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Abstract

High-order interaction events are common in real-
world applications. Learning embeddings that en-
code the complex relationships of the participants
from these events is of great importance in knowl-
edge mining and predictive tasks. Despite the
success of existing approaches, e.g., Poisson ten-
sor factorization, they ignore the sparse structure
underlying the data, namely the occurred inter-
actions are far less than the possible interactions
among all the participants. In this paper, we pro-
pose Nonparametric Embeddings of Sparse High-
order interaction events (NESH). We hybridize
a sparse hypergraph (tensor) process and a ma-
trix Gaussian process to capture both the asymp-
totic structural sparsity within the interactions and
nonlinear temporal relationships between the par-
ticipants. We prove strong asymptotic bounds
(including both a lower and an upper bound) of
the sparsity ratio, which reveals the asymptotic
properties of the sampled structure. We use batch-
normalization, stick-breaking construction and
sparse variational GP approximations to develop
an efficient, scalable model inference algorithm.
We demonstrate the advantage of our approach in
several real-world applications.

1 Introduction

Many real-world applications are filled with interaction
events between multiple entities or objects, e.g., the pur-
chases happened among customers, products and shopping
pages at Amazon.com, and tweeting between twitter users
and messages. Embedding these events, namely, learning
a representation of the participant objects to encode their
complex relationships, is of great importance and interest,
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in discovering hidden patterns from data, e.g., clusters and
outliers, and performing downstream tasks, such as recom-
mendation and online advertising.

While Poisson tensor factorization is a popular framework
for the representation learning of those events, current meth-
ods, e.g., (Chi and Kolda, 2012; Hansen et al., 2015; Hu
et al., 2015b; Schein et al., 2015; 2016; 2019), are mostly
based on a multilinear factorization form, e.g., (Tucker,
1966; Harshman, 1970), and therefore might be inadequate
to estimate complex, nonlinear temporal relationships in
data. More important, existing methods overlook the struc-
tural sparsity underlying these events. That is, the observed
interactions are far less than all the possible interactions
among the participants (e.g., 0.01%). Many factorization
models rely on tensor algebras and demand all the tensor
entries (i.e., interactions) should be observed (Kolda and
Bader, 2009; Kang et al., 2012; Choi and Vishwanathan,
2014). Even for those entry-wise factorization models (Rai
et al., 2014; Zhao et al., 2015; Du et al., 2018), from the
Bayesian viewpoint, they are equivalent to first generating
the entire tensor and then marginalizing out the unobserved
entries. In practice, however, the observed interactions are
often very sparse, and their proportion can get even smaller
with the increase of objects. For example, in online shop-
ping, with the growth of users and items, the number of
actual purchases (while growing) takes a smaller percentage
of all possible purchases, i.e., all (user, item, shopping-page)
combinations, because the latter grows much faster.

In this paper, we propose NESH, a novel nonparametric
Poisson factorization approach for high-order interaction
events embedding. Not only does NESH flexibly estimate
various nonlinear temporal relationships of the participants,
it also can capture structural sparsity within the present
interactions, absorbing both the structural traits and hidden
relationships into the embeddings. Our major contributions
are the following:

• Model. We hybridize the recent sparse tensor (hyper-
graph) processes (STP) (Tillinghast and Zhe, 2021) and
matrix Gaussian processes (MGP) to develop a sparse
event model, where the embeddings are in charge of
both generating the interactions and modulating the
event rates, hence can jointly encode the temporal rela-
tionships and sparse structure knowledge.
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• Theory. We use Poisson tail estimate, Bernstein’s in-
equality and L’Hôpital’s rule to prove strong asymp-
totic bounds of the sparsity ratio, including both a
lower and upper bound. The prior work Tillinghast
and Zhe (2021) only shows the sparsity ratio of the
sampled tensors asymptotically converges to zero, yet
never gives an estimate of the convergence rate. Our
new result reveals more theoretical insight of STP in
producing sparse structures, and can also characterize
the classical sparse graph generation models (Caron
and Fox, 2014; Williamson, 2016).

• Algorithm. We use the stick-breaking construction
of the normalized hypergraph process to compute the
embedding prior, and then use batch-normalization and
variational sparse GP framework to develop an efficient
and scalable model estimation algorithm.

For evaluation, we conducted simulations to demonstrate
that our theoretical bounds can indeed match the actual spar-
sity ratio and capture the asymptotic trend. Hence they can
provide a reasonable convergence rate estimate and charac-
terize the behavior of the prior. We then tested our approach
NESH on three real-world datasets. NESH achieves much
better predictive performance than the existing methods that
use Poisson tensor factorization, additional time steps, local
time dependency windows and triggering kernels. NESH
also outperforms the same model with the sparse hyper-
graph prior removed, which demonstrates the importance of
accounting for the structure sparsity. We then looked into
the embeddings estimated by NESH, and found interesting
patterns, including the clusters of users, sellers, and item
categories in online shopping, and groups of states where
car crash accidents happened.

2 Background

We assume that we observed K-way interactions among K
types of objects or entities (e.g., customers, products and
sellers). We denote by Dk the number of objects of type
k, and index each object by ik (1 ≤ ik ≤ Dk). We then
index a particular interaction by a tuple i = (i1, . . . , iK).
We may observe multiple occurrences of a particular in-
teraction. We denote the sequence of these events by
si = [si1, . . . , simi

] where sij is the time-stamp when j-
th event occurred (1 ≤ j ≤ mi) and mi is the total number
of the occurrences of i. Suppose we have observed events
of a collection of interactions, S = {si1 , . . . , siN }, we aim
to learn an embedding for each participant object. Note
that one object may participate in multiple, distinct inter-
actions. We denote by ukj the embeddings for object j of
type k, which is an R dimensional vector. We stack the em-
beddings of the objects of type k into a embedding matrix
Uk = [uk1 , . . . ,u

k
Dk

]>, and denote by U = {U1, . . . ,UK}
all the embedding matrices.

To estimate the embeddings from S, a popular approach
is tensor factorization. We can introduce a K-mode tensor
Y ∈ RD1×...×DK accordingly, where each mode k includes
Dk objects, and each entry i corresponds to an event se-
quence si. For event modeling, we can use the popular
(homogeneous) Poisson processes, and the probability of si
is given by

p(si|λi) = e−
∫ T
0
λidt

∏mi

j=1
λi = e−Tλiλmi

i , (1)

where T is the total time span of all the event sequences,
and λi > 0 is the rate (or intensity) of the interaction
i. Since the probability is only determined by the event
count, we can place the count value mi in the entry i
of Y , and perform count tensor factorization. Classical
tensor factorization approaches include Tucker decompo-
sition (Tucker, 1966), CANDECOMP/PARAFAC (CP) de-
composition (Harshman, 1970), etc. Tucker decomposition
assumes Y = W ×1 U1 ×2 . . . ×K UK , where W ∈
Rr1×...×rK is a parametric core tensor, {Uk|1 ≤ k ≤ K}
are embedding matrices, and×k is the tensor-matrix product
at mode k (Kolda, 2006), which is very similar to the matrix-
matrix product. If we set all rk = R, and constrainW to
be diagonal, Tucker decomposition is reduced to CANDE-
COMP/PARAFAC (CP) decomposition (Harshman, 1970).
While numerous tensor factorization algorithms have been
developed, e.g., (Chu and Ghahramani, 2009; Kang et al.,
2012; Choi and Vishwanathan, 2014), most of them inherit
the CP or Tucker form. To perform count tensor factoriza-
tion, we can use Poisson process likelihood (1) for each
entry, and apply the Tucker/CP decomposition to the rates
{λi} or log rates {log(λi)} (Chi and Kolda, 2012; Hu et al.,
2015b). A more refined strategy is to further partition the
events into a series of time steps, e.g., by weeks or months,
augment the count tensor with a time-step mode (Xiong
et al., 2010; Schein et al., 2015; 2016; 2019), and jointly
estimate the embeddings of these steps, {s1, s2, . . .}. We
can also model the dependencies between the time steps
with some dynamics, e.g., (Xiong et al., 2010).

3 Model

Despite the success of existing Poisson tensor factorization
approaches, they might be restricted in that (1) the com-
monly used CP/Tucker factorization over the rates are multi-
linear to the embeddings and therefore cannot capture more
complex, nonlinear relationships between the interaction
participants; (2) the homogeneous assumption, i.e., constant
event rate, might be oversimplified, overlook temporal vari-
ations of the rates, and hence miss critical temporal patterns.
More important, (3) in many real-world applications, the
present interactions are very sparse, when contrasted to all
possible interactions. For example, despite the massive on-
line transactions, the ratio between the number of actual
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transactions and all possible transactions (i.e., all combina-
tions of (customer, product, seller) is tiny1, slightly above
zero (e.g., 0.01%). This proportion can get even smaller
with the growth of customers, products and sellers, because
their combinations can grow much faster. Similar observa-
tions can be found in clicks in online advertising, message
tweeting, etc. Existing methods, however, are not aware of
this data sparsity, and lack an effective modeling framework
to embed the underlying sparse structures. To overcome
these limitations, we propose NESH, a novel nonparametric
embedding model for sparse high-order interaction events,
presented as follows.

3.1 Nonparametric Sparse Event Modeling for High-
Order Interactions

First, to highlight the sparse structure within the observed
events, we view the participants as nodes, and their inter-
actions as K-way hyperedges in a hypergraph. Each edge
connects K participants (nodes), corresponding to a par-
ticular interaction i. Attached to i is a sequence of events
si — the occurrence history of i. Our goal is to learn an
embedding for each node, which is able to not only estimate
the complex temporal relationships between the nodes, but
also capture the traits of the sparse hypergraph structure. To
this end, we follow (Tillinghast and Zhe, 2021; Caron and
Fox, 2014) to construct a stochastic process to sample the
hypergraph, with a guarantee of sparsity in the asymptotic
sense. Specifically, for each node type k(1 ≤ k ≤ K), we
sample a set of Gamma processes (Hougaard, 1986; Brix,
1999) to represent an infinite number of nodes and their
weights,

Wα
k,r ∼ ΓP(βα) (1 ≤ k ≤ K, 1 ≤ r ≤ R) (2)

where βα is a Lebesgue base measure confined to [0, α](α >
0). Next, we use these ΓPs to construct a product-measure
sum, with which as the mean measure to sample a Poisson
point process (PPP) (Kingman, 1992), which represents the
sampled edges of the hypergraph,

M =
∑R

r=1
Wα

1,r × . . .×Wα
K,r,

T |{Wα
k,r}1≤k≤K,1≤r≤R ∼ PPP(M). (3)

Accordingly, T has the following form,

T =
∑
i∈E

ci · δΘαi ,

where each point represents an hyperedge (interaction), E
is the set of all the sampled points, ci > 0 is the count of
the point i, and Θα

i = {(θα1i1 , . . . , θ
α
KiK

)} represents the

1see Amazon data samples (http://jmcauley.ucsd.
edu/data/amazon/) and dataset information in our experi-
ments in Sec. 6.

location of that point and comes from the ΓPs, and δ[·] is the
Dirac measure. In essence, the ΓPs sample infinite nodes for
each type k(1 ≤ k ≤ K), and then the PPP picks the nodes
from each type to sample the hyperedges, i.e., multiway
interactions.

To examine the sparsity, we look into the nodes in the sam-
pled hyperedges E , which are referred to as “active” nodes.
They are participants of the interactions. For example, if
an edge 2 − 3 − 1 is sampled, then node 2, 3, 1 (of type
1, 2, 3 respectively) are active nodes. Denote by Dα

k the
number of distinct active nodes of type k. If we connect
all the active nodes of the K types, we will have

∏K
k=1D

α
k

hyperedges (interactions) in total, i.e., the volume. Sparsity
means the proportion of the sampled edges in all possible
edges is very small, and the former grows slower than the
latter, with the increase of active nodes. Denote by Nα the
number of sampled edges. The sparsity is guaranteed by

Lemma 3.1 (Corollary 3.1.1 (Tillinghast and Zhe, 2021)).
Nα = o(

∏K
k=1D

α
k ) almost surely as α → ∞, i.e.,

lim
α→∞

Nα∏K
k=1D

α
k

= 0 a.s.

Note that this is an asymptotic notion of structural sparsity
— with the hyper-graph volume growing (i.e., increasing
α), the proportion of the sampled edges is tending to zero.
It is different from other notions (Choi and Vishwanathan,
2014; Hu et al., 2015a) where the sparsity means data is
dominated by zero values.

Given the sparse hypergraph prior, we then sample the ob-
served edges (interactions) and associated events, D =
{(i1, si1), . . . , (iN , siN )}. Since they are always finite, we
can use the standard PPP construction (Kingman, 1992) to
sample these observations, which is computationally much
more convenient and efficient. Specifically, we normal-
ize the mean measure M =

∑R
r=1W

α
1,r × . . . × Wα

K,r

in (3) to obtain a probability measure, and use it to sam-
ple the N points (i.e., edges/interactions) independently.
To normalize M , we need to first normalize each ΓP
Wα
k,r(1 ≤ k ≤ K, 1 ≤ r ≤ R), which gives a Dirich-

let process (DP) (Ferguson, 1973), with the strength as
βα([0, α]) = α, and base measure as the normalized base
measure of Wα

k,r that is a uniform distribution in [0, α],

Gkr ∼ DP
(
α,Uniform([0, α])

)
, (4)

where 1 ≤ k ≤ K and 1 ≤ r ≤ R. The normalized M is
1
R

∑R
r=1G

1
r× . . .×GKr . To capture rich structural informa-

tion, we follow “Model-II” in (Tillinghast and Zhe, 2021)
to sample multiple DP weights for each node. Specifically,
we drop the locations, and only sample the weights, which
follow the GEM distribution (Griffiths, 1980; Engen, 1975;

http://jmcauley.ucsd.edu/data/amazon/
http://jmcauley.ucsd.edu/data/amazon/
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McCloskey, 1965), and obtain

Ĝkr =

∞∑
j=1

ωkrj · δj . (5)

Accordingly, we construct a probability measure over all
possible edges (interactions),

M̂ =

(∞,...,∞)∑
i=(1,...,1)

wi · δi, (6)

where wi = 1
R

∑R
r=1

∏K
k=1 ω

k
rik

. We then sample each
observed interaction in ∼ M̂ , and the probability is

p(E) =
∏N

n=1
p(in) =

∏N

n=1
win . (7)

Now, it can be seen that from (4) and (5), for each node j of
type k, we have sampled a set of R weights {ωk1j , . . . , ωkRj}
from R DPs. From (6), we can see these weights reflect the
activity of the node interacting with other nodes (of different
types). Each weight naturally represents the sociability in
one community/group, and these communities are overlap-
ping. We use these sociabilities to construct the embeddings
of the nodes. Therefore, they encode the sparse structural
information underlying the observed interactions 2

Given the sampled interactions E , we then sample their oc-
curred events S = [si1 , . . . , siN ]. To flexibly capture the
temporal patterns, we use non-homogeneous Poisson pro-
cesses. For each observed interaction in, we consider a
raw rate function ρin(t), and then link it to a positive rate

2Model-II in (Tillinghast and Zhe, 2021) actually has made an
additional adjustment on top of (3). According to the superposition
theorem, PPP(

∑R
r=1 W

α
1,r × . . .×Wα

K,r)
D
=

∑R
r=1 PPP(Wα

1,r ×
. . . × Wα

K,r). It means (3) essentially samples R hypergraphs
independently and places them together. Model-II further per-
forms a probabilistic merge of the R hypergraphs. To see this,
from (5) the nodes of each type in each hypergraph are indexed
by the same set of integers (1, 2, 3, . . .), and so all the possible
edges in each hypergraph are indexed by the same set of index
tuples. From (6) and (7), the probability of sampling a particular
edge indexed by i is ωi =

1
R

∑R
r=1

∏K
k=1 ω

k
rik

. This can be ex-
plained as the following merging procedure. We randomly select
one hypergraph (with probability 1

R
) and check if edge i has been

sampled in that hypergraph. If it has, we add edge i in the new
graph; otherwise, we do not add the edge. Since in each hyper-
graph r, the probability of edge i being sampled is

∏K
k=1 ω

k
rik

,
the overall probability of sampling the edge i in the new graph
is the average, ωi =

1
R

∑R
r=1

∏K
k=1 ω

k
rik

. It is trivial to see that
the merged hypergraph is still asymptotically sparse: since these
hypergraphs can be viewed as independently sampled based on the
same set of nodes, each of which is asymptotically sparse, their
summation is also asymptotically sparse. The benefit is that since
we align these hypergraphs via the integer indices of the nodes, we
can assign multiple sociabilities for each node to be better able to
capture the abundant structural information.

function by taking the square, λin(t) = (ρin(t))
2. Note that

we can also use exp(·), which, however, performs worse
in our experiments. In order to capture the complex re-
lationships of the rate functions and their temporal varia-
tions, we jointly sample the collection of rate functions,
ρ = {ρin(t)|1 ≤ n ≤ N}, from a matrix Gaussian process
(MPG) (Rasmussen and Williams, 2006),

ρ ∼MN (0;κ1(xi,xi′), κ2(t, t′)), (8)

where κ1(·, ·) is the (row) covariance function across differ-
ent interactions (hyperedges), the inputs are the embeddings
of participant nodes, xi = [u1

i1
; . . . ; uKiK ], and κ2(·, ·) is the

(column) covariance function about the time. We can choose
nonlinear kernels for κ1 and κ2 to capture the complex rela-
tionships and temporal dependencies within ρ. Given the
rate functions, we then sample the observed event sequences
from

p(S|λ) =

N∏
n=1

exp(−
∫ T

0

(ρin(t))
2

dt)

min∏
j=1

(ρi(sinj))
2
, (9)

where T is the total time span across all the event sequences.

From (7) and (9), we can see that, via coupling the DPs
and matrix GP, both the structural properties in the sparsely
observed interactions and hidden temporal relationships
of the participant nodes in the events can be grasped and
absorbed into the embeddings.

3.2 Theoretical Analysis of Sparsity

Although Tillinghast and Zhe (2021) has proved the asymp-
totic sparsity guarantee of the hypergraph process in (3)
(referred to as sparse tensor process in their paper), i.e.,
Lemma 3.1, the conclusion is rough in that we have no idea
how the sparsity of the sampled hyper-graph varies along
with more and more active nodes. We only know that at
the limit, the sparsity ratio becomes zero. While Caron and
Fox (2014) gave some convergence rate estimate in their
binary graph generating models under a similar modeling
framework, the estimate is only available when using gen-
eralized ΓPs (GΓPs) (Hougaard, 1986) with a particular
parameter range (see Theorem 10 in their paper). The es-
timate is not available for the popular ordinary ΓPs as in
our model. GΓPs cannot be normalized as DPs and are
much harder/inconvenient for computation and inference.
To extract more theoretical insight, we prove asymptotic
bounds of the sparsity ratio for our hyper-graph process,
which not only deepen our understanding of the properties
of the sampled structures, but also fill the gap of prior works.

Lemma 3.2. For a sparse hyper-graph process defined as
in (3), for all sufficiently large α, there exists an absolute
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constant C > 0 such that, with probability at least 1 −
(Cα)−K ,

e−1.03(2K)1/KK(logα)1/K

2K logα
·
[

1.82

(K − 1) log(1.01α)

]K
≤ Nα∏K

k=1D
α
k

≤
[

2.11

(K − 1) log(0.99α)

]K
.

Proof sketch. We first use concentration inequalities, includ-
ing Poisson tail estimate (Vershynin, 2018) and Bernstein’s
inequality, and L’Hopital’s rule to bound the measure of each
ΓP on [0, α], and then take a union bound over k = 1 . . .K
to obtain an upper bound of Nα. The lower bound is more
technical, and requires a careful estimate of the support of
the intensity measure that appears in the sampled entries
with high probability, for which we apply a novel probabilis-
tic argument. We mainly combine Poisson tail estimates,
union bounds, the Bernoulli distribution and L’Hôpital’s
rule to bound each Dα

k and then derive the lower bound of
Nα. We leave the details in Appendix.

4 Algorithm

The matrix GP in our model, coupled with DPs, is compu-
tational costly. When the number of present interactions
and/or the number of their events are large, we will have to
compute a huge row and/or column covariance matrix, their
inverse and determinants, which is very expensive or even in-
feasible. To address these issues, we use the stick-breaking
construction (Sethuraman, 1994), sparse variational GP ap-
proximation (Titsias, 2009; Hensman et al., 2013) and batch
normalization (Ioffe and Szegedy, 2015) to develop an effi-
cient, scalable variational inference algorithm.

Specifically, we use the stick-breaking construction to sam-
ple the DP weights (or GEM distribution),

vkrj ∼ Beta(1, α), ωkrj = vkrj
∏j−1

l=1
(1− vkrl), (10)

where 1 ≤ j ≤ ∞. Therefore, we only need to estimate the
stick-breaking variables {vkrj}, from which we can outright
calculate the weights (or sociabilities). Since these weights
can be very small and close to zero, we use their logarithm
to construct the embedding of each node j of type k, ukj =

[log(ωk1j); . . . ; log(ωkRj)].

Next, to conveniently handle the matrix GP prior in (8),
we unify all the raw rate functions as one function of the
embeddings and time, ρi(t) = f(xi, t), over which we as-
sign a GP prior with a product covariance (kernel) function,
κ([xi, t], [xi′ , t

′]) = κ1(xi,xi′)κ2(t, t′). This is computa-
tionally equivalent to (8) because they share the same covari-
ance function. But we only need to deal with one function.
Accordingly, the function values at the event time-stamps

(across all the interactions), f = {f(xin , sinj)}n,j follow a
multivariate Gaussian distribution,

p(f |U) = N (f |0, κ(X,X)), (11)

where each row of X consist of the embedding xin and
a time-stamp sinj . Combing with (7) (9) (10), the joint
probability of our model is

p({vkj }1≤j≤Dk,1≤k≤K , E ,S, f)

=

K∏
k=1

Dk∏
j=1

R∏
r=1

Beta(vkrj |1, α) · N (f |0, κ(X,X)) (12)

·
N∏
n=1

ωin exp(−
∫ T

0

(f(xin , t))
2

dt)

min∏
j=1

(f(xin , sinj))
2
,

where vkj = {vkjr}1≤r≤R. The stick-breaking variables
associated with inactive nodes, i.e., the nodes that do not
participate any interactions, have been marginalized out.

Next, to dispense with the huge covariance matrix in (12)
for f , we use the sparse variational GP approximation (Hens-
man et al., 2013) to develop a variational inference algo-
rithm. Specifically, we introduce a small set of pseudo
inputs Z = [z1, . . . , zh]> for f(·), where h is far less
than the dimension of f . We then define the pseudo out-
puts b = [f(z1), . . . , f(zh)]>. We augment our model
by jointly sampling {f ,b}. Due to the GP prior over f(·),
{f ,b} follow a multivariate Gaussian distribution that can
be decomposed as p(f ,b) = p(b)p(f |b), where p(b) =
N
(
b|0, κ(Z,Z)

)
, p(f |b) = N (f |mf |b,Σf |b) is a condi-

tional Gaussian distribution, mf |b = κ(X,Z)κ(Z,Z)−1b
and Σf |b = κ(X,X) − κ(X,Z)κ(Z,Z)−1κ(Z,X). The
probability of the augmented model has the following form,

p(Joint) = OtherTerms · p(b)p(f |b)p(S|f), (13)

where

p(S|f) =

N∏
n=1

exp(−
∫ T

0

(f(xin , t))
2dt)

min∏
j=1

(f(xin , sinj))
2

is the likelihood of the events. Compared to (12), we just
replace the Gaussian prior over f by the joint Gaussian
prior over {f ,b}. If we marginalize out b, we will recover
the original distribution (12). Now, we construct a varia-
tional evidence lower bound (ELBO) to avoid computing
the covariance matrix κ(X,X). To this end, we introduce
a variational posterior for {f ,b}, q(f ,b) = q(b)p(f |b),
where q(b) = N (b|µ,LL>), and L is a lower triangular
matrix. Note that LL> is essentially a Cholesky decompo-
sition, and we use it to ensure the positive definiteness of
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the posterior covariance matrix. We then derive the EBLO

L = Eq(b,f)
[
log

p(Joint)
q(b, f)

]
= Eq

[
log

OtherTerms · p(b)���p(f |b)p(S|f)

q(b)���p(f |b)

]
.

Now we can see that the full conditional Gaussian distribu-
tions p(f |b) is canceled. We only need to calculate the h×h
covariance matrix for p(b), which is very small. Hence, the
cost is largely reduced. The detailed ELBO is given by

L = −KL(q(b)‖p(b)) +
∑N

n=1
logwin

+
∑K

k=1

∑Dk

j=1

∑R

r=1
log Beta(vkrj |1, α)

−
N∑
n=1

EqEp(t)[T (f(xin , t))
2
]

+

N∑
n=1

min∑
j=1

Eq[log(f(xin , sin,j))
2],

where p(t) = Uniform(0, T ), and KL(·, ·) is the Kullback-
Leibler divergence. We maximize L to estimate the vari-
ational posterior q(b) and the other parameters, including
the stick-breaking variables {vkj }, kernel parameters, etc.
Due to the additive structure over both the interactions and
their events, it is straightforward to combine with the repa-
rameterization trick (Kingma and Welling, 2013) to perform
efficient stochastic mini-batch optimization.

However, since our embeddings are constructed from
the logarithm of the sociabilities (in [0, 1]), ukj =

[log(ωk1j); . . . ; log(ωkRj)], and these sociabilities are often
small, close to zero, their log scale can be quite big, e.g.,
hundreds. As a result, when we feed the input xi =
[u1
i1
, . . . ,uKiK ]> to the GP kernel (e.g., we used SE ker-

nel in the experiments), it is easy to incur numerical issues
or make the kernel matrix stuck to be diagonal. To address
this issue, we use the batch normalization method (Ioffe and
Szegedy, 2015). That is, we jointly estimate an (empirical)
mean and standard deviation for each embedding element
during our stochastic mini-batch optimization. Denote them
by η and σ. Each time, we first normalize each xi by

xi ←
xi − η

σ
,

and then feed them to the kernel; η and σ are jointly updated
with all the other parameters using stochastic gradients. We
empirically found the numerical problem disappears, and
the learning is effective (see Sec. 6).

Algorithm Complexity. The time complexity of our infer-
ence algorithm is O

(
mh2 + KR

∑K
k=1Dk

)
where m =∑N

n=1min is the total number of events. Since h� m, the

computational cost is linear in m. The space complexity
is O(h2 +R

∑K
k=1Dk), including the storage of the prior

and posterior covariance matrices for pseudo outputs b and
embeddings U .

5 Related Work

It is natural to represent high-order interactions by multi-
dimensional arrays or tensors. Tensor factorization is the
fundamental framework for tensor analysis. Classical ten-
sor factorization approaches include CP (Harshman, 1970)
and Tucker (Tucker, 1966) decomposition, based on which
numerous other methods have been proposed: (Chu and
Ghahramani, 2009; Kang et al., 2012; Yang and Dunson,
2013; Choi and Vishwanathan, 2014; Du et al., 2018; Fang
et al., 2021a), to name a few. Recently, nonparametric
and/or neural network factorization models (Zhe et al., 2015;
2016b;a; Liu et al., 2018; Pan et al., 2020b; Tillinghast et al.,
2020; Fang et al., 2021b; Tillinghast and Zhe, 2021) were
developed to estimate nonlinear relationships in data, and
have shown advantages over popular multilinear methods
in prediction accuracy. When dealing with temporal infor-
mation, existing methods mainly use homogeneous Poisson
processes and decompose the event counts (Chi and Kolda,
2012; Hansen et al., 2015; Hu et al., 2015b). More ad-
vanced approaches further partition the time stamps into
different steps, and perform count factorization across the
time steps (Xiong et al., 2010; Schein et al., 2015; 2016;
2019). Recently, Zhe and Du (2018) used Hawkes processes
to estimate the local triggering effects between the events,
and modeled the triggering strength with a kernel of the
embeddings of the interactions. Pan et al. (2020a) modeled
the time decay as another kernel of the embeddings, and de-
veloped scalable inference for long event sequences. Wang
et al. (2020) proposed a non-Hawkes, non-Poisson process
to estimate the triggering and inhibition effects between the
events. All these are temporal point processes that focus on
rate modeling, and are different from the PPPs (with mean
measure) in NESH to sample sparse interaction structures.
Lloyd et al. (2015) proposed GP modulated Poisson pro-
cesses and also used the square link to ensure a positive rate
function. However, the work is purely about event modeling
and does not learn any embedding. With the SE kernel, it
derives an analytical form of ELBO. However, since our
model includes the embedding (log sociabilities) in the GP
prior, the ELBO is analytically intractable, and we use the
reparameterization trick to conduct stochastic optimization.
Recently, Pan et al. (2021) proposed a self-adaptable point
process for event modeling, which can estimate both the
triggering and inhibition effects within the events. More
important, they construct a GP based component to enable
a nonparametric estimate of the time decays of these effects.
Their point process is not a Poisson process any more.

Our hyper-graph prior is inherited from the sparse tensor
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Figure 1: Sparsity ratio of the sampled hypergraphs and bounds.

process in (Tillinghast and Zhe, 2021), which can be viewed
as a multi-dimensional extension of the pioneer work of
Caron and Fox (2014; 2017), who first used completely
random measures (CRMs) (Kingman, 1967; 1992; Lijoi
et al., 2010), such as Gamma processes (ΓPs) (Hougaard,
1986), to generate sparse random graphs. However, these
prior works only show the asymptotic sparse guarantee (i.e.,
the sparsity ratio converges to zero at the limit), yet not
giving any convergence rate estimate for popular ΓPs that
are convenient for inference and computation. Our work
fills this gap by giving strong asymptotic bounds about the
sparsity, including both a lower and upper bound, which
can reveal more refined insight about these sparse priors.
Furthermore, we couple the sparse prior with matrix GPs to
jointly sample the interactions (i.e., hyperedges) and their
event sequences. In this way, the embeddings can assimilate
both the sparse structural information underlying the present
interactions and the hidden temporal relationship of the
participants.

6 Experiment

6.1 Sparsity Ratio Investigation

We first examined if our theoretical bounds in Lemma 3.2
match the actual sparsity ratio in the sampled hyper-graphs.
To this end, we followed (Tillinghast and Zhe, 2021) to
sample a series of hyper-graphs with three-way edges (in-
teractions), namely K = 3. We set R = 1 and varied α in
[2, 20]. For each particular α, we independently sampled
200 hypergraphs and computed average ratio of the sampled
edges. We calculated the bounds accordingly. We show
the results in a log-log plot as in Fig. 1. As we can see,
the bounds clamp the actual sparsity ratio and match the
trend well. The upper bound is tighter. Hence, these bounds
can provide a reasonable estimate of the convergence rate
and characterize the asymptotic behaviors of the structural
sparsity.

6.2 Predictive Performance

Datasets. We then examined the predictive performance
of NESH on the following real-world datasets. (1) Taobao
(https://tianchi.aliyun.com/dataset/
dataDetail?dataId=53), the shopping events in the
largest online retail platform of China, from 07/01/2015
to 11/30/2015, which are interactions between 980 users,
274 sellers, 631 items, 58 categories and 2 options.
There are in total 16, 609 distinct interactions and 69, 833
events. (2) Crash (https://www.kaggle.com/
usdot/nhtsa-traffic-fatalities), fatal traffic
crashes in US 2015, within 51 states, 288 counties,
2, 098 cities and 5 landuse-types. There are 8, 691
distinct interactions and 32, 052 events in total. (3) Re-
tail (https://tianchi.aliyun.com/dataset/
dataDetail?dataId=37260), online retail records
from tmall.com. It includes interaction events among
stock items and customers. We have 3, 310 and 1, 000
unique items and customers, among which are 31, 122
distinct interactions and 70, 000 events in total. We can
see that all these datasets are very sparse. The existent
interactions take 0.000085%, 0.0056% and 0.94% on
Taobao, Crash and Retail, respectively.

Competing Methods. We compared with the following
popular and/or state-of-the-art tensor decomposition meth-
ods that deal with interaction events. (1) CP-PTF, sim-
ilar to (Chi and Kolda, 2012), the homogeneous Pois-
son process (PP) tensor decomposition, which uses CP
to factorize the event rate for each particular interaction
and the square link to ensure the positiveness (consistent
with NESH). (2) CPT-PTF, similar to (Schein et al., 2015),
which extends CP-PTF by introducing time steps in the
tensor. The embeddings of the time steps are assinged a
conditional Gaussian prior (Xiong et al., 2010) to model
their dynamics. (3) GP-PTF, which uses GPs to estimate
the square root of of the rate for each particular interaction
as a nonlinear function of the associated embeddings. (4)
CP-NPTF, non-homogeneous Poisson process tensor fac-
torization where the event rate is modelled as a parametric
form, λi(t) = t ·

(
CP(i)

)2
. Here CP(i) is CP decompo-

sition of the entry (interaction) i. (5) HP-Local (Zhe and
Du, 2018), Hawkes process based decomposition that uses a
local time window to model the rate and to estimate the local
excitation effects among the nearby events, (6) HP-TF (Pan
et al., 2020a), another Hawkes process based on factoriza-
tion method that models both the triggering strength and
decay as kernel functions of the embeddings. Both HP-
Local and HP-TF use a GP to model the base rate as a
function of embeddings. In addition, we compared with (7)
MGP-EF, matrix GP based events factorization. It is the
same as our method in applying a matrix GP prior over the
rates of distinct interactions. However, MGP-EF places a

https://tianchi.aliyun.com/dataset/dataDetail?dataId=53
https://tianchi.aliyun.com/dataset/dataDetail?dataId=53
https://www.kaggle.com/usdot/nhtsa-traffic-fatalities
https://www.kaggle.com/usdot/nhtsa-traffic-fatalities
https://tianchi.aliyun.com/dataset/dataDetail?dataId=37260
https://tianchi.aliyun.com/dataset/dataDetail?dataId=37260
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Figure 2: Test log-likelihood (LL) on real-world datasets. CPT-PTF-{10, 20, 30} means running CPT-PTF with 10, 20 and
30 time steps. The results were averaged over five runs.

standard Gaussian prior over the embeddings, and so does
not model the structure sparsity.

Settings. We implemented NESH, HP-Local, HP-TF and
MGP-EF with Pytorch (Paszke et al., 2019), and the other
methods with MATLAB. For all the approaches employ-
ing GPs, we used the same variational approximation as
in NESH (our method), and set the number of pseudo in-
puts to 100. We used the square exponential (SE) kernel
and initialized the kernel parameters with 1. For HP-Local,
the local window size was set to 50. For our method, we
chose α from {0.5, 1.0, 1.5, 2.5, 3}. We conducted stochas-
tic mini-batch optimization for all the methods, where the
batch size was set to 100. We used ADAM (Kingma and
Ba, 2014) algorithm, and the learning rate was tuned from
{5× 10−4, 10−3, 3× 10−3, 5× 10−3, 10−2}. We ran each
method for 400 epochs, which is enough to converge. We
randomly split each dataset into 80% sequences for training,
and the remaining 20% for test. We variedR, the dimension
of the embeddings, from {2, 5, 8, 10}. For CPT-PTF, we
tested the number of time steps from {10, 20, 30}. We ran
the experiments for five times, and report the average test
log-likelihood and its standard deviation in Fig. 2.

Results. As we can see from Fig. 2, NESH consistently
outperforms all the competing methods by a large margin.

Since the test log-likelihood of NESH is much larger than
that of the other methods, we report the result of NESH sep-
arately (i.e., in the top figures) so that we can compare the
difference between the competing methods. It can be seen
that MGP-EF is much better than GP-PTF, implying that in-
troducing a time kernel to model non-homogeneous Poisson
process rates is more advantageous. In addition, MGP-EF
is much better than or comparable to CP-NPTF (see Fig.
2a). Since both methods uses non-homogeneous Poisson
processes, the result demonstrates the advantage of nonpara-
metric rate modeling (the former) over the parametric one
(the latter). In most cases, HP-Local and HP-TF shows bet-
ter or comparable prediction accuracy than MGP-EF. This
is reasonable, because the two methods use Hawkes pro-
cesses that can capture more refined temporal dependencies,
i.e., excitation effects between the events. However, both
HP-Local and HP-TF cannot capture the sparse structure
within the present interactions, and their performance is still
much inferior to NESH. Finally, GP-PTF, HP-Local and
HP-TF broke down at R = 2 on Retail dataset. We found
their learning was unstable. In some splits, their predictive
likelihood are very small, leading to much worse average
likelihood than the other methods. Note that they did not
use batch normalization as in NESH and MGP-EF, which
might cause the learning instability under some settings.
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(a) Users (b) Sellers (c) Item Categories (d) States

Figure 3: Structures of the estimated embeddings on Taobao (a, b, c), Crash (d). The points represent the participant nodes, and the
colors indicate their cluster memberships.

6.3 Pattern Discovery

Next, we examined if NESH can discover hidden patterns
from data. To this end, we set R to 5, and ran NESH on
Taobao and Crash. Then we applied kernel PCA (Schölkopf
et al., 1998) with the SE kernel to project the embeddings
onto a plane. We then ran clustering algorithms to find
potential structures. As we can see from Fig. 3 a and b,
the embeddings of users and items from Taobao dataset
exhibit interesting and clear cluster structures, which might
correspond to separate interests/shopping habits. Note that
we ran DBSCAN (Ester et al., 1996) rather than k-means
to obtain the clusters. In addition, the embeddings of item
categories on Taobao also shows a clear structure that was
discovered by k-means (see Fig. 3c). Although the Taobao
dataset have been completely anynoymized and we cannot
investigate the meaning of these clusters, potentially they
can be useful for tasks such as marketing (Zhang et al.,
2017), recommendation (Liu et al., 2015; Tran et al., 2018)
and click-through-rate prediction (Pan et al., 2019). In addi-
tion, the embeddings of the states from Crash dataset also
exhibit clear structures (see Fig. 3d). We have checked
the geolocation of these states and found the states grouped
together are often neighborhoods. This is reasonable in that
neighboring states might bear a resemblance to each other,
in traffic regulations (e.g., speed limit), road conditions, driv-
ing customs, weather changes. etc. All these might lead to
similar or closely related patterns of traffic accident rates.

7 Conclusion

We have presented NESH, a novel nonparametric embed-
ding method for sparse high-order interaction events. Not
only can our method estimate the complex temporal rela-
tionships between the participants, our model is also able to
capture the structural information underlying the observed
sparse interactions. Our theoretical bounds enable conver-
gence rate estimate and reveal insights about the asymptotic
behaviors of the sparse prior over hypergraphs or tensors.
In the future, we will extend our model to more expressive
point processes, such as Hawkes processes, and discover
more refined temporal patterns.
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Appendix

In this section, we provide detailed proof for Lemma 3.2. To make the ideas accessible to a broad audience, we also give a
brief introduction to the Lévy-Khintchine formula as well as the intuition behind it. Our introduction includes the Gamma
Processes (ΓPs), which are used to sample the intensity measures for a sequence of Poisson Point Processes (PPPs) that are
used for sparse tensor/hypergraph construction, as a special case. A comprehensive treatment of the related topics can be
found in, for instance, (Ken-Iti, 1999).

A The Lévy-Khintchine formula

The sparse tensor model introduced in (Tillinghast and Zhe, 2021) first generates a discrete measure using ΓPs, which are a
special type of Lévy process. To better understand the process, we take a brief detour to Lévy processes.

A Lévy process {Xt}t≥0 is an Rd-valued random process such that

• X0 = 0 a.s.;

• Xt has stationary and independent increments;

• For every t, Xt is right-continuous and has a well-defined left-limit.

Xt is uniquely determined by X1, which is an infinitely divisible random variable. Indeed, if the characteristic function (CF)
of X1 is φ(ξ), then the CF of Xt is φt(ξ) for t ≥ 0. A complete understanding of φ(ξ) is sufficient to characterize Xt, and
this can be done via the Lévy-Khintchine formula:
Theorem 1 (Lévy-Khintchine). Let X be an Rd-valued random variable. X is infinitely divisible if and only if the CF of X ,
φX(ξ) := E[eiξ·X ], takes the form

φX(ξ) = exp {−Ψ(ξ)} , (14)

where

Ψ(ξ) = i(a · ξ) +
1

2
‖σξ‖2 +

∫
Rd

(1− eiξ·z + i(ξ · z)1(0,1))m(dz), (15)

where m is a Borel measure on Rd satisfying m({0}) = 0 and
∫
Rd(1 ∧ ‖x‖2)m(dx) < ∞. Here Ψ is called the Lévy

exponent of X .

As a consequence of Theorem 1, we conclude that the CF of every Lévy process Xt can be written as

φt(ξ) = E[eiξ·Xt ] = exp {−tΨ(ξ)} ,

where Ψ is the Lévy exponent of X1.

To comprehend the path structure of Xt using (15), we appeal to the following facts:

• Addition of a CF’s exponents corresponds to addition of independent random variables (processes);

• The CF of a drifted Brownian motion Wt = −at+ σBt is exp{−t(i(a · ξ)− 1
2‖σξ‖

2)};

• The CF of a compound Poisson process with jump parameter m (i.e. a distribution) and rate parameter λ (i.e. a Lévy
process) is exp{−t

∫
Rd λ(1− eiξ·z)m(dz)}.

• The CF of a compensated compound Poisson process with jump parameter m (i.e. a distribution) and rate parameter λ
(i.e. a Lévy process and a martingale) is exp{−t

∫
Rd λ(1− eiξ·z + i(ξ · z))m(dz)}.

Let I0 = {z : ‖z‖ ≥ 1} and Ik = {z : ‖z‖ ∈ [2−k−1, 2−k)} for k ≥ 1. Rewrite (15) as

tΨ(ξ) = t(i(a · ξ) +
1

2
‖σξ‖2) + t

∫
I0

m(I0)(1− eiξ·z)m(dz)

m(I0)

+

∞∑
k=1

t

∫
Ik

m(Ik)(1− eiξ·z + i(ξ · z))m(dz)

m(Ik)
, (16)
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where the right-hand side corresponds to three independent processes: a drifted Brownian motion, a compound Poisson
process, and a series of independent compensated compound Poisson processes. Under the integrability condition on m,
the last part can be shown to converge using the martingale theory. Moving the drift term (cumulation of the compensated
terms; deterministic) in the last part of (16) into the Brownian motion, we decompose Xt into two independent processes,
a drifted Brownian motion and a pure-jump process (with countably many jumps). This construction is the celebrated
Lévy-Itô construction.

To end this section, we give a useful interpretation of compound Poisson processes. A compound Poisson process Zt with
jump parameter m and rate parameter λ is defined as

Zt =

Nt∑
i=1

Mi,

where Mi
iid∼ m(dx) are independent of Nt ∼ Poisson(λ). Note {Mi}i∈[Nt] follows a PPP with intensity measure m(dx),

for fixed t, we may also consider Zt as the integration of x against the Poisson random measure on [0, t]× Rd.

B Gamma processes

A Gamma process Xt (with shape parameter β and rate parameter λ) is a Lévy Process with

Xt ∼ Γ(βt, λ) t > 0.

It can be checked that

E[eiξXt ] =

(
1− iξ

λ

)βt
= exp

{
−t
∫
R

(1− e−iξx)
βe−λx

x
1(0,∞)dx

}
,

i.e., the Lévy measure m is

m(dx) =
βe−λx

x
1(0,∞)dx.

For convenience, we set β = λ = 1. From m one can deduce the following properties of Xt:

• By the Lévy-Itô construction, Xt is a pure-jump process (i.e. no Brownian part), i.e., Xt has countably infinitely many
jumps in (0, t);

• We can associate a sample path of Xt (up to time t) with the following measure:

wt =
∑

0<s≤t

∆Xsδs ∆Xs = Xs − lim
r→s−

Xr, (17)

where the summation is well-defined since there are at most countably many s that ∆s > 0. wt is finite thanks to∫
R

(1 ∧ x)m(dx) <∞;

• The jump sizes of Xt, {∆Xs}s∈supp(wt) ⊂ (0,∞), follows a PPP with intensity measure m; see the last paragraph in
Section A.

C Sparse tensor/hypergraph processes

The sparse hypergraph model considered in this paper is a superposition of R independent sparse tensor process introduced
in (Tillinghast and Zhe, 2021). Without loss of generality, we assume R = 1; the general case can be analyzed similarly. In
this case, the sampled entries in the sparse tensor model are obtained as follows: Given K ≥ 2 and time α, we

• Use K i.i.d. Gamma processes, X(1)
α , · · · , X(K)

α , to generate discrete measures Wα
1 , · · · ,Wα

K as in (17). Here we
change the notations to be consistent with the ones in the manuscript, with the index r omitted;
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• Construct a product measure M =
∏K
k=1W

α
k on [0, α]K ;

• Take M as the intensity measure to construct a Poisson random measure T . In particular, one can take

T = {Yi}|T |i=1
i.i.d.∼ M

M([0, α]K)
|T | ∼ Poisson(M([0, α]K)) ⊥⊥ Yi, (18)

where X ⊥⊥ Y means that X and Y are independent. The support of T corresponds to sampled entries in the sparse
tensor, and the marginals of the support of T corresponds to the size of the sparse tensor in the respective dimension.

To get an explicit rate of convergence of sparsity as α→∞, we need to estimate the cardinality of the support of T , Nα, as
well as of the corresponding marginals, which are denoted by Dα

1 , · · · , Dα
K .

Lemma 2. Fix K ≥ 2. For a sparse tensor process defined as above, for all sufficiently large α, there exists an absolute
constant C > 0 such that, with probability at least 1− (Cα)−K ,

e−1.03(2K)1/KK(logα)1/K

2K logα
·
[

1.82

(K − 1) log(1.01α)

]K
≤ Nα∏K

k=1D
α
k

≤
[

2.11

(K − 1) log(0.99α)

]K
.

Proof. Analysis of Nα. We begin by deriving an upper bound for Nα. Note Nα ≤ |T |, where the |T | is defined in (18).
Conditioned on M ,

|T | ∼ Poisson(γα) γα = M([0, α]K) =

K∏
k=1

Wα
k ([0, α]).

By a Poisson tail estimate (Vershynin, 2018, Exercise 2.3.6), we have

P (0.99γα ≤ |T | ≤ 1.01γα) ≥ 1− 2e−c1γα , (19)

where c1 > 0 is an absolute constant. For each k ∈ [K],

Wα
k ([0, α])

(17)
=

∑
0<s≤α

∆X(k)
s = X(k)

α ∼ Γ(α, 1).

Without loss of generality, we assume α ∈ N (otherwise consider dαe and bαc). Then, we can write X(k)
α as a sum of i.i.d.

exponentials with unit rate:

X(k)
α
D
=

α∑
i=1

Gi Gi
i.i.d.∼ Exp(1),

where Exp(1) is the exponential random variable with unit rate. An application of Bernstein’s inequality yields

P (0.99α ≤Wα
k ([0, α]) ≤ 1.01α) ≥ 1− 2e−c2α,

where c2 > 0 is an absolute constant (depending only on β and λ both of which are equal to 1). Taking a union bound over
k yields

P
(

0.99α ≤ min
k
Wα
k ([0, α]) ≤ max

k
Wα
k ([0, α]) ≤ 1.01α

)
≥ 1− 2Ke−c2α. (20)

Combining (19) and (20) via a union bound yields that, with probability at least 1− 2e−c1(0.99α)K − 2Ke−c2α,

Nα ≤ |T | ≤ 1.01K+1αK |T | ≥ 0.99K+1αK . (21)

A lower bound on Nα requires more refined analysis. Let

a =
1.01

0.99
K+1
K

(2K logα)1/K ≤ 1.03(2K logα)1/K K ≥ 2. (22)
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For all sufficiently large α, 1 ≤ a→∞, and

α ·m([a,∞)) ≤ α ·m([1,∞)) = α

∫ ∞
1

e−x

x
dx ≤ α

∫ ∞
1

e−xdx ≤ α (23)

α ·m([a,∞)) ≥ α ·m([a, 1.01a)) = α

∫ 1.01a

a

e−x

x
dx

≥ α
∫ 1.01a

a

e−x

1.01a
dx =

αe−a
(
1− e−0.01a

)
1.01a

≥ 0.99αe−a

a
≥
√
α. (24)

In this case, a similar Poisson tail estimate as before yields

P
(

0.99αm([a,∞)) ≤ min
k

#{s ≤ α : ∆X(k)
s ∈ [a,∞)} ≤ max

k
#{s ≤ α : ∆X(k)

s ∈ [a,∞)} ≤ 1.01αm([a,∞))

)
(24)
≥ 1− 2Ke−c1

√
α. (25)

Conditioning M and |T | on the intersection of the events in (20), (21) and (25), we write

Nα =
∑

s=(s1,··· ,sK)∈supp(M)

1s∈T ≥
∑
s∈S

1s∈T , (26)

where

S =
{
s = (s1, · · · , sK) ∈ supp(M) : ∆X(k)

sk
≥ a, ∀k ∈ [K]

}
.

Each term in the summand in the right-hand side of (26) is a Bernoulli random variable with parameter

ps := 1−

(
1−

∏K
k=1 ∆X

(k)
sk

M([0, α]K)

)|T |
(20),(21)
≥ 1−

[
1−

( a

1.01α

)K]0.99K+1αK

= 1−
(

1− 2K logα

0.99K+1αK

)0.99K+1αK

≥ 1− α−2K , (27)

where the last step used the fact that (1− 1
x )x ≤ e−1 for x > 1. In particular, for s ∈ S,

P (1s∈T = 0) = 1− ps
(27)
≤ α−2K . (28)

Since

0.95K(αe−1.03(2K)1/K(logα)1/K )K

2K logα

(22)
≤ 0.992K

(
αe−a

a

)K (24),(25)
≤ |S|

(23),(25)
≤ 1.01KαK , (29)

taking a union bound over s ∈ S yields that, with probability at least

1− 2e−c1(0.99α)K − 2Ke−c2α − 2Ke−c3α − 2Ke−c1
√
α −

∑
s∈S

(1− ps)

(28),(29)
≥ 1− 2e−c1(0.99α)K − 2Ke−c2α − 2Ke−c3α − 2Ke−c1

√
α − 1.01Kα−K ,

the following holds:

Nα ≥ |S| ≥ 0.95K(αe−1.03(2K)1/K(logα)1/K )K

2K logα
. (30)

Analysis of Dα
k . Analysis of Dα

k is easy owing to an observation in (Tillinghast and Zhe, 2021): For k ∈ [K], conditioned
on Wα

` , ` 6= k,

Dα
k ∼ Poisson

(
αψ
(
γ(−k)
α

))
,
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where

γ(−k)
α =

∏
` 6=k

Wα
k ([0, α]) ψ(α) =

∫
R

(1− e−αx)m(dx).

By a similar Poisson tail estimate as before,

P
(

0.99αψ(γ(−k)
α ) ≤ Dα

k ≤ 1.01αψ(γ(−k)
α )

)
≥ 1− 2e−c1αψ(γ(−k)

α ). (31)

It is easy to check via L’Hôpital’s rule that

lim
α→∞

ψ(α)

logα
= lim
α→∞

α
d

dα
ψ(α) = lim

α→∞
α

∫
R
xe−αx(1− e−αx)m(dx) = lim

α→∞

α2

(α+ 1)(2α+ 1)
=

1

2
.

Hence, for all sufficiently large α,

0.49 logα ≤ ψ(α) ≤ 0.51 logα. (32)

Thus, conditioned on the event 0.99α ≤ min` 6=kW
α
` ([0, α]) ≤ max` 6=kW

α
` ([0, α]) ≤ 1.01α (which holds with probability

at least as the lower bound in (20)), (31) and (32) together implies that, for all sufficiently large α,

P (0.48(K − 1)α log (0.99α) ≤ Dα
k ≤ 0.52(K − 1)α log (1.01α)) ≥ 1− 2e−c1(0.99α)K .

Taking a union bound over k yields that, for all sufficiently large α, with probability at least 1− 2Ke−c1(0.99α)K ,

0.48(K − 1)α log (0.99α) ≤ min
k
Dα
k ≤ max

k
Dα
k ≤ 0.52(K − 1)α log (1.01α) . (33)

Combining (21), (30), (33) and renaming the constants yields the desired result.
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