ADAPTIVE FINITE VOLUME METHODS FOR
TIME-DEPENDENT P.D.E.S.
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Abstract. The aim of adaptive methods for time-dependent p.d.e.s is to control
the numerical error so that it is less than a user-specified tolerance. This error depends
on the spatial discretization method, the spatial mesh, the method of time integration
and the timestep. The spatial discretization method and positioning of the spatial
mesh points should attempt to ensure that the spatial error is controlled to meet the
user’s requirements. It is then desirable to integrate the o.d.e. system in time with
sufficient accuracy so that the temporal error does not corrupt the spatial accuracy or the
reliability of the spatial error estimates. This paper is concerned with the development
of a prototype algorithm of this type, based on a cell-centered triangular finite volume
scheme, for two space dimensional convection-dominated problems.
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1. Introduction . Two important trends in numerical methods for
the spatial discretization of partial differential equations are the moves to-
wards using unstructured triangular or tetrahedral meshes and using com-
putable error estimates and adaptive algorithms to control the error. While
error control forms an important part of many mathematical software al-
gorithms, relatively few attempts have been made to apply error control to
convection-dominated problems. This paper describes one such attempt.

Although finite element and finite volumes schemes based on unstruc-
tured triangular meshes have been used for many years, only recently have
a number of high-order cell-centered finite volume schemes been developed,
[9,18,13] . This paper is concerned with one such method, that of Ware
and Berzins, [18] , and with how this method may be used as part of a
prototype error-control solver for time-dependent systems of conservation
laws.

The other main components of this solver are the spatial and temporal
error balancing approach of Berzins [1], and the adaptive mesh algorithms
of Berzins et al. [4]. This combination of error control strategies not only
ensures that the main error present is that due to spatial discretization but
offers the tantalising possibility of overall error control.

An outline of this paper is as follows. Section 2 describes the spatial
discretization method in detail. A method of lines approach is used to
integrate forwards in time in Section 3. The results in Section 4 illustrate
the performance of the method on a model problem. Section 5 deals with
spatial and temporal error balancing. Section 6 begins an analysis of the
properties of the discretization method while the full adaptive algorithm is

* School of Computer Studies, University of Leeds, Leeds 1.S2 9JT, U.K. (‘M’S
1



2 Ware and Berzins

(x5¥,)

FiG. 2.1. Discretisation on a triangle

outlined in Section 7 and applied to a numerical example.

2. Spatial Discretisation Method . The method used in this pa-
per was presented by Ware and Berzins [18,5] based on ideas outlined in
Berzins et al [2]. A number of similar triangular mesh cell-centered schemes
have appeared recently [7,9,13], which all use similar ideas to those used
on structured quadrilateral meshes e.g. [15]. An early scheme was that
of Cockburn et al [7] while three other schemes were developed more or
less simultaneously [9,13,18] and possess similarities as well as important
differences, see Ware, [19], for a comparison. Although the spatial dis-
cretization algorithm has been developed for systems of equations, for ease
of exposition consider the class of p.d.e.s in cartesian co-ordinates as

(2.1) —+=+==0

where f = f(z,y,u) and ¢ = g(z,y,u) are the flux functions in & and y
respectively and with appropriate boundary and initial conditions.

The cell-centred finite volume scheme described here uses triangular
elements as the control volumes over which the divergence theorem is ap-
plied. The finite volume representation of a solution is formally piecewise
constant within each control volume and is not associated with any partic-
ular position. To allow the construction of high order schemes however the
centroid of the triangle is defined as the nodal position and the solution
value is associated with that point. In Figure 2.1 for example, the solution
at the centroid of triangle ¢ is U; and the solutions at the centroids of the
triangles surrounding triangle ¢ are U; g, U; 1 and Uy o.

Integration of equation (2.1) on the ¢th triangle gives:

ou . 8f 9y

where A; is the area of triangle 7. The area integral on the left hand
side of equation (2.2) is approximated by a one point quadrature rule.
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The quadrature point is the centroid of triangle i. By using the divergence
theorem the area integral on the right hand side is replaced by a line integral
around the triangular element :

(23) aGE == (Fnomas,

where Cj is the circumference of triangle ¢. The line integral along each edge
is approximated by using the midpoint quadrature rule. The numerical flux
is evaluated at the midpoint of and normal to the edge :

Ou 1
s —I(fi,oAyO.l — 9i,0A%01 + fi1Ay1,2

(2.4) —9i1Az19+ fi2Aya o — g5 0Az20),

where Az, ; = x; — z; and Ay;; = y; — y;. The fluxes f;; and g;; are
evaluated by using (approximate) Riemann solvers frm, and grm respec-
tively. At the midpoint of each edge one-dimensional Riemann problems
are solved in the cartesian directions with the internal and ezternal values
being used as the initial conditions:

( Frm (U, 4,07 iIO)AyO,I - grm(U, i00 +0)A:c01 +
me(Uz 1 Ui_'_l)Ayl,Z - ng(Uz 1 U; 1)Ax1 s +
frm (U 3,20 i,z)Ayz‘o - ng(UZ U Z)A;cg 0 )

Ou
(25)5 I

where U, is the internal solution, with respect to triangle ¢, on edge j and
U"'J is the external solution, with respect to triangle ¢, on edge j.

A standard first-order scheme uses the piecewise constant solution on
either side of the edge as the upwind values, U;; = U, Uw ="U;; , but
introduces excessive numerical diffusion in the solution.

2.1. Limited Interpolants in Two Dimensions. Spekreijse [15]
derived a higher order scheme on quadrilateral meshes by using linear up-
wind values to create left and right values for the Riemann solver. These
upwind linear values were limited to ensure undershoot and overshoot could
not occur. This approach will now be used on unstructured meshes in which
case the internal and external values at cell interface of two triangular ele-
ments, U;; and U, +j in equation (2.5) are replaced with the limited linearly
1nterpola.ted values defined by

(2.6) Uy = Ui+ ;) (Ui —Ui),
(2.7) Uk = Uiy +o(r) (U - Uiy),

where U, ~L is the internal linear upwind value , Uy +L is the external linear

upwind value i is the internal upwind bias ratlo of gradients and r 2
is the external upwind bias ratio of gradients. The internal and external
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HaG. 2.2. Linear Upwind Values

ratio of linear gradients are defined in a similar manner to that used by
Spekreijse [15] by

US —U; US —Us;
2.8 po= =2l and b, = 8
( ) 1,5 UiTjL _ Ui 4,J Uith _ Ui,j

where U; C is the linear centred value at the cell interface. The function
®(.)is a hmlter function such as the Van Leer limiter often used in one-
dimensional schemes e.g.

oy Tt
(2.9) (I)(ri,j) =13 |ri—,j .
The choice of this function is discussed further in Section 6 below. Equa-
tions (2.6), (2.7) and (2.8) describe the unstructured flux limiter scheme
but in terms of new, and as yet undefined, interpolated and extrapolated
values: UZ_JL , U["]L and Ui, C . The upwind value U ~:* Is constructed by form-
ing a linear interpolant usmg the solution values at three centroids. The
first centroid is the centroid of triangle ¢ which has value U; associated
with it. The other two are the centroids of the neighbouring triangles on
edges other than edge j of triangle ¢, see Figure 2.2. The other upwind
value U, +L is defined in a similar way. For certain meshes the three cen-
troid pomts may be collinear in which case it is not possible to define a
linear interpolant. In this case the immediate upwind centroid value will
be used: internally U; or externally U ;.

The centered value, Ui("}, is constructed from the six values: U4, UZ,
UC, UP, UE and UT (see Figure 2.3) by a series of one-dimensional linear
interpolations. Three linear interpolations are performed using opposing
pairs of centroid values, see Figure 2.3. U%, U I and UH are found using the
pairs UP and UE, U4 and U® and U€ and UF respectively. If the midpoint
of the edge lies between UH and U?, as in Figure 2.3, then the centred
value is found by linear interpolation using these two values. Otherwise
the values U and U7 are used to linearly interpolate the centred value at
the midpoint.
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Fig. 2.3. Linear Centred Value

2.2. Boundary Conditions . As the spatial discretisation scheme
traverses several spatial elements in order to construct the linear inter-
polants care must be taken if one or more of the elements is not present
due to a boundary.

In the case of Dirichlet conditions the specified solution value at the
boundary is used as the ezternal one in the Riemann solver. The linear
centred value U;- C is now formed by averaging the internal solution, Uz,

and the boundary condition value. The internal upwind linear U;; i

constructed as normal. This allows the internal limited linear value U i
be constructed as usual. Dirichlet boundary condltlons can also be used in
constructing the upwind linear interpolant for U or U; "'L. Should one
of the triangles in Figure 2.2 be a boundary edge then the boundary value
provided can be used instead. The boundary value is associated with the
midpoint of the edge rather than a centroid.

The derivative information provided by the Neumann condition can be
used to estimate the external solution value by using the the internal solu-
tion value and the derivative provided by the Neumann condition. A ghost
cell is created outside the boundary that is the reflection of the triangular
element lying on the boundary. Using the internal centroid value U; at the
midpoint of the edge and the derivative normal to the edge the centroid
value in the ghost cell is extrapolated. This extrapolated value in the ghost
cell is used as the external solution value. The same procedure is used as
for the Dirichlet boundary condition.

3. Time Integration. The above spatial discretization scheme results in
a system of differential equations, each of which is of the form of equation
(2.5) . This system of equations can be written as the initial value problem:
(3.1) U = Fy (t, U®)) , U0) given,

where the N dimensional vector, U(%), is defined by

U®) = (U(z1,y1,t), U(za,92,t), - U(mN)yN)t))
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The point (z;,y;) is the centroid of the ith triangle and U(z;,y;,t) is a
numerical approximation to u(z;,y;,t) . Numerical integration of (3.1 )
provides the approximation, V(t), to the vector of exact p.d.e. solution
values at the mesh points, u(t) . The global error in the numerical solution
can be expressed as the sum of the spatial discretization error, e(t) =
u(t) — U(t), and the global time error, g(t) = U(t) — V(t). That is,

(ut) = U()) + (U(t) — X(1))
e(t) + g(2).

The Theta method code of Berzins and Furzeland [3] used here selects
functional iteration automatically for the non-stiff o.d.e.s resulting from
the Euler equations. The numerical solution at {,41 = t, + k where k is
the time step size, as denoted by V(¢,+1) is defined by

E(t) = u(t) - V(?)
(3.2)

(33) V(tnt1) = V(ta) + (1= 0)k V(ta) + 6 k En(tnt1,Vtns1))

in which ¥ (¢,,) and Z(tn) are the numerical solution and its time derivative
at the previous time %, and the default value of 6 is 0.55 . The system of
equations is solved using functional iteration, see [1] ,

BAV(mH) = V(ta) + (1= 0)k Y(tn) +0 k Ey(tns, X(1741)),

where m = 0, 1, ... with a predictor specified by [3].
This method also has an interesting similarity to the iterated Leap-Frog
method of Hyman, [11], as defined by

V(tng1) = [V(t)243r —72) +12 Vuaoy (14+7)2 k V(ts)
(3.5) +(L+7) k En(tnts, V(tng1)) 1/(2 4 3r),

where the ratio »r = k/k,—1 and k,_1 = t, —t,—1. After some manipu-
lation this may be rewritten as

147 142r .
V(tat1) = Y(tn) + 2730 kEn(tng1,V(tag1)) + 53 kV(t,)
3 .
(3.6) tom [ V(o) = Y(tn) + ko1 V(ta) 1.

24 3r

Substituting § = Elfz«er enables this to be again rewritten as

V(tng1) = ¥(ta) + (1= 0)k V(tn) + 6 k En(tns1, Vtns1))
(3.7) +(0.5 = )2r? [ V(tn-1) = ¥(tn) + kn-1 V(ta)]
which is the theta method with a local extrapolation type correction term.

In most time dependent p.d.e. codes either a CFL stability control is
employed or a standard o.d.e. solver is used which controls the local error
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L, 41(tny1) using local time error per step, (LEPS), control with respect to
a user supplied accuracy tolerance, TOL, i.e.

(3-8) Il ln+1(tn+1) || < TOL.

or TOL is multiplied by the timestep k£ in a local time error per unit step
(LEPUS) control. When controlling the LEPS it is difficult to establish a
relationship between the accuracy tolerance, TOL , and the global time and
space errors. In contrast, if the LEPUS is controlled then it is well known
that the time global error is proportional to the tolerance. This suggests
the use of LEPUS error control with a tolerance T'OL that reflects the
spatial error present.

4. Numerical Example. This section will demonstrate the effective-
ness of the new scheme both in terms of the accuracy achieved and the
absence of undershoots and overshoots on the two-dimensional Burger’s
equation,

Ou 0 [u? o [u?

(41) 8t+8m[2]+3y[2]_0’

with initial conditions g(z,y) . This equation is solved in a circular domain
of radius one centered at the origin with a zero Dirichlet boundary condi-
tion. The Theta method of Section 3 is used to integrate the o.d.e. system.
An absolute and relative tolerance of 10~° is used for the temporal inte-
gration. The mesh contains 8192 triangular elements. The Engquist-Osher
approximate Riemann solver for Burger’s equation is used. The solution
profile is shown in Figure 4.1 and is obtained by sampling the solution
along the line from (—1.1,—1.1001) to (1.1001,1.0). The values plotted are
the centroid values of the triangles through which this line passes. The
crosses are the results using the higher order scheme and the diamonds are
the results using the first-order scheme.

The initial conditions were chosen to be a square wave in the radial
direction with circular symmetry so that the discontinuity is not aligned
with triangle element edges. This provides a good test of how well the
scheme will capture discontinuities in general. The Figure 4.1 shows that
the new higher order scheme captures the discontinuous profile far better
than the first-order scheme.

5. Spatial and Temporal Errors. Efficient time integration requires
that the spatial and temporal are roughly the same order of magnitude.
The need for spatial error estimates unpolluted by temporal error requires
that the spatial error is the larger of the two errors. Lawson and Berzins,
[12] have developed a strategy for parabolic equations which achieves this
by controlling the local time error to be a fraction of the growth in the
spatial discretization error over a timestep. Berzins, [1], describes a similar
strategy for hyperbolic equations, based on the local growth in the spatial
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0.8 |

Ha. 4.1. Burger’s equation (time = 0.8).

error over each timestep. The local-in-time spatial error, é(¢,+1), for the
timestep from t,, to t,4; is defined as the spatial error at time ¢,4; given
the assumption that the spatial error, e(t,) , at time ¢, is zero. A local-in-
time error balancing approach is then given by

(5.1) I Loa(tags) I < €l &) Il 0<e<.

The error é(t,+41) is estimated by the difference between the computed
second-order in space solution and the first-order piecewise constant solu-
tion which satisfies a modified o.d.e. system denoted by

(52) Qn+1 (t) = Q-N(t)yn+1(t))’

where v, 1(tn) = V(tn) , 2p41(tn) = GnN(t, ¥ (14)) and where Gy (.,.) is
obtained from Fy(.,.) simply by setting the limiter function in the space
discretisation to zero. The local-in-time space error is then given by

(53) _é.(tn+l) = K(tn+1) - Qn+1(tn+1)

and is computed by applying the # method of the previous section to equa-
tion (5.2) . As only an estimate of the error is required it is sufficient to
use only one functional iteration to compute v,,,;; combining this with the
conditions on v, ;(t,) gives

Vpp1(tas1) = Y(ta) + 0k Gy(tnt1, Y(tn41)) +
(5.4) (1—-0) k Gy(tn,Y(tn)).
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Combining equation (5.4) with equations (3.3) and (5.3) gives

tpt1) =0 k [En(tn+1,Y(tat1)) — Gy(tns1, V(tng1))] +
(5.5) (1=0) k [EnCn,Y(tn)) = Gn(ta, Y(t0))] -

This estimate will only approximate the error in the low-order solution and
so local extrapolation in space is effectively being used when the high-order
solution is used to move forward in time. The actual situation is a little
more complicated due to the fact that the high order scheme switches to
first-order at shocks and when the solution is flat and consequently may
use the high order limiter only for a portion of the grid, see [1].

As the right side of equation (5.5) has a factor of k the error control
(5.1) for the step to t,41 is of the LEPUS form given by

(6.6) || Lig1(tag1) || < B TOL where TOL =€ || é(tny1)/k ||

Although LEPUS control is generally thought to be inefficient for standard
o.d.e.s, equation (5.1) may be also used directly as a LEPS control, with
little difference in integration performance.

6. Analysis of Discretization Method. Recent work by Struijs,
Deconinck and Roe [16] proposes two new properties that two or three space
dimensional schemes should posess.The concepts of second order accuracy
and monotonicity preservation are generalised to linearity preservation and
positivity . The definition of positivity, [16], requires that every new value
UL can be written as a convex combination of old values:

niri
(6.1) Urtt =3¢ Up with VYe; >0
j=0

while )" ¢; = 1 for consistency. This guarantees ,[16], a maximum principle
for the discrete steady state solution thus prohibiting the occurrence of new
extrema and imposing stability on the explicit scheme.

Consider the linear advection equation

Ou ou Ou

(6.2) W +a0_x+b8_y

=0,
where a and b are positive constants. Using the scheme presented earlier,
see equation (2.4) and Figure 2.1, the discrete form is

1

Ou
(6.3)5 =7

[me(Uijo’Uzﬂ-o)AyO,l - ng(UiTmUiEJJA:UO.l +
FrmUi, UR)Ayy = grm(Uiy, UR)Aw1 s +

Frm(Uip Ui Ay20 —  grm(Uiy,Uih)Azao 1.

The Riemann problems for the linear advection are simple to solve. The
solution is the product of the upwind value and the constant.
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Ka. 6.1. A possible triangle to characteristic alignment.

Assume that the triangle is aligned to the characteristic directions as
in Figure 6.1. The discrete form then simplifies to

aU; 1 _
(6.4) 2 = .l (@Uip)Ayor - (bUf)Azon  +
' (an:Ll)Ayl.z - (U )Az1s +
(aUh)Ayz0 — (BU7,)Azz0 |

From equations (2.6) and (2.7) it can be seen that these internal and exter-
nal values at the cell interface are a combination of the centroid values and
linear upwind values. In the case when the limiting function ®() is zero
the centroid solution values are used at the cell interface and the equation
may be expressed as:

oU;
ot

1
(6.5) + I[ bAzo1 Uijo — alyzo Us ).

1
T [—aAyo,1 — aAy s + bAzy 2 + bAzs o] U

All the internal centroid solution values have Az;; < 0 and Ay;; > 0.
and all the external centroid solution values have Az; ; > 0 and Ay; ; < 0.
The factors of the external centroid solution values are all positive and the
factors of all the internal centroid solution values are all negative. Note the
Az;; and Ay; ; go anticlockwise around the triangular element so

(66) ASCO,l + Aﬂl'z + A.’l}z’o E= AyO,l + Ay1,2 + AyZ,O =0.

So far only the spatial discretisation has been considered. To obtain the
final result the temporal discretisation will have to be introduced. Applying
the forward Euler method to equation (6.5) gives

kn
Uin+1 = Uzn + A_ [—aAyo,l - aAyl,g + bAmlyz -+ bAwg,o] Uin

kn n n
(6.7) + T [ Az Uy — alys U] .

)
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This shows that the contribution from the external centroid solution values
Uio and U; 3 is positive. By summing all the factors of U; the following
inequality must be satisfied if the scheme is to be positive:

kn,
(6.8) 1+ T [—elyo,1 — alAyy s + bAxzy 5 + bAzy o] > 0.
This can be simplified using equation (6.6) and rewritten as,
kn,
(69) A_ [—aAy2,0 + bAl‘o,l] S 1,

where —Ays o > 0 and Azg1 > 0. If L; is the length of the longest edge
of the triangle 7 then —Ay, o, Azp; < L; and a sufficient condition for
positivity is,

L;
(6.10) ba (e +b) <1

This is a CFL type stability condition that depends on the term L;/A;
which is also used as a measure of the quality of a triangle. So provid-
ing the inequality in equation (6.10) is satisfied the discretisation can be
written in the form of equation (6.1) with all the ¢; > 0. Although only
one possible alignment to the characteristic directions has been considered
similar results are produced by considering the other possibilities.

In the case when the limiter ®(.) is non zero, Berzins and Ware [6] con-
sidered different flow paths through the triangle in Figure 6.1 and showed
that three sufficient conditions for positivity are:

1. For every upwind interpolant the centroid value nearest the edge at
whose midpoint the upwind value is being calculated is the maximum or
minimum of the three values used to form the interpolan

2. The centred interpolant must be bounded by the!, centr01d values on de im) lF
“eithersidei.e. Q?OJIW’C cm\(‘hmkt- o e ;

611y US=oabp+=a)lii;for0<a<t:
3. The limiter ®(.) must be positive and ®(S)/S < 1. This last condition

is satisfied, for example, by a modified van Leer limiter defined by
S+S|
14w

(6.12) ®(S) = where v = Max(1,|S])
Although the standard Van Leer limiter has been used for the experiments
described in this paper Berzins and Ware [6] showed that this limiter may
give very slight overshoots and undershoots.

A linearity-preserving spatial discretization method is defined by [16],
as one which preserves the exact steady state solution whenever this is a
linear function of the space coordinates # and y, for any arbitrary triangu-
lation of the domain. This is equivalent to second order accuracy on regular
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meshes, see [16]. Berzins and Ware were able to show that the method in
its unlimited form is linearity preserving but that in some cases condition
2 above may force linearity preservation to be violated.

7. Prototype Automatic Software. A prototype package which
combines the spatial and temporal discretization methods and associated
error control strategies described above has been written. The package re-
quires the user to provide an approximate Riemann solver for the convective
fluxes, definitions of the source and diffusive terms and the boundary and
initial conditions. In addition the user must provide a file containing the
spatial domain description for the mesh generator and a spatial error tol-
erance for the adaptivity software. An optional user-supplied monitoring
function is called at the end of every successful timestep.

The goal of the automatic algorithm described here is to ensure that
the spatial mesh is fine or coarse enough so that the solution satisfies the
users’ accuracy and efficiency requirements. The adaptive algorithm was
developed from that in Berzins et. al. [2], using the Shell Research mesh
generator based on the ideas of George et al. [10] , and adopting a regular
subdivision approach , see Berzins et al. [4]. The strategies for deciding
when to remesh are essentially those of Lawson and Berzins [12]. At each
time step the estimate of ||&(¢)|| is calculated, and if it is greater than 0.25
of EPS - the user supplied tolerance, then a new mesh is constructed that
ensures that the subsequent error is less than a given fraction of EPS. The
underlying assumption in this agorithm is that the introduction of extra
mesh points will cause the error to decrease. The selection of appropriate
remeshing times is made by using a combination of present estimated errors
and predicted future errors. Once a new mesh has been found a “flying
restart “is used. The computed solution and the time history array used
by the time integrator are interpolated using the method of Ramshaw [14]
onto this mesh and the time integration is restarted with the same time step
as used immediately before remeshing. Care must be taken to modify the
accuracy tolerance for the time integration so that it reflects the expected
reduction in the spatial discretization error. An illustration of how the
solver works is provided by the dimensional Burgers’ equation problem
defined by :

(T1) w + vug + vuy — v (ugg + uyy) = 0, v=0.0001,

where  (z,y,t) € (0,1) x (0,1) x (0.25,1.25] . The exact solution is
given by u(z,y,t) = (1 + e?)~1, where B= (z +y—1)/(2v) .

Three runs were done, the first (FX) used a fixed mesh of 8192 triangles
and a time local error TOL of 1.0e-5 in an L1 vector norm. The second
(AD) used the adaptive space strategy with a space local error control of
1.0d-5 and the same ordinary local error control and the third (AU) used
the fully automatic code with error balancing and adaptivity. The cpu
times are those on an Silicon Graphics R4000. The “NT” rows show the
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number of triangles used by the adaptive codes. The adaptive algorithm
provides the same accuracy using less triangles and c.p.u. time than the
fixed mesh code. “NR” is the number of spatial remeshes automatically
selected. Similar results are given by Berzins and Ware [5] using an earlier
version of the code.

TABLE 7.1
Adaptive Mesh Burgers’ Equation Results.

L1 Error Norm at Time
0.26 0.69 1.0 1.3 NS NF CPU | NR
FX | 4.0D-3 | 3.9D-2 | 5.2D-2 | 2.1D-2 | 745 1769 | 2828 0
AD [ 1.1D-2 | 29D-2 | 7.2D-2 | 1.0D-2 | 1805 | 4664 | 1490 | 229
NT 902 1173 1223 330
AU | 3.8D-3 | 2.56D-2 | 5.3D-2 | 1.2D-2 | 5625 | 15446 | 1636 | 666 |
NT 508 710 290 210

8. Summary. This paper has presented a new spatial discretisation
scheme for unstructured meshes that is an extension of one-dimensional flux
limiter schemes. The numerical experiments show that this new scheme has
better capture than the first-order scheme without undershoots or over-
shoots. The prototype adaptive software based on this discretisation has
been used to solve a variety of convection-dominated problems using fully
automatic mesh generation and mesh adaptation algorithms. The adaptiv-
ity tracks features in the solution automatically whilst using large elements
away from these features to increase the efficiency. The package also can be
used on a variety of different computer architectures. The flux calculation
used m the residual is designed to operate in parallel allowing the pack-
age to take advantage of both the shared memory parallel architecture of
Silicon Graphics machines and distributed memory parallel architectures
[17].
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