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Comprehensible Presentation of Topological Information

Gunther H. Weber, Kenes Beketayev, Peer-Timo Bremer, Bernd Hamann,
Maciej Haranczyk, Mario Hlawitschka and Valerio Pascucci

Abstract

Topological information has proven very valuable in the analysis of scientific data. An important challenge that
remains is presenting this highly abstract information in a way that it is comprehensible even if one does not have
an in-depth background in topology. Furthermore, it is often desirable to combine the structural insight gained by
topological analysis with complementary information, such as geometric information. We present an overview over
methods that use metaphors to make topological information more accessible to non-expert users, and we demonstrate
their applicability to a range of scientific data sets. With the increasingly complex output of exascale simulations,
the importance of having effective means of providing a comprehensible, abstract overview over data will grow. The
techniques that we present will serve as an important foundation for this purpose.

1 Introduction
Topology-based data analysis is applicable to a wide range of scientific data understanding problems, including mixing
of fluids [10] and the analysis of combustion simulations [4]. The ability of topology-based method to provide a
compact, abstract overview over complex data makes them an important tool for the analysis of exascale simulations.
However, the information provided by topological structures is usually in the form of abstract graphs, and it is difficult
for users without fundamental background in topology to interpret these graphs. Thus, its necessary to find new ways
to present information so that it is more easily comprehensible without having an in-depth knowledge of topology. In
this context, the use of metaphors, such as the toporrery [11], or topological landscapes [13] shows promising results.
In this paper, we describe two ways to present topological information to users in an intuitive fashion. The first method
is aimed at the analysis of optimization problems, where minima or maxima of a function are entities of main interest.
Here, we focus on a problem from computational chemistry where the main interest focuses on transitions between
states—characterized by minima. We have developed a method that uses the information encoded in the Morse complex
to present a map-like representation of the system that highlights probable state transition [2]. While currently focused
on chemistry, this type of representation can be useful for many optimization problems.

Another limitation of current presentation methods is that they focus on structural information. To alleviate this
problem we have developed topological cacti. Topological cacti present the contour tree in an intuitive fashion, in-
spired by the toporrery representation. In addition to this structural perspective, topological cacti support displaying
corresponding quantitative information. Both methods are useful tools in presenting topological information to an in-
creasing audience of researchers interested in applying topology-based methods to their data and simplify the analysis
of complex simulation results.

2 Map-based Representations for Analyzing Optimization Solution Spaces
Understanding the solution space plays an important role in a wide range of optimization applications. Using the
topology-based analysis, it is possible to extract relevant information from high-dimensional cost functions. The Morse
complex, e.g., encodes information about minima (or maxima) and relationships between them. We have developed a
map-based [2] representation that shows this information in an intuitive fashion. While we utilized this representation
in the context of computational chemistry, it has applications for a wide range of optimization problems.
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Finding solutions to many urgent problems (e.g., pollution and global warning) requires novel insights into chem-
ical systems and processes. It is possible to gain these insights through computational modeling and analysis of the
system. One characteristic, common in analysis of many existing models, is energy as a function of coordinates of com-
ponents of a chemical system. Analyzing this energy function (a specific instance of a cost function in optimization
problems), defined on a high-dimensional domain, may improve our understanding of chemical systems and reactions.

There is a lack of effective visualization techniques for these multi-dimensional functions, and chemists often study
only one or two parameters of interest at a time. Developing a comprehensive understanding of these complex systems
requires new visualization techniques that show relationships between all parameters describing the system at the same
time. The Morse complex contains the required information, but a background knowledge in topology is necessary
to interpret it. To remedy this difficulty, we utilize a map-based metaphor that represents this information. Nodes
in a graph represent minima (states) and edges transitions between those states. Edge width and color represent the
likelihood of a transition. Maps include geometric/spatial information to show how distant solutions are by choosing
appropriate node locations. Recasting the information contained in the Morse complex as states and transitions between
them utilizes concepts familiar to chemists, and allows them to make effective use of it.

2.1 Extracting Topological and Geometric Information
Structural information encoded in the Morse complex. To obtain structural information describing transitions,
we approximate the Morse complex for the energy function fe by producing a segmentation of the input data into
stable/descending manifolds. We implemented this segmentation similar to the approach of Gerber et al. [9] by finding
a neighbor with the steepest descending gradient for each point, and using a union-find data structure to determine its
corresponding minimum. Each stable state of the chemical system corresponds to a minimum in the energy function.
The Morse complex is a partition into regions such that following the gradient from any point in the region will end at
the minimum, i.e., such that segmented regions correspond to classes of configurations associated with a stable state.

Each descending region can adjoin several other regions. The saddle between two adjoining regions, i.e., the
lowest function value along their boundaries, corresponds to the barrier between the states. Since minima and saddles
in the Morse complex correspond to energy minima and barriers, chemical transformation paths are given by the edges
connecting two minima through a saddle. Assigning minima and saddles to nodes and connecting pathways as edges
creates the Morse complex graph. Based on this relationship between stable states and barriers, we construct a graph
that represents the system.
Simplifying the structural perspective. Noise in a dataset along with increased data complexity can result in convo-
luted final graphs, and we need effective means of simplifying the Morse complex graph before analyzing it. We have
implemented a scheme that eliminates low-persistence minima, where persistence is the absolute difference of energy
function values. Since one minimum might belong to several minimum-saddle pairs, and thus have multiple associated
persistence values, we select the lowest among them to decide whether a minimum is eliminated.

We consider two approaches for finding a suitable persistence threshold. The conventional approach is based on a
persistence diagram obtained by gradually increasing the simplification threshold value within the possible value range
and determining the current number of minima for each value. Big drops in the number of minima indicate a large
number of related minima and thus candidates for appropriate simplification threshold values. While this approach can
be very useful due to its generality, we also utilize an alternative calculation based on chemical domain knowledge
about the considered system.
Preserving distance information. Whereas the graph itself is an abstract structure, we have to find a proper layout
to visualize it. Although standard graph-layout algorithms may produce visually pleasing visualizations of the Morse
complex graph, this representation does not consider relational information of the original system, which is important
for chemical analysis due to impact of distances on the probability of certain transformations.

To preserve this relational context, we project the high-dimensional point locations of the graph onto the plane.
Depending on the type of input data and the required results, there exist a variety of methods to reduce the data
dimensionality [8]. Considering the fact that our points are provided in an Euclidean space and we are using a linear
scaling function, the method simplifies to what is commonly known as principal component analysis (PCA). Using
the principal components of the spread of points the new coordinate system ensures a good preservation of distances,
which is important for understanding the data.
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Figure 1: A 2D graph showing the topology of the 3D potential energy function of a complex of formic and acetic
acids, which depends on the positions of constituting atoms. The strength of this approach is that it shows an entire
high-dimensional energy landscape in terms of stable states and transitions between them, which are concepts familiar
to chemists.

2.2 Visual Representation as Map
While it seems intuitive to apply multi-dimensional scaling both to minimum and saddle positions, we found that this
approach often leads to a cluttered graph layout. Projecting only minima and placing saddles along lines between
minima results in a much cleaner graph layout and supports encoding additional information based on the location of
barriers. While the projection at this point is simple to navigate, overlaps of edges and nodes might conceal important
information. Thus, we implemented an iterative optimization algorithm that minimizes node/edge overlap in the final
layout.

Once we have obtained final positions for all nodes of the graph, we add chemical information from the model
system. Since the most important information is the energy difference between a minimum and a barrier, we color
edges according to the energy difference value. The Boltzmann distribution states that the probability of accessing
a state decreases exponentially with its energy. The lower the energy difference is, the higher is the probability of a
transformation. Hence, we display paths with smaller energy differences more prominently (darker colors and wider
edges). We note that a higher energy difference leads to very narrow and lightly colored edges, making them almost
invisible. These edges can be neglected when drawing the final layout, and we further simplify the graph by discarding
edges above a threshold signifying the highest possible and/or interesting energy difference. Periodic edges, i.e., edges
crossing a boundary along which the problem is periodic, are dashed, and the common saddle of the two connected
minima is broken into two nodes (see Figure 1). Finally, we add labels to all minima that specify coordinates (first line)
and energy value (second line).

2.3 Application Examples
Figure 1 shows a graph of the topology of the 3D potential energy function of a complex of formic and acetic acids,
which depends on the positions of constituting atoms. Each sample in this energy function corresponds to a simulation
run for a particular configuration of the system. Blue and red dots represent minimum energy configurations and lowest
barriers connecting neighboring minima, respectively. Edges represent the energy cost of a particular transformation,
with darker and wider edges corresponding to transformations through lower barriers (more likely transformations).
Two vertical branches corresponding to different positions of protons are visible on the left and right side of the graph.
Energy barriers for transforming the right branch into left one are lower than for the reverse transformation.

The free energy function of CH4 in an LTA zeolite is substantially different from the energy functions of the dimer
of formic acid and acetic acid, see Figure 2ab. This graph represents only the large cage of LTA zeolite, which is the
only fragment of void space in LTA accessible to CH4. The graph representation of the free energy reveals important
information about the material. There are 14 important energy minima per periodic unit cell of LTA corresponding to
favorable locations of the adsorbing CH4 molecule (adsorption sites). Six of them correspond to lower energy (ca. 3.7
kBT ), and are localized near windows connecting two periodic cells (near faces of the unit cell). The remaining eight
minima are localized further away from the windows, on the surface of the large cage of LTA. The further analysis of
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Figure 2: (a) Volume rendering of the energy function of a CH4 molecule in an LTA zeolite and lowest energy paths
connecting neighboring minima. (b) Corresponding graph showing lowest energy paths (an edge going through a face
of the periodic box marked with arrows). (c) Graph of the 4D energy function of DFA. Nodes are labeled A1 to A9
and B1 to B6 to highlight two subgraphs. A1-A9 correspond to minima with coordinates of 0.95Å along the first and
second dimension. The remaining third and fourth coordinates are (45,345), (180,345), (60,180), (285,345), (180,180),
(60,0), (300,180), (180,0), and (300,0) for A1 to A9, respectively. Similarly, the first and second coordinate for B1-
B6 are 1.75Å. The remaining coordinates are (60,345), (180,345), (300,345), (60,0), (180,0), (300,0) for B1 to B6,
respectively.

connections between nodes/minima in our representations reveals that all 14 minima localized within the big cage are
separated by low barriers, and therefore hops of CH4 between the adsorption sites are feasible. However, connections
between large cages in the extended material lead through high barriers. These high barriers along diffusion paths in
every direction are reflected in slower diffusion rates.

The final example is the graph representation of the 4D energy function of DFA depicted in Figure 2c, for which
plotting the original energy functions in all four dimensions was not feasible. The resulting graph is fairly easy to
analyze. It clearly shows energy separation of the graph into two subgraphs: one corresponding to rotamers of DFA
(with minima denoted A1-A9) and another with double proton transfer (minima denoted B1-B6). Transitions between
minima within each subgraph are at low cost as shown by heavy edges.

2.4 Impact and Outlook
Our approach holds promise in allowing chemists to gain insight into complex chemical systems and understand higher-
dimensional energy functions. Since topological features of the Morse Complex correspond directly to concepts such as
stable states familiar to chemists, it provides an intuitive overview of a chemical system. In the long term, it will allow
chemists to analyze higher-dimensional systems at once without having to look at pairs of parameters separately (see
Figure 2c for a four-dimensional example). We also plan to adapt this representation to other optimization problems,
such as providing an overview over the solution space in autotuning of codes for high-performance architectures.

3 Combining Structural and Quantitative Information
Current visualization techniques provide either structural or quantitative information based on topological analysis
over a data set. Contours, the connected components of level sets, play an important role in understanding the global
structure of a scalar field. In particular their nesting behavior and topology—often represented in form of a contour
tree–have been used extensively for visualization and analysis. Traditional contour tree visualizations only encode
structural properties like number of contours or the nesting of contours, but no quantitative information such as volume
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or other statistics. To gain full understanding of data sets, it is desirable to combine these complementary views in a
single visualization. We introduced a new visual metaphor for contour trees, called topological cacti [14], that extends
the traditional toporrery display of a contour tree to display additional quantitative information as width of the cactus
trunk and length of its spikes. To demonstrate the effectiveness of this approach, we have applied the new technique to
scalar fields of varying dimension and different measures.

3.1 Background and Related Work
Contour trees. The contour tree [3] is a special case of the more generally defined Reeb graph [12] and captures the
topological evolution of an isosurface as the isovalue varies. Critical points, where the number of contours changes,
appear as nodes in the contour tree. Nodes of degree one (leaves of the tree) correspond to extrema, where contours
are created or destroyed. Interior nodes of degree three or higher correspond to “saddles,” where two or more contours
merge or split. Arcs of the contour tree represent contours between critical points, i.e., contours that do not change
topology (with the exception of genus changes) as the isovalue varies between critical values.
Contour tree simplification. Contour trees of even moderately-sized data sets can be quite complex due to noise or
the presence of features at various scales. To remove noise, or features at smaller scale, it is necessary to simplify the
contour tree [7, 11]. Simplification ranks features—connected isosurface components—based on geometric measures,
such as persistence (difference in function value) or volume signifying the “importance” of a feature, and removes
those features that are deemed unimportant in this order. The branch decomposition [11] is an efficient data structure
for encoding a multi-resolution representation of the contour tree. It decomposes the contour tree into a set of branches,
where a root branch connects a minimum-maximum pair in the contour tree. Other extrema are ordered by an impor-
tance metric, and child branches connect them to a saddle in an existing branch. This representation makes it simple to
access the contour tree at a desired level of detail.

3.2 Computing Per-Component Measures
Contour spectrum-based measures. The contour spectrum [1] computes global measures for an isosurface as a
function of isovalue. Based on the relationship between a tetrahedral mesh and simplex splines, the authors derive a
B-Spline representation of isosurface area as a function of isovalue within an individual tetrahedron of the data set.
Combining the B-Spline functions of all individual tetrahedra of a given mesh results in a B-Spline representation
of isosurface area for the entire data set. Integrating this area B-spline over isovalue yields B-Spline describing the
volume enclosed in the isosurface.

To display per-component information about an isosurface, we associate it with a previously computed contour
tree [6] represented as branch decomposition [11]. In the original contour spectrum algorithm, contributions of all
tetrahedra are accumulated into a global B-Spline. To compute area on a per-component basis, we associate a B-Spline
(or alternatively a piecewise polynomial function) with each branch of the branch decomposition, and accumulate con-
tributions per-component. Linear tetrahedra do not contain any critical points—particularly saddles—in their interior.
Consequently, a tetrahedron corresponds to a single path between two vertices (not necessarily nodes) in the contour
tree, along which the function value uniquely identifies the contour containing this tetrahedron. As a result, we can
consider each tetrahedron and accumulate its contributions to the branch decomposition.

Computing per-contour volume is more difficult. If a contour contains another contour, it is ambiguous, whether
the volume of the nested contour should be subtracted or not. To avoid ambiguities, we follow the convention that we
calculate volume from the last saddle. Thus, the volume associated with a contour corresponds to the volume swept
by that contour as long as it “maintained its identity,” i.e. since its last “interaction” with another contour. Adding
the contribution to the branch decomposition is similar to adding the contribution for the area. There are two key
differences: Instead of stopping at the maximum value of the tetrahedron, the contribution on the maximum branch
reaches until the next saddle value since once the maximum value of the tetrahedra is passed the volume function is
a constant corresponding to the volume of the tetrahedron. Furthermore, following our convention, for each segment,
we subtract the volume at the saddle from the entire function, such that for each segment only the volume swept since
the saddle is considered.
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Figure 3: Topological cactus for the hydrogen atom (left) and isosurface rendering of the corresponding data set
(right). The root branch in the center corresponds to the contour in the center of the ring. The two symmetric branches
correspond to the two lobes, and the lowest branch to the ring. The branch width corresponds to the cube root of
enclosed volume, and spike length to the square root of surface area.

Segmentation-based measures. In many application areas, it is desirable to display additional statistics, such as the
mean value of a second variable on the isosurface. We compute these values at discrete locations of the contour tree
or the join tree. To compute these values, we consider the segmentation implied by the contour tree [15] or the join
tree [4] and accumulate these statistics for all samples corresponding to a branch or arc. This calculation would yield
a single value per branch. To approximate function behavior along a branch or arc, we split it at regular intervals and
insert degree two nodes into the join tree.

3.3 Topological Cacti Layout
We use a radial graph layout identical to that of the toporrery [11] for generating topological cacti. Extrema are ordered
in concentric discs, where the disc is chosen based on the depth of an extremum in the branch decomposition. Like in
the original toporrery, the radius ratio is constant in our layout, and each branch is assigned a radial wedge with an angle
proportional to the number of child branches. To display metrics, we draw each branch as cylindrical extrusion and
chose the radii according to a first selected measure (clamping however at a minimum radius to ensure that branches
do not disappear). We draw connectors as sphere sweeps to ensure smooth connection of the cylindrical extrusion
corresponding to parent and child branch. Before mapping a metric such as volume to radius, we support choosing a
variety of transformation functions (square root, cube root, logarithm) to ensure that higher-dimensional properties are
appropriately scaled to the one dimensional radius.

For display of a second metric, we augment the cylindrical extrusions with spikes. We start by placing circles
along regular intervals of the cylindrical extrusion and choosing angles in regular intervals along this circle. We then
choose spike location by jittering these regular samples, i.e., we add random offset angles and heights to the originally
chosen spike locations. Spikes are drawn as cones with a fixed (user defined) base radius and a length depending on the
metrics. Similar to the extrusion radius, we support user chosen mappings such as square root, cube root or logarithm.

3.4 Application Examples
Figure 3 shows an example of a topological cactus for the hydrogen atom data set (simplified to a persistence of
ten). This is a simple, small—1283 byte samples—example data set that we use to illustrate the concept. We display
volume (mapped via cube root) as branch width and surface area (square root) as spike length, to examine how whether
persistent features also correspond to large features. The root branch corresponds to the evolution of the contour in the
center. It is immediately obvious that despite its very high persistence (resulting in it being chosen as root branch),
both its volume and surface area are very small. The two lobes, corresponding to the two symmetric branches are much
larger in both volume and surface area. Finally, the ring, corresponding to the lowest branch, has the largest volume
and area.

Figure 4a shows the topological cactus of the merge tree of fuel consumption rate in a combustion simulation (one
4.3G time step from a coarse AMR simulation). Here, we are interested how the size of burning regions correlates with
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Figure 4: (a) Topological cactus of the merge tree of fuel consumption rate in a combustion simulation (a). The width
corresponds to the cube root of number of vertices in a region. Spike length shows the variance of temperature. (b)
Isosurfaces for four different fuel consumption rates illustrating burning regions for these thresholds. (c) Topological
cactus of a climate simulation showing the merge tree of long wave energy output in the winter months (left). The
width corresponds to cube root of vertex count. The spike length shows the mean value of FLUT.

temperature variance. Thus, we map the cube root of volume—approximated as the number of vertices—to branch
width and temperature variance to spike length.

The cactus shows that there are two types of regions: (i) Branches that are relatively wide close to the maximum
(rectangle “A” in the figure marks an example) and thus correspond to regions comprised of a relatively large num-
ber of vertices and (ii) branches that are thin close to the maximum (rectangle “B” in the figure marks an example)
corresponding to small regions. The latter occur at lower fuel-consumption levels (i.e., their maxima are generally
lower than those of the wide branches). The spikes show that temperature variance is small where there is high fuel
consumption, which occurs where there is “intense burning” (i.e., where fuel consumption is high). Furthermore, the
temperature variance is (expectedly) larger for non-burning regions (i.e., regions of no to low fuel consumption).

Figure 4c shows applying our method in the context of uncertainty quantification. The cactus show the merge tree
of a 21 dimensional climate simulation ensemble. The data set consists of 1197 climate simulations performed with
the Community Atmospheric Model (CAM) [5]—each using a different combination of 21 input parameters. Such
ensembles are used to study the sensitivity of the climate predictions to changes in input parameters. The output
function shown in Fig. 4c is the average longwave energy output (FLUT) in the winter months (December, January,
February). The cactus shows that most of the “volume” of the parameter space is collected in several large but relatively
low persistent branches of maxima. This fact is interesting as the observed energy output is expected to be closer
to the global minimum. Thus, it appears that only a small portion of the input samples produces realistic outputs.
Nevertheless, all persistences are fairy low indicating that the overall behavior is stable under perturbation of the input
parameters.

3.5 Impact and Outlook
Topological cacti combine insights obtained from the contour tree with metrics derived on a per contour bases. This
combination can greatly enhance the usefulness of contour tree representations, in particular when importance mea-
sured by persistence differs from other metrics such as area of volume. The contour spectrum implementation that
associates contour spectrum with contour tree has also applications in other topological data analysis settings.

Going forward, we will improve the contour spectrum calculation. Our current approach of computing the contour
spectrum in piecewise polynomial/B-Spline representation works well for quantized data sets. However, for real-valued
data, each data value appears in the knot vector, making this representation inefficient. To counteract this problem, we
need to devise a simplification scheme that can be applied during the calculation and still support error bounds.
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Comptes Rendus de l’Acadèmie des Sciences de Paris, 222:847–849, 1946.

[13] Gunther H. Weber, Peer-Timo Bremer, and Valerio Pascucci. Topological landscapes: A terrain metaphor for
scientific data. IEEE Trans. Vis. Comp. Graph. (Proc. Visualization 2007), 13(6):1416–1423, 2007.

[14] Gunther H. Weber, Peer-Timo Bremer, and Valerio Pascucci. Topological Cacti: Visualizing Contour-based
Statistics, pages 63–76. Springer Verlag, Heidelberg, Germany, 2011. LBNL-5018E.

[15] Gunther H. Weber, Scott E. Dillard, Hamish Carr, Valerio Pascucci, and Bernd Hamann. Topology-controlled
volume rendering. IEEE Trans. Vis. Comp. Graph., 13(2):330–341, 2007.

9


