portable
code can be produced. Our halo finding operator is also imple-
mented in such a way using Thrust. An illustration of a part of our
algorithm, as implemented in Thrust, is shown in Section 5.

4 HIERARCHICAL FEATURE DEFINITIONS

When dealing with large-scale data, to effectively understand their
underlying patterns, scientists need to explore the parameter space.
One of the most important steps towards enabling this exploration is
providing the ability to quickly change feature parameters. For halo
finding, this may mean adjusting the linking lengths and halo sizes.
In most cases, given the expected data sizes, on-the-fly feature com-
putation becomes practically infeasible and requires massively par-
allel computing resources. The alternative is to pre-compute fea-

tures for a wide range of potential parameters and to store the results
in an efficient look-up structure.

In this paper, we make use of hierarchical feature definitions [4,
25] which can encode a wide range of feature types and simplifica-
tions. To create this hierarchy, first features should be defined for
each time-step in the data, and then those features must be grouped
at different scales. By maintaining the notion of scale, this feature
grouping naturally approximates a meaningful hierarchy. Since the
structure formation in FOF halo finding is hierarchical by defini-
tion, hierarchical feature definitions yield an ideal fit for storing
this resultant halo structure. For each time-step in the data, halos
are extracted for a wide range of linking lengths and stored in this
hierarchy to allow interactive extraction of halos for different pa-
rameters.

Figure 2(a)-(e) shows the clustering of seven dark matter parti-
cles as the linking length l is swept from top-to-bottom through the
full linking length range r represented by a hierarchy. Each dark
matter particle is represented by a leaf in the hierarchy. Each branch
in the hierarchy represents a neighboring set of particles which are
considered to be a halo at that level, and joining of branches in-
dicates merging of halos. Given a linking length l within the full
range of r, the corresponding halos can be found by “cutting” the
hierarchy of r at l (Figure 3). This creates a forest of sub-trees,
where each sub-tree represents a halo existing at l. The remainder
of the paper uses this same 2D example input to illustrate the var-
ious details of our halo finding operator. The extension to 3D as
used in our actual implementation is straightforward.

Figure 3: Extracting halos for a particular linking length l, obtained
by cutting the hierarchy at l and ignoring all pieces below, shown (a)
before and (b) after extraction. Each sub-tree in the forest of sub-
trees is considered as a single halo. The halo particles are obtained
by looking at the leafs of each sub-tree.

There exists a natural correspondence of leafs in the hierarchy to
particles in space, and by storing this segmentation information one
can easily extract the geometry of a sub-tree/feature as a union of
branch segmentations. Along with the hierarchy, precomputed fea-
ture attributes such as first order statistical moments and/or shape
characteristics can also be stored for each feature on a per-branch
basis. In our case, we opted to store the halo id, size, position, and
velocity information of each halo.

Although hierarchical feature definitions are highly efficient and
flexible, they quantize the space of features depending on the func-
tion values involved. This implicit quantization can often be too



Figure 5: Space Partitioning: An illustration of the underlying algorithm for this phase. First, the cube id is set for each particle by using the
‘setCubeId’ functor (see Listing 1) and the results are stored in the C vector. Then particles are sorted by their cube id using the sort by key
operator. Finally, the non-empty cube ids, sizes, and offsets into the particle array (I vector) are computed and stored in C, S and D vectors. For
example, cube 5 contains two particles and those particles can be found between indices 5 and 6 within the particle array.

Figure 4: Storing the clustering hierarchy of dark matter particles
for the range from min ll=3 to max ll=6: (a) Clustering hierarchy for
the entire linking length range. (b) Clustering hierarchy for the range
from 3 to 6. Note that any extra nodes outside the required range are
removed to only store the necessary clustering information.

coarse or too fine to be practical. For halo finding, we found the
quantization of the linking length to be too fine and chose to cre-
ate an augmented hierarchy [6] by removing branches which are
shorter than a certain desired interval (Figure 2(f)). For example,
even for a small subset of the dataset we used (about 24000 parti-
cles), when considering a linking length range of 0.19 to 0.2, some
particles in the final hierarchy contained ≈ 15000 parent nodes
while others contained fewer than ten parent nodes. An augmented
hierarchy reduces the granularity of the clustering found within
the final hierarchy and makes interactive halo extraction possible.
However, the amount of reduction in the hierarchy resolution is left
up to the scientist to decide at run-time. In this manner, hierar-
chical feature definitions encode an entire feature family alongside
its segmentation and relevant attributes in a compact and efficient
manner.

5 FOF HALO FINDING OPERATOR

The naive implementation of a non-parallel FOF halo finder com-
pares each and every particle pair, requiring n2/2 operations. Here,
n is the total number of particles in the data. Our goal is to find the
clustering hierarchy of particles for a range of linking lengths with
fewer particle pair operations than the naive approach and to im-
plement the algorithm using only data-parallel primitives in order

to achieve portability and performance. Given a minimum linking
length value (min ll), maximum linking length value (max ll), and a
set of dark matter particles (along with their attributes such as halo
id, position, and velocity), our FOF halo finding operator computes
the clustering hierarchy of the input particles for the range from
min ll to max ll at a desired level of resolution (Figure 4). As men-
tioned earlier, along with the output halo hierarchy, several halo
statistics (such as halo id, size, position, and velocity information)
are stored on a per-halo basis.

Furthermore, while our algorithm can store the halo hierarchy for
a range of linking lengths, it can also be used for just a single linking
length. Simply by setting both min ll and max ll to the required
linking length value, clustering information for only that linking
length value will be stored in the final hierarchy.

5.1 Algorithm
The algorithm for our PISTON-based FOF halo finding operator
can be divided into four phases: space partitioning, local hierarchy
computation, edge computation and global hierarchy computation.
More details on each of these phases are presented below.

5.1.1 Space Partitioning
First, the full spatial domain of the input particles is partitioned into
equal sized cubes. Here, the diagonal length of each cube is set to
the min ll value. An id is set for each cube according to its row-
major order and then that cube id is set for each of its particles.
Then, the number of non-empty cubes in space and their particle
sizes are obtained. The core algorithm for this phase, as imple-
mented in Thrust, is illustrated in Figure 5 and Listing 1.

5.1.2 Local Hierarchy Computation
After partitioning, the local halo hierarchy of each cube is com-
puted. The maximum distance between any two particles within
a cube is its diagonal length. Therefore, by setting the diagonal
length of each cube to min ll value, we can be sure that all the par-
ticles within a cube lie at a distance less than or equal to the min ll
value. In other words, all the particles within a cube can be clus-
tered together to be one halo at ‘min ll’. Accordingly, the local
hierarchy can be easily computed by inserting a single parent node
at min ll value (Figure 6). This parent node combines all particles
within the cube to be in a single cluster at that linking length value.
Since particle details (id, position, and velocity) are also available,



as this node is created, its details are also stored by combining its
particle details.
// for a given particle, set its cube id
struct setCubeId : public thrust::unary_function<int, void>
{

float *X, *Y;
unsigned long long *C;

float cubeLen;
float lBoundX, lBoundY;

unsigned long long cubesInX, cubesInY;

__host__ __device__
setCubeId(float *X, float *Y, unsigned long long *C,
float cubeLen, float lBoundX, float lBoundY,
unsigned long long cubesInX, unsigned long long cubesInY) :
X(X), Y(Y), cubeLen(cubeLen), lBoundX(lBoundX), lBoundY(lBoundY),
cubesInX(cubesInX), cubesInY(cubesInY) {}

__host__ __device__
void operator()(int i)
{
// get x,y coordinates for the cube
unsigned long long x = (X[i]-lBoundX)/cubeLen;
unsigned long long y = (Y[i]-lBoundY)/cubeLen;

if(x>=cubesInX) x = cubesInX-1;
if(y>=cubesInY) y = cubesInY-1;

// set cube id
C[i] = x + (y*cubesInX);

}
}

Listing 1: Code for the ‘setCubeId’ custom functor

Figure 6: Local hierarchy computation: When min ll=3 and max ll=6,
for each cube its local hierarchy is computed by inserting a single
parent node at value 3. This combines all the particles within each
cube to be in a single cluster at this value. For this example, four
halos exist, one for each non-empty cube in the input domain. Each
sub-tree in the forest of sub-trees (at right) represents a local hierar-
chy.

As a result of setting the diagonal length of each cube to min ll
value, we avoid making particle pair comparisons across particles
within a cube and end up with a set of halos (one for each non-
empty cube) existing at min ll value. These local hierarchies are
created using the information available for each cube, and are later
modified in subsequent phases, when they are merged to produce
the final hierarchy.

5.1.3 Edge Computation
In this phase, distances across the aforementioned set of halos are
computed, to be used for constructing the final halo hierarchy. The
distance between two halos is determined by the shortest distance
across their particles. Therefore, to determine these distances parti-
cle pair comparisons need be performed across the halos. The naive
approach requires comparing each halo with every other halo, but
we compute particle pair comparisons with only halos lying within
a specific range. For each cube, the range of neighboring cubes
that should be checked (in each direction of each axis) is computed
using ceil(max ll / cube length). Since the final hierarchy is com-
puted only for the range between min ll and max ll values, this still

renders correct results and avoids making unnecessary particle pair
comparisons (Figure 7).

Figure 7: Range of neighboring cubes to be checked in each di-
rection of each axis. Given min ll=3 and max ll=6, the length of
a cube is 2.12. Then for each cube, three neighboring cubes (in
each direction of each axis) should be checked. In other words, each
cube would compare with 7*7-1=48 neighboring cubes (in 2D). How-
ever, by avoiding duplicate comparisons these comparisons can be
reduced by half (to 24 cubes).

Once the range is found, each cube computes the shortest dis-
tance to each of the neighboring cubes within this range and each
result is stored as an Edge(SrcParticle, DestParticle, shortestDist).
This shortest edge is found by performing particle pair comparisons
across the two cubes, requiring a∗b operations (where a and b are
the number of particles in each cube) and all the edges found for
cubes are stored in a single array, to be used in the next phase. Here,
only a shortest edge with a weight less than or equal to the max ll
is stored, and if the edge weight is less than the min ll, it is stored
as a min ll weight. As an optimization, when performing the a ∗ b
operations, once a particle pair is found with a distance less than
the min ll value, the rest of the comparisons for those two cubes are
skipped and an edge with min ll weight is stored. The reasoning is
that when such an edge is found we can be sure that those two cubes
are merged to be in one halo for the min ll value and therefore the
rest of the comparisons are unnecessary.

To find this shortest edge, instead of the brute force comparisons,
more sophisticated approaches using particle sorting (by their phys-
ical location) were also exploited. However, as the number of parti-
cles in a cube was small, due to the small cube size, the brute force
method worked best.

As previously mentioned, in order to decrease the granularity of
the clustering we opted to create an augmented halo hierarchy. For
our tests, we chose to store the edge weight up to three decimal
places. Therefore, for a linking range of 0.1 to 0.2, 100 discretized
linking length values (0.1, 0.101, 0.102, ... 0.2) could be extracted
from the augmented halo hierarchy. This granularity within the halo
hierarchy is a user-defined parameter and can be modified at run-
time by just changing the precision of the edge weight.

5.1.4 Global Hierarchy Computation
The final halo hierarchy is created by merging the local halo hier-
archies according to the computed edges. Starting from the initial
set of cubes, we iteratively combine k cubes, until only one cube is
left. Here, any k cubes in the input domain can be combined, for
simplicity we sort the set of cubes by their cube id and merge each
consecutive k cubes. At each merge step, we consider the edges
of those k cubes and all the edges where the SrcParticle and Dest-
Particle are within the k cubes are used to update the hierarchies of
those k cubes. For example, in Figure 8(a) when cube 2 and 3 are
merged only the edge indicated in black is considered.

The updating of the halo hierarchies is achieved using a similar
procedure as the streaming merge tree construction algorithm by
Bremer et al. [5]. As these hierarchies are updated along with the



Figure 8: Global Hierarchy Computation: Final halo hierarchy is constructed by iteratively merging k cubes until only one cube is left. At each
step, the local halo hierarchies of the k cubes are merged according to the computed edges. In this example, where k=2, (a)-(c) illustrates each
iteration of the merging process. At each iteration, the edges used to update the hierarchies are indicated in black and the resulted hierarchy is
presented in right. (d) Final halo hierarchy of the input particles for the range from min ll=3 to max ll=6.

halo ids, their position and velocity details are also updated so that
the final halo hierarchy has the necessary halo details along with the
clustering information. Once the final halo hierarchy is constructed,
given a linking length value, halos can be extracted by cutting the
hierarchy at that value. Then, the halo size details stored within the
hierarchy are used to filter halos by the required halo size value.

5.2 Implementation

The FOF halo finding algorithm described above is implemented
using data-parallel Thrust primitives (such as for each, sort,
and exclusive scan) along with some custom functors. Con-
sequently, the same code was run using both OpenMP and CUDA
backends.

In the partitioning phase, the input domain is divided into equal
sized cubes, and the cube ids for all particles are computed in par-
allel. Then, all particles are sorted by their cube ids, and the range
of particles within each cube is computed. The core algorithm for
this phase and the associated functor are illustrated in Figure 5 and
Listing 1. Next, in parallel, each cube computes its local hierarchy
and edges using custom functors. The computed edges are stored in
a single array such that the edges for each cube are located in con-
secutive locations. Furthermore, when creating the complete halo
hierarchy, the merging process is performed in parallel for the set
of cubes at that iteration. Finally, for a linking length query, each
leaf in the hierarchy is traversed in parallel to extract the halos and
their details.

Furthermore, as the min ll and max ll values used are usually
very small relative to the size of the spatial domain, the number of
empty cubes (without any particles) is often very large. Therefore,
we chose to store details only for the non-empty cubes and paral-
lelized over non-empty cubes instead of all cubes.

We further implemented a hybrid version combining GPU and
multi-threaded CPU processing. Here, instead of computing all op-
erations in either OpenMP or CUDA, the global hierarchy computa-
tion phase was performed using OpenMP and the other steps using
CUDA. We observed that while the first three phases ran faster on
the GPU than the CPU, the global hierarchy computation was not
well-suited to the GPU due to many random data accesses and di-
vergent branches within the functor implementation. The hybrid
algorithm allowed us to match each phase to the architecture on
which it performed best. The only difference with the hybrid code
was that before the start of the global hierarchy computation phase,
the data required for that phase was copied to the CPU, and then
at the end of the hierarchy computation the resulting halo hierarchy
was copied back to the GPU. The hybrid version can also help with
GPU memory limitations. For example, in the edge computation
phase, the edges can be computed in chunks and then copied di-
rectly into CPU memory, thus not requiring all the edges to be in
GPU memory at once. Furthermore, with Thrust 1.7 target archi-
tectures were directly specified for individual function calls using
specifiers such as thrust::omp or thrust::cuda.

6 RESULTS

In this section, we analyze the performance of our halo finding op-
erator, and compare it against the Paraview implementation on a
single node, and within a multi-node run. The Paraview algorithm
can be run either serially or in parallel across multiple MPI pro-
cesses.

The first timing results presented here were run on a single node
of the Maverick system at TACC using a cosmology dataset con-
taining 16.7 million particles (from a 2563 cosmological simula-
tion). This single node in Maverick contained two 10-core Intel
Xeon E5-2680 v2 processors and an NVIDIA Tesla K40 GPU.
Similar results were obtained on the Darwin cluster at LANL and
on several other computational resources available at the Scientific
Computing and Imaging Institute in University of Utah.

First, the PISTON halo finding operator was compiled to the
Thrust OpenMP backend and then the same code was compiled to
the Thrust CUDA backend to demonstrate portability of the algo-
rithm. The hybrid version of the halo finder was compiled using
both Thrust OpenMP and CUDA backends. Various tests were per-
formed for a single linking length as well as for a range of linking
lengths. Then the serial formulation and the MPI-based parallel
variant of the Paraview implementation were run on the same node.

Here, all the results are presented on realistic parameter values.
The default linking length value in which the cosmologists are most
interested is 0.2; therefore, the linking length ranges around this
value were selected and the halo size was set to one. Also, in or-
der to obtain an augmented halo hierarchy, the edge weights were
stored up to three decimal places. When presenting our halo finding
results, the timing results include both the hierarchy construction
time and halo finding time. The hierarchy is constructed only once
during the first query and as multiple queries are performed only a
traversal within the already constructed hierarchy is needed to find
halos.

After comparing the performance of the OpenMP and CUDA
backends of our halo finding operator (Figure 9), it is clear that the
first three phases are faster on the GPU, but the global hierarchy
computation is faster on the CPU. Accordingly, having a hybrid
implementation enables one to fully exploit the advantages of both
the CPU and the GPU, and also to outperform the OpenMP and
CUDA versions for both a single linking length and for a range
of linking lengths. Due to the data copying necessary, timing for
the global hierarchy computation phase was slightly longer in the
hybrid version than in OpenMP.

As shown in Figure 10, the performance and scaling of our algo-
rithm constructed for a single linking length are better than the Par-
aview implementation run serially and comparable when run with
multiple MPI processes. As the linking length range is increased,
the total hierarchy construction time increases since it requires more
work (as indicated by the increased run-times for longer linking
length ranges in Figure 10). Nevertheless, when performing multi-
ple linking length queries our implementation clearly has an advan-



Figure 11: Comparing timing results of PISTON-based hybrid halo finding algorithm, for subsequent queries, against the Paraview implemen-
tation run serially and with multiple MPI processes. At each query, Paraview implementation always computes halo details for just one linking
length, whereas our algorithm produces a hierarchy with 100 discretized linking length values for the range from 0.1 to 0.2. This hierarchy is
created during the first query and is used throughout the rest of queries.

Figure 9: Time division for PISTON-based halo finding algorithm.

Figure 10: Comparing timing results of PISTON-based hybrid halo
finding algorithm, for a single query, against the Paraview implemen-
tation run serially and with multiple MPI processes.

Figure 12: Timing results for PISTON-based hybrid halo finding algo-
rithm when different k values are used in the global hierarchy com-
putation phase.

tage over the Paraview halo finder even when run with multiple MPI
processes (Figure 11). In our algorithm, the halo hierarchy needs
to be computed once at the start of the program and only a traversal
within the hierarchy is needed (which takes very little time relative
to the construction time) to obtain halo information for multiple
linking lengths queries, whereas for the Paraview implementation
a full re-run of the algorithm is needed for every linking length
change. Therefore, depending on the number of cores, it becomes
more efficient to use our hierarchy when more than a minimum of
2-5 queries are performed.

As mentioned in the previous section, the global hierarchy com-
putation phase iteratively combines k cubes in the input spatial do-
main. For simplicity, throughout the paper we used k=2. However,
using different k values better results can be obtained (Figure 12).
Specifically, changing the k value directly impacts the run time of
the global hierarchy computation phase. As k increases, number of
iteration within that phase is reduced, thus resulting in faster run
times. However, from our experiments we noticed that the optimal
number for k is dependent on the density of the input dataset. As
k increases, if the data density is high, the amount of work which
needs to be performed at one iteration is much higher and requires
longer completion times. Also, instead of merging each consecu-



tive k cubes, more sophisticated methods like merging cubes by x,
y and z axes can also be used to gain better results.

We also integrated our hybrid halo finding algorithm in place
of the serial Paraview algorithm within the parallel halo finder and
tested it on 128 nodes of the Moonlight supercomputer at LANL
with a 1.07 billion particle data set (from a 10243 cosmological
simulation). For the same linking length range 0.1-0.2, the halo hi-
erarchy construction and halo finding took 75s (of which less than
0.2s was for querying the hierarchy for halos at a specific linking
length). This compares to 43s for the Paraview implementation
with one rank per node, and 16s with 16 ranks per node. The “cross-
ing point” for how many queries it takes before our algorithm is
more efficient than the 16 rank-per-node Paraview implementation
is thus slightly less than 5, which is consistent with the single-node
results (i.e., the last graph in Figure 11).

7 CONCLUSION

In this paper, we have presented a new data-parallel FOF halo find-
ing operator which unlike the traditional approaches computes en-
tire halo families by hierarchically encoding halos at different link-
ing lengths. This allows us to interactively extract a set of halos for
a range of parameters, significantly increasing the flexibility over-
all. In an in-situ environment where re-computing halos for differ-
ent parameters is not feasible, our algorithm provides the capability
to explore the parameter space of underlying data. Using a hybrid
strategy which combines GPU and multi-threaded CPU processing,
we show that the performance of our approach is comparable to
the Paraview implementation for a single linking length query, and
outperforms it with multiple linking lengths.
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