222 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.7, NO.3, JULY-SEPTEMBER 2001

Topology-Preserving Smoothing
of Vector Fields

Rudiger Westermann, Christopher Johnson, Member, IEEE, and Thomas Ertl, Member, IEEE

Abstract—In this paper, we propose a technique for topology-preserving smoothing of sampled vector fields. The vector field data is
first converted into a scalar representation in which time surfaces implicitly exist as level-sets. We then locally analyze the dynamic
behavior of level-sets by placing geometric primitives in the scalar field and by subsequently distorting these primitives with respect to
local variations in this field. From the distorted primitives, we calculate the curvature normal and we use the normal magnitude and its
direction to separate distinct flow features. Geometrical and topological considerations are then combined to successively smooth
dense flow fields, at the same time retaining their topological structure.

Index Terms—Flow visualization.

1 INTRODUCTION AND RELATED WORK

VISUALIZING vector field data is challenging because no
existing natural representation can visually convey
large amounts of three-dimensional directional information.
In fluid flow experiments, external materials such as dye,
hydrogen bubbles, or heat energy are injected into the flow.
The advection of these external materials can create stream
lines, streak lines, or path lines to highlight the flow
patterns. Analogues to these experimental techniques have
been adopted by scientific visualization researchers.
Numerical methods and three-dimensional computer
graphics techniques have been used to map the local
flow characteristics to graphical icons such as arrows,
motion particles, stream lines, stream ribbons, and stream
tubes, which also provide three-dimensional depth cues.
While these techniques are effective in revealing the flow
fields” local features, the inherent two-dimensional dis-
play of the computer screen and its limited spatial
resolution restrict the number of graphical icons that
can be displayed at one time.

Additional techniques for flow field visualization in-
clude, among others, global imaging techniques. Crawfis
and Max [4], [5] proposed direct volume rendering methods
to create images of entire vector fields. Here, vector kernels
and texture splats are used to construct three-dimensional
scalar signals from the vector data. Van Wijk [30] proposed
a Spot Noise method using stretched ellipses to create two-
dimensional textures that can be mapped onto parametric

o R. Westermann is with the Scientific Visualization and Imaging Group,
Aachen University of Technology, D-52056 Aachen, Germany.

E-mail: westermann@sc.rwth-aachen.de.

o C. Johnson is with the Scientific Computing and Imaging Institute, School
of Computing, Merrill Engineering Building, 50 South Campus Central
Dr., Room 3490, University of Utah, Salt Lake City, UT 84112-9205.
E-mail: crj@cs.utah.edu.

o T. Ertl is with the Institut fiir Informatik der Universitit Stuttgart, Abt.
Visualisierung und Interaktive Systeme, Breitwiensenstrasse 20-22, D-
70565 Stuttgart, Germany.

E-mail: Thomas.Ertl@informatik.uni-stuttgart.de.

Manuscript received 30 Mar. 2001; accepted 7 May 2001.
For information on obtaining reprints of this article, please send e-mail to:
tveg@computer.org, and reference IEEECS Log Number 114131.

surfaces. Max et al. [19] further utilized the spot noise
method to visualize three-dimensional velocity fields near
contour surfaces. Since Cabral and Leedom [2] presented a
Line Integral Convolution (LIC) method, which makes use
of a one-dimensional low pass filter to convolve an input
texture along the principal curves of the vector field, a
number of additional related techniques have been pro-
posed. These attempt to optimize the LIC method in terms
of computational cost and image quality, to visualize flow
over surfaces, and, more recently, to visualize 3D flow in a
volume [24], [9], [1], [23], [15], [22].

These methods can successfully illustrate the global
behavior of vector fields; however, it is difficult when using
such methods to effectively control stream line density in a
way that depicts both the direction structure of the flow and
the flow magnitude. Furthermore, because of the tremen-
dous information density they produce and their inherent
occlusion effects, LIC methods generally fail if utilized to
globally visualize 3D flow fields.

One approach to overcoming these limitations is to
interactively but manually modify the renderable represen-
tation in order to highlight the interesting structures [20].
Although visually pleasant results can be achieved using
hardware-accelerated 3D texture mapping, in particular for
large-scale vector fields it turns out to be rather difficult to
pick the relevant structures without explicit knowledge
concerning the underlying flow. Despite its inherent
interactivity, this approach does not necessarily guarantee
that the characteristic flow features will be found.

A different approach is to inspect the flow field in order
to detect and analyze critical points [13]. Topological
skeletons, which are defined by those stream lines starting
at a critical point in the direction of the eigenvectors, are
extracted and displayed. Although these techniques pro-
vide an effective tool to determine the topological equiva-
lence of different flows, they do not allow an intuitive
analysis of the principal streams and their direction of
complex flows. First attempts to further simplify the
topology by merging close critical points, as presented in
[27], are restricted to 2D flows.

1077-2626/01/$10.00 © 2001 IEEE

WESTERMANN ET AL.: TOPOLOGY-PRESERVING SMOOTHING OF VECTOR FIELDS 223

Other techniques reduce the primitives used to depict
the structure of the flow in such a way that the result still
represents the original data sufficiently. While, in [28],
stream line placement in 2D flows was guided by visual
attributes, in [16], evenly spaced stream lines were
generated based on a distance criterion. Explicit considera-
tion of the flow topology was used in [32] to optimize the
streamline seeding strategy.

On the contrary, the main concern of the work presented
in [12], [26], [11], [18] was to effectively simplify the
underlying data without loss of relevant information. In
general, however, these hierarchical techniques are local, in
that they usually consider only the vector field in the
geometric neighborhood around each position, but do not
take into account the global structure of the flow.

In this paper, we extend our novel approach, presented
first in [33], for the analysis and display of stationary vector
field data, which includes effective techniques for the
classification, segmentation, and topology-preserving
smoothing of flow fields. Rather than analyzing the flow
field as such, we first convert it into a scalar field. We then
analyze the spatial and temporal evolution of level-sets or
time surfaces in this field. In particular, we show how to
obtain the flow data at ever-coarser resolution by dispersing
small disturbances across the time surfaces.

The goal of our approach is twofold: to present a method
that allows for the automatic segmentation of flow fields
and to build an algorithm for the topology-preserving
smoothing of vector field data on top of it, by means of
which a multiscale representation can be obtained. In
contrast to the work in [33], the focus of this work is on
developing an efficient scheme for the topology-guided
smoothing of flow fields. We considerably improve our
previous work in terms of accuracy and efficiency by
introducing a novel concept that allows us to accurately
measure distortions in the flow.

The reminder of this paper is organized as follows: First,
we introduce the basic idea of converting the vector field
data into a level-set representation of time surfaces and we
describe how the effective exploitation of intermediate
results of the numerical integration leads to significant
acceleration of the process. We then explain our concept of
flow analysis based on stream boundaries which are
extracted from the flow by a curvature based analysis of
the time surfaces involving an efficient approximation of
the curvature normal by means of flow-warp icons. Finally,
we propose an explicit scheme for the topology-preserving
smoothing of flow fields and we conclude the paper with a
detailed discussion of our results.

2 FLow SURFACES

In fluid dynamics, flow surface techniques have become
important to the investigation of the dynamics of vector
field data. A flow surface can be seen as a variation of path
lines in nonstationary flows where several lines are joined
to form a surface. A dense set of particles is released into the
flow and their subsequent positions, as well as the
distortions of the so-defined surfaces, are monitored.

In computational flow visualization, techniques for
simulating different kinds of flow surfaces have been

developed in the past [14], [29], [3]. In its most general
form, it simulates flow surface by placing an initial surface
in the flow and then by successively moving all vertices
defining the surface within constant intervals along the
integral curves of the flow. The integral curves emanating at
a given position are the solutions to the ordinary differential
equation

dr(t)
dt

with initial boundary condition r(t)) =r,. Here, r(t)
denotes the position of a particle at time ¢, and v(r,t)
represents the in-stationary velocity field. Notice in parti-
cular that this technique can be extended to the stationary
case in which a time-independent velocity field is con-
sidered and its integral curves are defined with respect to
any other parameterization.

In general, flow surfaces can be placed everywhere in the
flow; however, without loss of generality, let us assume that
particles are initially released at the inflow boundaries and
at every source into all possible directions of the velocity at
that source. Thus, the evolving surfaces formed by con-
necting particles at time ¢,, contain all positions within the
domain that can be reached from a source in that time. In
other words, any particle that is released from this surface
and traverses its integral curve backward will reach a
source or the boundary of the domain in that time. We will
subsequently call these kinds of particles the antiparticles,
and the particular kind of flow surface the time surface.

A particular time surface in a flow is described by the
implicit equation T'(z,y,z) = t,, where T is the time the
antiparticle released at position (z,y, z) requires to reach a
source or the boundary. Therefore, a time surface can be
computed either by distorting the initial surface with
respect to the flow field or by computing the scalar function
T for all necessary positions and by fitting the surface using
traditional techniques. The first approach has two major
limitations: It requires the generation and display of a huge
number of primitives and the generated surfaces are likely
to become nonmanifolds including self-intersections. In
comparison, the second, implicit approach has various
advantages and will be sketched out in the following
sections.

2.1 Implicit Time Surfaces

We aim to construct a volumetric representation in which
the time surfaces implicitly exist as level-sets [21]. Level-sets
in our approach may not exactly be “level-sets” in a strict
sense as introduced by Sethian in his original work;
however, they are still level sets in the mathematical sense.
The level set of f at a particular value of time, ¢, is the set of
all points (z,y, z) such that f(z,y, z) = t. Another name for
this is the contour curve of f at level ¢.

Therefore, for each grid point, an antiparticle is released
and its integral curve is traced until a source or the
boundary of the domain is reached. This procedure is
equivalent to the backward tracing approach proposed in
[31] for the calculation of stream surface functions. We
employ a fourth-order Runge-Kutta scheme in order to find
successive points along the curves.

= v(r,t) (1)

224 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.7, NO.3, JULY-SEPTEMBER 2001

Fig. 1. In the left image, the ocean flow is depicted by means of LIC. On
the right, the traveling times of antiparticles to the boundaries or sources
are shown as scalar values at each grid point.

In the current implementation, however, the grid is
processed stream line by stream line. Once a certain
position has been selected to start a new particle line, this
line is traced backward until a source or the boundary is
reached. During this walk, the positions of all points close to
the current line are stored. For each of these points, the time
is recorded that was needed to reach the point from the
starting position. The time it takes to reach the end of the
trace from each of these points is simply the overall time
minus the time stored for the point during runtime. In this
way, a huge number of points to be processed separately
can be saved, which considerably accelerates the generation
of the time field.

Prior to this procedure we determine critical points in the
flow where the magnitude of the velocity vanishes. Thus,
during runtime, we detect antiparticles reaching a critical
point. These particles have to be stopped in order to avoid
nonterminating traces. Additionally, a stopping criterion is
employed for antiparticles, moving on closed orbits, for
which no valid but unique time values are assigned.

If the distance from point p; to point p;.; is d;, then the
time an antiparticle needs to travel from p, to p;;; is
tp=d;- \V(]Tﬂ Integrating the distances along the path yields
the time the antiparticle needs to move from the grid point
it was released from until it leaves the domain or reaches a
critical point. Thus, by storing all times at each grid point,
we have converted the vector field into a scalar field, which
provides alternatives for display and analysis of the flow
(see Fig. 1).

3 FLow ANALYSIS
3.1 Stream Boundaries

As we have claimed in the introduction, our approach
should be effective in revealing homogeneous streams in
the flow which, in general, cannot be determined by simply
analyzing the vector data locally. Even if the vector data is
locally homogeneous in terms of direction and speed, we
will find regions in which different streams proceed parallel
to each other over a certain distance, but will be separating
again. As a solution to this problem, we have developed a
local technique that takes into account global information in
that it accumulates flow quantities along the integral
curves.

To illustrate the concept, let us interpret particles moving
along a path line as a container filled with liquid. At the

beginning, each container is empty. At each position in the
field, the particle carries all the liquid that was injected
along the path line up to this position. The injected amount
at each position is equal to the magnitude of the vector data
at this position. We then try to extract the exact regions in
which adjacent particles carry different amounts of liquid
because this implies that the particles have a different
history in terms of what they collected along their paths. In
the current scenario, the amount of liquid carried by a
particle equals the time a particle was traveling along a
particle line. The difference between adjacent values on
neighboring lines now indicates how much the cumulated
matter along the line differs. Consequently, within homo-
geneous streams, the distortions of level-sets corresponding
to equal cumulative amounts are small in general, whereas
they are high between different streams. We will subse-
quently call these kinds of boundaries the stream boundaries
and we will proceed by studying the curvature of time
surfaces by means of which areas where differences occur
can be identified.

3.2 Curvature Based Analysis of Time Surfaces

The study of time surfaces is of particular interest because
they effectively visualize the geometric and topological
modifications of their evolving structures. By helping us to
discriminate among areas of flow showing different
characteristics, these modifications should allow us to more
accurately analyze the flow under consideration. As a
consequence, we need to develop a measure for the
variations of the flux as specified above that can be used
to indicate the presence of stream boundaries.

One approach to detect and characterize “surface
features” in geometric modeling is to analyze the local
curvature across the surface. Methods for the efficient
calculation of geometric attributes on meshes can be found
in [8], [25], [17], [7], [6], where this kind of information has
been used primarily for the analysis and smoothing of
geometric shapes. In the following, we will make use of
some of these concepts to analyze the implicit flow surfaces
by means of their curvature.

In the present scenario, the curvature of the time surfaces
tells us where distortions of these surfaces with respect to
the influence of the flow field are most significant. At first
glance, one might conclude that the gradient of the scalar
time distribution already suffices to locally characterize
these distortions. In general, however, a high gradient may
point into the flow direction or it may not coincide with the
direction though the time surface it belongs to is locally flat,
e.g., in a perfect shear flow. Based on our previous remarks
on flow boundaries, we are thus interested in finding those
positions in the data exhibiting high curvature.

Therefore, however, we first have to derive a method
that can be used effectively to compute the curvature at any
grid point. In [33], an oracle was proposed that allows for
the estimation of the mean curvature at arbitrary points
within cells of the scalar time field. The curvature was then
computed at randomly selected points in the interior of that
cell and the maximum value was used as the curvature
measure. Each cell exhibiting high curvature was assumed
to belong to a stream boundary that isolates distinct streams
from each other.

WESTERMANN ET AL.: TOPOLOGY-PRESERVING SMOOTHING OF VECTOR FIELDS 225

O center vertex ;

@ 1-ring neighbors

Fig. 2. The flow-warp icon is a planar polygon that is placed in the flow
and deformed with respect to the flow direction and to the differences in
the time values. The curvature operator is then evaluated on the
deformed geometric shape.

Unfortunately, the proposed operator has turned out to
be rather impractical for several reasons. First, this measure
as such might give improper results since the estimated
curvature doesn’t take into account the range of data
samples in each cell. As a consequence, time surfaces within
different cells might have similar curvature, even if the
variation of scalar values within the cells differs signifi-
cantly. Second, the evaluation of this measure is expensive
in terms of numerical operations because, at a number of
points, the scalar field has to be resampled to compute
partial derivatives. Third, computed values might become
very small and it has turned out to be rather cumbersome to
appropriately scale the values to a range that can be
effectively used further on.

In order to circumvent the mentioned drawbacks, we
take advantage of a discrete operator well-suited for the
estimation of the mean curvature in meshes. Therefore, we
first have to obtain the mesh on which this particular
geometric attribute can be computed. Because we are only
interested in classifying each grid point with respect to the
curvature of the surface passing through that point, it
suffices to locally reconstruct the time surface in the vicinity
of each point. However, instead of reconstructing the
surface as it is, we have developed a much more efficient
and stable alternative.

Let us proceed by introducing the concept of a flow-warp
icon. The flow-warp icon is simply a regular, planar
polygon consisting of a center vertex and a 1-ring
neighborhood, as illustrated in Fig. 2. The number of 1-ring
neighbors is chosen in such a way as to allow for the
accurate resampling of the scalar field around the center
vertex. In our example, the center vertex has valence six and
1-ring neighbors are equally distributed around the center.

At each grid point, a flow-warp icon is positioned in the
flow such that the flow vector at this point is orthogonal to
the planar polygon. Then, the distortions of the time surface
are simulated by distorting the iconal representation
correspondingly. At each vertex, the scalar time value is
evaluated and, for every l-ring neighbor, the difference
between this value and the value at the center vertex is
computed. In addition, at every 1-ring neighbor, the vector
field is reconstructed. Every vertex but the center one is
then shifted into the direction of the flow. See right of Fig. 2.
The strength of the shift is proportional to the difference

Fig. 3. Different displacements are shown. In the middle image, as a
result of opposite displacements, the flow-warp icon remains almost
planar, e.g., in a shear flow. On the right, the highly deformed shape
indicates 1-ring neighbors belonging to different streams.

between the time values. The distortion is thus applied with
respect to flow direction and to the variation of the flux.

One of the nice features of this approach is that it allows
us to compute the mean curvature in terms of magnitude
and direction. From the deformed icon, we can easily
determine the curvature normal, which provides us with an
additional attribute to classify grid points. Now, stream
boundary cells are characterized by grid points exhibiting
high curvature magnitude and opposite curvature normals.

For computing the mean curvature normal, we use the
following well-known approximation of the Laplacian
operator, the so-called scale-independent umbrella operator
(10], [7]:

2 X, - X, _
L(Xi) =+ > ’|e—| with E= " e,
jeny 1T

JENL(7)

where |e;;| specifies the length of the edge connecting
vertices X; and X;.

In particular, both the location of vertices and the length
of the edges connecting 1-ring neighbors with the center
vertex enter into this operator. In this way, we keep track of
the direction of the applied distortions and its strength. As
we would expect, two distortions performed into the same
direction but with different length result in different
curvature values. On the other hand, if the displacement
is performed with equal strength but into different
directions, the curvature differs as well. See Fig. 3 for some
examples. Flows that proceed parallel to each other but with
different speed thus reveal higher curvature than diverging
flows having the same variation in speed.

In 2D, things become even simpler because we only have
to consider two line segments originating at the current grid
point. From the orientation and the length of both segments,
the mean curvature can easily be approximated. Note that,
again, the mean curvature normal is evaluated, which
depends on the direction of the distortions as well as their
strengths.

In contrast to calculating the mean curvature as
proposed in [33], the current method is superior in several
ways.

e It performs much faster because the curvature is
approximated by means of the discrete umbrella
operator that only involves simple vector operations.

e The accuracy by which the curvature is approxi-
mated can be improved using any other operator on
discrete meshes, as proposed in [6].

226 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.7, NO.3, JULY-SEPTEMBER 2001

Fig. 4. Two curvature plots that were generated using different methods
are shown. On the left, curvature was computed by means of the
measure proposed in [33]. On the right, curvature was approximated by
evaluating the scale-independent umbrella operator on the deformed
flow-warp icons.

e Curvature magnitude and curvature normal allow
for a more precise classification of stream boundary
cells.

e A conservative bound for the curvature is given by
the maximal displacement that can occur. This,
however, is restricted by the maximal difference
between time values at neighboring points.

In Fig. 4, two different curvature plots of the time field
that was generated from the ocean data set are shown. On
the left, the method proposed in [33] was employed, while,
on the right, the result as computed using the current
technique is displayed. As one can immediately see, the
technique proposed in this work determines stream
boundaries more accurately and is less sensitive to small
disturbances in the data.

In any case, however, the curvature plot naturally leads
to the discrimination of separate streams that flow in
different directions and/or with different speeds. In
laminar streams where the distortions of the time surfaces
are low, the curvature will be low as well. In the next
section, we will demonstrate how to use this information to
successively smooth flow fields at the same time revealing
the flow topology.

4 ToPOLOGY-PRESERVING SMOOTHING
oF FLow FIELDS

In the following, our goal is to develop a technique that
allows us to successively smooth the flow field with respect
to the curvature of the time surfaces. Separate streams
should not be merged, whereas small deviations between
vector values within them should be removed.

4.1 Ilterative Smoothing Scheme

So far, smoothing schemes for vector data almost entirely
rely on the local evaluation of the flow field. The variation
of the flow direction between adjacent grid points is
considered, but the smoothing operator doesn’t account
for accumulated flow quantities as proposed in our
approach. In [6], for instance, an anisotropic smoothing
scheme for vector fields has been proposed that diffuses
small deviations into the direction of homogeneous vector
components.

However, also in this approach, the local smoothing
process may result in the dispersion of disturbances across
different streams as well as along the stream lines. Neither
effect is suitable since both lead to undesirable smoothing
orthogonal to the streams and equally undesirable distor-
tion of the stream lines” main shape. In order to avoid these
drawbacks, we have incorporated the local curvature of the
accumulated flow quantity, the time-surfaces, into the
smoothing process.

We start with a Cartesian grid and the initial distribution
of the function values T'(z,y, z) at each grid point. We then
subsequently visit each grid point and the vector data is
smoothed by averaging the contributions from all 26 neigh-
bors around that point:

0 : i#j &
Vi= Z wi- Vi wy= Li<e & op(j,1)
JEN(4) w; : otherwise.

Here, N(j) includes the point itself, w; specifies precom-
puted weights that are stored in a 3 x 3 x 3 filter mask, L; is
the curvature magnitude, and op(j,) returns True if both
curvature normals at N; and V; are opposite to each other
and False otherwise.

At the current grid point and all of its neighbors, we
place flow-warp icons into the stream. The distortions of
these icons are simulated as described and the curvature
normals are approximated by means of the scale-indepen-
dent umbrella operator. Only those neighbors that belong to
the same stream are considered in the smoothing process.
All others indicated by high curvature and opposite
curvature normal will be ignored. Note that vector samples
at grid points belonging to closed orbits will only be
averaged with other samples in the same orbit. These are
classified by unique ids which were ascertained in the
preprocessing step.

5 RESULTS AND ANALYSIS

In this section, we show some results of our approach and
we analyze the main modules and features of our system.
All tests were run on an SGI Octane equipped with one
R12000 400 MHz processor and 256 MB main memory. All
of our tests were executed on 2D or 3D Cartesian grids, but,
also, other grid types can be processed with only slight
modifications. In particular, the particle tracer has to be
modified appropriately and an algorithm is required that
allows for the resampling of the vector data and the time
distribution. Then, the deformation of flow-warps can be
computed straightforwardly with the only modification that
the smoothing process incooperates inverse distance
weights with respect to the length of the edges between
grid points rather than precomputed weights.

As already stated in [33], the most time consuming
element of the presented approach is the computation of the
time distribution 7', which is accomplished by tracing the
integral curves back in time until a source or the inflow
boundaries are reached. The previous system implemented
the Runge-Kutta scheme in a straightforward way without
taking advantage of coherence in the data. The naive
approach, in which every particle trace is computed from

WESTERMANN ET AL.: TOPOLOGY-PRESERVING SMOOTHING OF VECTOR FIELDS 227

Fig. 5. Both images show the curvature volume computed from the flow field around the back of the car. Dark gray indicates high curvature. The
relevant structures can be clearly distinguished even without any manual modifications.

Fig. 6. In this sequence, the ocean data set is continuously smoothed using the proposed iteration scheme. In the middle image, the result after two
iterations is shown. Five iterations were performed in the rightmost image.

Fig. 7. The vector field showing the flow around a cylinder (left) was modified by adding noise (middle). On the right, the data was smoothed using

three iterations.

scratch, takes roughly 28 minutes for the 256° flow data set

shown in Fig. 5.
As proposed earlier in the current implementation, the

grid is processed stream-line by stream-line in order to
geneate the time field. In this way, the proposed method
could be improved considerably. This also makes it suitable
for the processing of large-scale 3D vector data. For
example, this acceleration technique could reduce to
5 minutes the time needed to process the aforementioned
example. For the same example, computing the curvature
by means of flow-warp icons and smoothing the flow field
took approximately 48 seconds.

So far, the proposed multiscale representation enables us
to remove noise from flow fields and to generate copies of
the original flow at ever coarser resolution. Fig. 6 and Fig. 7
show different data sets after some iterations were
performed. One can easily recognize that the main shape
of the stream lines is retained as high frequency oscillations
are successively removed. In particular, random noise was
added to some of the vector fields and the original data was
compared to the results before and after smoothing. As can
be clearly seen from the images, the original data set can be
recovered by our method without any noticeable artifacts.

As we have pointed out, our technique is intended to
extract stream boundaries based on the proposed discrete

228

curvature criterion. As a matter of fact, the classification of
stream boundaries and, consequently, the smoothing pro-
cess strongly relies on the curvature threshold we select as
the importance measure. The specification of a proper error
tolerance raises the same intrinsic problem as in other areas
where techniques attempt to discriminate noise from
features. On the other hand, the incooperation of the
curvature direction as an additional importance measure
considerably improves the accuracy of this process.

6 CONCLUSION

In this work, we have emphasized a general approach for
the topology-preserving smoothing of flow fields by means
of the dynamics of time surfaces. The major contribution
here is to consider time surfaces within this field as the
fundamental structures showing the dynamics of the flow.
The evolution of these level-sets in space and time is
analyzed in terms of their curvature normal. This technique
enables us to separate homogeneous streams from each
other.

Although the discrete curvature is locally investigated, it
gives a global measure because a point on the time surface
carries information along the entire stream up to the current
position. Consequently, noise along the stream lines is
increasingly removed due to integration, while turbulence
introduces high frequency oscillations as significant
changes to flow direction alter the stream lines” main shape.

We introduced an explicit scheme to iteratively smooth
flow fields. In particular, we have shown how to remove
noise from vector data by dispersing small disturbances
within separate streams but not across them. As a matter of
fact, the integral curves’ main shapes can be retained. Even
if highly turbulent sections are present in the data to the
extent that no regular stream boundaries can be detected,
our approach is able to detect these regions and smoothing
is not performed.

In contrast to the work presented in [33], we introduced
two major extensions: the efficient approximation of the
curvature normal by means of flow-warp icons as the
fundamental primitives and the acceleration of the integra-
tion process due to the effective exploitation of intermediate
results. Both extensions have led to improved accuracy of
the classification procedure and to a considerable accelera-
tion of the entire smoothing process.

ACKNOWLEDGMENTS

We would like to thank H. Hagen for his valuable reference
to the curvature normal. We also thank NASA for providing
the ocean data set. This work was supported, in part, by
grants from the US National Science Foundation, National
Institutes of Health, and Department of Energy.

REFERENCES

[1] H. Battke, D. Stalling, and H.-C. Hege, “Fast Line Integral
Convolution for Arbitrary Surfaces in 3D,” Visualization and
Math., pages 181-195, Springer, 1997.

[2] B. Cabral and C. Leedom, “Imaging Vector Fields Using Lne
Integral Convolution,” Computer Graphics (SIGGRAPH '93 Proc.),
pp. 263-270, 1993.

(3]
[4]

(5]
(o]

[

8]

&)

[10]

(1]

[12]

(13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

(21]

(22]

[23]

[24]

(23]

[20]

(27]

(28]
[29]
(30]
(31]

(32]

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.7, NO.3, JULY-SEPTEMBER 2001

W. Cai and P.-A. Heng, “Principal Stream Surfaces,” Proc. IEEE
Visualization '93, pp. 75-80, 1997.

R. Crawfis and N. Max, “Direct Volume Visualization of Three-
Dimensional Vector Fields,” Proc. ACM Workshop Volume Visua-
lization, pp. 55-60, 1992.

R. Crawfis and N. Max, “Texture Splats for 3D Scalar and Vector
Field Visualization,” Proc. IEEE Visualization ‘93, pp. 261-265, 1993.
M. Desbrun, M. Meyer, P. Schroeder, and A. Baar, “Discrete
Differential-Geometry Operators in ND,” technical report, Cali-
fornia Inst. of Technology, 2000.

M. Desbrun, M. Meyer, P. Schrooder, and A. Barr, “Implicit
Fairing of Irregular Meshes Using Diffusion and Curvature Flow,”
Computer Graphics (SIGGRAPH "99 Proc.), pp. 317-324, 1999.

G. Farin, Curves and Surfaces for CAGD, third ed. Academic Press,
1993.

L.K. Forssell and S.D. Cohen, “Using Line Integral Convolution
for Flow Visualization: Curvilinear Grids, Variable-Speed Anima-
tion, and Unsteady Flows,” IEEE Trans. Visualization and Computer
Graphics, vol. 1, no. 2, pp. 133-141, 1995.

K. Fujiwara, “Eigenvalues of Laplacians on a Closed Riemannian
Manifold and Its Nets,” Proc. AMS 123, pp. 2585-2594, 1995.

H. Garke, T. Preussner, M. Rumpf, A. Telea, U. Weikard, and J.
van Wijk, “A Continuous Clustering Method for Vector Fields,”
Proc. Visualization ‘00, pp. 351-358, 2000.

B. Heckel, G. Weber, B. Hamann, and K. Joy, “Construction of
Vector Field Hierarchies,” Proc. IEEE Visualization '99, pp. 19-27,
1999.

L. Hesselink and T. Delmarcelle, “Visualization of Vector and
Tensor Data Sets,” Scientific Visualization—Advances and Challenges,
pp- 367-390, Academic Press, 1994.

L. Hultquist, “Constructing Stream Surfaces in Steady 3D Vector
Fields,” Proc. IEEE Visualization ‘92, pp. 171-177, 1992.

V. Interrante and C. Grosch, “Strategies for Effectively Visualizing
3D Flow with Volume LIC,” Proc.s IEEE Visualization '97, pp. 421-
425, 1997.

B. Jobard and W. Lefer, “Creating Evenly-Spaced Streamlines of
Arbitrary Density,” Proc. EG-ViSC '97, pp. 102-107, 1997.

L. Kobbelt, “Discrete Fairing,” Proc. IMA Conf. Math. of Surfaces,
pp. 101-131, 1997.

S. Lodha, J. Renteria, and K. Roskin, “Topology Preserving
Compression of 2D Vector Fields,” Proc. Visualization 00,
pp. 343-350, 2000.

N. Max, R. Crawfis, and C. Grant, “Visualizing 3D Velocity Fields
Near Contour Surfaces,” Proc. IEEE Visualization 94, pp. 248-255,
1994.

C. Rezk-Salama, P. Hastreiter, and T. Ertl, “Interactive Exploration
of Volume Line Integral Convolution Based on 3D-Texture
Mapping,” Proc. IEEE Visualization '99, pp. 233-240, 1999.

J.A. Setian, Level Set Methods and Fast Marching Methods. Cam-
bridge Univ., Cambridge, U.K., 1999.

H.-W. Shen and D. Kao, “Uflic: A Line Integral Convolution
Algorithm for Visualizing Unsteady Flows,” Proc. IEEE Visualiza-
tion 97, pp. 317-323, 1997.

H.W. Shen, K.L.. Ma, and C.R. Johnson, “Global and Local Vector
Field Visualization Using Enhanced Line Integral Convolution,”
Proc. ACM Symp. Volume Visualization, pp. 63-70, 1996.

D. Stalling and H.-C. Hege, “Fast and Resolution Independent
Line Integral Convolution,” Computer Graphics (SIGGRAPH '95
Proc.), pp. 249-256, 1995.

G. Taubin, “A Signal Processing Approach to Fair Surface
Design,” Computer Graphics (SIGGRAPH 95 Proc.), pp. 351-358,
1995.

A. Telea and J. Wijk, “Simplified Representation of Vector Fields,”
Proc. IEEE Visualization '99, pp. 35-43, 1999.

X. Tricoche, G. Scheuermann, and H. Hagen, “A Topology
Simplification Method for 2D Vector Fields,” Proc. Visualization
00, pp. 359-366, 2000.

G. Turk and D. Banks, “Image-Guided Streamline Placement,”
Computer Graphics (SIGGRAPH "96 Proc.), pp. 453-460, 1996.

J. van Wijk, “Implicit Stream Surfaces,” Proc. IEEE Visualization
'93, pp. 245-260. 1993.

J.J. van Wijk, “Spot Noise: Texture Synthesis for Data Visualiza-
tion,” Computer Graphics, vol. 25, no. 4, pp. 309-318, 1991.

J.J. van Wijk, “Implicit Stream Surfaces,” Proc. IEEE Visualization
'93, pp. 245-253, 1993.

V. Verma, D. Kao, and A. Pang, “A Flow-Guided Streamline
Seeding Strategy,” Proc. Visualization ‘00, pp. 163-170, 2000.

WESTERMANN ET AL.: TOPOLOGY-PRESERVING SMOOTHING OF VECTOR FIELDS 229

[33] R. Westermann, C. Johnson, and T. Ertl, “A Level-Set Approach
for Flow Visualization,” Proc. IEEE Visualization '00, pp. 147-155,
2000.

Riidiger Westermann pursued his doctoral
thesis on multiresolution techniques in volume
rendering and he received the PhD degree in
computer science from the University of Dort-
mund in Germany. He is a professor of computer
science at the University of Technology Aachen.
He is the head of the Scientific Visualization and
Imaging Group. His research interests include
hierarchical methods in scientific visualization,
volume rendering of structured and unstructured
grids, hardware accelerated image synthesis, flow visualization, and
parallel graphics algorithms. He was a visiting professor at the University
of Utah in Salt Lake City.

Christopher Johnson directs the Scientific Com-
puting and Imaging Institute (www.sci.utah.edu)
at the University of Utah and holds faculty
appointments in the School of Computing and
Departments of Physics and Bioengineering.
His research interests are in the area of
scientific computing. Particular interests in-
clude inverse and imaging problems, adaptive
methods for partial differential equations,
problem solving environments, large scale
computational problems in medicine, and scientific visualization. He
is a member of the IEEE.

Thomas Ertl received the master’'s degree in
computer science from the University of Color-
ado at Boulder and the PhD degree in theoretical
astrophysics from the University of Tuebingen.
Currently, Dr. Ertl is a full professor of computer
science at the University of Stuttgart, Germany,
and the head of the Visualization and Interactive
Systems (VIS) group within the Institut for
Informatics. Prior to that, he was a professor of
computer graphics and visualization at the
University of Erlangen, where he led the Scientific Visualization Group.
His research interests include visualization, computer graphics, and
human computer interaction in general, with a focus on volume
rendering, flow visualization, multiresolution analysis, parallel and
hardware accelerated graphics, large datasets, and interactive steering.

> For further information on this or any computing topic, please
visit our Digital Library at http://computer.org/publications/dlib.

