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Abstract

In situ processing aims to alleviate the growing gap between computation and I/O capabilities by performing data processing close
to the data source. In situ processing is widely used to process data generated by multiple data sources, including observation
data from edge devices or scientific observational facilities and the simulation data generated by scientific computation on a high-
performance computing (HPC) platform. For a scientific workflow that is run on an HPC platform and composed of a simulation
program and an in sifu data analytics or visualization (abbreviated as ana/vis) task, there is an implicit assumption that the computing
resources assigned to the workflow keep static during the workflow execution. However, with the converging trend between the
HPC and cloud computing platform, running the in situ ana/vis task in an elastic way is promising to decrease its overhead and
improve its resource utilization rate. Resource elasticity represents the ability to change resource configurations such as the number
of computing nodes/processes during workflow execution. An elastic job may dynamically adjust resource configurations; it may
use a few resources at the beginning and more resources toward the end of the job when interesting data appear. However, it
is hard to predict a priori how many computing nodes/processes need to be added/removed during the workflow execution to
adapt to changing workflow needs. How to efficiently guide elasticity operations, such as growing or shrinking the number of
processes used for in situ analysis during workflow execution, is an open-ended research question. In this article, we present
adaptive elasticity policies that adopt workflow runtime information collected during workflow execution to predict how to trigger
the addition/removal of processes in order to minimize in situ processing overhead. Taking in situ visualization tasks as an example,
we integrate the presented elasticity policies into a staging-based elastic workflow and evaluate its efficiency in multiple elasticity
scenarios. Compared with the situation without elasticity or with a static elasticity policy that uses a fixed number of processes for
each rescaling operation, the adaptive elasticity policy can save overhead in finding a proper resource configuration and improve
resource utilization efficiency. For example, one experiment illustrates that the adaptive elasticity policy saves 41% of core-hours
compared with the situation without the resource elasticity.
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1. Introduction its operations on the same hardware, such as the CPU and mem-
) ) . ory, with the simulation application. In contrast, the simulation
In situ processing addresses the gap between computation  prooram in a loosely-coupled system is linked using an API for

and I/0 capabilities by processing data as they are generated.  gata management. Once the API is called for in situ processing,
The precise definition of in sizu processing depends on the plat-  gata blocks generated by the simulation are transferred to other
form it targets. For the data generated by edge devices [1] or  remote nodes via a high-speed network [5, 6] or to other pro-
observational facilities [2], in situ processing represents execut- cesses on the same nodes via shared memory [7, 8]. The mem-
ing tasks on the devices without transferring the data to remote oy ysed to store the transferred simulation data, whether local
cloud platforms [3]. This research mainly focuses on the scien- to the simulation nodes or remote, is often called a data stag-

tific workflow composed of the simulation and data analysis or ing area. A staging-based scientific workflow adopts a loosely-
visualization (abbreviated as ana/vis) applications running on  coupled in situ approach to perform ana/vis tasks. In this article,
HPC platforms. The in situ processing in this context is mainly we use the term in-staging processing to represent the process
divided into tightly-coupled and loosely-coupled system [4]. In of executing ana/vis tasks within the data staging area.

a tightly-coupled system, the simulation program is linked with The data blocks that contain interesting scientific informa-
an in situ llbrary. When APIs for in situ processing are called,  (jon are usually unevenly distributed across processes and iter-
the in situ library transforms the data layout as needed and ex-  4ions of simulation computation. For example, the simulation

ecutes data ana/vis tasks. After that, the in situ library executes  that adopts adaptive mesh refinement (AMR) uses dynamic lo-
cal refinements during the computation. This operation can in-
crease the spatial and temporal resolution of the specific inter-
esting domain to acquire detailed information. However, it may
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also increase the resource cost for analyzing the data [9]. Sim-
ilarly, interesting phenomena of the simulation based on Cloud
Model 1 (CM1) [10], such as tornadoes, appear at the end of
the simulation. To finish data processing within specific time
constraints, more computing resources are required for data an-
alytics tasks once these interesting data appear. The mismatch
between the data waiting to be processed and the available com-
puting resources may slow down in situ processing.

Multiple research solutions can help to relieve the mismatch
between data generation and consumption. For example, the
processing frequency of simulated data can be adjusted during
workflow execution [11], and the number of ana/vis tasks can
also be adjusted speculatively to balance the data production
rate and available resources [12]. The resource elasticity of
in situ processing indicates that the number of processes ex-
ecuting ana/vis tasks can be changed, such as adding or re-
moving physical computing resources (cores and nodes [13]),
during the workflow execution. This elasticity mechanism can
improve resource utilization efficiency by allocating a proper
amount of computing resources according to the current work-
load level [9]. Resource elasticity is also identified as a key
research challenge for processing dynamic workloads for in
situ processing [14, 13, 15]. In particular, resource elasticity
consists of two abstract primitives: the resource join operation
can start a new task or schedule new computing resources, and
the resource leave operation can release computation resources
when they become idle!.

Resource elasticity policies are well explored on the cloud
computing platform [18]. With the convergence between cloud
platform and HPC platform [19], either migrating classic in situ
processing onto the cloud platform with full-fledged elasticity
capabilities or executing it on the HPC platform managed by
an elastic scheduler [20], efficient elasticity strategies need to
be carefully designed to decrease the overhead of in situ pro-
cessing. Assuming the underlying platform on which the in
situ processing runs on supports the computing resource elas-
ticity, one typical research question is how elasticity policies
decide when and how to add or remove computing resources.
Although this research mainly targets in situ applications run-
ning on HPC platforms, elasticity strategies used for cloud com-
puting are still worth using for reference.

The design of resource elasticity policies is widely explored
by research works in the area of cloud computing [18]. A typ-
ical resource elasticity policy needs to consider the following
factors [21]: (1) the condition to trigger the elasticity opera-
tion, (2) the method to forecast the future workload, and (3)
the method to compute how many computing resources need
to be added or removed for rescaling actions to satisfy the fu-
ture resource requirements. There are multiple existing elas-
ticity policies for applications running on the cloud comput-
ing platform [18]. Compared with web applications running
on the cloud computing platform, the different assumptions and
resource constraints for in situ processing listed below require
specialized elasticity policies.

'The term expand/contract or grow/shrink is also used in related works [16,
17] with a similar meaning.

Resource elasticity goals: The primary goal of the elas-
ticity policy is to improve the workflow execution time within
the available resource constraints. In sifu ana/vis tasks usually
run concurrently with the simulation, and these tasks may need
to overlap with simulation computation as much as possible to
decrease the workflow execution time. Furthermore, when the
simulation execution time is much longer than the execution
time of ana/vis tasks for each iteration, the elasticity policy can
decrease the computing resources allocated to in sifu ana/vis
tasks to improve resource utilization.

Elasticity operations for MPI applications: /n sifu ana/vis
tasks are usually implemented using the MPI and run in a par-
allel manner. Performance models of these applications need
to consider how the data size and available resources influence
in situ processing. Besides, the rescaling operation may cause
overhead, such as time for syncing newly added processes. Ef-
ficient elasticity policies need to balance the tradeoff between
the benefits and the overhead of rescaling operations.

Forecasting future workloads: Although multiple machine
learning methods are used for training the performance model
to forecast the future workloads [18, 22], these methods are
difficult to be used in the in sifu processing scenario. This is
because few historical datasets are available to train the perfor-
mance model for in situ processing running in a streaming way.
If we assume little prior knowledge about how data are gener-
ated by simulation computation, an adaptive online method is
required to forecast the application execution time.

How to achieve elasticity policies that satisfy the require-
ments above in an efficient way for in situ processing has not yet
been fully explored. This article mainly focuses on the resource
elasticity for scientific visualization?, an important type of task
that can run in sifu [4]. We present adaptive elasticity policies
to guide the execution of rescaling operations, i.e., adding or re-
moving processes, for visualization running in the data staging
service. In particular, we first present a model that can pre-
dict how the execution time of in-staging visualization changes
with the number of running processes and the size of data pro-
cessed by visualization tasks. Based on the prediction results
of this model, the elasticity policy can decide how many pro-
cesses should be added or removed. Depending on the resource
constraints of the job, we further discuss two scenarios for us-
ing elasticity for in situ visualization. One scenario assumes
the computing resources allocated to the job are fixed, and the
elasticity policy can redistribute resources among applications;
another scenario assumes the computing resources allocated to
the job can change during the workflow execution. We inte-
grate presented policies into a staging-based elastic workflow
and evaluate its efficiency on the Cori Cray-XC40 system at
the National Energy Research Scientific Computing (NERSC).
Compared with a plan-driven elasticity operation with static
rescaling plans, the results show that adaptive elasticity policies
produce less overhead in searching for a resource configuration
that is favorable for the in situ visualization. The results also il-
lustrate the effect of elasticity policies in saving the core-hours

2We mainly target the parallel rendering task when we discuss the in situ
visualization task in this work.



for the in situ visualization.

This article builds on our previous work [23] and makes
new contributions along multiple dimensions. First, we extend
the model used to estimate the in situ visualization execution
time. Previously, we had considered only how the number of
processes influences the in situ visualization execution time;
in this article, we discuss how in situ visualization execution
time changes with both the varied simulated data size and the
number of processes. Second, we systematically discuss dif-
ferent scenarios that adopt in situ elasticity policies. For ex-
ample, when the total computing resources are fixed during the
workflow execution, we can redistribute resources allocated to
the simulation and the data staging service®>. When the total
computing resources can be changed during the workflow ex-
ecution, we can rescale the resource allocated to the data stag-
ing service. Third, our previous work adopts only the synthetic
data ana/vis tasks in the evaluation. In contrast, we adopt a dis-
tributed visualization that supports the capability of resources
elasticity in the evaluation of this article.

The rest of the article is organized as follows: Section 2 dis-
cusses the background and motivation. In Section 3, we elabo-
rate on the design of adaptive elasticity policies. In Section 4,
we further discuss the implementation details of integrating the
adaptive elasticity policies into the in-staging processing with
visualization tasks. The evaluation results are discussed in Sec-
tion 5, and then we further discuss relevant aspects that are out-
side the scope of the evaluation in Section 6. We discuss related
work in Section 7, and conclude the article in Section 8.

2. Background and Motivation

This section introduces background information from the
application layer to the infrastructure layer with a top-down ap-
proach. We first introduce typical stages of the in situ workflow
with the elastic in-staging processing. Then we use the visu-
alization task as an example to show how the in-staging pro-
cessing time can be affected by available computing resources
and the size of data to be processed. After that, we discuss a
method that utilizes the concept of autonomic computing and
event-driven programming to implement the adaptive elasticity
policies for in situ processing. Lastly, we discuss how the HPC
platform supports applications with a resource elasticity design.

2.1. In situ workflow with elastic in-staging visualization

Figure 1 illustrates key stages of an in situ workflow with
elastic in-staging processing [24]. We assume the data stag-
ing service supports resource elasticity, and elasticity primitives
may be triggered after any iteration of the simulation computa-
tion according to workflow runtime information. After each
simulation computation, the Rescale and sync stage of the sim-
ulation program checks if it is necessary to trigger rescaling
operations. If not, the number of data staging processes for
executing ana/vis remains constant, and data blocks generated

3The simulation program and the data staging service run in a concurrent
manner and share the computing resources assigned to the current job.
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Figure 1: Different stages of in-staging processing with resource elasticity.

by the simulation are transferred to the data staging service. If
the in-staging processing takes too long to complete compared
with the simulation computation, we may use a rescaling op-
eration to add more computing resources and increase the data
consumption rate. In this situation, the elasticity primitive is ex-
ecuted, and the number of available data staging services may
change. The simulation process needs to confirm which pro-
cesses of the data staging service are alive and transfer data to
the staging service with a varied number of processes.

However, when one rescaling operation is in progress, the
simulation cannot transfer data to the staging service before
completion of the rescaling. This is because the rescaling op-
eration may interfere with the data placement mechanism and
communication channels used by the data staging service. The
task executed by the data staging service may require a static
number of processes [15]. For example, the parallel image com-
positing operation [25] usually assumes the process number
does not change during the parallel execution. The same con-
straint can be found for other parallel visualization filters [26,
27]. In this situation, rescaling operations cannot be executed
while in-staging processing tasks are in progress. This con-
straint introduces an overhead to the in situ processing with re-
source elasticity, and the elasticity policy needs to balance the
trade-off between the benefits and overhead of rescaling oper-
ations. The main goal of the elasticity policy is to make the
consumption rate match the production rate under specific re-
source usage constraints while minimizing the overhead caused
by rescaling operations as much as possible.

Time(s)

2GB &
X0
1GB O’b

Nump, 64
er o, B
rocess,, 10 00

Figure 2: An example that shows how the execution time of in-staging visual-
ization changes with the number of data staging processes and the size of the
data generated by simulation.
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Figure 3: Subfigure (a) shows how the in-staging data visualization time
changes with the number of the data staging process, and the log scale with
base 2 is used for both x and y axes for this figure. Subfigure (b) shows how the
in-staging data visualization time changes with the size of the simulated data.

2.2. Factors affecting in-staging visualization time

By comparing the disparity between the simulation compu-
tation and in-staging processing time shown in Figure 1, the
elasticity policy can decide when to trigger the rescaling oper-
ation. In addition, it is also necessary to properly estimate how
many processes should be added or removed for each rescaling
operation. The execution time of particular in-staging process-
ing might be influenced by factors such as the number of data
staging processes or the size of the simulated data. If there is
a mechanism to predict how the data processing time changes
with these factors, the elasticity policy can further compute
the number of processes that should be added or removed to
achieve a targeted in-staging processing time.

Figure 2 illustrates an example of how the in-staging visu-
alization time changes when varying the number of data stag-
ing processes and the data size. We use the Gray-Scott mini-
application4 as the data source, extract its isosurface, and visu-
alize its data in the staging area using VTK and Catalyst [28, 27]
in a distributed manner. We construct multiple configurations
that contain different sizes of simulation data and numbers of
data staging processes. We then execute the associated visual-
ization pipeline with these configurations and record execution
times. From the results, the in-staging visualization time is in-
versely proportional to the number of processes and positively
related to the size of simulated data in different degrees. The
data processing task discussed in this article is mainly the sci-
entific visualization (parallel rendering task), a common task
that can be processed in an in situ manner for the simulation-
visualization scientific workflow. The execution time of other
types of data processing tasks executed in sifu can be influenced
by various factors, even the domain-related variables, which are
outside the scope of this article. For example, the execution
time of particle advection [29] is affected by the seeding strate-
gies; and the execution time of the analysis task designed to find
halo regions for cosmological simulation [30] is affected by the
density threshold describing the halo region.

Figure 3 provides more details on how the execution of in-
staging visualization changes with associated factors. In Fig-
ure 3(a), the speed-up of the execution time remains compara-
tively constant when we double the number of the data staging
processes. Gradually adding more processes makes the execu-
tion time decrease in proportion. For example, when there are

4https:// github.com/pnorbert/adiosvm/tree/master/Tutorial/gray-scott

four processes and 4GB of simulated data for each simulation
iteration, adding four more processes can reduce the in-staging
visualization time by approximately half. However, when there
are 64 processes, adding four more processes is negligible for
decreasing the in-staging visualization time, and we need up to
64 more processes to reduce the visualization time by approx-
imately half. This observation shows that adding a particular
number of processes achieves different benefits depending on
the existing available data staging processes. In contrast, for
the results shown in Figure 3(b), the in-staging visualization
time increases in proportion to the size of the simulated data.
In order to design a proper elasticity policy to trigger rescal-
ing, we need to collect workflow runtime information and use
this information to estimate how the execution time changes
with a variation in the number of processes and the size of sim-
ulated data. Then we can confirm how many processes need
to be added/removed in order to achieve the targeted execution
time. If an in situ workflow with new data processing tasks
using the same data source starts execution, the existing per-
formance model may become unsuitable for these new tasks.
We need to recollect the runtime information for these new data
processing tasks and recompute their performance models (dis-
cussed in subsection 3.1).

2.3. In situ trigger for supporting resource elasticity

Managing the software system in an autonomic way can
be implemented by the paradigm of autonomic computing [31,
32]. From the perspective of the system architecture, the au-
tonomic system contains one or more autonomic elements that
serve different self-management goals. The autonomic elements
typically consist of autonomic manager and managed elements.
The autonomic manager is in charge of monitoring and con-
trolling the autonomic elements, which represent all kinds of
resources such as storage, computing resources, or other ab-
stracted entities that can be adjusted. Conceptually, the auto-
nomic manager needs to provide the capability to monitor the
management elements, analyze the monitored data, and execute
particular actions to update the managed elements based on a
customized plan that describes objectives in a high level, such
as “minimizing the workflow execution time”.

In the context of in situ processing, the trigger mechanism
has been widely adopted to dynamically adjust the running be-
haviors of in situ processing [33, 34, 35]. These examples can
be viewed as concrete implementations following the method-
ology of autonomic computing. In particular, triggers are usu-
ally lightweight analysis tasks that are composed of three main
stages: trigger detection, trigger decision, and trigger action.
The trigger detection is in charge of inspecting the content of
the data generated by the simulation or workflow runtime. The
trigger decision decides how to trigger the action based on spe-
cific user-defined principles. In the context of the elastic in-
staging processing, the trigger action can be the execution of
computing resource rescaling operations; the trigger detection
can be the process to monitor and collect and workflow runtime
information; the trigger decision can be the dedicated strategies
to decide when and how to trigger rescaling operations based on
the result of the trigger detection.



2.4. Executing elastic applications on the HPC platform

When the elasticity policy decides to trigger an elasticity
operation, the underlying resource management infrastructure
needs to respond to the associated operation. Checkpoint/restart
is a classical mechanism with which to implement elasticity
primitives with few resource requirements for the resource man-
agement software, and it requires only the disk that can store the
data. The application needs to stop the current job and start a
new job with an adjusted number of nodes or processes [36, 16].
However, saving and reloading data based on checkpoint/restart
operation adds overhead to the workflow runtime. With the sup-
port of dynamic process in the MPI standard 2.0 and associated
extensions [37] or MPI-like communication libraries®, resource
elasticity can be achieved in an online manner without restart-
ing the job and application [15] for the HPC platform. With
these supports of elasticity in the communication layer, com-
ponents of the in situ processing tend to be implemented in
an elastic manner during the workflow execution without re-
booting. For example, the simulation [38] and associated in
situ processing [13, 15] can be elastic to accommodate changes
in requirements of data generation and consumption, and the
emerging batch scheduler for the HPC platform can also dy-
namically add or remove nodes during job execution [17, 20]
without restarting a new job.

3. Design of Elasticity Policies

The critical steps of elasticity policies are to decide when
and how to trigger rescaling operations. Depending on differ-
ent scenarios of elasticity, we need to specify the conditions to
trigger the elasticity and the number of processes added into (or
removed from) the data staging service. In this section, we first
present a model in subsection 3.1 to illustrate how the in situ
processing time is related to the data size and the number of
data staging processes. Based on this model, we further discuss
designs of adaptive elasticity policies for two typical scenar-
ios in subsection 3.2. Finally, subsection 3.3 discusses how the
overhead of the elasticity operation influences key parameters
of the elasticity policies.

3.1. Modeling in situ processing execution time

We first discuss how the execution time of distributed in
situ processing is influenced by the number of processes when
the total data size is fixed. According to the results shown in
Figure 3(a), there is a linear relationship between the in situ
processing execution time and the number of processes in log
scale. We use y = a - x” as a fitting function® to describe this
relationship. Specifically, y represents the execution time of
the in-staging processing, and x represents the number of pro-
cesses; a and b are two parameters influenced by the properties

Je.g. https://github.com/mochi-hpc/mochi-mona

©This function is a typical form of the power-law distribution [39]. Although
we adopt the power-law distribution as a fitting curve in this article, the model
used to predict the process number can be expressed by different equations.
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Figure 4: Comparison between actual values and predicted values. The solid
dot represents the actual value, and the dashed line represents the estimated
value based on curve fitting.

of ana/vis tasks and processed data size, and b is usually a nega-
tive real number. We can take the logarithm of both sides of the
original equation and change it to a linear equation as follows:

Iny=Ina+b-Inx (1)

We then need only two sample points to estimate the values
of a and b. In order to describe how the ana/vis processing
time is influenced by the number of the data staging processes
(illustrated in Figure 3(a)), we use the first two sample points
as input to estimate unknown parameters in the equation y =
a-x”. Figure 4 uses a dashed line to represent the estimated data
and uses solid dots to represent actual data for the logarithmic
version of the equation. As shown in the results, the estimated
data calculated by the model can accurately match the actual
data with different simulated data sizes. Therefore, given an
execution time of in-staging processing, the associated number
of processes can be expressed as

x = exp( 210 @

b

Assuming the number of data staging processes is xg, the in-
staging execution time is yy, and the targeted in-staging execu-
tion time is y;; in order to decrease the execution time from yg
to y;, we can use the following equation to compute the number
of processes that should be added into the data staging service:

Iny; —Ilna Inyy —Ina
b b

where p represents the number of processes added to the data
staging service. In addition, we can use a similar equation to
compute how many processes can be removed if we need to
increase the in-staging processing time.

We further loosen constraints and discuss the situation in
which the in situ processing time is influenced by both the data
size and the number of data staging processes. Two submodels
need to be considered in this situation: the first model assumes
a fixed data size and a varied number of processes (which have
been discussed); the second model assumes a fixed number of
processes and varied data sizes. According to the results shown
in Figure 3(b), we can also use the linear regression to model the
relationship between the execution time and the data size when
the number of processes is fixed. With these two submodels,

p =exp( ) = exp( ), 3
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Figure 5: Illustration of the algorithm that can predict the execution time with
the varied data size and the number of processes.

we can conveniently predict the in-staging processing execu-
tion time when the combinations of data size and the number of
processes are arbitrary.

As results shown in Figure 3(b), with a fixed number of
processes, there is a linear relationship between the visualiza-
tion execution time and the data size. Other types of data visu-
alization or analysis tasks may contain more complicated pat-
terns, and we can use nonlinear regression to describe the asso-
ciated relationship between the execution time and the data size.
When there are multiple available data samples, we can use the
least square approach [40, 41, 42] to find the most appropriate
values of parameters in the fitting function.

Figure 5 further illustrates the idea of how to estimate the in
situ processing execution time with varying data size and num-
ber of processes. In particular, the x axis represents the num-
ber of processes, the y axis represents the size of the simulated
data, and the z axis represents the execution time of in situ pro-
cessing. Assuming there are three known sample points, i.e.,
Pi(x1,y1,211), Pra(x1,¥2,212) and Pa3(x2,y3,223), the goal is
to develop an algorithm that can estimate the execution time
at the point P,, where the number of processes is x,, and the
size of data is y,. If we can predict the key parameters of the
model that fit the blue dashed curve shown in Figure 5, then we
can compute z,,, from the x,, and y,. The blue solid curve and
the blue dashed curve represent two specific cases when there
is a fixed data size. According to Figure 3(a), we can observe
that the curves with different simulated data sizes are parallel
to each other, and we can assume these curves have the same
decreasing rate within a specific range. Therefore, we can also
assume the blue solid curve and the blue dashed curve in Fig-
ure 5 have the same decreasing rate after applying the natural
logarithm operator, i.e., the slope value () in equation 1. This
value can be calculated based on known points Pz and Pp;3.
We still need another known point on the blue dashed curve to
predict its key model parameters. Based on two known sample
points Py and Pyy, we can predict the z;,, of Py,, which is the
intersection between the green solid curve and the blue dashed
curve. From the P;, and decreasing rate of the solid blue curve,
we can further estimate the parameters of the dashed blue curve
and compute the value of z,,, associated with P,,,.

Algorithm 1 illustrates the detailed procedures to compute
the in situ processing execution time with an arbitrary combina-
tion of the data size and the number of processes. From line 1
to line 2, we compute key parameters associated with the model
that fits the green line, representing how the in situ processing

Algorithm 1: Estimating in situ processing execution
time with an arbitrary combination of the simulated
data size and the number of processes.

Input: Py1(x1,y1,211), P1a(x1,¥2, 212), P23(x2,¥2, 223)
by = (11 —212)/ (1 —¥2);

ax1 =211 — b X y1;

213 = Ayt + by X y3;

byz = (In(z13) — In(z23))/(In(x1) — log(x2));
In(ay3) = In(z13) — by3 X In(xy);

Zln = Ayl t bxl X Yns

byn ~ by3;

ln(ayn) = l”l(Zln) - byn X ln(xl);

In(zm,) = In(ay,) + by, X In(x,,);

return exp(In(z,un));

o 0 N AT R W N -

—
<

time changes with a fixed number of processes. From line 3
to line 5, we compute the slope and the intercept of the model
shown in equation 1 that fits the blue solid line. From line 6
to line 8, we compute the key parameters of the model that fits
the green dashed line based on the P, and the slope of the blue
solid line. We finally return the value of z,,, according to the
model that fits the blue dashed line.

Based on Algorithm 1, we can compute how many pro-
cesses need to be added/removed for the rescaling operation
with an arbitrary combination of the data size and the number
of processes. For example, assuming the current number of
processes used for in situ processing is xj, if we predict that the
data generated for the next iteration is y,, and plan to complete
the in situ processing within z,,,,, then we can compute a,, and
by, and try to find a x,, such that z,,, = ay, x5, The estima-
tions of ay, and by, are discussed in Algorithm 1. After that, the
number of processes to add can be described as

Inz,, —Ina,,

) 4)

p = exp(
The parameters in Algorithm 1 can be computed in an of-
fline manner before the workflow starts or in an online manner
during the workflow execution [43]. For the offline parameter
estimation, we execute the data processing with different com-
binations of the data size and the number of processes. Then
we collect input sample data points, namely Py, Py, and Py3
in Algorithm 1. The benefit of offline parameter prediction is
to select the representative input data to improve the accuracy
of model prediction. For example, we can use the least square
approach [44] to find appropriate parameters based on multiple
representative data samples (evaluated in subsection 5.1). In
contrast, the benefit of online parameter estimation is to avoid
the process of offline parameter computing. However, the on-
line parameter estimation requires at least two rescaling opera-
tions to get enough data for parameter estimation. If the model
is not ready, the policy can rescale the in situ visualization only
with a fixed value, such as adding or removing 1 process for
each rescaling operation. The accuracy of the model prediction
can be influenced if the values in sample data sets are close to
each other (shown in subsection 5.1).



3.2. Typical scenarios of computing resource elasticity

For the first scenario, we assume that the total amount of
computing resources assigned to the job is fixed during the
workflow execution. The elasticity policy can move computing
processes between different services as needed and run differ-
ent programs on these processes. For example, the policy may
remove processes from the simulation and add corresponding
processes to the data staging service. For the second scenario,
the total amount of computing resources assigned to the job can
vary during the workflow execution. The data staging service
can add/remove processes according to workflow runtime infor-
mation, such as the simulation computation time, data transfer
time, and the size of the simulated data. Finally, we discuss
how to integrate elasticity policies into the in situ processing
for these two scenarios.

3.2.1. Fixed amount of computing resources

This scenario assumes that the total amount of computing
resources is fixed, and processes assigned to the simulation or
the data staging service can be redistributed dynamically during
the workflow execution. To find out if there exists a more ef-
ficient scheme of resource configuration, we consider how the
number of available processes influences both simulation and
in-staging processing time. Specifically, we first assume the
simulation computation time 7, is equal to fj(Pg;,), and the
data staging processing time 7', is equal to f>(Pgqaq.), Where
Pgim and Pg,q. represent the number of processes used by the
simulation and the data staging service, respectively. The basic
form of function f is mainly determined by the property of the
visualization task. One important factor influencing the func-
tion value is the number of available processes. If the elasticity
policy switches p processes from the simulation program to the
data staging service, we end up with 77 = fi(Psy, — p) and
T['7 = fo(Psuge + p). The elasticity policy needs to find out if
there exists a p that satisfies

max(T;,T,) + O < max(T., Tp). 5)

In this case, the time savings of adding processes to the data
staging service are more significant than the overhead of re-
moving processes from the simulation program. If there exist
multiple eligible p values, we select one that can minimize the
max(T;, T}). Therefore, removing p processes from the simu-
lation program and then adding them to the data staging service
can decrease the in-staging processing time. The elasticity op-
eration may also introduce extra overhead, which is represented
by the term O in equation 5. The sources of associated overhead
are discussed in detail in Section 3.3.

3.2.2. Varied amount of computing resources

In this scenario, we assume the total amount of computa-
tion resources assigned to the data staging service can be ad-
justed during the workflow execution. Algorithm 2 illustrates
when and how to execute the elasticity operation in this case.
In particular, when the gap between the simulation computation
time (7,) and in-staging processing time (7,) is longer than a
threshold (T'H}), we add p processes to the data staging service.

Algorithm 2: Adaptive strategy for rescaling with
both process adding and removing.

1if T, - T, >TH, then

2 p = estimateProcessesNum(join, 7, — T..);
3 doProcessJoin(p);

4 ifT. - T, > TH, then

5 p = estimateProcessesNum(leave, T, — T));
6 doProcessLeave(p);

The model discussed in subsection 3.1 can estimate how many
processes need to be added or removed (value of p) to achieve
the targeted in-staging processing time with a particular size of
data. Similarly, we can remove p processes if the difference be-
tween the latest computation time and the in-staging processing
time is longer than a threshold (T H;). In addition, other con-
straints may also influence the number of processes for rescal-
ing. For example, the number of newly added processes can-
not exceed the total number of available processes; the mini-
mum number of computing nodes should also contain enough
memory for loading and processing the data. The threshold val-
ues used in this scenario are also related to the overhead of the
rescaling operation, which is discussed in detail in Section 3.3.

3.2.3. Integrating elasticity policies into in situ processing

The main operations of integrating the elasticity policies
into the workflow with the simulation computation and in situ
processing can be described as follows. If the model predic-
tion is executed in an offline manner, we first compute the pa-
rameters of the performance model discussed in subsection 3.1
based on sample data points before the workflow starts. At the
beginning of each simulation iteration during the workflow exe-
cution, we make the elasticity decision and compute how many
processes can be added/removed for the simulation and the data
staging service depending on the scenarios described in subsec-
tion 3.2.1 or subsection 3.2.2. If the policy decides to execute
the rescaling operation, we wait for the simulation rescaling to
finish and then update the communicator used by the simulation
computation based on all alive simulation processes. After the
simulation computation, we wait for the ana/vis to finish and
record the latest metrics used by model computation’. The data
redistribution and migration are also important issues to guar-
antee the correctness of malleable simulation computation [38];
however, these issues depend on specific use cases and are be-
yond the scope of the present work®.

Finally, we wait for the data staging rescaling operations to
finish and update records for all alive data staging processes.
After the simulation process updates the endpoints of the alive
data staging processes, we call the data transfer RPC to put data
into the data staging service, and then call the execution RPC
to trigger the associated ana/vis tasks. Implementation details
of the rescaling operation are discussed in Section 3.3.

TThis information is useful if we need to compute the model parameters
during the workflow execution in an online manner.

8The mini-simulation used in the evaluation of this article requires only up-
dating its communicator to support elasticity.



kT ekt Caassassis ok ool
* + Leader = n : :
: (Meta < - 16 ©H¢ :
: '“formation)—(@—» Worker @ Worker
= ®T ————— '
Elas.tl.c:lty i Endpoints EEndpomtsE RVl
policies ;| manager .||: manager
Simulation Data Staging Service

Mochi-based runtime
(Mercury, Margo, Thallium, Colza)

Figure 6: The architecture for implementing the in-staging processing with the
elasticity policies. Step 1: The elasticity policy computes the number of pro-
cesses that need to be added/removed. The policy then updates the meta in-
formation in the leader process. Step 2: The leader process writes a file on
to the parallel virtual file system (PVFS) as a signal. Step 3: The controller
script monitors the signal and starts new processes as workers. Step 4: New
started workers register their addresses to the leader process. Step 5: When the
elasticity policy decides to remove one process, it updates the meta information
and sends the RPC to a dedicated worker (red color); the corresponding worker
also sends the RPC to the leader process to remove its address before exiting.
Step 6: The leader process sends updates of the address list to all alive worker
processes, and every worker process will update its communicator based on the
latest address list.

3.3. Overhead of rescaling operations

Although the rescaling operation aims to decrease the gap
between the data generation rate and the consumption rate, it
also introduces extra overhead. The overhead may come from
both the elasticity mechanism itself and the constraints from ap-
plications for rescaling operations, such as initializing the data
processing pipeline. Therefore, we need to guarantee that the
benefits of rescaling exceed its overhead when executing the
rescaling operation. Assuming it takes O seconds to execute
one rescaling operation, and the operation can decrease N X W
wait time, where N represents the remaining number of itera-
tions of the in situ processing, and W represents the wait time
saved by applying the rescaling operation. It is necessary to ap-
ply the rescaling operation when there is O < N X W; namely
W > %. Both the increase of the rescaling overhead and the
decrease of the remaining number of data processing iterations
can decrease the benefit of the rescaling operation. The term
% formulates the amortized overhead of each resource rescal-
ing operation, and it needs to be considered by the condition
of policies for deciding the resource elasticity. The overhead
value listed in equation 5 and the threshold value used in Algo-
rithm 2 are both determined by the 1%. In our evaluation of these
policies (discussed in Section 5.3 and Section 5.4), we test the
overhead before the workflow starts and set this value manually
when using these policies. Our future work will explore how to
compute the overhead value in an adaptive way.

4. Implementation overview

Figure 6 illustrates the architecture of the data staging ser-
vice with elasticity policies. Major components adopted by the

simulation (clients) and the data staging service (servers) are
shown in the figure. In particular, the data staging service is
built using the Mochi suite of HPC libraries [45]: Margo and
Thallium provide remote procedure calls (RPC) service, us-
ing Mercury for networking and Argobots for user-level thread
management. Colza® can execute customized ana/vis pipeline
in a data staging service. We use the Paraview Catalyst [27]
to execute distributed visualization tasks based on Colza in this
work. The user-defined ana/vis can be executed in user-level
threads provided by Argobots and using the collective commu-
nication primitives provided by Colza. Although the implemen-
tation is built using Mochi data services, the elasticity policies
discussed in Section 3 are not limited to the Mochi data ser-
vices; they can be adapted to other data staging services that
support the RPC service, and can also recreate the communica-
tion group when there are new added/removed processes after
the rescaling operation.

The newly added components for elasticity in this work are
circled with dashed lines. In particular, the main function of
Elasticity policies is to collect the workflow run-time informa-
tion and decide when and how to execute the elasticity primi-
tives based on the policy discussed in Section 3. The Endpoints
manager records all alive processes and updates the commu-
nicator based on the latest endpoint list. Once the policy de-
cides to add/remove the process, it will send RPC to update the
expected number of processes recorded by the Endpoints man-
ager. A leader-worker strategy is adopted to manage the con-
sistency of alive processes. For example, the added/removed
processes send an RPC to the leader process (the process with
rank 0) to register/deregister their endpoints. The leader process
broadcasts the updated endpoint list to all worker processes, and
the worker process will update its communicator to achieve a
consistent view for all alive processes. The Endpoints manager
can be integrated with both the simulation program and the data
staging service to support elasticity. Step 4 to Step 6 illustrated
in Figure 6 are mainly implemented by Endpoints manager.

With the components illustrated in Figure 6, we can con-
struct the elasticity trigger discussed in subsection 2.3 to control
when and how to execute the elasticity primitives. In particular,
we first need to register the elastic ana/vis tasks to the Colza
runtime [15]. The elasticity policy is in charge of detecting
the workflow runtime information (trigger detection) and de-
termining when and how (trigger decision) to execute the elas-
ticity primitives (trigger action) based on the method discussed
in Section 3. Once the policy decides to rescale the data staging
service, such as adding a new process, an event is issued. For
example, the event can be represented by a dedicated configura-
tion file, and the component in charge of executing the elasticity
operation can be implemented by bash code to detect the exis-
tence of the file. When the file is detected, it triggers rescaling
operations, such as using srun to start new processes.

9https://github.com/mochi-hpc/mochi-colza
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Figure 7: The solid blue line illustrates the actual execution time of the visual-
ization task including all collected data samples. The solid red line represents
the predicted execution time of visualization tasks, and it uses all data samples
to compute model parameters. Case 1 represents the predicted execution time
using data samples where the data sizes are 0.25GB and 0.5GB. Case 2 repre-
sents the predicted data computed by the model based on data samples where
the data sizes are 0.25GB and 4GB. The “+10%(-10%) Error” means 10% more
(less) error than the actual data for the second data sample (0.5GB in Case 1
and 4GB in Case 2) used for the model prediction.

5. Evaluation

The evaluation is divided into four subsections. In particu-
lar, subsection 5.1 evaluates the accuracy of the model for pre-
dicting the exaction time of visualization tasks. Subsection 5.2
presents the performance of the elasticity primitives for the data
staging service and discusses sources of rescaling overhead. In
subsection 5.3, we evaluate the efficiency of the elasticity pol-
icy when there is a fixed total amount of computing resources
during the workflow execution, and the processes can be dy-
namically switched between the simulation and the data stag-
ing service. Furthermore, in subsection 5.4, we evaluate how
the elasticity policy works in the scenario in which the total
computing resources can change during the workflow execu-
tion. The corresponding code! is publicly available.

All experiments in this evaluation were performed on the
Cori supercomputer at NERSC, a Cray XC40 system with a
peak performance of about 30 petaflops. The partition used
in this evaluation (Haswell) contains 2,388 nodes, with 128
GB DDR4 2133 MHz memory on each node. Each node is
equipped with two sockets, and each socket contains a 2.3 GHz
16-core Intel Xeon Processor E5-2698 v3, which supports two
hyper-threads. Cori employs the “Dragonfly” topology for the
interconnection network with more than 45 TB/s global peak
bisection bandwidth. The type of RDMA used in the Cori sys-
tem is uGNI [46], which adopts Dynamic RDMA Credentials
(DRC) service [47] to transfer data between different programs.

5.1. Accuracy for predicting the visualization execution time

Firstly, we evaluated how the choice of sample data points
influences the model estimation error. We use the results shown
in Figure 3 as the data source for evaluation. Figure 8 shows the

Onttps://git.io/JOUCC
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Figure 8: The error of the model prediction with different sample data. Case
1, Case 2, Case 3, and Case 4 adopt sample points at the lower left corner,
upper left corner, lower right corner, and upper right corner of the data shown
in Figure 2, respectively. The error is the difference between the predicted value
and actual value, and the unit of the error is second.

errors between the actual values and estimated values in multi-
ple cases. In particular, when we adopt the data points at the left
side of Figure 2, such as Case 1 and Case 2, the errors are trivial
(the light color represents the small error); however, if we adopt
the data points at the right side of Figure 2, such as Case 3 and
Case 4, the errors become significant, especially when there is
a long execution time. The reason for these errors is the execu-
tion time does not strictly follow a simple fitting function with
a large number of data staging processes. For example, the de-
crease rate of execution time changes when there are 128 data
staging processes in Figure 3(a). In the evaluation for policies
(discussed in Section 5.3 and Section 5.4), we start the work-
flow from a comparatively small data size and the number of
processes for the samples in order to avoid the large error.

In actual practice, we also found that when the y values (size
of the data) of two sample points are very close to each other,
the error and noise of the actual data processing time influence
the accuracy of the model prediction. The error of model pre-
diction can be decreased if we use two sample data points that
have an obvious distinction in the y axis. It is necessary to use
the same number of data staging processes to process different
sizes of the data before the workflow starts to acquire this prior
information. We use the data samples shown in Figure 3(b)
as an example to compute the relationship between the visual-
ization task execution time and the data size when there is a
fixed number of processes (four processes). As illustrated in



Time(s)

Figure 9: The gray frame illustrates actual visualization execution times, and
colored areas present the predicted visualization execution times. We use the
data generated by the deep water simulation as the data source [48].

Figure 7, Case 1 uses two data samples with a slight difference
in the data size (0.25GB and 0.5GB). In contrast, Case 2 uses
two data samples with a significant difference in the data size
(0.25GB and 4GB). For both Case 1 and Case 2, when we add
10% errors for the second data sample (0.5GB in Case 1 and
4GB in Case 2) used for the model computation, the results of
Case 1 show more variations. Therefore, the error of the data
sample in Case 1 has a more severe impact for model accuracy
than the Case 2.

In addition, we also use data sets generated by the deep wa-
ter simulation [48] as the input to validate the performance of
the model. The size of the data sets increases from 177MB to
1223MB, and we use a different number of processes to visu-
alize these data sets. Figure 5.1 shows the results between the
prediction value and the actual value for executing the visual-
ization task with a different number of processes and data sizes.
We use the following combination of the number of processes
and the data size (the unit is MB) as the input data for com-
puting the model parameters: (4,177), (4,1223), and (6, 256).
These sample data points contain different regions of the tested
data, which show good overall prediction results, and the pre-
dicted value can match the actual value with small errors shown
in Figure 5.1. Compared with the actual execution time, the
percentage of error for predicted execution time is 9.8%, 6.1%,
9.5% , and 12.4% for 4, 6, 8, and 16 processes, respectively.

5.2. Performance of rescaling the data staging service

In this experiment, we use the Mandelbulb mini-simulation!!

as the data source, and the simulated data blocks are processed
by synthetic ana/vis, which is a sleep function that changes the
sleep time according to the number of processes based on the
power law discussed in subsection 3.1. Figure 10 illustrates
details of the rescaling performance. We gradually add 4 data
staging processes at each iteration and increase the number of

https://github. com/mdorier/MandelbulbCatalystExample
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Figure 10: The overhead of adding processes to the data staging service.

processes from 4 to 128 within 30 steps. For most rescaling
operations, synchronizing the data staging service when there
is a newly added process can finish within 2 seconds. If we
assume the alternative hypothesis is the situation in which the
mean time of the rescaling time is less than 1.5 second, the as-
sociated p-value of the statistical hypothesis test is 0.0002, and
the result is statistically significant.

The rescaling operation can be beneficial to the workflow
execution only if the benefit of the rescaling outweighs the over-
head. The overhead for starting new processes comes from sev-
eral aspects in our evaluation: (1) building the model and decid-
ing when or how to trigger rescaling operations; (2) sending the
signal to trigger the addition of a new process; (3) updating the
communicator in staging service when there are added/removed
processes; and (4) initializing the data ana/vis tasks. In our ex-
periment, the overhead of (1) and (3) is trivial (less than 1 sec-
ond). However, sending a signal and triggering new processes
may take a long time (up to 6 seconds in this experiment) when
the performance of the parallel file system and batch scheduler
is relatively slow. This is because the trigger of srun com-
mand depends on the detection of the configuration file served
as a triggering signal. A heavy workload on the system may
increase the delay of the file detection and process triggering.
In our evaluation, this overhead!? varies from several seconds
to tens of seconds. The overhead of initializing the ana/vis task
mainly depends on different use case scenarios of ana/vis tasks.
For example, a distributed visualization task used in section 5.4
may take several seconds to load necessary libraries during each
rescaling operation.

5.3. Efficiency of dynamic resource redistribution

In this experiment, we discuss the evaluation results for the
elasticity policy presented in subsection 3.2.1. We evaluate the
performance of the elasticity policy using a synthetic ana/vis
task. In particular, we assume both the simulation program
and the staging service are elastic, and the total computation
resources are fixed during the workflow execution. We redis-
tribute the computation resources assigned to the simulation
and data staging service to find a proper resource configuration

12The time period from the moment of executing the configuration file write
operation to the moment that the batch scripts detect the dedicated file.
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Figure 11: The experiment results of using different elasticity strategies to move processes between simulation program and the data staging service. The number
in the parenthesis of the horizontal label represents the number of the simulation processes and the number of the staging processes, respectively. The error bar

represents the standard deviation value for three runs.

dynamically based on the adaptive elasticity policy discussed
in subsection 3.2.1. In particular, if the benefit of adding one
process to the data staging service outweighs the overhead of
removing one process from the simulation program, we can de-
crease the simulation process and then start the staging service
on the process removed from the simulation program. In this
way, we may decrease the execution time of the staging-based
workflow without adding new computing resources to the job.

We update the mini-simulation used in experiment 5.2 and
make it elastic based on the endpoints manager described in
Section 4. In particular, we manually add sleep time during the
simulation computation to emulate the increase of the simula-
tion computation time. We aim to evaluate how the number of
visualization processes changes with the fluctuation of the sim-
ulation computation time. During the in sifu processing, when a
particular process leaves the simulation program, the endpoints
manager updates its list for all alive processes and recreates the
collective communicator based on existing processes to guaran-
tee the correctness of the simulation computation. In addition,
a dedicated configuration file is written to the parallel file sys-
tem when one simulation process leaves. The job script keeps
monitoring the file system and starts a new data staging process
when the corresponding configuration file is detected.

Figure 11(a) shows different stages of in sifu processing
without using the elasticity strategy. Figure 11(b) and Fig-
ure 11(c) show the results of using the static policy and adaptive
policy, respectively. The static policy adopted a fixed number
of data staging processes for each rescaling service. The adap-
tive elasticity policy uses the model discussed in subsection 3.1
to estimate the number of data staging services. Both the static
and adaptive elasticity policies can decrease the wait time of the
simulation program compared with the results shown in Fig-
ure 11(a) without using the elasticity mechanism.

The experiment results shown in Figure 11(b) adopt a static
elasticity policy to switch the process between the simulation
and data staging service. The elasticity policy monitors the wait
time of each in-staging processing, if the wait time is larger than
a threshold value'?, we remove one simulation process and then

13We use the strategy discussed in subsection 3.3 to decide the threshold
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start a data staging process. With more computing resources
added to the data staging service, the static elasticity policy de-
creases the wait time to zero. In particular, the number of data
staging processes increases from 2 to 6 gradually from step 1
to step 5 and decreases the wait time to zero. When there is an
increase in the simulation computation time, the data staging
service then decreases gradually from 6 to 2.

Compared with the decrease in wait time, the increase of
the simulation computation time is insignificant even if we de-
crease the number of simulation processes. The simulation
computation is insensitive to the variation of the number of pro-
cesses according to the resource configuration used in the ex-
periment. Specifically, the simulation program computes 256
data blocks. When there are 37 processes, 7 blocks are updated
by each process at most; when there are 32 processes, 8 blocks
are updated by each process at most. This difference is trivial
for the simulation computation time.

Compared with the case with a static elasticity policy shown
in Figure 11(b), the adaptive elasticity policy illustrated in Fig-
ure 11(c) shows a better performance in achieving a proper re-
source configuration for both the simulation and the data stag-
ing service. The elasticity policy decides to remove five pro-
cesses at the second step and start new staging processes ac-
cordingly; it decreases the overhead caused by rescaling oper-
ations based on the adaptive elasticity policy. One overhead of
adaptive strategy is to compute the parameters adopted by the
model for ana/vis tasks before the workflow starts.

5.4. Efficiency of rescaling the data staging service

This experiment evaluates the elasticity policy with the var-
ied resources (discussed in subsection 3.2.2) during the work-
flow execution. We use a distributed data visualization pipeline
to show how the elasticity policy can complete in sifu visual-
ization in a timely manner.

In particular, we use the deep water asteroid impact simu-
lation [48] as the data source, which aims to study the effects
of how the asteroids impact the deep water oceans. Figure 12

value. For example, if the estimated overhead is 1 second and there are 10
iterations for in situ processing, the threshold value is 0.1.
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Figure 12: Visualization of the deep water asteroid impact simulation.

illustrates different iterations of the deep water asteroid impact
simulation with the same Paraview Catalyst [27]. The results
show that the data amount increases gradually with the pro-
gression of the simulation computation. This experiment adopts
the data generated by the first 25 simulation iterations, and the
size of the simulated data increases gradually from 161MB to
1583MB. The execution time of the data visualization can also
increase with the rise of the data generated by the simulation
program. If we proportionally increase the computation re-
source used for the data visualization, we may properly overlap
the visualization with the simulation computation and decrease
the workflow execution time.

This experiment uses a proxy simulation program to load
the file generated by the real deep water impact simulation. The
proxy simulation program then feeds the data into the elastic
data staging service to execute the data visualization pipeline.
The details of the deep water impact simulation are beyond
the scope of this work, and we use only the data generated by
the simulation to evaluate the elastic visualization pipeline in
this experiment. The data generated by the original simulation
run on 512 processes, and every process generates one VTU
file [28] for each iteration. The proxy simulation is run by the
MPI program,; it distributes VTU files evenly among every pro-
cess and then sends them to the associated data staging process.
The distributed data visualization pipeline is executed by the
data staging service. It replaces the MPI communicator with
the Mochi runtime that can support the process elasticity [15].

We mainly compare three typical resource elasticity strate-
gies in this experiment. Specifically, the No elasticity policy
adopts a fixed number of data staging processes during the work-
flow. The Static elasticity policy specifies the rescaling plan
before workflow starts, and it adds a fixed number of new pro-
cesses periodically in this experiment. The Adaptive elasticity
policy computes the number of added processes based on the
policy discussed in subsection 3.2.2. One key step of this policy
is to compute how many processes need to be added at the next
step. In order to use the model discussed in subsection 3.1, we
need to provide the estimated execution time and the estimated
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(b) Execution time of distributed visualization.

Figure 13: Subfigure(a) illustrates how the number of processes changes in
different steps. Subfigure(b) shows the in situ visualization execution time at
each step with different resource elasticity strategies.

data size of the data visualization for the next iteration. The es-
timated visualization execution time is computed based on the
latest wait time of the simulation program. The adaptive elas-
ticity policies aim to decrease the wait time and overlap with
the simulation computation as much as possible. The estimated
data size is computed using a variable k times the current size
of data. For example, when k equals two, the policy will com-
pute how many data staging processes can process the data that
is twice as large as the current size of data within the expected
execution time of data visualization.

Figure 13(a) shows how the number of the data staging
processes changes during the workflow progression, and Fig-
ure 13(b) illustrates the associated execution time of data vi-
sualization at each step. In particular, the execution time of
No elasticity policy increases gradually with the increase of the
data size because it adopts a fixed computing resource to pro-
cess a gradually increasing amount of data. The Static elasticity
policy gradually adds new processes'*. However, the frequent
rescaling operations increase the overhead of rescaling opera-
tions (discussed in subsection 5.2). The Adaptive elasticity pol-
icy decreases the number of rescaling operations, and it tries to

14The policy decides to add two processes every two iterations in this exper-
iment.
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Figure 14: Accumulated core-hours for different elasticity strategies.

estimate the size of the data after several steps and then com-
putes how many processes should be added. The granularity of
rescaling depends on the value of variable k. For example, the
policy decides to add 20 processes at step 9 when the k = 3;
in contrast, the policy with k = 2 decides to add a compara-
tively small number of processes gradually. By accumulating
the in situ processing time spent on every iteration, the adaptive
elasticity with k& = 3 saves around 64% of the execution time
compared with the case without an elasticity strategy.

Figure 14 compares the core-hours spent on elasticity strate-
gies. We compute the core-hours by using the number of cores
assigned to the program times the execution time of the associ-
ated program. Although adaptive elasticity policies adopt more
core-hours for the data staging service, they decrease the wait
time of the simulation program and save the total core-hours
consumed by the workflow. For example, compared with the
No elasticity policy, the Adaptive elasticity policy with k = 3
saves around 41% of the core-hours for the evaluated workflow.

6. Discussion

The evaluation in this article did not adopt the batch sched-
uler that supports elasticity because of the limitation of the ac-
cessible platform. Instead, we reserve enough nodes in advance
but use several of them to show the efficiency for elasticity for
the proof of concept. The presented policies need to be inte-
grated with a job scheduler that supports the resource elastic-
ity [17], which can resize the job during its execution. In this
way, we can achieve the real benefits of resource elasticity. Fur-
thermore, the signal represented by the configuration file may
be influenced by the performance of the parallel file system,
which causes the extra overhead of process triggering. A more
efficient trigger procedure should be explored in a future study.

In the evaluation of subsection 5.3, we use the synthetic
simulation that does not require a data distribution during the
rescaling operation. One research opportunity is to try to adapt
the existing simulation to support the elastic operation. Further-
more, the data staging service used in this article for the proof
of concept is only minimally capable of managing in-staging
data. It is interesting to integrate the elasticity policy and elas-
tic ana/vis with the state-of-the-art data staging services such
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as DataSpaces [6] and Damaris [49] to compare their efficiency
for elastic in situ processing.

For the adaptive elasticity policy discussed in this article,
we assume both the execution time of in-staging processing
and the simulation computation time vary gradually and follow
the model discussed in subsection 3.1. However, it is possi-
ble that in-staging processing is more complicated, such as the
single process with unbalanced execution time shown in sub-
section 5.4. The model estimation of execution time can also
be updated to adapt to various data ana/vis tasks. This article
mainly discusses the performance model and the resource elas-
ticity policy for data rendering tasks. Future research needs to
extend the current model to support other visualization tasks,
such as streamline or iso-contour tasks. Moreover, if there is
workflow runtime information, such as the performance of the
srun operation, the adaptive policy can make a more accurate
decision about whether resource rescaling is necessary.

For the evaluated cases with a fixed data size, such as the re-
sults shown in Figure 11, the static and adaptive elasticity poli-
cies show a similar performance. The adaptive elasticity poli-
cies need at least three iterations to collect sample data points
and estimate key parameters of the model; within these several
iterations, the static method can also achieve a proper config-
uration. For the case with a variation of both data size and
process number, such as the results shown in Figure 13, the
adaptive elasticity shows better performance by estimating the
future simulated data size.

Our experiments evaluate only the scenario when the simu-
lation and data processing runs by the same job. The situation
in which the simulation and program run at different jobs and
transfer the data by file-system are beyond the scope of this
study. In this case, even if the simulation does not need ex-
tra wait time since it dumps data to the file system directly, the
elasticity can also help to find a sweet point between computing
resource utilization and time constraints of data processing.

Although the presented adaptive elasticity policies try to de-
cide the elasticity operation in an online manner, prior infor-
mation is still needed to improve the accuracy of the elasticity
policies. In particular, the threshold value discussed in subsec-
tion 3.2.2 is influenced by the overhead of the rescaling oper-
ation, which is collected according to the test run before the
actual workflow execution. The properly chosen sample data
points for model prediction are more accurate than using all the
data collected during the workflow execution for model predic-
tion. For example, if the P;; and P, discussed in subsection 3.1
have the closed y values, the error of sample data can decrease
the accuracy of model prediction.

7. Related Work

This section discusses related works in detail and how our
work differs from theirs. In particular, we use Table 7 to illus-
trate different aspects of related works for deciding the comput-
ing resources used for scientific workflows. In particular, each
work is viewed from aspects of the type (Policy or Framework),
the platform (HPC or Cloud), the goal, and the approach.



Research works Type Platform | Goal Main approach

Tong et al. [9, 24] | Policy (RT) HPC Mll’llIIll.ZlIlg .the in situ Adding a ﬁxeq .number o.f resources
processing time for each elasticity operation
Minimizing the cost and Using reinforcement learning to train

Gari et al. [22] Policy (RT) Cloud execution time for g . 8 .

. the model to guide the elasticity operations
post hoc scientific workflows
. Minimizing the cost and Using evolutive algorithms to solve
Monge et al. [50] | Policy (RT) Cloud the execution time of simulation | the multiobject optimization problem
. Recovering from node failure Adding new nodes into the current service

Duan etal. [51] Policy (RT) HPC for data staging service when there is a node failure detection

Shu et al. [52] Policy (NRT) | HPC Mlnlmllzmg 'the in situ Selecting proper wgrkﬂow configurations
processing time based on the pretrained performance model

Kress et al. [12] Policy (NRT) | HPC De‘crez}smg the C(:)St Using cost model to de.01de. whether ‘
of in situ processing the resource configuration is appropriate

Dorier et al. [15] | Framework HPC Suppor‘gng .the e}ast}c1ty U51.ng an elastic commuplcatgr to.sup'port
for in situ visualizations online rescale for scientific visualizations

Fox et al. [16] Framework HPC Supporting .the ’elastlclty for Using 'checkpomt-restart andosubmlttl'ng
post-hoc scientific workflows a new job to implement elastic operations
Extending SLURM . . ..

Chadha et al. [20] | Framework HPC to support the elasticity Using elastic MPI to support the elasticity

Table 1: Comparison between different aspects of related works for deciding resources used for scientific workflows. The “RT” and “NRT” represents the “real-time”

and “non-real-time”, respectively.

The work most closely related to our study is the research
by Tong et al. [9]. They present a resource adaptation policy
to rescale the computation resources used for data staging ser-
vice and to improve resource utilization efficiency on the HPC
platform. They estimate the minimum number of data staging
processes that contain enough memory resources and then add
more computation resources to make the in-staging processing
overlap with the simulation computation. A follow-up paper by
Tong et al. [24] extends the rescaling operation and manages it
by autonomic computing. However, they do not explain how
to properly determine the number of processes to join/leave the
computation group and the overhead of the elasticity operation.
Once the condition of triggering the elasticity operation is satis-
fied, they add a fixed number of resources into the data staging
service. In addition, the decision policy in their work did not
discuss how the overhead of the rescaling operation influences
the efficiency of the resource rescaling operations.

Elasticity is also an important aspect for the cloud com-
puting. Ghanbari et al. [53] summarize typical approaches to
support elasticity in the context of cloud computing. Zahedi et
al. [54] discuss how to use the Amdahl utility function to de-
cide the process allocation. Our work focuses on the elasticity
policy from the application perspective in the context of the in
situ ana/vis tasks for scientific workflows on an HPC platform.

Shashidharan et al. [55] present a framework that can run
the geo-simulation on elastic resources at runtime. Monge et
al. [50] and Yannibelli et al. [56] formulate the rescaling policy
on the cloud platform as a multiobjective optimization problem.
Evolutive algorithms are adopted by the autoscaler to minimize
the makespan, monetary cost, and probability of failures of sim-
ulation execution. Our work focuses on the elasticity of in situ
visualizations, and discusses how to overlap the visualization
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execution with the simulation computation by resource rescal-
ing on HPC platforms with homogeneous computing nodes.

In the context of fault-tolerance for in situ processing, Duan
et al. [51] use elasticity as a mechanism to support data failure
detection and recovery for data staging processes. The User
Level Failure Mitigation (ULFM) [57] presents MPI extensions
to detect communicator failure, along with solutions for recov-
ery from the failure. The trigger of the elasticity primitives de-
pends on the error detection mechanism for these works; how-
ever, our work mainly focuses on rescaling data staging re-
sources to achieve more efficient resource utilization.

Shu et al. [52] use the machine learning method and auto-
tuner to build a surrogate model for finding the proper resource
configuration for the in situ workflow. However, their approach
needs to run offline to train the performance model and find
configurations before the workflow starts. Our method is more
lightweight and is able to find a proper resource configuration
during the workflow execution and adjust the configurations in
an online manner.

Kress et al. [12] present cost models for in situ process-
ing, and they evaluate the tightly-coupled and loosely-coupled
in situ processing for multiple visualization tasks. The results of
their study show the possibility of staging-based in situ process-
ing being cost-effective over tightly-coupled in situ processing.
With this work as one motivation, our work further explores
how to rescale the resources used for staging-based in situ pro-
cessing and improve its efficiency.

Dorier et al. [15] present a data staging framework that sup-
ports the elastic in sifu visualization task. They show how to
update the widely used Paraview Catalyst in situ visualization
framework to execute the visualization in an elastic manner.
However, their work mainly focuses on the design considera-




tion of adapting infrastructure that executes the visualization in
an elastic way, and they do not discuss the elasticity policies
about when and how to trigger these elasticity operations.

Fox et al. [16] and Chadha et al. [20] focus on how to pro-
vide elasticity from the job scheduler’s perspective. They dis-
cuss the mechanism to implement the elasticity primitives such
as resource addition or removal on the HPC platform. Our work
focuses on the policy to trigger these primitives, which is com-
plementary to their works.

8. Conclusions and Future Work

In this article, we explored an approach that uses elasticity
management to optimize the scientific workflow with in situ vi-
sualization on the HPC platform in real time. The goal of the
elasticity policy is to decrease the gap between the data gener-
ation and data producing rate to improve computing resource
utilization. The presented elasticity policies utilize the work-
flow runtime information to decide when to apply the elasticity
operation, and how many rescaled processes for the simulation
and the data staging process are required during the workflow
execution. This paper makes the following contributions:

e Modeling the execution time of the in situ visualization
task and showing how it is influenced by data size and
the number of processes. This simple and efficient model
provides the foundation for elasticity policy to decide the
number of rescaled processes.

o Presenting elasticity policies that decide when and how to
trigger resource rescaling operations under different sce-
narios.

o Integrating presented elasticity policies with the in sifu
simulation-visualization workflow based on Mochi data
management services and VTK.

o Evaluating in situ processing with the elasticity policy on
the Cori supercomputer. The evaluation results show that
the adaptive elasticity policy can efficiently find a proper
resource configuration, decrease the overhead caused by
rescaling operations, and improve computing resource uti-
lization efficiency.

Our future work includes (1) improving the accuracy of the
performance model and extending it to support more types of
in situ visualization tasks and other processing tasks in addition
to visualization, and (2) integrating presented elasticity policies
into full-fledged in situ processing that contains an elastic sim-
ulation, ana/vis pipelines, and an elastic batch scheduler.
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Highlights

e Presenting a model to estimate how the execution time of in-staging visualization, such as
data rendering, is influenced by the data size and the number of processes.

e Presenting policies that can adjust the computing resource assigned to the data staging
service according to the runtime information of in situ workflow.

e Integrating the presented policies with a data staging service for executing in situ
visualization in an elastic manner.

e The presented policies are evaluated to show the tradeoff between the benefits and
overhead of elastic in situ visualization.
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