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Abstract A known difficulty with using the Clauser
chart method to determine the friction velocity in wall
bounded flows is that it assumes, a priori, a logarithmic
law for the mean velocity profile. Using both experi-
mental and DNS data in the literature, this note
explicitly shows how friction velocities obtained using
the Clauser chart method can potentially mask subtle
Reynolds-number-dependent behavior.

1 Introduction

In the experimental study of turbulent boundary layers,
the determination of the friction velocity us, defined as
ffiffiffiffiffiffiffiffiffiffi

sw=q
p

; is critical, since most of the scaling laws for the
turbulent boundary layer involve us. Unfortunately,
data that come from direct measurement of the wall
shear stress are not always available, requiring the use of
indirect methods to deduce the wall shear stress.
Although a number of indirect techniques are available
for determining us, none are universally accepted.
Boundary layer experimentalists commonly use the
Clauser chart method (Fernholz and Finley 1996), which
assumes a logarithmic law for the mean velocity profile1.
Problems with using the Clauser chart approach to
determine the friction velocity are recognized by many
researchers. George and Castillo (1997), for example,
showed clear discrepancies between mean velocity

profiles scaled using direct measurements of us and
approximations using the Clauser method. However, a
clear explicit discussion of its shortcomings and the
implications for masking Reynolds number dependen-
cies is not found in the literature. The purpose of this
note is to explicitly illustrate, using manufactured data,
DNS data, and experimental data, how data scaled
using us obtained from the Clauser chart method can
contaminate the data in such a way as to mask subtle
Reynolds-number-dependent behavior in the near-wall
region.

2 The Clauser chart method

In the Clauser chart method (Clauser 1956), the friction
velocity is extrapolated from direct measurements of the
free stream velocity U¥ and the mean velocity profile
U(y), where y is the normal distance from the wall. The
method is based on the assumption that the velocity
profile follows a universal logarithmic form in the
overlap region of the boundary layer:
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and that the constants j and B are independent of the
Reynolds number. If we multiply both sides of Eq. 1 by
us/U¥, we obtain:
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Noting that the coefficient of friction Cf is defined as
2(us/U¥)

2, the Clauser chart equation can be written in
the following form:
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Since U(y) and U¥ can be measured directly from
experiments, and assuming that j and B are constants,
the only undetermined term in Eq. 3 is the coefficient of
friction Cf. This equation defines a family of lines from
which Cf can be determined by plotting the experimental
data in this same form and selecting the line that most
closely approximates the data between the region
y+>50 and g<0.2. It is common to find different j and
B in the literature, e.g., j variations of 0.38<j<0.45
and B variations of 3.5<B<6.1 (Zanoun et al. 2003).
The uncertainty of the experimental data can be ob-
scured by the change of these constants.

3 Potential for data contamination

3.1 Hypothetical illustrations

Various aspects of the logarithmic law for the mean
velocity profile have recently been questioned by some
authors (Bradshaw and Huang 1995). In particular,
there is debate as to whether j and B are truly inde-
pendent of the Reynolds number (Zanoun et al. 2003).
Here, without taking either side on this debate, we
highlight the problems with using the Clauser chart
method to compute the friction velocity if, in fact, j and
B are not true universal constants.

To clearly illustrate this problem, consider the fol-
lowing hypothetical situation. Consider an experiment
conducted to determine velocity profiles of turbulent
boundary layer flow with measurements taken at a set of
different downstream locations (with the same free
stream velocity) corresponding to increasingly higher
Reynolds numbers. Assume that the Clauser method
described above is used to calculate the friction velocity
at each of these locations, and that the data is subse-
quently normalized and plotted using the friction
velocities so obtained. The friction velocities determined
in this manner are denoted as us|c. Next, assume that the
‘‘true’’ friction velocity, denoted here as us|t, varies from
the Clauser-chart-based experimentally determined fric-
tion velocities in the following manner:

usjc ¼ f Reð Þusjt ð4Þ

By substitution of Eq. 4 into Eq. 1, one can show
that the ‘‘true’’ velocity profiles associated with this
situation can be written as:
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which should now be compared with Eq. 1. Note that
the j and additive constant B of the inner normalized
velocity profiles are both Reynolds-number-dependent
in this illustration. As a simple example, assume that the
values of f(Re) at five different locations are f(Re)=0.8,

0.9, 1.0, 1.1, and 1.2, respectively. The difference
between the ‘‘true’’ friction velocity us|t and the Clauser-
chart-based friction velocity us|c can be defined quanti-
tatively as:

usjt � usjc
usjt

¼ 1� f Reð Þ

where this difference is approximately 20%, 10%, 0%,
�10%, and �20%, respectively, for this hypothetical
situation. Figure 1 shows the five mean velocity profiles
plotted for this hypothetical case when normalized by
the true friction velocity, clearly illustrating the different
slopes for these five cases.

When plotting these same velocity profile data in
nondimensional form using a computed set of Clauser-
chart-based friction velocities, us|c, the results shown in
Fig. 2 are obtained. As can be seen, all of the profiles
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Fig. 1 Hypothetical velocity profiles generated in the form of
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: Five profiles are shown corre-

sponding to n=0.8, 0.9, 1.0, 1.1, and 1.2. Note that the ‘‘universal
log law’’ corresponds to n=1
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Fig. 2 The velocity profiles of Fig. 1 normalized by friction
velocities obtained using the Clauser chart method
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that were so clearly distinct in Fig. 1 have been
artificially collapsed onto a single line in Fig. 2 as a re-
sult of the assumptions inherent in the Clauser chart
method. Use of the Clauser chart method in this case
would lead to erroneous conclusions concerning how the
mean velocity profiles scale with Reynolds number.

As another example, consider a very weak Reynolds
number dependence, f(Re)=Res

0.02. The results for this
hypothetical situation are illustrated in Figs. 3 and 4.
(The values for j and B for the Clauser chart are chosen
to be 0.41 and 5.0, respectively.) Figure 3 shows the
clear Reynolds-number-dependence of the hypothetical
cases. The real j (inverse of the slope) and additive
constant of the log-region of the hypothetical velocity
profiles are (0.357, 6.12), (0.346, 6.42), and (0.341, 6.55)
for Res=1,000, 5,000, and 10,000, respectively. The
Clauser-chart-method-determined friction velocity col-
lapses the Reynolds-number-dependent j and intercept
‘‘log-region’’ onto a single line, as in Fig. 4, masking any
Reynolds number dependence.

These manufactured examples are intended to clearly
demonstrate how the Clauser chart method can con-
taminate data. In the next three subsections, similar
comparisons are presented using real experimental and
DNS data for pipe flow, channel flow, and zero-pres-
sure-gradient boundary layer flow.

3.2 Example contamination using experimental pipe
flow data

In pipe or channel flow, the wall shear stress (and thus,
the friction velocity) can be deduced directly from
measurements of the pressure gradient, so other
approaches, such as using the Clauser chart, are not
required. However, for the purpose of illustrating the
degree to which the Clauser chart method can bias the
data, we examine the data of Patel and Head (1969).

Figure 5 shows mean velocity profiles measured at three
different low Reynolds numbers (Re=UcR/m=4,430,
7,260, and 9,200). These three cases correspond to an
Res (Reynolds number based on friction velocity) of 150,
230, and 290, respectively. Since the pressure gradient is
accurately known, the wall shear stress is known and the
nondimensionalized data presented by Patel and Head is
free from data reduction artifacts. The top set of curves
in Fig. 5 show their data normalized by the ‘‘true’’
friction velocity. However, if a friction-velocity-based
Clauser chart method were used, the data artificially
collapses to a logarithmic profile, as shown by the
bottom set of curves in Fig. 5. As the Reynolds number
increases, the difference in the real friction velocity, us,
and that determined from the Clauser method decreases.
For the cases discussed above, the differences are, from
lowest to highest Reynolds number, 8%, 2%, and 0.2%.
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Fig. 4 The velocity profiles of Fig. 3 normalized by friction
velocities obtained using the Clauser chart method
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This suggests that, as the Reynolds number increases,
the friction velocity obtained from Clauser chart method
approaches the real friction velocity.

3.3 Example contamination using DNS data for chan-
nel flow

The turbulent channel flow DNS data of Moser et al.
(1999) have been examined to illustrate the potential
effect of using the Clauser chart method on channel flow.
In Fig. 6, the velocity profiles normalized with the true
friction velocities (upper set) and with the Clauser-chart-
obtained friction velocities are provided. Note that the
real j and additive constant B for Moser et al.’s data
(1999) are (0.375, 4.9), (0.41, 5.3), and (0.41, 5.3) for
Res= 180, 395, and 590, respectively, while the j and B
obtained by the Clauser chart method are 0.41 and 5.2,
respectively. Although not as dramatic as the experi-
mental pipe flow data of Patel and Head (1969), use of
the Clauser chart method clearly results in obscuring the
low Reynolds number dependency. Differences between
the true friction velocity and the friction velocity ob-
tained from the Clauser chart are 4.3%, 2.6%, and 2.5%
for the cases shown. It is clear from Fig. 6 that the dif-
ference between the true friction velocity and that ob-
tained from the Clauser chart method becomes smaller
with increasing Reynolds number.

3.4 Example contamination using experimental turbu-
lent boundary layer flow data

The low Reynolds number flat plate boundary layer data
of Purtell et al. (1981) was selected to reveal the effects of
using the Clauser chart method to obtain the friction
velocity. Velocity profiles with Reynolds number values

of Reh=465, 500, 1,340, 1,840, 3,480, and 5,100 are re-
ported. Purtell et al. (1981) obtained measurements of
the wall shear stress through two approaches: (1) direct
measurements of the wall velocity gradients using hot-
wire anemometer; and (2) an indirect approach that used
computed values of dh/dx and the Karman integral
relation. They reported the differences between the two
approaches to be within 5% and showed no systematic
trends. In Fig. 7, the mean velocity profiles are plotted
using their computed values of the wall shear stress and
the value obtained from the Clauser chart method. The
subtle low Reynolds number effect evident in the Purtell
et al. (1981) data (upper set of Fig. 7) is masked by use
of the Clauser chart method, as shown in the lower set of
Fig. 7.

4 Conclusion

The Clauser chart method assumes the existence of the
universal logarithmic law. As a result, the use of this
method to compute us can result in an artificial collapse
of the data onto the universal log-law. In this paper, it
has been explicitly shown how possible low Reynolds
number dependencies can be masked by use of the
Clauser chart method. The difference between the true
friction velocity and that obtained from the Clauser
chart method diminishes with increasing Reynolds
number.
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