
Z
M

P
D
R

T

R
R
A

P
s

Journal Pre-proof

Adaptive elasticity policies for staging-based in situ visualization

he Wang, Matthieu Dorier, Pradeep Subedi, Philip E. Davis,
anish Parashar

II: S0167-739X(22)00415-0
OI: https://doi.org/10.1016/j.future.2022.12.010
eference: FUTURE 6689

o appear in: Future Generation Computer Systems

eceived date : 31 March 2022
evised date : 27 November 2022
ccepted date : 9 December 2022

lease cite this article as: Z. Wang, M. Dorier, P. Subedi et al., Adaptive elasticity policies for
taging-based in situ visualization, Future Generation Computer Systems (2022), doi:

https://doi.org/10.1016/j.future.2022.12.010.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2022.12.010
https://doi.org/10.1016/j.future.2022.12.010

Journal Pre-proof

Adaptive Elasticity Policies For Staging-Based In Situ Visualization

Abstract

In situ process ing close
to the data so servation
data from edg n a high-
performance c imulation
program and a omputing
resources assi ween the
HPC and clou head and
improve its res e number
of computing s; it may
use a few reso wever, it
is hard to pre cution to
adapt to chan umber of
processes use e present
adaptive elasti to trigger
the addition/re example,
we integrate th elasticity
scenarios. Com esses for
each rescaling improve
resource utiliz ore-hours
compared with

Keywords: In

1. Introducti

In situ pro
and I/O capab
The precise de
form it targets
observational
ing tasks on th
cloud platform
tific workflow
visualization (
HPC platform
divided into ti
a tightly-coup
an in situ libra
the in situ libr
ecutes data an

∗Correspondin
Email addres

nd mem-
imulation
n API for
ocessing,
d to other
ther pro-
he mem-
ther local
ata stag-
loosely-

is article,
e process
.
informa-
and iter-

imulation
namic lo-
n can in-
ific inter-
er, it may

Preprint submitte er 20, 2022
Jo
ur

na
l P

re
-p

ro
of

Zhe Wanga,∗, Matthieu Dorierb, Pradeep Subedic, Philip E. Davisc, Manish Parasharc

aRutgers University, NJ, USA
bArgonne National Laboratory, Lemont, IL, USA

cUniversity of Utah, Salt Lake City, UT, USA

ing aims to alleviate the growing gap between computation and I/O capabilities by performing data process
urce. In situ processing is widely used to process data generated by multiple data sources, including ob
e devices or scientific observational facilities and the simulation data generated by scientific computation o
omputing (HPC) platform. For a scientific workflow that is run on an HPC platform and composed of a s
n in situ data analytics or visualization (abbreviated as ana/vis) task, there is an implicit assumption that the c
gned to the workflow keep static during the workflow execution. However, with the converging trend bet
d computing platform, running the in situ ana/vis task in an elastic way is promising to decrease its over
ource utilization rate. Resource elasticity represents the ability to change resource configurations such as th
nodes/processes during workflow execution. An elastic job may dynamically adjust resource configuration
urces at the beginning and more resources toward the end of the job when interesting data appear. Ho

dict a priori how many computing nodes/processes need to be added/removed during the workflow exe
ging workflow needs. How to efficiently guide elasticity operations, such as growing or shrinking the n
d for in situ analysis during workflow execution, is an open-ended research question. In this article, w
city policies that adopt workflow runtime information collected during workflow execution to predict how
moval of processes in order to minimize in situ processing overhead. Taking in situ visualization tasks as an
e presented elasticity policies into a staging-based elastic workflow and evaluate its efficiency in multiple
pared with the situation without elasticity or with a static elasticity policy that uses a fixed number of proc
operation, the adaptive elasticity policy can save overhead in finding a proper resource configuration and

ation efficiency. For example, one experiment illustrates that the adaptive elasticity policy saves 41% of c
the situation without the resource elasticity.

Situ Processing, Scientific Visualization, Data Staging, Elasticity Policies

on

cessing addresses the gap between computation
ilities by processing data as they are generated.
finition of in situ processing depends on the plat-
. For the data generated by edge devices [1] or
facilities [2], in situ processing represents execut-
e devices without transferring the data to remote
s [3]. This research mainly focuses on the scien-
composed of the simulation and data analysis or
abbreviated as ana/vis) applications running on
s. The in situ processing in this context is mainly
ghtly-coupled and loosely-coupled system [4]. In
led system, the simulation program is linked with
ry. When APIs for in situ processing are called,
ary transforms the data layout as needed and ex-
a/vis tasks. After that, the in situ library executes

g author
s: jay.wang@rutgers.edu (Zhe Wang)

its operations on the same hardware, such as the CPU a
ory, with the simulation application. In contrast, the s
program in a loosely-coupled system is linked using a
data management. Once the API is called for in situ pr
data blocks generated by the simulation are transferre
remote nodes via a high-speed network [5, 6] or to o
cesses on the same nodes via shared memory [7, 8]. T
ory used to store the transferred simulation data, whe
to the simulation nodes or remote, is often called a d
ing area. A staging-based scientific workflow adopts a
coupled in situ approach to perform ana/vis tasks. In th
we use the term in-staging processing to represent th
of executing ana/vis tasks within the data staging area

The data blocks that contain interesting scientific
tion are usually unevenly distributed across processes
ations of simulation computation. For example, the s
that adopts adaptive mesh refinement (AMR) uses dy
cal refinements during the computation. This operatio
crease the spatial and temporal resolution of the spec
esting domain to acquire detailed information. Howev

d to Future Generation Computer Systems Decemb

Journal Pre-proof

also increase the resource cost for analyzing the data [9]. Sim-
ilarly, interesting phenomena of the simulation based on Cloud
Model 1 (CM
the simulation
constraints, m
alytics tasks o
between the da
puting resourc

Multiple re
between data
processing fre
workflow exec
also be adjust
rate and avail
in situ proces
ecuting ana/vi
moving physi
during the wo
improve resou
amount of com
load level [9]
research chall
situ processin
consists of tw
can start a new
the resource le
when they bec

Resource e
computing pla
platform and H
processing on
capabilities or
an elastic sche
be carefully d
cessing. Assu
situ processin
ticity, one typ
decide when a
Although this
ning on HPC p
puting are still

The design
by research w
ical resource e
factors [21]:
tion, (2) the m
the method to
to be added o
ture resource
ticity policies
ing platform [
on the cloud c
resource const
specialized ela

1The term exp
17] with a similar

Resource elasticity goals: The primary goal of the elas-
ticity policy is to improve the workflow execution time within

s usually
ay need

ossible to
when the
xecution
olicy can
u ana/vis

tu ana/vis
in a par-
ons need
influence
ay cause
sses. Ef-
between

e machine
ce model
thods are
. This is
e perfor-
ing way.

re gener-
ethod is

require-
as not yet
resource
e of task
policies

ing or re-
a staging
can pre-
changes

data pro-
n results
any pro-
resource
s for us-
assumes
, and the
lications;
ocated to
We inte-

workflow
ystem at

NERSC).
ith static

y policies
guration

ts also il-
ore-hours

the in situ
Jo
ur

na
l P

re
-p

ro
of

1) [10], such as tornadoes, appear at the end of
. To finish data processing within specific time
ore computing resources are required for data an-
nce these interesting data appear. The mismatch
ta waiting to be processed and the available com-
es may slow down in situ processing.
search solutions can help to relieve the mismatch
generation and consumption. For example, the
quency of simulated data can be adjusted during
ution [11], and the number of ana/vis tasks can
ed speculatively to balance the data production
able resources [12]. The resource elasticity of
sing indicates that the number of processes ex-
s tasks can be changed, such as adding or re-

cal computing resources (cores and nodes [13]),
rkflow execution. This elasticity mechanism can
rce utilization efficiency by allocating a proper
puting resources according to the current work-

. Resource elasticity is also identified as a key
enge for processing dynamic workloads for in
g [14, 13, 15]. In particular, resource elasticity
o abstract primitives: the resource join operation

task or schedule new computing resources, and
ave operation can release computation resources
ome idle1.
lasticity policies are well explored on the cloud
tform [18]. With the convergence between cloud
PC platform [19], either migrating classic in situ

to the cloud platform with full-fledged elasticity
executing it on the HPC platform managed by
duler [20], efficient elasticity strategies need to

esigned to decrease the overhead of in situ pro-
ming the underlying platform on which the in

g runs on supports the computing resource elas-
ical research question is how elasticity policies
nd how to add or remove computing resources.
research mainly targets in situ applications run-
latforms, elasticity strategies used for cloud com-
worth using for reference.
of resource elasticity policies is widely explored

orks in the area of cloud computing [18]. A typ-
lasticity policy needs to consider the following

(1) the condition to trigger the elasticity opera-
ethod to forecast the future workload, and (3)
compute how many computing resources need

r removed for rescaling actions to satisfy the fu-
requirements. There are multiple existing elas-
for applications running on the cloud comput-
18]. Compared with web applications running

omputing platform, the different assumptions and
raints for in situ processing listed below require
sticity policies.

and/contract or grow/shrink is also used in related works [16,
meaning.

the available resource constraints. In situ ana/vis task
run concurrently with the simulation, and these tasks m
to overlap with simulation computation as much as p
decrease the workflow execution time. Furthermore,
simulation execution time is much longer than the e
time of ana/vis tasks for each iteration, the elasticity p
decrease the computing resources allocated to in sit
tasks to improve resource utilization.

Elasticity operations for MPI applications: In si
tasks are usually implemented using the MPI and run
allel manner. Performance models of these applicati
to consider how the data size and available resources
in situ processing. Besides, the rescaling operation m
overhead, such as time for syncing newly added proce
ficient elasticity policies need to balance the tradeoff

the benefits and the overhead of rescaling operations.
Forecasting future workloads: Although multipl

learning methods are used for training the performan
to forecast the future workloads [18, 22], these me
difficult to be used in the in situ processing scenario
because few historical datasets are available to train th
mance model for in situ processing running in a stream
If we assume little prior knowledge about how data a
ated by simulation computation, an adaptive online m
required to forecast the application execution time.

How to achieve elasticity policies that satisfy the
ments above in an efficient way for in situ processing h
been fully explored. This article mainly focuses on the
elasticity for scientific visualization2, an important typ
that can run in situ [4]. We present adaptive elasticity
to guide the execution of rescaling operations, i.e., add
moving processes, for visualization running in the dat
service. In particular, we first present a model that
dict how the execution time of in-staging visualization
with the number of running processes and the size of
cessed by visualization tasks. Based on the predictio
of this model, the elasticity policy can decide how m
cesses should be added or removed. Depending on the
constraints of the job, we further discuss two scenario
ing elasticity for in situ visualization. One scenario
the computing resources allocated to the job are fixed
elasticity policy can redistribute resources among app
another scenario assumes the computing resources all
the job can change during the workflow execution.
grate presented policies into a staging-based elastic
and evaluate its efficiency on the Cori Cray-XC40 s
the National Energy Research Scientific Computing (
Compared with a plan-driven elasticity operation w
rescaling plans, the results show that adaptive elasticit
produce less overhead in searching for a resource confi
that is favorable for the in situ visualization. The resul
lustrate the effect of elasticity policies in saving the c

2We mainly target the parallel rendering task when we discuss
visualization task in this work.

2

Journal Pre-proof

for the in situ visualization.
This article builds on our previous work [23] and makes

new contributi
the model use
time. Previou
processes infl
in this article,
time changes
number of pro
ferent scenari
ample, when t
workflow exec
the simulation
computing res
ecution, we ca
ing service. T
data ana/vis ta
tributed visua
elasticity in th

The rest of
cusses the bac
rate on the de
we further dis
adaptive elasti
visualization t
tion 5, and the
side the scope
work in Sectio

2. Backgroun

This sectio
application lay
proach. We fir
with the elasti
alization task
cessing time c
and the size o
method that u
event-driven p
policies for in
platform supp

2.1. In situ wo

Figure 1 i
elastic in-stag
ing service sup
may be trigger
tion according
simulation com
ulation progra
operations. If
executing ana

3The simulati
manner and share

Computation
Rescale

and sync

Data transfer
In-staging

 processing
Wait time

ne

elasticity.

ervice. If
ompared
aling op-

the data
tive is ex-
ices may
hich pro-
er data to
.
ress, the
e before
aling op-
nism and
vice. The
e a static
age com-

number
ame con-
lters [26,
executed
his con-
with re-

lance the
ing oper-
make the
ecific re-
d caused

Ti
m

e(
s)

ging visual-
size of the
Jo

ur
na

l P
re

-p
ro

of

ons along multiple dimensions. First, we extend
d to estimate the in situ visualization execution
sly, we had considered only how the number of
uences the in situ visualization execution time;

we discuss how in situ visualization execution
with both the varied simulated data size and the
cesses. Second, we systematically discuss dif-

os that adopt in situ elasticity policies. For ex-
he total computing resources are fixed during the
ution, we can redistribute resources allocated to
and the data staging service3. When the total

ources can be changed during the workflow ex-
n rescale the resource allocated to the data stag-

hird, our previous work adopts only the synthetic
sks in the evaluation. In contrast, we adopt a dis-
lization that supports the capability of resources
e evaluation of this article.
the article is organized as follows: Section 2 dis-

kground and motivation. In Section 3, we elabo-
sign of adaptive elasticity policies. In Section 4,
cuss the implementation details of integrating the
city policies into the in-staging processing with
asks. The evaluation results are discussed in Sec-
n we further discuss relevant aspects that are out-
of the evaluation in Section 6. We discuss related
n 7, and conclude the article in Section 8.

d and Motivation

n introduces background information from the
er to the infrastructure layer with a top-down ap-
st introduce typical stages of the in situ workflow
c in-staging processing. Then we use the visu-
as an example to show how the in-staging pro-
an be affected by available computing resources
f data to be processed. After that, we discuss a
tilizes the concept of autonomic computing and
rogramming to implement the adaptive elasticity
situ processing. Lastly, we discuss how the HPC

orts applications with a resource elasticity design.

rkflow with elastic in-staging visualization

llustrates key stages of an in situ workflow with
ing processing [24]. We assume the data stag-
ports resource elasticity, and elasticity primitives
ed after any iteration of the simulation computa-
to workflow runtime information. After each
putation, the Rescale and sync stage of the sim-

m checks if it is necessary to trigger rescaling
not, the number of data staging processes for

/vis remains constant, and data blocks generated

on program and the data staging service run in a concurrent
the computing resources assigned to the current job.

......

......Simulation

Data staging
service

Overhead

Timeli

Figure 1: Different stages of in-staging processing with resource

by the simulation are transferred to the data staging s
the in-staging processing takes too long to complete c
with the simulation computation, we may use a resc
eration to add more computing resources and increase
consumption rate. In this situation, the elasticity primi
ecuted, and the number of available data staging serv
change. The simulation process needs to confirm w
cesses of the data staging service are alive and transf
the staging service with a varied number of processes

However, when one rescaling operation is in prog
simulation cannot transfer data to the staging servic
completion of the rescaling. This is because the resc
eration may interfere with the data placement mecha
communication channels used by the data staging ser
task executed by the data staging service may requir
number of processes [15]. For example, the parallel im
positing operation [25] usually assumes the process
does not change during the parallel execution. The s
straint can be found for other parallel visualization fi
27]. In this situation, rescaling operations cannot be
while in-staging processing tasks are in progress. T
straint introduces an overhead to the in situ processing
source elasticity, and the elasticity policy needs to ba
trade-off between the benefits and overhead of rescal
ations. The main goal of the elasticity policy is to
consumption rate match the production rate under sp
source usage constraints while minimizing the overhea
by rescaling operations as much as possible.

Number of processes

48 16 32
64

128
Data siz

e

256MB512MB
1GB

2GB

4GB
0

20

40

60

80

100

Figure 2: An example that shows how the execution time of in-sta
ization changes with the number of data staging processes and the
data generated by simulation.

3

Journal Pre-proof

4 8
Number of the

-1
0
1
2
3
4
5
6
7

Ti
m

e(
se

cs
)

256MB
512MB

1GB
2GB

4GB

(a)

4

5
4
8

16
32

64
128

Figure 3: Subfig
changes with the
base 2 is used for
in-staging data vi

2.2. Factors a
By compa

tation and in-
elasticity polic
ation. In addit
many processe
operation. The
ing might be i
staging proces
a mechanism
with these fac
the number of
achieve a targe

Figure 2 il
alization time
ing processes
application4 a
alize its data in
in a distribute
that contain d
data staging p
ization pipelin
times. From t
versely propor
related to the
data processin
entific visuali
that can be pr
visualization s
types of data p
by various fac
outside the sc
time of particl
gies; and the e
halo regions fo
density thresh

Figure 3 p
staging visual
ure 3(a), the s
tively constan
processes. Gr
tion time decr

4https://github

four processes and 4GB of simulated data for each simulation
iteration, adding four more processes can reduce the in-staging

hen there
igible for
eed up to

approx-
particular
nding on
trast, for
alization
ted data.

er rescal-
and use
changes

e of sim-
ses need
xecution
ing tasks
ting per-
ew tasks.
new data
dels (dis-

way can
ting [31,
, the au-
ents that
elements

elements.
and con-
kinds of

other ab-
the auto-
nitor the

d execute
sed on a
vel, such

echanism
nning be-

ples can
method-
are usu-
ree main
r action.
ontent of
ime. The
d on spe-
lastic in-
cution of
detection

runtime
strategies
based on
Jo
ur

na
l P

re
-p

ro
of

16 32 64 128
data staging processes

Case 1

0.250.5 1 2 4
Size of the simulated data(GB)

0

1

2

3

Ti
m

e(
se

cs
)

(b) Case 2

ure (a) shows how the in-staging data visualization time
number of the data staging process, and the log scale with
both x and y axes for this figure. Subfigure (b) shows how the
sualization time changes with the size of the simulated data.

ffecting in-staging visualization time
ring the disparity between the simulation compu-
staging processing time shown in Figure 1, the
y can decide when to trigger the rescaling oper-
ion, it is also necessary to properly estimate how
s should be added or removed for each rescaling
execution time of particular in-staging process-

nfluenced by factors such as the number of data
ses or the size of the simulated data. If there is
to predict how the data processing time changes
tors, the elasticity policy can further compute
processes that should be added or removed to

ted in-staging processing time.
lustrates an example of how the in-staging visu-
changes when varying the number of data stag-
and the data size. We use the Gray-Scott mini-
s the data source, extract its isosurface, and visu-
the staging area using VTK and Catalyst [28, 27]

d manner. We construct multiple configurations
ifferent sizes of simulation data and numbers of
rocesses. We then execute the associated visual-
e with these configurations and record execution
he results, the in-staging visualization time is in-
tional to the number of processes and positively
size of simulated data in different degrees. The
g task discussed in this article is mainly the sci-
zation (parallel rendering task), a common task
ocessed in an in situ manner for the simulation-
cientific workflow. The execution time of other
rocessing tasks executed in situ can be influenced
tors, even the domain-related variables, which are
ope of this article. For example, the execution
e advection [29] is affected by the seeding strate-
xecution time of the analysis task designed to find
r cosmological simulation [30] is affected by the

old describing the halo region.
rovides more details on how the execution of in-
ization changes with associated factors. In Fig-
peed-up of the execution time remains compara-
t when we double the number of the data staging
adually adding more processes makes the execu-
ease in proportion. For example, when there are

.com/pnorbert/adiosvm/tree/master/Tutorial/gray-scott

visualization time by approximately half. However, w
are 64 processes, adding four more processes is negl
decreasing the in-staging visualization time, and we n
64 more processes to reduce the visualization time by
imately half. This observation shows that adding a
number of processes achieves different benefits depe
the existing available data staging processes. In con
the results shown in Figure 3(b), the in-staging visu
time increases in proportion to the size of the simula
In order to design a proper elasticity policy to trigg
ing, we need to collect workflow runtime information
this information to estimate how the execution time
with a variation in the number of processes and the siz
ulated data. Then we can confirm how many proces
to be added/removed in order to achieve the targeted e
time. If an in situ workflow with new data process
using the same data source starts execution, the exis
formance model may become unsuitable for these n
We need to recollect the runtime information for these
processing tasks and recompute their performance mo
cussed in subsection 3.1).

2.3. In situ trigger for supporting resource elasticity
Managing the software system in an autonomic

be implemented by the paradigm of autonomic compu
32]. From the perspective of the system architecture
tonomic system contains one or more autonomic elem
serve different self-management goals. The autonomic
typically consist of autonomic manager and managed
The autonomic manager is in charge of monitoring
trolling the autonomic elements, which represent all
resources such as storage, computing resources, or
stracted entities that can be adjusted. Conceptually,
nomic manager needs to provide the capability to mo
management elements, analyze the monitored data, an
particular actions to update the managed elements ba
customized plan that describes objectives in a high le
as “minimizing the workflow execution time”.

In the context of in situ processing, the trigger m
has been widely adopted to dynamically adjust the ru
haviors of in situ processing [33, 34, 35]. These exam
be viewed as concrete implementations following the
ology of autonomic computing. In particular, triggers
ally lightweight analysis tasks that are composed of th
stages: trigger detection, trigger decision, and trigge
The trigger detection is in charge of inspecting the c
the data generated by the simulation or workflow runt
trigger decision decides how to trigger the action base
cific user-defined principles. In the context of the e
staging processing, the trigger action can be the exe
computing resource rescaling operations; the trigger
can be the process to monitor and collect and workflow
information; the trigger decision can be the dedicated
to decide when and how to trigger rescaling operations
the result of the trigger detection.

4

Journal Pre-proof

2.4. Executing elastic applications on the HPC platform

When the
operation, the
needs to respo
is a classical
primitives with
agement softw
data. The app
new job with a
However, savi
operation adds
port of dynam
extensions [37
elasticity can
ing the job an
these supports
ponents of th
an elastic man
booting. For
situ processing
in requiremen
emerging batc
namically add
without restar

3. Design of E

The critica
and how to tri
ent scenarios o
trigger the elas
removed from
present a mod
processing tim
data staging pr
designs of ad
ios in subsecti
overhead of th
of the elasticit

3.1. Modeling

We first d
situ processing
the total data
Figure 3(a), t
processing exe
scale. We use
relationship.
the in-staging
cesses; a and b

5e.g. https:/
6This function

we adopt the pow
used to predict th

2 512MB 1GB 2GB

. The solid
e estimated

y a nega-
es of the
follows:

(1)

e values
rocessing
processes
le points
tion y =

ated data
garithmic
estimated
he actual
given an

d number

(2)

0, the in-
g execu-

e from y0
e number

service:

(3)

the data
uation to

need to

uation in
the data

bmodels
assumes

hich have
umber of
lts shown

odel the
ize when
bmodels,
Jo
ur

na
l P

re
-p

ro
of

elasticity policy decides to trigger an elasticity
underlying resource management infrastructure

nd to the associated operation. Checkpoint/restart
mechanism with which to implement elasticity
few resource requirements for the resource man-

are, and it requires only the disk that can store the
lication needs to stop the current job and start a
n adjusted number of nodes or processes [36, 16].
ng and reloading data based on checkpoint/restart
overhead to the workflow runtime. With the sup-

ic process in the MPI standard 2.0 and associated
] or MPI-like communication libraries5, resource
be achieved in an online manner without restart-
d application [15] for the HPC platform. With
of elasticity in the communication layer, com-

e in situ processing tend to be implemented in
ner during the workflow execution without re-
example, the simulation [38] and associated in
[13, 15] can be elastic to accommodate changes

ts of data generation and consumption, and the
h scheduler for the HPC platform can also dy-
or remove nodes during job execution [17, 20]

ting a new job.

lasticity Policies

l steps of elasticity policies are to decide when
gger rescaling operations. Depending on differ-
f elasticity, we need to specify the conditions to
ticity and the number of processes added into (or
) the data staging service. In this section, we first
el in subsection 3.1 to illustrate how the in situ
e is related to the data size and the number of
ocesses. Based on this model, we further discuss

aptive elasticity policies for two typical scenar-
on 3.2. Finally, subsection 3.3 discusses how the
e elasticity operation influences key parameters
y policies.

in situ processing execution time

iscuss how the execution time of distributed in
is influenced by the number of processes when

size is fixed. According to the results shown in
here is a linear relationship between the in situ
cution time and the number of processes in log
y = a · xb as a fitting function6 to describe this

Specifically, y represents the execution time of
processing, and x represents the number of pro-
are two parameters influenced by the properties

/github.com/mochi-hpc/mochi-mona

is a typical form of the power-law distribution [39]. Although
er-law distribution as a fitting curve in this article, the model
e process number can be expressed by different equations.

1 2 3 4 5
Log(number of data staging processes)

-3
-2
-1
0
1

Lo
g(

se
cs

)

Figure 4: Comparison between actual values and predicted values
dot represents the actual value, and the dashed line represents th
value based on curve fitting.

of ana/vis tasks and processed data size, and b is usuall
tive real number. We can take the logarithm of both sid
original equation and change it to a linear equation as

ln y = ln a + b · ln x

We then need only two sample points to estimate th
of a and b. In order to describe how the ana/vis p
time is influenced by the number of the data staging
(illustrated in Figure 3(a)), we use the first two samp
as input to estimate unknown parameters in the equa
a ·xb. Figure 4 uses a dashed line to represent the estim
and uses solid dots to represent actual data for the lo
version of the equation. As shown in the results, the
data calculated by the model can accurately match t
data with different simulated data sizes. Therefore,
execution time of in-staging processing, the associate
of processes can be expressed as

x = exp(
ln y − ln a

b
)

Assuming the number of data staging processes is x
staging execution time is y0, and the targeted in-stagin
tion time is y1; in order to decrease the execution tim
to y1, we can use the following equation to compute th
of processes that should be added into the data staging

p = exp(
ln y1 − ln a

b
) − exp(

ln y0 − ln a
b

),

where p represents the number of processes added to
staging service. In addition, we can use a similar eq
compute how many processes can be removed if we
increase the in-staging processing time.

We further loosen constraints and discuss the sit
which the in situ processing time is influenced by both
size and the number of data staging processes. Two su
need to be considered in this situation: the first model
a fixed data size and a varied number of processes (w
been discussed); the second model assumes a fixed n
processes and varied data sizes. According to the resu
in Figure 3(b), we can also use the linear regression to m
relationship between the execution time and the data s
the number of processes is fixed. With these two su

5

Journal Pre-proof

y
z

ax1, bx1

Figure 5: Illustrat
the varied data siz

we can conve
tion time when
processes are

As results
processes, the
tion execution
alization or an
terns, and we
ciated relation
When there ar
least square ap
values of para

Figure 5 fu
situ processing
ber of process
ber of process
data, and the z
cessing. Assu
P11(x1, y1, z11)
to develop an
at the point P
size of data is
model that fit
can compute z
the blue dashe
is a fixed data
that the curve
to each other,
decreasing rat
assume the bl
ure 5 have the
logarithm ope
value can be
We still need
predict its key
points P11 and
intersection be
curve. From th
we can further
and compute t

Algorithm
the in situ proc
tion of the dat
to line 2, we co
that fits the gr

Algorithm 1: Estimating in situ processing execution
time with an arbitrary combination of the simulated

23)

m line 3
he model
m line 6
l that fits
f the blue
ng to the

any pro-
operation
e number
umber of
t that the
complete
e ayn and
e estima-
r that, the

(4)

in an of-
e manner
arameter
ent com-
es. Then
, and P23
diction is
accuracy
st square
multiple
5.1). In
to avoid

r, the on-
ng opera-
he model
tion only
ocess for
rediction
close to
Jo
ur

na
l P

re
-p

ro
of

x
P11

P23P12

Pmn

ay3, by3

P1n ayn, bynP13

ion of the algorithm that can predict the execution time with
e and the number of processes.

niently predict the in-staging processing execu-
the combinations of data size and the number of

arbitrary.
shown in Figure 3(b), with a fixed number of

re is a linear relationship between the visualiza-
time and the data size. Other types of data visu-
alysis tasks may contain more complicated pat-

can use nonlinear regression to describe the asso-
ship between the execution time and the data size.
e multiple available data samples, we can use the
proach [40, 41, 42] to find the most appropriate

meters in the fitting function.
rther illustrates the idea of how to estimate the in
execution time with varying data size and num-

es. In particular, the x axis represents the num-
es, the y axis represents the size of the simulated
axis represents the execution time of in situ pro-
ming there are three known sample points, i.e.,
, P12(x1, y2, z12) and P23(x2, y3, z23), the goal is
algorithm that can estimate the execution time

mn where the number of processes is xm and the
yn. If we can predict the key parameters of the

the blue dashed curve shown in Figure 5, then we
mn from the xm and yn. The blue solid curve and
d curve represent two specific cases when there
size. According to Figure 3(a), we can observe

s with different simulated data sizes are parallel
and we can assume these curves have the same

e within a specific range. Therefore, we can also
ue solid curve and the blue dashed curve in Fig-

same decreasing rate after applying the natural
rator, i.e., the slope value (b) in equation 1. This
calculated based on known points P13 and P23.
another known point on the blue dashed curve to
model parameters. Based on two known sample
P12, we can predict the z1n of P1n, which is the

tween the green solid curve and the blue dashed
e P1n and decreasing rate of the solid blue curve,
estimate the parameters of the dashed blue curve

he value of zmn associated with Pmn.
1 illustrates the detailed procedures to compute
essing execution time with an arbitrary combina-
a size and the number of processes. From line 1
mpute key parameters associated with the model

een line, representing how the in situ processing

data size and the number of processes.
Input: P11(x1, y1, z11), P12(x1, y2, z12), P23(x2, y2, z

1 bx1 = (z11 − z12))/(y1 − y2);
2 ax1 = z11 − bx1 × y1;
3 z13 = ax1 + bx1 × y3;
4 by3 = (ln(z13) − ln(z23))/(ln(x1) − log(x2));
5 ln(ay3) = ln(z13) − by3 × ln(x1);
6 z1n = ax1 + bx1 × yn;
7 byn ≈ by3;
8 ln(ayn) = ln(z1n) − byn × ln(x1);
9 ln(zmn) = ln(ayn) + byn × ln(xm);

10 return exp(ln(zmn));

time changes with a fixed number of processes. Fro
to line 5, we compute the slope and the intercept of t
shown in equation 1 that fits the blue solid line. Fro
to line 8, we compute the key parameters of the mode
the green dashed line based on the P1n and the slope o
solid line. We finally return the value of zmn accordi
model that fits the blue dashed line.

Based on Algorithm 1, we can compute how m
cesses need to be added/removed for the rescaling
with an arbitrary combination of the data size and th
of processes. For example, assuming the current n
processes used for in situ processing is x1, if we predic
data generated for the next iteration is yn, and plan to
the in situ processing within zmn, then we can comput
byn and try to find a xm such that zmn = ayn · xbyn . Th
tions of ayn and byn are discussed in Algorithm 1. Afte
number of processes to add can be described as

p = exp(
ln zmn − ln ayn

byn
) − x1

The parameters in Algorithm 1 can be computed
fline manner before the workflow starts or in an onlin
during the workflow execution [43]. For the offline p
estimation, we execute the data processing with differ
binations of the data size and the number of process
we collect input sample data points, namely P11, P12
in Algorithm 1. The benefit of offline parameter pre
to select the representative input data to improve the
of model prediction. For example, we can use the lea
approach [44] to find appropriate parameters based on
representative data samples (evaluated in subsection
contrast, the benefit of online parameter estimation is
the process of offline parameter computing. Howeve
line parameter estimation requires at least two rescali
tions to get enough data for parameter estimation. If t
is not ready, the policy can rescale the in situ visualiza
with a fixed value, such as adding or removing 1 pr
each rescaling operation. The accuracy of the model p
can be influenced if the values in sample data sets are
each other (shown in subsection 5.1).

6

Journal Pre-proof

3.2. Typical scenarios of computing resource elasticity

For the fir
computing res
workflow exec
processes betw
ent programs
remove proce
processes to th
the total amou
vary during th
can add/remov
mation, such a
time, and the
how to integra
for these two s

3.2.1. Fixed a
This scena

resources is fi
the data stagin
the workflow
ficient scheme
number of ava
in-staging pro
simulation co
data staging p
Psim and Pstag

simulation and
form of functi
visualization t
tion value is th
policy switche
data staging s
T ′p = f2(Pstag

there exists a

max(T ′c,

In this case, t
staging servic
moving proce
multiple eligib
max(T ′c,T

′
p).

lation program
can decrease t
eration may al
by the term O
are discussed

3.2.2. Varied
In this sce

tion resources
justed during
when and how
In particular, w
time (Tc) and
threshold (T H

Algorithm 2: Adaptive strategy for rescaling with
both process adding and removing.

ow many
o achieve
ar size of
rence be-
rocessing
ther con-
or rescal-
sses can-
the mini-
n enough
hold val-
ad of the

ction 3.3.

ssing
policies

nd in situ
l predic-

te the pa-
ction 3.1

ts. At the
flow exe-
ow many
d the data
n subsec-
o execute
caling to

imulation
After the
nish and
The data
to guar-

tion [38];
d are be-

rations to
rocesses.
the alive
put data

tion RPC
n details
.

parameters

res only up-
Jo
ur

na
l P

re
-p

ro
of

st scenario, we assume that the total amount of
ources assigned to the job is fixed during the
ution. The elasticity policy can move computing
een different services as needed and run differ-

on these processes. For example, the policy may
sses from the simulation and add corresponding
e data staging service. For the second scenario,

nt of computing resources assigned to the job can
e workflow execution. The data staging service
e processes according to workflow runtime infor-
s the simulation computation time, data transfer
size of the simulated data. Finally, we discuss
te elasticity policies into the in situ processing
cenarios.

mount of computing resources
rio assumes that the total amount of computing
xed, and processes assigned to the simulation or
g service can be redistributed dynamically during
execution. To find out if there exists a more ef-
of resource configuration, we consider how the
ilable processes influences both simulation and
cessing time. Specifically, we first assume the
mputation time Tc is equal to f1(Psim), and the
rocessing time Tp is equal to f2(Pstage), where

e represent the number of processes used by the
the data staging service, respectively. The basic

on f is mainly determined by the property of the
ask. One important factor influencing the func-
e number of available processes. If the elasticity
s p processes from the simulation program to the
ervice, we end up with T ′c = f1(Psim − p) and
e + p). The elasticity policy needs to find out if
p that satisfies

T ′p) + O < max(Tc,Tp). (5)

he time savings of adding processes to the data
e are more significant than the overhead of re-
sses from the simulation program. If there exist
le p values, we select one that can minimize the

Therefore, removing p processes from the simu-
and then adding them to the data staging service

he in-staging processing time. The elasticity op-
so introduce extra overhead, which is represented
in equation 5. The sources of associated overhead
in detail in Section 3.3.

amount of computing resources
nario, we assume the total amount of computa-
assigned to the data staging service can be ad-

the workflow execution. Algorithm 2 illustrates
to execute the elasticity operation in this case.

hen the gap between the simulation computation
in-staging processing time (Tp) is longer than a
1), we add p processes to the data staging service.

1 if Tp − Tc > T H1 then
2 p = estimateProcessesNum(join, Tp − Tc);
3 doProcessJoin(p);
4 if Tc − Tp > T H2 then
5 p = estimateProcessesNum(leave, Tc − Tp);
6 doProcessLeave(p);

The model discussed in subsection 3.1 can estimate h
processes need to be added or removed (value of p) t
the targeted in-staging processing time with a particul
data. Similarly, we can remove p processes if the diffe
tween the latest computation time and the in-staging p
time is longer than a threshold (T H2). In addition, o
straints may also influence the number of processes f
ing. For example, the number of newly added proce
not exceed the total number of available processes;
mum number of computing nodes should also contai
memory for loading and processing the data. The thres
ues used in this scenario are also related to the overhe
rescaling operation, which is discussed in detail in Se

3.2.3. Integrating elasticity policies into in situ proce
The main operations of integrating the elasticity

into the workflow with the simulation computation a
processing can be described as follows. If the mode
tion is executed in an offline manner, we first compu
rameters of the performance model discussed in subse
based on sample data points before the workflow star
beginning of each simulation iteration during the work
cution, we make the elasticity decision and compute h
processes can be added/removed for the simulation an
staging service depending on the scenarios described i
tion 3.2.1 or subsection 3.2.2. If the policy decides t
the rescaling operation, we wait for the simulation res
finish and then update the communicator used by the s
computation based on all alive simulation processes.
simulation computation, we wait for the ana/vis to fi
record the latest metrics used by model computation7.
redistribution and migration are also important issues
antee the correctness of malleable simulation computa
however, these issues depend on specific use cases an
yond the scope of the present work8.

Finally, we wait for the data staging rescaling ope
finish and update records for all alive data staging p
After the simulation process updates the endpoints of
data staging processes, we call the data transfer RPC to
into the data staging service, and then call the execu
to trigger the associated ana/vis tasks. Implementatio
of the rescaling operation are discussed in Section 3.3

7This information is useful if we need to compute the model
during the workflow execution in an online manner.

8The mini-simulation used in the evaluation of this article requi
dating its communicator to support elasticity.

7

Journal Pre-proof

Elasticity

policies

Sim

(M

Leader
(Meta

Informatio

Controller script based on PVFS

1

2 3 3

Figure 6: The arc
elasticity policies
cesses that need
formation in the
to the parallel vir
script monitors th
started workers re
elasticity policy d
and sends the RPC
also sends the RP
Step 6: The leade
processes, and eve
latest address list.

3.3. Overhead

Although
between the d
also introduce
both the elastic
plications for
processing pip
benefits of res
rescaling oper
one rescaling
wait time, wh
tions of the in
saved by apply
ply the rescali
W > O

N . Both
decrease of th
can decrease t
O
N formulates
ing operation,
of policies for
value listed in
rithm 2 are bo
policies (discu
overhead befo
when using th
compute the o

4. Implemen

Figure 6 il
vice with elast

simulation (clients) and the data staging service (servers) are
shown in the figure. In particular, the data staging service is

argo and
vice, us-
el thread
pipeline
lyst [27]
za in this
ser-level
commu-
plemen-
policies

data ser-
ices that
munica-

sses after

work are
nction of
informa-
ty primi-
ndpoints
commu-

olicy de-
pdate the
ints man-
the con-

/removed
cess with
r process
sses, and

achieve a
manager

d the data
llustrated
nager.
can con-

to control
articular,
he Colza
detecting
) and de-
the elas-

discussed
ta staging
ued. For
onfigura-
elasticity
the exis-
rescaling
Jo

ur
na

l P
re

-p
ro

of

Ana/VisEndpoints

manager

ulation Data Staging Service
Mochi-based runtime

ercury, Margo, Thallium, Colza)

Endpoints

manager

Worker Worker Worker

n)
4

4

5 6

6

hitecture for implementing the in-staging processing with the
. Step 1: The elasticity policy computes the number of pro-
to be added/removed. The policy then updates the meta in-
leader process. Step 2: The leader process writes a file on
tual file system (PVFS) as a signal. Step 3: The controller
e signal and starts new processes as workers. Step 4: New
gister their addresses to the leader process. Step 5: When the
ecides to remove one process, it updates the meta information

to a dedicated worker (red color); the corresponding worker
C to the leader process to remove its address before exiting.
r process sends updates of the address list to all alive worker
ry worker process will update its communicator based on the

of rescaling operations

the rescaling operation aims to decrease the gap
ata generation rate and the consumption rate, it
s extra overhead. The overhead may come from
ity mechanism itself and the constraints from ap-

rescaling operations, such as initializing the data
eline. Therefore, we need to guarantee that the
caling exceed its overhead when executing the
ation. Assuming it takes O seconds to execute
operation, and the operation can decrease N ×W
ere N represents the remaining number of itera-
situ processing, and W represents the wait time
ing the rescaling operation. It is necessary to ap-
ng operation when there is O < N × W; namely

the increase of the rescaling overhead and the
e remaining number of data processing iterations
he benefit of the rescaling operation. The term
the amortized overhead of each resource rescal-
and it needs to be considered by the condition
deciding the resource elasticity. The overhead

equation 5 and the threshold value used in Algo-
th determined by the O

N . In our evaluation of these
ssed in Section 5.3 and Section 5.4), we test the
re the workflow starts and set this value manually
ese policies. Our future work will explore how to
verhead value in an adaptive way.

tation overview

lustrates the architecture of the data staging ser-
icity policies. Major components adopted by the

built using the Mochi suite of HPC libraries [45]: M
Thallium provide remote procedure calls (RPC) ser
ing Mercury for networking and Argobots for user-lev
management. Colza9 can execute customized ana/vis
in a data staging service. We use the Paraview Cata
to execute distributed visualization tasks based on Col
work. The user-defined ana/vis can be executed in u
threads provided by Argobots and using the collective
nication primitives provided by Colza. Although the im
tation is built using Mochi data services, the elasticity
discussed in Section 3 are not limited to the Mochi
vices; they can be adapted to other data staging serv
support the RPC service, and can also recreate the com
tion group when there are new added/removed proce
the rescaling operation.

The newly added components for elasticity in this
circled with dashed lines. In particular, the main fu
Elasticity policies is to collect the workflow run-time
tion and decide when and how to execute the elastici
tives based on the policy discussed in Section 3. The E
manager records all alive processes and updates the
nicator based on the latest endpoint list. Once the p
cides to add/remove the process, it will send RPC to u
expected number of processes recorded by the Endpo
ager. A leader-worker strategy is adopted to manage
sistency of alive processes. For example, the added
processes send an RPC to the leader process (the pro
rank 0) to register/deregister their endpoints. The leade
broadcasts the updated endpoint list to all worker proce
the worker process will update its communicator to
consistent view for all alive processes. The Endpoints
can be integrated with both the simulation program an
staging service to support elasticity. Step 4 to Step 6 i
in Figure 6 are mainly implemented by Endpoints ma

With the components illustrated in Figure 6, we
struct the elasticity trigger discussed in subsection 2.3
when and how to execute the elasticity primitives. In p
we first need to register the elastic ana/vis tasks to t
runtime [15]. The elasticity policy is in charge of
the workflow runtime information (trigger detection
termining when and how (trigger decision) to execute
ticity primitives (trigger action) based on the method
in Section 3. Once the policy decides to rescale the da
service, such as adding a new process, an event is iss
example, the event can be represented by a dedicated c
tion file, and the component in charge of executing the
operation can be implemented by bash code to detect
tence of the file. When the file is detected, it triggers
operations, such as using srun to start new processes.

9https://github.com/mochi-hpc/mochi-colza

8

Journal Pre-proof

0.

20

40

60

80

100

120

Ti
m

e
(s

ec
s)

Actual data
Predicted data

Figure 7: The sol
ization task inclu
the predicted exec
to compute mode
using data sample
sents the predicte
the data sizes are 0
(less) error than t
and 4GB in Case

5. Evaluation

The evalua
lar, subsection
dicting the exa
presents the pe
staging servic
subsection 5.3
icy when ther
during the wo
namically swi
ing service. F
the elasticity
computing res
tion. The corr

All experi
Cori supercom
peak performa
in this evalua
GB DDR4 21
equipped with
16-core Intel X
hyper-threads.
interconnectio
bisection band
tem is uGNI [
(DRC) service

5.1. Accuracy
Firstly, we

influences the
in Figure 3 as

10https://gi

data. Case
left corner,
data shown

dicted value

in multi-
at the left
are trivial
we adopt
ase 3 and
n there is
he execu-
tion with
e, the de-
128 data

r policies
he work-
umber of
rror.
lues (size
ch other,
influence
odel pre-
oints that
ry to use
different

this prior
gure 3(b)
e visual-
here is a
strated in
Jo
ur

na
l P

re
-p

ro
of250.5 1 2 4

Data size (GB)

Case1(+10% Error)
Case1(-10% Error)
Case2(+10% Error)
Case2(-10% Error)

id blue line illustrates the actual execution time of the visual-
ding all collected data samples. The solid red line represents
ution time of visualization tasks, and it uses all data samples
l parameters. Case 1 represents the predicted execution time
s where the data sizes are 0.25GB and 0.5GB. Case 2 repre-
d data computed by the model based on data samples where
.25GB and 4GB. The “+10%(-10%) Error” means 10% more

he actual data for the second data sample (0.5GB in Case 1
2) used for the model prediction.

tion is divided into four subsections. In particu-
5.1 evaluates the accuracy of the model for pre-
ction time of visualization tasks. Subsection 5.2
rformance of the elasticity primitives for the data

e and discusses sources of rescaling overhead. In
, we evaluate the efficiency of the elasticity pol-
e is a fixed total amount of computing resources
rkflow execution, and the processes can be dy-
tched between the simulation and the data stag-
urthermore, in subsection 5.4, we evaluate how
policy works in the scenario in which the total
ources can change during the workflow execu-

esponding code10 is publicly available.
ments in this evaluation were performed on the
puter at NERSC, a Cray XC40 system with a
nce of about 30 petaflops. The partition used

tion (Haswell) contains 2,388 nodes, with 128
33 MHz memory on each node. Each node is
two sockets, and each socket contains a 2.3 GHz
eon Processor E5-2698 v3, which supports two
Cori employs the “Dragonfly” topology for the

n network with more than 45 TB/s global peak
width. The type of RDMA used in the Cori sys-
46], which adopts Dynamic RDMA Credentials
[47] to transfer data between different programs.

for predicting the visualization execution time
evaluated how the choice of sample data points

model estimation error. We use the results shown
the data source for evaluation. Figure 8 shows the

t.io/J0UCc

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 8: The error of the model prediction with different sample
1, Case 2, Case 3, and Case 4 adopt sample points at the lower
upper left corner, lower right corner, and upper right corner of the
in Figure 2, respectively. The error is the difference between the pre
and actual value, and the unit of the error is second.

errors between the actual values and estimated values
ple cases. In particular, when we adopt the data points
side of Figure 2, such as Case 1 and Case 2, the errors
(the light color represents the small error); however, if
the data points at the right side of Figure 2, such as C
Case 4, the errors become significant, especially whe
a long execution time. The reason for these errors is t
tion time does not strictly follow a simple fitting func
a large number of data staging processes. For exampl
crease rate of execution time changes when there are
staging processes in Figure 3(a). In the evaluation fo
(discussed in Section 5.3 and Section 5.4), we start t
flow from a comparatively small data size and the n
processes for the samples in order to avoid the large e

In actual practice, we also found that when the y va
of the data) of two sample points are very close to ea
the error and noise of the actual data processing time
the accuracy of the model prediction. The error of m
diction can be decreased if we use two sample data p
have an obvious distinction in the y axis. It is necessa
the same number of data staging processes to process
sizes of the data before the workflow starts to acquire
information. We use the data samples shown in Fi
as an example to compute the relationship between th
ization task execution time and the data size when t
fixed number of processes (four processes). As illu

9

Journal Pre-proof

Figure 9: The gra
colored areas pre
data generated by

Figure 7, Case
in the data siz
two data samp
(0.25GB and 4
10% errors fo
4GB in Case 2
Case 1 show m
sample in Cas
than the Case

In addition
ter simulation
the model. Th
1223MB, and
alize these dat
prediction val
ization task wi
We use the fo
and the data s
puting the mo
These sample
data, which sh
dicted value ca
in Figure 5.1.
percentage of
9.5% , and 12

5.2. Performa

In this exp
as the data sou
by synthetic a
sleep time acc
power law dis
details of the
staging proces

11https://gi

N
um

be
r o

f p
ro

ce
ss

es

6

0

00

150
Rescaling time Number of staging processes

service.

rescaling
hen there
s. If we
hich the

d, the as-
002, and

workflow
the over-

from sev-
nd decid-
nding the
ating the
/removed
n our ex-
an 1 sec-
processes
nt) when

scheduler
un com-
le served
tem may
iggering.
l seconds
a/vis task
vis tasks.
ction 5.4
ring each

lts for the
luate the
c ana/vis
program
putation
e redis-

imulation
guration

n file write
file.
Jo
ur

na
l P

re
-p

ro
of

y frame illustrates actual visualization execution times, and
sent the predicted visualization execution times. We use the
the deep water simulation as the data source [48].

1 uses two data samples with a slight difference
e (0.25GB and 0.5GB). In contrast, Case 2 uses
les with a significant difference in the data size
GB). For both Case 1 and Case 2, when we add

r the second data sample (0.5GB in Case 1 and
) used for the model computation, the results of
ore variations. Therefore, the error of the data

e 1 has a more severe impact for model accuracy
2.
, we also use data sets generated by the deep wa-
[48] as the input to validate the performance of
e size of the data sets increases from 177MB to
we use a different number of processes to visu-
a sets. Figure 5.1 shows the results between the
ue and the actual value for executing the visual-
th a different number of processes and data sizes.
llowing combination of the number of processes
ize (the unit is MB) as the input data for com-
del parameters: (4, 177), (4, 1223), and (6, 256).
data points contain different regions of the tested
ow good overall prediction results, and the pre-
n match the actual value with small errors shown
Compared with the actual execution time, the

error for predicted execution time is 9.8%, 6.1%,
.4% for 4, 6, 8, and 16 processes, respectively.

nce of rescaling the data staging service

eriment, we use the Mandelbulb mini-simulation11

rce, and the simulated data blocks are processed
na/vis, which is a sleep function that changes the
ording to the number of processes based on the
cussed in subsection 3.1. Figure 10 illustrates

rescaling performance. We gradually add 4 data
ses at each iteration and increase the number of

thub.com/mdorier/MandelbulbCatalystExample

Step

Ti
m

e
(s

ec
)

0

2

4

0

5

1

0 10 20 30

Figure 10: The overhead of adding processes to the data staging

processes from 4 to 128 within 30 steps. For most
operations, synchronizing the data staging service w
is a newly added process can finish within 2 second
assume the alternative hypothesis is the situation in w
mean time of the rescaling time is less than 1.5 secon
sociated p-value of the statistical hypothesis test is 0.0
the result is statistically significant.

The rescaling operation can be beneficial to the
execution only if the benefit of the rescaling outweighs
head. The overhead for starting new processes comes
eral aspects in our evaluation: (1) building the model a
ing when or how to trigger rescaling operations; (2) se
signal to trigger the addition of a new process; (3) upd
communicator in staging service when there are added
processes; and (4) initializing the data ana/vis tasks. I
periment, the overhead of (1) and (3) is trivial (less th
ond). However, sending a signal and triggering new
may take a long time (up to 6 seconds in this experime
the performance of the parallel file system and batch
is relatively slow. This is because the trigger of sr

mand depends on the detection of the configuration fi
as a triggering signal. A heavy workload on the sys
increase the delay of the file detection and process tr
In our evaluation, this overhead12 varies from severa
to tens of seconds. The overhead of initializing the an
mainly depends on different use case scenarios of ana/

For example, a distributed visualization task used in se
may take several seconds to load necessary libraries du
rescaling operation.

5.3. Efficiency of dynamic resource redistribution

In this experiment, we discuss the evaluation resu
elasticity policy presented in subsection 3.2.1. We eva
performance of the elasticity policy using a syntheti
task. In particular, we assume both the simulation
and the staging service are elastic, and the total com
resources are fixed during the workflow execution. W
tribute the computation resources assigned to the s
and data staging service to find a proper resource confi

12The time period from the moment of executing the configuratio
operation to the moment that the batch scripts detect the dedicated

10

Journal Pre-proof

0 (
37

:2)

1 (
37

:2)

2 (
37

:2)

3 (
3

0

2

4

6

8

10

12

14

16

Ti
m

e
(s

ec
)

wait time
compute time 14

16
wait time
compute time

)
(32

:7)

13
 (3

2:7
)

14
 (3

2:7
)

14

16 wait time
compute time

Figure 11: The ex he number
in the parenthesis he error bar
represents the stan

dynamically b
in subsection
process to the
removing one
crease the sim
on the process
way, we may
workflow with

We update
make it elasti
Section 4. In p
simulation com
tion computat
visualization p
ulation compu
particular proc
manager upda
collective com
tee the correct
a dedicated co
tem when one
monitoring the
when the corre

Figure 11
without using
ure 11(c) show
policy, respec
of data staging
tive elasticity
to estimate the
and adaptive e
simulation pro
ure 11(a) with

The experi
elasticity polic
and data stagin
time of each in
a threshold val

13We use the s

resources
olicy de-

er of data
m step 1
ere is an

a staging

crease of
if we de-
imulation
er of pro-
n the ex-
utes 256
updated
8 blocks
is trivial

cy shown
d in Fig-
roper re-
ata stag-
five pro-
esses ac-
ing oper-
erhead of
ed by the

h the var-
he work-
pipeline

tu visual-

act simu-
e effects
igure 12

here are 10
Jo
ur

na
l P

re
-p

ro
of

7:2
)

4 (
37

:2)

5 (
37

:2)

6 (
37

:2)

7 (
37

:2)

8 (
37

:2)

9 (
37

:2)

10
 (3

7:2
)

11
 (3

7:2
)

12
 (3

7:2
)

13
 (3

7:2
)

14
 (3

7:2
)

Step

(a) No elasticity

0 (
37

:2)

1 (
37

:2)

2 (
36

:3)

3 (
35

:4)

4 (
34

:5)

5 (
33

:6)

6 (
34

:5)

7 (
35

:4)

8 (
36

:3)

9 (
37

:2)

10
 (3

7:2
)

11
 (3

6:3
)

12
 (3

5:4
)

13
 (3

4:5
)

14
 (3

4:5
)

Step

0

2

4

6

8

10

12

Ti
m

e
(s

ec
)

(b) Static elasticity policy

0 (
37

:2)

1 (
37

:2)

2 (
32

:7)

3 (
32

:7)

4 (
32

:7)

5 (
32

:7)

6 (
37

:2)

7 (
37

:2)

8 (
37

:2)

9 (
37

:2)

10
 (3

7:2
)

11
 (3

2:7

12

Step

0

2

4

6

8

10

12

Ti
m

e
(s

ec
)

(c) Adaptive elasticity policy

periment results of using different elasticity strategies to move processes between simulation program and the data staging service. T
of the horizontal label represents the number of the simulation processes and the number of the staging processes, respectively. T
dard deviation value for three runs.

ased on the adaptive elasticity policy discussed
3.2.1. In particular, if the benefit of adding one
data staging service outweighs the overhead of

process from the simulation program, we can de-
ulation process and then start the staging service

removed from the simulation program. In this
decrease the execution time of the staging-based
out adding new computing resources to the job.
the mini-simulation used in experiment 5.2 and

c based on the endpoints manager described in
articular, we manually add sleep time during the
putation to emulate the increase of the simula-

ion time. We aim to evaluate how the number of
rocesses changes with the fluctuation of the sim-
tation time. During the in situ processing, when a
ess leaves the simulation program, the endpoints
tes its list for all alive processes and recreates the
municator based on existing processes to guaran-
ness of the simulation computation. In addition,
nfiguration file is written to the parallel file sys-
simulation process leaves. The job script keeps
file system and starts a new data staging process
sponding configuration file is detected.

(a) shows different stages of in situ processing
the elasticity strategy. Figure 11(b) and Fig-
the results of using the static policy and adaptive

tively. The static policy adopted a fixed number
processes for each rescaling service. The adap-

policy uses the model discussed in subsection 3.1
number of data staging services. Both the static

lasticity policies can decrease the wait time of the
gram compared with the results shown in Fig-

out using the elasticity mechanism.
ment results shown in Figure 11(b) adopt a static
y to switch the process between the simulation
g service. The elasticity policy monitors the wait
-staging processing, if the wait time is larger than
ue13, we remove one simulation process and then

trategy discussed in subsection 3.3 to decide the threshold

start a data staging process. With more computing
added to the data staging service, the static elasticity p
creases the wait time to zero. In particular, the numb
staging processes increases from 2 to 6 gradually fro
to step 5 and decreases the wait time to zero. When th
increase in the simulation computation time, the dat
service then decreases gradually from 6 to 2.

Compared with the decrease in wait time, the in
the simulation computation time is insignificant even
crease the number of simulation processes. The s
computation is insensitive to the variation of the numb
cesses according to the resource configuration used i
periment. Specifically, the simulation program comp
data blocks. When there are 37 processes, 7 blocks are
by each process at most; when there are 32 processes,
are updated by each process at most. This difference
for the simulation computation time.

Compared with the case with a static elasticity poli
in Figure 11(b), the adaptive elasticity policy illustrate
ure 11(c) shows a better performance in achieving a p
source configuration for both the simulation and the d
ing service. The elasticity policy decides to remove
cesses at the second step and start new staging proc
cordingly; it decreases the overhead caused by rescal
ations based on the adaptive elasticity policy. One ov
adaptive strategy is to compute the parameters adopt
model for ana/vis tasks before the workflow starts.

5.4. Efficiency of rescaling the data staging service
This experiment evaluates the elasticity policy wit

ied resources (discussed in subsection 3.2.2) during t
flow execution. We use a distributed data visualization
to show how the elasticity policy can complete in si
ization in a timely manner.

In particular, we use the deep water asteroid imp
lation [48] as the data source, which aims to study th
of how the asteroids impact the deep water oceans. F

value. For example, if the estimated overhead is 1 second and t
iterations for in situ processing, the threshold value is 0.1.

11

Journal Pre-proof

(a) Ite

(c) Ite

Figure 12: Vi

illustrates diff
simulation wi
show that the
gression of the
the data gener
size of the sim
1583MB. The
increase with
program. If
source used fo
the visualizati
the workflow e

This exper
the file genera
proxy simulat
data staging s
The details of
the scope of th
the simulation
this experimen
run on 512 pr
file [28] for ea
MPI program;
cess and then s
The distribute
data staging s
the Mochi run

We mainly
gies in this ex
adopts a fixed
flow. The Sta
before workflo
cesses periodi
policy comput
policy discuss
is to compute
step. In order
need to provid

25

No elasticity policy Static elasticity policy
Adaptive elasticity policy (k=2) Adaptive elasticity policy (k=3)

25

 (k=3)

changes in
tion time at

. The es-
ed on the
tive elas-
rlap with
estimated
rrent size

ill com-
data that
expected

a staging
and Fig-

f data vi-
time of

ase of the
e to pro-
elasticity
frequent
g opera-

ticity pol-
it tries to

this exper-
Jo
ur

na
l P

re
-p

ro
of

ration 10 (b) Iteration 15

ration 20 (d) Iteration 25

sualization of the deep water asteroid impact simulation.

erent iterations of the deep water asteroid impact
th the same Paraview Catalyst [27]. The results
data amount increases gradually with the pro-
simulation computation. This experiment adopts

ated by the first 25 simulation iterations, and the
ulated data increases gradually from 161MB to
execution time of the data visualization can also
the rise of the data generated by the simulation
we proportionally increase the computation re-
r the data visualization, we may properly overlap
on with the simulation computation and decrease
xecution time.
iment uses a proxy simulation program to load
ted by the real deep water impact simulation. The
ion program then feeds the data into the elastic
ervice to execute the data visualization pipeline.

the deep water impact simulation are beyond
is work, and we use only the data generated by
to evaluate the elastic visualization pipeline in
t. The data generated by the original simulation
ocesses, and every process generates one VTU
ch iteration. The proxy simulation is run by the
it distributes VTU files evenly among every pro-
ends them to the associated data staging process.
d data visualization pipeline is executed by the
ervice. It replaces the MPI communicator with
time that can support the process elasticity [15].
compare three typical resource elasticity strate-

periment. Specifically, the No elasticity policy
number of data staging processes during the work-
tic elasticity policy specifies the rescaling plan
w starts, and it adds a fixed number of new pro-

cally in this experiment. The Adaptive elasticity
es the number of added processes based on the
ed in subsection 3.2.2. One key step of this policy
how many processes need to be added at the next
to use the model discussed in subsection 3.1, we
e the estimated execution time and the estimated

Step

N
um

be
r o

f p
ro

ce
ss

es

0

10

20

30

5 10 15 20

(a) Number of data staging processes.

Step

Ti
m

e
(s

ec
)

0

25

50

75

100

5 10 15 20

No elasticity Static elasticity policy
Adaptive elasticity policy (k=2) Adaptive elasticity policy

(b) Execution time of distributed visualization.

Figure 13: Subfigure(a) illustrates how the number of processes
different steps. Subfigure(b) shows the in situ visualization execu
each step with different resource elasticity strategies.

data size of the data visualization for the next iteration
timated visualization execution time is computed bas
latest wait time of the simulation program. The adap
ticity policies aim to decrease the wait time and ove
the simulation computation as much as possible. The
data size is computed using a variable k times the cu
of data. For example, when k equals two, the policy w
pute how many data staging processes can process the
is twice as large as the current size of data within the
execution time of data visualization.

Figure 13(a) shows how the number of the dat
processes changes during the workflow progression,
ure 13(b) illustrates the associated execution time o
sualization at each step. In particular, the execution
No elasticity policy increases gradually with the incre
data size because it adopts a fixed computing resourc
cess a gradually increasing amount of data. The Static
policy gradually adds new processes14. However, the
rescaling operations increase the overhead of rescalin
tions (discussed in subsection 5.2). The Adaptive elas
icy decreases the number of rescaling operations, and

14The policy decides to add two processes every two iterations in
iment.

12

Journal Pre-proof
C

or
e-

ho
ur

0

500

1000

1500

2000

2500

Data staging service Simulation execution

Figure 14: A

estimate the s
putes how ma
rescaling depe
policy decides
in contrast, th
tively small n
the in situ proc
elasticity with
compared with

Figure 14 c
gies. We comp
assigned to the
ated program.
core-hours for
time of the si
consumed by
No elasticity p
saves around 4

6. Discussion

The evalua
uler that suppo
cessible platfo
but use severa
the proof of c
grated with a
ity [17], whic
way, we can ac
thermore, the
be influenced
which causes
efficient trigge

In the eva
simulation tha
rescaling oper
the existing sim
more, the data
of concept is
data. It is inte
tic ana/vis wi

as DataSpaces [6] and Damaris [49] to compare their efficiency
for elastic in situ processing.

is article,
rocessing
nd follow
is possi-
ch as the
n in sub-
can also
is article
rce elas-
needs to

on tasks,
f there is
ce of the
accurate
.
as the re-
city poli-
city poli-
ta points
e several
r config-
size and

e 13, the
ating the

the simu-
situation
jobs and
e of this
need ex-
ectly, the
omputing
ssing.
try to de-
ior infor-
elasticity
n subsec-
ing oper-
efore the
ple data

ng all the
el predic-
ction 3.1
decrease

how our
to illus-
comput-
lar, each

mework),
ch.
Jo
ur

na
l P

re
-p

ro
ofElasticity strategies

No elasticity
policy

Static elasticity
policy

Adaptive
elasticity policy

(k=2)

Adaptive
elasticity policy

(k=3)

ccumulated core-hours for different elasticity strategies.

ize of the data after several steps and then com-
ny processes should be added. The granularity of
nds on the value of variable k. For example, the
to add 20 processes at step 9 when the k = 3;

e policy with k = 2 decides to add a compara-
umber of processes gradually. By accumulating
essing time spent on every iteration, the adaptive
k = 3 saves around 64% of the execution time
the case without an elasticity strategy.

ompares the core-hours spent on elasticity strate-
ute the core-hours by using the number of cores
program times the execution time of the associ-

Although adaptive elasticity policies adopt more
the data staging service, they decrease the wait

mulation program and save the total core-hours
the workflow. For example, compared with the
olicy, the Adaptive elasticity policy with k = 3
1% of the core-hours for the evaluated workflow.

tion in this article did not adopt the batch sched-
rts elasticity because of the limitation of the ac-

rm. Instead, we reserve enough nodes in advance
l of them to show the efficiency for elasticity for
oncept. The presented policies need to be inte-
job scheduler that supports the resource elastic-
h can resize the job during its execution. In this
hieve the real benefits of resource elasticity. Fur-
signal represented by the configuration file may
by the performance of the parallel file system,

the extra overhead of process triggering. A more
r procedure should be explored in a future study.
luation of subsection 5.3, we use the synthetic
t does not require a data distribution during the
ation. One research opportunity is to try to adapt

ulation to support the elastic operation. Further-
staging service used in this article for the proof

only minimally capable of managing in-staging
resting to integrate the elasticity policy and elas-
th the state-of-the-art data staging services such

For the adaptive elasticity policy discussed in th
we assume both the execution time of in-staging p
and the simulation computation time vary gradually a
the model discussed in subsection 3.1. However, it
ble that in-staging processing is more complicated, su
single process with unbalanced execution time show
section 5.4. The model estimation of execution time
be updated to adapt to various data ana/vis tasks. Th
mainly discusses the performance model and the resou
ticity policy for data rendering tasks. Future research
extend the current model to support other visualizati
such as streamline or iso-contour tasks. Moreover, i
workflow runtime information, such as the performan
srun operation, the adaptive policy can make a more
decision about whether resource rescaling is necessary

For the evaluated cases with a fixed data size, such
sults shown in Figure 11, the static and adaptive elasti
cies show a similar performance. The adaptive elasti
cies need at least three iterations to collect sample da
and estimate key parameters of the model; within thes
iterations, the static method can also achieve a prope
uration. For the case with a variation of both data
process number, such as the results shown in Figur
adaptive elasticity shows better performance by estim
future simulated data size.

Our experiments evaluate only the scenario when
lation and data processing runs by the same job. The
in which the simulation and program run at different
transfer the data by file-system are beyond the scop
study. In this case, even if the simulation does not
tra wait time since it dumps data to the file system dir
elasticity can also help to find a sweet point between c
resource utilization and time constraints of data proce

Although the presented adaptive elasticity policies
cide the elasticity operation in an online manner, pr
mation is still needed to improve the accuracy of the
policies. In particular, the threshold value discussed i
tion 3.2.2 is influenced by the overhead of the rescal
ation, which is collected according to the test run b
actual workflow execution. The properly chosen sam
points for model prediction are more accurate than usi
data collected during the workflow execution for mod
tion. For example, if the P11 and P12 discussed in subse
have the closed y values, the error of sample data can
the accuracy of model prediction.

7. Related Work

This section discusses related works in detail and
work differs from theirs. In particular, we use Table 7
trate different aspects of related works for deciding the
ing resources used for scientific workflows. In particu
work is viewed from aspects of the type (Policy or Fra
the platform (HPC or Cloud), the goal, and the approa

13

Journal Pre-proof

Research works Type Platform Goal Main approach

Tong et al. [9
Minimizing the in situ Adding a fixed number of resources

Gari et al. [2
in
erations

Monge et al. m

Duan et al. [
service
on

Shu et al. [52
rations
e model

Kress et al. [
r
priate

Dorier et al.
upport
ations

Fox et al. [16
itting
rations

Chadha et al asticity

Table 1: Compari “real-time”
and “non-real-tim

The work
by Tong et al.
to rescale the
vice and to im
platform. The
processes that
more computa
overlap with th
Tong et al. [24
by autonomic
to properly de
computation g
Once the cond
fied, they add
service. In ad
discuss how th
the efficiency

Elasticity
puting. Ghan
support elastic
al. [54] discus
cide the proce
policy from th
situ ana/vis tas

Shashidha
the geo-simul
al. [50] and Ya
on the cloud p
Evolutive algo
the makespan,
ulation execut
visualizations,

e rescal-
nodes.
ng, Duan
ta failure
The User
xtensions
or recov-
itives de-
rks; how-
aging re-

and auto-
resource

approach
and find

d is more
guration

rations in

process-
-coupled
results of
process-

ocessing.
explores
situ pro-

that sup-
how to

alization
manner.

onsidera-
Jo
ur

na
l P

re
-p

ro
of

, 24] Policy (RT) HPC processing time for each elasticity operation

2] Policy (RT) Cloud
Minimizing the cost and
execution time for
post hoc scientific workflows

Using reinforcement learning to tra
the model to guide the elasticity op

[50] Policy (RT) Cloud
Minimizing the cost and
the execution time of simulation

Using evolutive algorithms to solve
the multiobject optimization proble

51] Policy (RT) HPC
Recovering from node failure
for data staging service

Adding new nodes into the current
when there is a node failure detecti

] Policy (NRT) HPC
Minimizing the in situ
processing time

Selecting proper workflow configu
based on the pretrained performanc

12] Policy (NRT) HPC
Decreasing the cost
of in situ processing

Using cost model to decide whethe
the resource configuration is appro

[15] Framework HPC
Supporting the elasticity
for in situ visualizations

Using an elastic communicator to s
online rescale for scientific visualiz

] Framework HPC
Supporting the elasticity for
post-hoc scientific workflows

Using checkpoint-restart and subm
a new job to implement elastic ope

. [20] Framework HPC
Extending SLURM
to support the elasticity Using elastic MPI to support the el

son between different aspects of related works for deciding resources used for scientific workflows. The “RT” and “NRT” represents the
e”, respectively.

most closely related to our study is the research
[9]. They present a resource adaptation policy

computation resources used for data staging ser-
prove resource utilization efficiency on the HPC
y estimate the minimum number of data staging
contain enough memory resources and then add
tion resources to make the in-staging processing
e simulation computation. A follow-up paper by
] extends the rescaling operation and manages it
computing. However, they do not explain how

termine the number of processes to join/leave the
roup and the overhead of the elasticity operation.
ition of triggering the elasticity operation is satis-
a fixed number of resources into the data staging
dition, the decision policy in their work did not
e overhead of the rescaling operation influences

of the resource rescaling operations.
is also an important aspect for the cloud com-
bari et al. [53] summarize typical approaches to
ity in the context of cloud computing. Zahedi et
s how to use the Amdahl utility function to de-
ss allocation. Our work focuses on the elasticity
e application perspective in the context of the in
ks for scientific workflows on an HPC platform.

ran et al. [55] present a framework that can run
ation on elastic resources at runtime. Monge et
nnibelli et al. [56] formulate the rescaling policy

latform as a multiobjective optimization problem.
rithms are adopted by the autoscaler to minimize
monetary cost, and probability of failures of sim-
ion. Our work focuses on the elasticity of in situ

and discusses how to overlap the visualization

execution with the simulation computation by resourc
ing on HPC platforms with homogeneous computing

In the context of fault-tolerance for in situ processi
et al. [51] use elasticity as a mechanism to support da
detection and recovery for data staging processes.
Level Failure Mitigation (ULFM) [57] presents MPI e
to detect communicator failure, along with solutions f
ery from the failure. The trigger of the elasticity prim
pends on the error detection mechanism for these wo
ever, our work mainly focuses on rescaling data st
sources to achieve more efficient resource utilization.

Shu et al. [52] use the machine learning method
tuner to build a surrogate model for finding the proper
configuration for the in situ workflow. However, their
needs to run offline to train the performance model
configurations before the workflow starts. Our metho
lightweight and is able to find a proper resource confi
during the workflow execution and adjust the configu
an online manner.

Kress et al. [12] present cost models for in situ
ing, and they evaluate the tightly-coupled and loosely
in situ processing for multiple visualization tasks. The
their study show the possibility of staging-based in situ
ing being cost-effective over tightly-coupled in situ pr
With this work as one motivation, our work further
how to rescale the resources used for staging-based in
cessing and improve its efficiency.

Dorier et al. [15] present a data staging framework
ports the elastic in situ visualization task. They show
update the widely used Paraview Catalyst in situ visu
framework to execute the visualization in an elastic
However, their work mainly focuses on the design c

14

Journal Pre-proof

tion of adapting infrastructure that executes the visualization in
an elastic way, and they do not discuss the elasticity policies
about when an

Fox et al.
vide elasticity
cuss the mech
as resource ad
focuses on the
plementary to

8. Conclusion

In this arti
management t
sualization on
elasticity polic
ation and data
utilization. Th
flow runtime i
operation, and
and the data s
execution. Th

• Modelin
task and
the num
provide
number

• Presenti
trigger r
narios.

• Integrat
simulati
manage

• Evaluat
the Cori
the adap
resource
rescalin
lization

Our future
performance m
in situ visualiz
to visualizatio
into full-fledg
ulation, ana/vi

Acknowledge

The resear
the U.S. Depa
Advanced Sci
ery through A
search was als

(17-SC-20-SC), a collaborative effort of the U.S. Department of
Energy Office of Science and the National Nuclear Security Ad-

. Depart-
fic Com-
11357.

pabilities at
ure Genera-

. Oldfield,
tions for in
iverse data
puting Ap-

toscaling in
s on Cogni-

. W. Bethel,
inology for

l Journal of
20935991.
, F. Zheng,
pplications,

and coordi-
Computing

ar, Stacker:
ging-based
igh Perfor-
, 2018, pp.

O. Yildiz,
ance vari-

CM Trans-

ky, N. Pod-
c data man-
3: Proceed-
Computing,

spanning a
framework,

apka, Opti-
ics simula-

ce for High
, 2016, pp.

i, S. Klasky,
a in-transit
Juckeland,

nternational

lastic in situ
on In Situ

sualization,
, NY, USA,

. Pouchard,
ement: En-
p., USDOE

shar, Colza:
computing

ibuted Pro-
Jo
ur

na
l P

re
-p

ro
of

d how to trigger these elasticity operations.
[16] and Chadha et al. [20] focus on how to pro-
from the job scheduler’s perspective. They dis-

anism to implement the elasticity primitives such
dition or removal on the HPC platform. Our work
policy to trigger these primitives, which is com-
their works.

s and Future Work

cle, we explored an approach that uses elasticity
o optimize the scientific workflow with in situ vi-
the HPC platform in real time. The goal of the
y is to decrease the gap between the data gener-
producing rate to improve computing resource
e presented elasticity policies utilize the work-

nformation to decide when to apply the elasticity
how many rescaled processes for the simulation

taging process are required during the workflow
is paper makes the following contributions:

g the execution time of the in situ visualization
showing how it is influenced by data size and

ber of processes. This simple and efficient model
s the foundation for elasticity policy to decide the
of rescaled processes.

ng elasticity policies that decide when and how to
esource rescaling operations under different sce-

ing presented elasticity policies with the in situ
on-visualization workflow based on Mochi data
ment services and VTK.

ing in situ processing with the elasticity policy on
supercomputer. The evaluation results show that
tive elasticity policy can efficiently find a proper
configuration, decrease the overhead caused by

g operations, and improve computing resource uti-
efficiency.

work includes (1) improving the accuracy of the
odel and extending it to support more types of

ation tasks and other processing tasks in addition
n, and (2) integrating presented elasticity policies
ed in situ processing that contains an elastic sim-
s pipelines, and an elastic batch scheduler.

ments

ch presented in this work is supported in part by
rtment of Energy, Office of Science, Office of
entific Computing Research, Scientific Discov-
dvanced Computing (SciDAC) program. This re-
o supported by the Exascale Computing Project

ministration. This work was also supported by the U.S
ment of Energy, Office of Science, Advanced Scienti
puting Research, under Contract No.DE-AC02-06CH

References

[1] M. Hirsch, C. Mateos, A. Zunino, Augmenting computing ca
the edge by jointly exploiting mobile devices: A survey, Fut
tion Computer Systems 88 (2018) 644–662.

[2] T. Peterka, D. Bard, J. C. Bennett, E. W. Bethel, R. A
L. Pouchard, C. Sweeney, M. Wolf, Priority research direc
situ data management: Enabling scientific discovery from d
sources, The International Journal of High Performance Com
plications 1094342020913628.

[3] J. Xu, L. Chen, S. Ren, Online learning for offloading and au
energy harvesting mobile edge computing, IEEE Transaction
tive Communications and Networking 3 (3) (2017) 361–373.

[4] H. Childs, S. D. Ahern, J. Ahrens, A. C. Bauer, J. Bennett, E
P.-T. Bremer, E. Brugger, J. Cottam, M. Dorier, et al., A term
in situ visualization and analysis systems, The Internationa
High Performance Computing Applications (2020) 10943420

[5] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan
Datastager: scalable data staging services for petascale a
Cluster Computing 13 (3) (2010) 277–290.

[6] C. Docan, M. Parashar, S. Klasky, Dataspaces: an interaction
nation framework for coupled simulation workflows, Cluster
15 (2) (2012) 163–181.

[7] P. Subedi, P. Davis, S. Duan, S. Klasky, H. Kolla, M. Parash
an autonomic data movement engine for extreme-scale data sta
in-situ workflows, in: SC18: International Conference for H
mance Computing, Networking, Storage and Analysis, IEEE
920–930.

[8] M. Dorier, G. Antoniu, F. Cappello, M. Snir, R. Sisneros,
S. Ibrahim, T. Peterka, L. Orf, Damaris: Addressing perform
ability in data management for post-petascale simulations, A
actions on Parallel Computing (TOPC) 3 (3) (2016) 15.

[9] T. Jin, F. Zhang, Q. Sun, H. Bui, M. Parashar, H. Yu, S. Klas
horszki, H. Abbasi, Using cross-layer adaptations for dynami
agement in large scale coupled scientific workflows, in: SC ’1
ings of the International Conference on High Performance
Networking, Storage and Analysis, 2013, pp. 1–12.

[10] L. Orf, A violently tornadic supercell thunderstorm simulation
quarter-trillion grid volumes: Computational challenges, i/o
and visualizations of tornadogenesis, Atmosphere 10 (10).

[11] P. Malakar, V. Vishwanath, C. Knight, T. Munson, M. E. P
mal execution of co-analysis for large-scale molecular dynam
tions, in: SC ’16: Proceedings of the International Conferen
Performance Computing, Networking, Storage and Analysis
702–715.

[12] J. Kress, M. Larsen, J. Choi, M. Kim, M. Wolf, N. Podhorszk
H. Childs, D. Pugmire, Opportunities for cost savings with
visualization, in: P. Sadayappan, B. L. Chamberlain, G.
H. Ltaief (Eds.), High Performance Computing, Springer I
Publishing, Cham, 2020, pp. 146–165.

[13] M. Dorier, O. Yildiz, T. Peterka, R. Ross, The challenges of e
analysis and visualization, in: Proceedings of the Workshop
Infrastructures for Enabling Extreme-Scale Analysis and Vi
ISAV ’19, Association for Computing Machinery, New York
2019, p. 23–28.

[14] T. Peterka, D. Bard, J. Bennett, E. Bethel, R. Oldfield, L
C. Sweeney, M. Wolf, ASCR workshop on in situ data manag
abling scientific discovery from diverse data sources, Tech. re
Office of Science (SC)(United States) (2019).

[15] M. Dorier, Z. Wang, U. Ayachit, S. Snyder, R. Ross, M. Para
Enabling elastic in situ visualization for high-performance
simulations, in: 2022 IEEE International Parallel and Distr
cessing Symposium (IPDPS), IEEE, 2022, pp. 538–548.

15

Journal Pre-proof

[16] W. Fox, D. Ghoshal, A. Souza, G. P. Rodrigo, L. Ramakrishnan, E-hpc:
a library for elastic resource management in hpc environments, in: Pro-
ceedings of
Science, 201

[17] Ibm know
www.ibm.c

administr

[18] Y. Al-Dhura
puting: stat
Services Co

[19] M. A. Netto
Hpc cloud f
research cha
29.

[20] M. Chadha,
aware adapt
ference on
IEEE, 2020

[21] N. Roy, A.
predictive m
tional Confe

[22] Y. Gari, D. A
ing of scient
tems 127 (2

[23] Z. Wang, M
ticity policy
shop on Wo
2021, pp. 33

[24] T. Jin, F. Zh
nomic data
Journal of P

[25] K. Moreland
ing extreme
Symposium
No. 01EX52

[26] W. J. Schroe
IEEE Comp

[27] U. Ayachit,
J. Mauldin,
ization, in:
for Enabling

[28] W. Schroed
[29] R. Binyahib

tion bake-off

national Con
381–391.

[30] B. Friesen,
M. Day, In s
putational A

[31] M. Parasha
Banâtre, P. F
gramming P
2005, pp. 25

[32] J. O. Kepha
puter 36 (1)

[33] M. Salloum
adaptive sci
first worksh
ysis and vis

[34] J. C. Benne
shadhri, Tri
centile sam
S240–S263

[35] M. Larsen,
H. Childs, A
Workshop o
and Visualiz

[36] A. Raveend
of existing
Parallel and
2011, pp. 94

[37] I. Comprés, A. Mo-Hellenbrand, M. Gerndt, H.-J. Bungartz, Infrastruc-
ture and api extensions for elastic execution of mpi applications, in: Pro-

, 2016, pp.

M. Gerndt,
on an elas-

ntiers Con-

tions in em-

T. Reddy,
right, S. J.

ov, A. R. J.
Feng, E. W.
, I. Henrik-
eiro, F. Pe-
Fundamen-

ethods 17

parse least-
(5) (2011)

in situ ap-
ransactions

ine esti-
ident/ug/

imation.

ola, A. Nel-
e-fitting for

, K. Harms,
. Robinson,
ng, Mochi:
vironments,
121 – 144,

network.
s.
of deep wa-
Conference

Semeraro,
u visualiza-
ta Analysis

ristic based
ith unreli-

ineering 69

. Gamell,
staging for

ng (TOPC)

otstrapping
els of com-
ference for
lysis, 2021,

ernative ap-
4th Interna-

acenter era:
tional Sym-
), 2018, pp.

es-dpe: to-
s in hpc en-
nternational
s, 2018, pp.
Jo
ur

na
l P

re
-p

ro
of

the 12th Workshop on Workflows in Support of Large-Scale
7, pp. 1–11.
ledge center - ibm spectrum lsf, https://

om/docs/en/spectrum-lsf/10.1.0?topic=

ation-resizable-jobs.
ibi, F. Paraiso, N. Djarallah, P. Merle, Elasticity in cloud com-
e of the art and research challenges, IEEE Transactions on
mputing 11 (2) (2017) 430–447.
, R. N. Calheiros, E. R. Rodrigues, R. L. Cunha, R. Buyya,
or scientific and business applications: taxonomy, vision, and
llenges, ACM Computing Surveys (CSUR) 51 (1) (2018) 1–

J. John, M. Gerndt, Extending slurm for dynamic resource-
ive batch scheduling, in: 2020 IEEE 27th International Con-
High Performance Computing, Data, and Analytics (HiPC),
, pp. 223–232.
Dubey, A. Gokhale, Efficient autoscaling in the cloud using
odels for workload forecasting, in: 2011 IEEE 4th Interna-
rence on Cloud Computing, IEEE, 2011, pp. 500–507.
. Monge, C. Mateos, A q-learning approach for the autoscal-

ific workflows in the cloud, Future Generation Computer Sys-
022) 168–180.
. Dorier, P. Subedi, P. E. Davis, M. Parashar, An adaptive elas-
for staging based in-situ processing, in: 2021 IEEE Work-

rkflows in Support of Large-Scale Science (WORKS), IEEE,
–41.

ang, Q. Sun, M. Romanus, H. Bui, M. Parashar, Towards auto-
management for staging-based coupled scientific workflows,
arallel and Distributed Computing 146 (2020) 35–51.
, B. Wylie, C. Pavlakos, Sort-last parallel rendering for view-

ly large data sets on tile displays, in: Proceedings IEEE 2001
on Parallel and Large-Data Visualization and Graphics (Cat.
0), IEEE, 2001, pp. 85–154.
der, L. S. Avila, W. Hoffman, Visualizing with vtk: a tutorial,
uter graphics and applications 20 (5) (2000) 20–27.
A. Bauer, B. Geveci, P. O’Leary, K. Moreland, N. Fabian,
Paraview catalyst: Enabling in situ data analysis and visual-
Proceedings of the First Workshop on In Situ Infrastructures

Extreme-Scale Analysis and Visualization, 2015, pp. 25–29.
er, K. Martin, B. Lorensen, Vtk textbook (2006).
, D. Pugmire, A. Yenpure, H. Childs, Parallel particle advec-

for scientific visualization workloads, in: 2020 IEEE Inter-
ference on Cluster Computing (CLUSTER), IEEE, 2020, pp.

A. Almgren, Z. Lukić, G. Weber, D. Morozov, V. Beckner,
itu and in-transit analysis of cosmological simulations, Com-
strophysics and Cosmology 3 (1) (2016) 1–18.

r, S. Hariri, Autonomic computing: An overview, in: J.-P.
radet, J.-L. Giavitto, O. Michel (Eds.), Unconventional Pro-
aradigms, Springer Berlin Heidelberg, Berlin, Heidelberg,
7–269.
rt, D. M. Chess, The vision of autonomic computing, Com-
(2003) 41–50.

, J. C. Bennett, A. Pinar, A. Bhagatwala, J. H. Chen, Enabling
entific workflows via trigger detection, in: Proceedings of the
op on in situ infrastructures for enabling extreme-scale anal-
ualization, 2015, pp. 41–45.
tt, A. Bhagatwala, J. H. Chen, A. Pinar, M. Salloum, C. Se-
gger detection for adaptive scientific workflows using per-
pling, SIAM Journal on Scientific Computing 38 (5) (2016)
.
A. Woods, N. Marsaglia, A. Biswas, S. Dutta, C. Harrison,

flexible system for in situ triggers, in: Proceedings of the
n In Situ Infrastructures for Enabling Extreme-Scale Analysis
ation, ISAV ’18, ACM, New York, NY, USA, 2018, pp. 1–6.

ran, T. Bicer, G. Agrawal, A framework for elastic execution
mpi programs, in: 2011 IEEE International Symposium on

Distributed Processing Workshops and Phd Forum, IEEE,
0–947.

ceedings of the 23rd European MPI Users’ Group Meeting
82–97.

[38] A. Mo-Hellenbrand, I. Comprés, O. Meister, H.-J. Bungartz,
M. Bader, A large-scale malleable tsunami simulation realized
tic mpi infrastructure, in: Proceedings of the Computing Fro
ference, 2017, pp. 271–274.

[39] A. Clauset, C. R. Shalizi, M. E. Newman, Power-law distribu
pirical data, SIAM review 51 (4) (2009) 661–703.

[40] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. B
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayor
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman
sen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Rib
dregosa, P. van Mulbregt, SciPy 1.0 Contributors, SciPy 1.0:
tal Algorithms for Scientific Computing in Python, Nature M
(2020) 261–272.

[41] D. C.-L. Fong, M. Saunders, Lsmr: An iterative algorithm for s
squares problems, SIAM Journal on Scientific Computing 33
2950–2971.

[42] V. Bruder, M. Larsen, T. Ertl, H. Childs, S. Frey, A hybrid
proach for cost efficient image database generation, IEEE T
on Visualization and Computer Graphics (2022) 1–1.

[43] How online parameter estimation differs from offl

mation, https://www.mathworks.com/help/

how-online-estimation-differs-from-offline-est

html.
[44] M. Newville, T. Stensitzki, D. B. Allen, M. Rawlik, A. Ingargi

son, Lmfit: Non-linear least-square minimization and curv
python, Astrophysics Source Code Library (2016) ascl–1606.

[45] R. Ross, G. Amvrosiadis, P. Carns, C. D. Cranor, M. Dorier
G. Ganger, G. Gibson, S. Gutierrez, R. Latham, B. Robey, D
B. Settlemyer, G. Shipman, S. Snyder, J. Soumagne, Z. Qi
Composing data services for high-performance computing en
Journal of Computer Science and Technology 35 (1) (2020)
10.1007/s11390-020-9802-0.

[46] B. Alverson, E. Froese, L. Kaplan, D. Roweth, Cray xc series
[47] J. Shimek, J. Swaro, M. Saint Paul, Dynamic rdma credential
[48] R. Imahorn, I. B. Rojo, T. Günther, Visualization and analysis

ter asteroid impacts, in: 2018 IEEE Scientific Visualization
(SciVis), IEEE, 2018, pp. 85–96.

[49] M. Dorier, R. Sisneros, T. Peterka, G. Antoniu, D.
Damaris/viz: a nonintrusive, adaptable and user-friendly in sit
tion framework, in: 2013 IEEE Symposium on Large-Scale Da
and Visualization (LDAV), IEEE, 2013, pp. 67–75.

[50] D. A. Monge, E. Pacini, C. Mateos, C. G. Garino, Meta-heu
autoscaling of cloud-based parameter sweep experiments w
able virtual machines instances, Computers & Electrical Eng
(2018) 364–377.

[51] S. Duan, P. Subedi, P. Davis, K. Teranishi, H. Kolla, M
M. Parashar, CoREC: Scalable and resilient in-memory data
in-situ workflows, ACM Transactions on Parallel Computi
7 (2) (2020) 1–29.

[52] T. Shu, Y. Guo, J. Wozniak, X. Ding, I. Foster, T. Kurc, Bo
in-situ workflow auto-tuning via combining performance mod
ponent applications, in: Proceedings of the International Con
High Performance Computing, Networking, Storage and Ana
pp. 1–15.

[53] H. Ghanbari, B. Simmons, M. Litoiu, G. Iszlai, Exploring alt
proaches to implement an elasticity policy, in: 2011 IEEE
tional Conference on Cloud Computing, 2011, pp. 716–723.

[54] S. M. Zahedi, Q. Llull, B. C. Lee, Amdahl’s law in the dat
A market for fair processor allocation, in: 2018 IEEE Interna
posium on High Performance Computer Architecture (HPCA
1–14.

[55] A. Shashidharan, R. R. Vatsavai, R. K. Meentemeyer, Futur
wards dynamic provisioning and execution of geosimulation
vironments, in: Proceedings of the 26th ACM SIGSPATIAL I
Conference on Advances in Geographic Information System

16

Journal Pre-proof

464–467.
[56] V. Yannibelli, E. Pacini, D. Monge, C. Mateos, G. Rodriguez, A com-

parative ana
experiments

[57] W. Bland, A
recovery of
ternational J
(2013) 244–
Jo
ur

na
l P

re
-p

ro
of

lysis of nsga-ii and nsga-iii for autoscaling parameter sweep
in the cloud, Scientific Programming 2020.
. Bouteiller, T. Herault, G. Bosilca, J. Dongarra, Post-failure
mpi communication capability: Design and rationale, The In-
ournal of High Performance Computing Applications 27 (3)
254.

17

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

 Highlig

 ● s

 ●

 ●

 ●
Jo
ur

na
l P

re
-p

ro
of

hts

 Presenting a model to estimate how the execution time of in-staging visualization, such a
 data rendering, is influenced by the data size and the number of processes.
 Presenting policies that can adjust the computing resource assigned to the data staging
 service according to the runtime information of in situ workflow.
 Integrating the presented policies with a data staging service for executing in situ
 visualization in an elastic manner.
 The presented policies are evaluated to show the tradeoff between the benefits and
 overhead of elastic in situ visualization.

Journal Pre-proof

 Autho

 Zhe Wa

 manage

 M.S. de

 jay.wan

 Matthie e

 (MCS) d m

 ENS Re

 storage l

 science

 Pradeep

 Researc nd

 interest

 heterog r

 scientifi

 Philip E the

 Univers us

 on data .

 Manish

 Comput of

 Utah. H

 serving

 interest

 Data-En ium

 on High

 and Dis or

 more in
 Jo
ur

na
l P

re
-p

ro
of

r Biography

ng is a Ph.D. candidate from Rutgers University. His research interests include data

ment, visualization, and workflow management for scientific workflow. He received the

gree in Software Engineering from Zhejiang University, China. Contact him at

g@rutgers.edu.

u Dorier is a Software Development Specialist in the Mathematics and Computer Scienc

ivision at Argonne National Laboratory. He received his Ph.D. in Computer Science fro

nnes, France. He specializes in designing and developing distributed software for data

 and processing services in HPC systems, in support for computational and experimenta

 applications including high-energy physics, weather simulations, and machine learning.

 Subedi received his Ph.D. from Virginia Commonwealth University. He has worked as

h Associate at the University of Utah and Rutgers University. His research experience a

s span the areas of solid state drives, autonomic extreme-scale data management for

eneous applications, machine learning techniques, reliability and scalable middleware fo

c workflows in both Enterprise and HPC environments.

. Davis is a software engineer at the Scientific Computing and Imaging (SCI) Institute at

ity of Utah, as well as a Ph.D. candidate at Rutgers University. His research interests foc

 management for HPC, as well as programming models for coupled scientific simulations

Parashar is Director of the Scientific Computing and Imaging (SCI) Institute, Chair in

ational Science and Engineering, and Professor, School of Computing at the University

e is currently on an IPA appointment at the National Science Foundation where he is

as Office Director of the NSF Office of Advanced Cyberinfrastructure. His research

s are in the broad areas of Parallel and Distributed Computing and Computational and

abled Science and Engineering. He is the founding chair of the IEEE Technical Consort

 Performance Computing (TCHPC), Editor-in-Chief of the IEEE Transactions on Parallel

tributed Systems. He is also Fellow of AAAS, ACM, and IEEE/IEEE Computer Society. F

formation, please visit http://manishparashar.org .

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Zhe Wang

Matthieu D

Pradeep Su

Manish Par
Jo
ur

na
l P

re
-p

ro
oforier

bedi

ashar

1

Journal Pre-proof
 Conflict of Interest

 We have no conflicts of interest to disclose.
Jo
ur

na
l P

re
-p

ro
of

