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The accurate determination of strain in deforming biological tissues is a nec-
essary and important part of experimental investigations in biomechanics. We
have developed a method, referred to as Hyperelastic Warping, to combine
medical image data with a solid mechanics analysis approach to allow estima-
tion of tissue strains in the absence of detailed information about boundary
conditions and in some cases constitutive information. The method makes
use of medical image data to provide information about the deforming tissue
and thus the strain and stress fields. The mathematical problem is to search
through all admissible configurations for the one that minimizes the difference
between a transformed template image and a target image collected experi-
mentally. The resulting deformation map is used to determine the strain field.
This technique has been applied successfully to determine strain in several
biological soft tissues. This paper describes the theory, implementation and
validation of the technique for measurement of transmural strains in the left
ventricle.

1 Introduction

Nonlinear strains in biological tissues and cells are usually measured using
fiducial markers (e.g., Holmes et al. (1995) and McCulloch et al. (1989)).
In some cases, the 3D strain can be estimated directly from changes in the
distances between groups of markers making up tetrahedral sets. The inher-
ent invasiveness, inhomogeneous strain fields and physical dimensions of the
markers can limit the applicability of this technique. This paper describes a
non-invasive method to estimate strain fields in biological soft tissues that
may be applied in the absence of discrete fiducials or exact information re-
garding tissue constitutive properties. The method is based on an algorithm
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for deformable image registration termed Hyperelastic Warping (Rabbitt et al.
(1995), Veress et al. (2004), Weiss et al. (1998)). The method makes use of
the textural information in image data to determine the deformation map be-
tween pairs of images that represent distinct states of deformation. Validation
of the method in the context of measuring transmural left ventricular strains
is presented.

2 Methods

2.1 Finite Deformation Theory

A Lagrangian reference frame is assumed. A pair of image datasets, the tem-
plate and target, represents some physical characteristic of the body before and
after deformation, respectively. The images have spatially varying scalar inten-
sity fields defined with respect to the reference configuration and denoted by T
and S, respectively. The deformation map is ϕ(X) = x = X+u(X), where x
are deformed coordinates, u(X) is the displacement field, and F = ∂ϕ(X)/∂X
is the deformation gradient (Spencer (1980)). The density ρ is related to the
Jacobian, J := detF = ρ0/ρ, where ρ0 is the reference density. It is assumed
that T and S have a general dependence on position X and deformation map
ϕ(X). The positive definite, symmetric right Cauchy-Green deformation ten-
sor is C = FTF.

2.2 Variational Framework for Hyperelastic Warping

Most deformable image registration methods can be posed as the minimization
of an energy functional E that consists of at least two terms. The combined
energy functional can be defined with respect to the current (deformed) con-
figuration as

E(X,ϕ) =
∫
B

W (X,ϕ)
dv
J

+
∫
B

U (T (X,ϕ), S(X,ϕ))
dv
J

. (1)

W is an energy term that provides regularization and/or some type of con-
straint on the deformation map (e.g., one-to-one mapping or no negative vol-
umes admitted), while U represents an energy that depends on the registration
of the image data in the template and target images. B represents the cur-
rent volume of integration. In Hyperelastic Warping, a spatial discretization
of the template image is deformed into alignment with the target, which re-
mains fixed in the reference configuration. Coordinates of template material
points are tracked. In the following presentation, the scalar intensity field of
the template, T , is not changed directly by the deformation, and thus it is
represented as T (X). Since the values of S at material points associated with
the deforming template change as the template deforms with respect to the
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target, it is written as S(ϕ). The standard formulation uses a Gaussian sensor
model:

U(X,ϕ) =
λ

2
(T (X)− S(ϕ))2 . (2)

λ is a penalty parameter (Reddy (2002)) that enforces the alignment of the
images. As λ → ∞, (T (X)− S(ϕ))2 → 0, and the image energy converges to
a finite, minimized value.

It is assumed that W , a hyperelastic strain energy, defines the mater-
ial behavior. It depends on C, which is independent of rotation, and thus
hyperelasticity provides an objective (invariant under rotation) constitutive
framework, in contrast to linearized elasticity. Equation (1) becomes

E =
∫
B

W (X,C)
dv
J

+
∫
B

U (T (X), S(ϕ))
dv
J

. (3)

The Euler-Lagrange equations are obtained by taking the first variation of
E(X,ϕ) with respect to ϕ. This can be thought of as a ‘virtual displacement’
– a small variation in the current coordinates x, denoted εη, where ε is an
infinitesimal scalar. Variations are calculated by taking the Gateaux derivative
of U evaluated at with respect to ϕ + εη and then letting ε → 0. The weak
form of the Euler-Lagrange equations for (3) is (Simo and Hughes (1998))

G(ϕ,η) := DE(ϕ) · η =
∫
B

σ : ∇ηdv −
∫
B

λ

[
(T − S)

∂S

∂ϕ
· η
]
dv
J

= 0. (4)

Here, σ is the second-order symmetric Cauchy stress tensor

σ =
1
J
F

∂W

∂C
FT . (5)

Forces applied to the template physical model due to the image data are
opposed by internal forces from the deformation of the material through the
constitutive model. The form of W depends on the material (Spencer (1980),
Weiss et al. (1996)).

Equation (4) is highly nonlinear and an incremental-iterative solution
method is necessary to obtain the configuration ϕ that satisfies this equation
(Matthies and Strang (1979)). A common approach is based on linearization
and iterative solution using Newton’s method or some variant. Assuming a
solution at configuration ϕ∗ is known, a solution is sought at some small
increment ϕ∗ + ∆u. Linearization of (4) at ϕ∗ in the direction ∆u yields

Lϕ · G(ϕ,η) =
∫
B

σ : ∇ηdv −
∫
B

λ

[
(T − S)

∂S

∂ϕ∗ · η
]
dv
J

+
∫
B
∇η : σ : ∇(∆u)dv +

∫
B
∇sη : c : ∇s(∆u)dv +

∫
B

η · k · ∆udv
J

, (6)

where c is the fourth order spatial elasticity tensor and ∇s[ · ] is the symmetric
gradient (Bathe (1982)). The first two terms in the second line of equation (6)
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are referred to as the geometric and material stiffnesses, respectively (Bathe
(1996)). The third term is the second-order image stiffness for Hyperelastic
Warping:

k =
∂2U

∂ϕ∂ϕ
= λ

[(
∂S

∂ϕ

)
⊗
(

∂S

∂ϕ

)
− (T − S)

(
∂2S

∂ϕ∂ϕ

)]
. (7)

These three terms form the basis for evaluating the relative influence of the
image-derived forces and the forces due to internal stresses on the converged
solution to the deformable image registration problem.

2.3 Finite Element Discretization and Solution Procedure

Hyperelastic Warping is based on a FE discretization of the template. A FE
mesh is constructed to correspond to all or part of the template image. T is
interpolated to the FE mesh and is convected with the FE mesh. As the FE
mesh deforms, the values of S are queried at the current location of the FE
mesh nodes. Using Voigt notation (Bathe (1996)), the linearized equations (6)
can be written as

Nnodes∑
i=1

Nnodes∑
j=1

(
KR (ϕ∗) +KI (ϕ∗)

)
ij

∆uj =
Nnodes∑

i=1

(
Fext (ϕ∗)− Fint (ϕ∗)

)
i
.

(8)
Equation (8) is a system of linear equations. The term on the left-hand side is
the (symmetric) tangent stiffness matrix. ∆u is the vector of unknown incre-
mental nodal displacements – for a FE mesh of 8-noded hexahedral elements
in three dimensions, ∆u has length 8 × 3 × Nel, where Nel is the number
of elements in the mesh. Fext is the vector of external forces arising from
the differences in the image intensity fields, and Fint is the vector of inter-
nal forces resulting from the stress divergence. The material and geometric
stiffnesses combine to give the mechanics regularization stiffness KR, and the
FE discretization of (7) gives the image-based tangent stiffness KI . An initial
estimate of the incremental nodal displacements is obtained by solving (8) for
∆u and this solution is improved iteratively using a quasi-Newton method.

In the applications described below, U is treated as a hard constraint, with
W providing a regularization. Indeed, the U in equation (2) is essentially a
penalty function. The main problem with the penalty method is that as the
penalty parameter λ is increased, some of the diagonal terms in KI become
very large with respect to others, leading to numerical ill-conditioning. To
circumvent this problem, the augmented Lagrangian method is used (Fletcher
(1989)). A solution to the governing equations at a particular computational
timestep is first obtained with a relatively small penalty parameter λ. Then the
total image-based body forces ∂U/∂ϕ are incrementally increased in a second
iterative loop, resulting in better satisfaction of the constraint. This leads to
a stable algorithm that allows the constraint to be satisfied to a user-defined
tolerance. Ill conditioning of the stiffness matrix is entirely avoided.
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3 Application – Strain Measurement in the Left
Ventricle

Assessment of regional heart wall motion (wall motion, thickening, strain,
etc.) can identify impairment of cardiac function due to a variety of cardiomy-
opathies and ischemic myocardial disease. The objectives of this study were to
validate the use of Hyperelastic Warping for the extraction of high-resolution
strain maps of the left ventricle from cine-MRI images. The sensitivity of pre-
dictions to errors in material model selection, material parameter estimation,
and simulated noise in the image data was determined. The hypotheses were
that (1) Hyperelastic Warping could accurately predict the fiber stretch (final
length/initial length along the local fiber direction) and in-plane strain dis-
tributions during diastolic (passive) filling from cine-MRI image datasets, (2)
variations in the assumed material properties and constitutive model would
have a minimal effect on the predicted fiber stretch distribution, and (3) the
results of Warping cardiac cine-MRI images would be relatively insensitive to
noise in the image data.

3.1 Methods

Cardiac Image Acquisition. To mimic the typical imaging procedure used in
clinical MR acquisition for patients with cardiac pathologies, gated cine-MRI
images of a normal male volunteer’s heart (35 years old) were acquired on a
1.5T Siemens scanner using standard clinical resolution and settings (256×256
image matrix, 378mm FOV, 10mm slice thickness, 10 slices) (Fig. 1). The
volumetric MRI dataset corresponding to beginning of diastole was designated
as the template image. The template image was cropped to 64 × 64 image
matrix by 8 slices to focus on the heart.

FE Mesh Generation and Boundary Conditions. A conforming FE mesh was
used. The boundaries of the LV were obtained by manual segmentation of the
epi- and endocardium from the template image (beginning of diastole). The

Fig. 1. Target (top) and template (bottom) image datasets used in the Warping
analysis. The Target image dataset was created by mapping the template image
dataset with displacements determined from a forward FE simulation of passive
diastolic filling.
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3D FE model was constructed to include the entire image domain, with the
lumen and the tissue surrounding the myocardium represented by a compress-
ible neo-Hookean isotropic hyperelastic constitutive model with relatively soft
properties (equivalent linear material coefficients of E = 0.3 kPa and n = 0.3)
so that the entire template image could be mapped by the resulting deforma-
tion. The edges of the FE mesh were fixed, eliminating rigid body modes.

Constitutive Model and Material Coefficients. The myocardium was repre-
sented as a transversely isotropic material with fiber angles varying from −90◦

at the epicardial surface, through 0◦ at the mid-wall, to +90◦ at the endo-
cardial surface. The transversely isotropic material model represented fibers
embedded in a neo-Hookean matrix with

W = µ(Ĩ1 − 3) + F2(λ̃) +
κ

2
[ln(J)]2, (9)

where Ĩ1 is the first deviatoric invariant of the right Cauchy deformation
tensor (Spencer (1980)), λ̃ =

√
a0 · C̃ · a0 is the deviatoric fiber stretch along

the local direction a0, µ is the shear modulus of the matrix and κ is the
bulk modulus. The stress-stretch behavior for the fibers was represented as
exponential, with no resistance to compressive load:

λ̃
∂F2

∂λ̃
= 0, λ̃ < 1,

λ̃
∂F2

∂λ̃
= C3

[
exp
(
C4(λ̃ − 1)

)
− 1
]
, λ̃ ≥ 1. (10)

Here, C3 scales the stresses and C4 defines the rate of stiffening along the
preferred direction. A description of the constitutive model and its FE imple-
mentation can be found in Weiss et al. (1996).

Material coefficients were determined by a nonlinear least-squares fit of the
constitutive equation to published equibiaxial stress/strain curves (Humphrey
et al. (1990a,b)) (µ = 2.10 kPa, C3 = 0.14 kPa, and C4 = 22.0). A bulk modu-
lus κ of 160.00 kPa was chosen such that the change in relative volume would
remain under 5%, in other words the material would be nearly incompress-
ible. The LV material properties do not need to be exact for this validation
analysis because the stretch and strain results from the forward FE model
were used as the ‘gold standard’ for comparison to the Warping results. A
physiological internal pressure load was applied to the endocardial surface
and a forward nonlinear FE analysis was performed using NIKE3D (Maker
et al. (1990)). The forward FE model was validated by comparing predictions
of fiber stretch, circumferential, radial and in-plane (radial-circumferential)
shear strains, wall thickness, ejection fraction and end-diastolic diameter to
values reported in the literature (data not shown).

Creation of Synthetic Target Image. Warping strain predictions were validated
by comparing various strain measures against a forward FE simulation in
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which the FE model (based on the template image) was used to generate a
synthetic target image. The template and synthetic target image were then
input to the warping analysis but with no boundary conditions applied. A
synthetic target image was created by applying the displacement map of the
forward FE model to the original template MRI image (Fig. 1).

The Warping FE model used the same geometry and material properties as
the forward FE model. The Warping analysis was performed using the original
template image and the synthetic target image. The nodal values of fiber
stretch, circumferential strain, radial strain and shear strain were averaged for
each image slice and compared with the values from the forward FE model on
a slice-by-slice basis. To assess transmural patterns of deformation, these same
measures of deformation were computed as functions of wall position and were
then compared with the forward FE predictions. Finally, scatter plots of all
nodal values of the four measures of deformation were generated to determine
coefficients of determination (R2) between the Warping and forward FE model
predictions.

Sensitivity to Material Coefficients and Constitutive Model. To determine the
sensitivity of the Warping analysis to changes in material coefficients, µ and C3

were increased and decreased by 24% of the baseline values, corresponding to
the 95% confidence interval of the material coefficients reported in Humphrey
et al. (1990a,b)). To assess the importance of the fiber reinforcement in the
constitutive model, the constitutive model was changed to an isotropic neo-
Hookean model for the Warping simulations. Finally, the effect of the material
bulk modulus was assessed by increasing and decreasing κ by a factor of 10.0
in the Warping analysis. R2 values were determined for the four measures of
local deformation between the Warping and forward FE model predictions.

Sensitivity to Image Noise. To assess the effects of noise on the Warping
predictions of deformation, an additive noise model was used to modify the
template and target images. Random noise n(i, j) was added to the images
s(i, j), where i and j represent pixel coordinates, to create a noisy image
i(i, j):

i(i, j) = s(i, j) + n(i, j). (11)

n(i, j) was defined as the standard deviation σN of a zero mean normal prob-
ability distribution for noise image intensities (Gonzalez and Woods (1992),
pp. 187-213). The signal to noise ratio (SNR) was defined as

SNR =
σI

σN
. (12)

For the images used, σI = 42 gray levels. SNRs of 16, 8, 4, 1 and 0.5 were ex-
amined. Local measures of deformation obtained from Warping with the noisy
images were compared with results from forward FE predictions to determine
the effect of SNR on the R2 values.
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3.2 Results

Comparison of Forward FE and Warping Predictions. There was good quali-
tative and quantitative agreement between forward and Warping predictions
of fiber stretch (Fig. 2A). The highest values of fiber stretch were near the
mid-wall (40–50% through the wall), decreasing toward the endo- and epicar-
dial surfaces. Fiber stretch was slightly higher at the endocardial surface than
the epicardial surface. The magnitudes of circumferential, radial and shear
strain were highest at the endocardial wall and decreased toward the epicar-
dial surface (Fig. 2B–D). There was very good agreement between the forward
FE and Warping predictions in terms of the magnitudes of strains and their
transmural variation for all four measures of local deformation. The average
fiber stretch and strains for both the Warping and forward FE results had
generally higher standard deviations than the results of each of the individual
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Fig. 2. Forward and FE predictions of local wall deformation at end-diastole as a
function of distance through myocardial wall (mean ± SD): A – fiber stretch; B –
circumferential Green-Lagrange strain; C – radial Green-Lagrange strain; D – in-
plane Green-Lagrange shear strain (circumferential/radial). 0% denotes endocardial
and 100% denotes epicardial. Results are presented for image cross-sectional slices
at 1 cm (black), 7 cm (light gray) and as an average over all slices (dark grey).
7 cm corresponds to the base of the LV and 1 cm is near the apex of the heart. Solid
lines are results from forward FE model and dashed lines are results for Hyperelastic
Warping. All values are referenced to the undeformed geometry (beginning-diastole).
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image planes (Fig. 2). Thus, the variability depicted in the overall averages
is partially due to variability between the results for each image plane. These
differences between axial locations are expected because of the changes in LV
geometry from apex to base.

Correlation analyses between the forward FE and Warping stretch/strain
distributions for each image plane indicated that good agreement was obtained
(Fig. 3A–D). There was a significant correlation between the predictions for
all four measures of strain (p < 0.001 for all cases). The circumferential strain
predictions had the best agreement with the forward FE results (R2 = 0.76),
while the fiber stretch predictions had the lowest coefficient of determination
(R2 = 0.67).

Sensitivity to Changes in Material Coefficients and Constitutive Model. Warp-
ing predictions of fiber stretch and strain were insensitive to changes in mate-
rial parameters µ and C3 (Table 1). The predictions appear to be somewhat
sensitive to material model, with the R2 values dropping from 1 to 10 points
depending on the particular case (Table 1). The technique also appears to be
somewhat sensitive to changes in the bulk modulus κ of the model depending
on whether the material is being made more or less compressible. Increasing
the bulk modulus by an order of magnitude resulted in little in-plane strain
degradation; however, the stretch results did show a decrease in the R2 value.
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Fig. 3. Scatter plots of forward FE versus Warping stretch/strains: A – fiber stretch;
B – circumferential strain; C – radial strain; D – in-plane shear strain. 7 cm corre-
sponds to the base of the LV and 1 cm is near the apex of the heart.
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Table 1. Effect of changes in material coefficients and constitutive model on (R2)
between the Warping and forward FE predictions for the four measures of strain.

Fiber Circ. Radial Shear
Stretch Strain Strain Strain

Baseline Warping 0.67 0.72 0.66 0.70
µ + 24% 0.65 0.69 0.65 0.71
µ − 24% 0.64 0.70 0.65 0.70
C3 + 24% 0.65 0.71 0.66 0.72
C3 − 24% 0.65 0.70 0.66 0.72

neo-Hookean 0.57 0.65 0.58 0.69
κ × 10 0.50 0.84 0.65 0.63
κ/10 0.55 0.40 0.30 0.27

Signal-to-Noise Ratio
Inf 16.0 8.0 4.0 2.0 1.0 0.5
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Fig. 4. Effect of signal-to-noise ratio on coefficient of determination.

Decreasing the bulk modulus by an order of magnitude resulted in severe
degradation of the results for all measures of deformation.

Sensitivity to Image Noise. There was little change in R2 values between the
forward FE and Warping predictions down to a SNR of 4.0. Degradation in
R2 values was progressive for SNRs below 4.0 (Fig. 4).

4 Discussion

The results of this study indicate that Hyperelastic Warping can predict strain
and fiber stretch distributions of the left ventricle during diastole from clinical
cine-MRI images. The material sensitivity studies demonstrated that strain
predictions are not highly dependent on the material coefficients used to regu-
larize the registration problem, with the exception that a reasonable estimate
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of the bulk modulus is needed. Warping analysis can accurately determine
fiber stretch distribution in relatively noisy images, down to a SNR of 4.
Hyperelastic Warping has the inherent flexibility to analyze images acquired
using a variety of modalities (Veress et al. (2003)).

Hyperelastic Warping minimizes the image-based energy in a ‘hard’ sense
using an augmented Lagrangian, while a hyperelastic strain energy regular-
izes the image registration. This approach is considered to be a major strength
of the method. First and foremost, the use of a hyperelastic strain energy in
combination with a FE discretization ensures that deformations will be diffeo-
morphic (one-to-one, onto, and differentiable with a differentiable inverse; see,
e.g., Miller et al. (2002). Other image-based techniques that have been used to
estimate strains via deformable registration, such as optical flow (Klein et al.
(1997)) and texture correlation (Gilchrist et al. (2004)), use only an image-
based minimization term. Thus, these techniques do not ensure physically rea-
sonable deformations in regions that lack image contrast or texture and they
are sensitive to noise. Further, there is no guarantee that deformation maps
will be diffeomorphic. Second, hyperelasticity is objective for large strains and
rotations, while previous solid mechanics-based regularizations were based on
linear elasticity (Bajcsy et al. (1983), Davatzikos (1996), Gee et al. (1993)),
which is not objective and penalizes finite strains and rotations. Finally, the
use of a hyperelastic constitutive model ensures that deformation maps reflect
the behavior of an elastic material under finite deformation. In regions of the
template model that have large intensity gradients, large image-based forces
will be generated and the solution will be primarily determined by the im-
age data. In regions that lack image texture or gradients, image-based forces
will be smaller and the predicted deformation will be more dependent on the
regularization (material model). A reasonable representation of the mater-
ial behavior helps to improve predictions in these areas. In the future, more
accurate constitutive models should be incorporated to better represent the
material properties of the myocardium. Further, more accurate estimates of
local fiber direction may be used (Dou et al. (2003)) to further improve the
predictions of myocardial strains based on Hyperelastic Warping.
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