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Abstract—In-situ processing addresses the gap between speeds
of computing and I/O capabilities by processing data close to
the data source, i.e., on the same system as the data source
(e.g., a simulation). However, the effective implementation of in-
situ processing workflows requires the optimization of several
design parameters such as where on the system workflow data
analysis/visualization (ana/vis) as placed and how execution as
well as the interaction and data exchanges between ana/vis
are coordinated. For example, in the case of hybrid in-situ
processing, interacting ana/vis may be tightly or loosely coupled
depending on their placement, and this can lead to very different
performance and scalability. A key challenge is deciding the
most appropriate ana/vis placement, which depends on dynamic
applications, workflow, and system characteristics that might
change at runtime. In this paper, we present a framework
to support online adaptive data analysis placement during the
execution of an in-situ workflow. Specifically, the paper presents
a model and architecture, and explores several data analysis
placement strategies. Evaluation results show that dynamically
choosing appropriate data analysis placement strategies can
balance the benefits and overhead of different data analysis
placement patterns to reduce in-situ processing time.

Index Terms—in-situ, in-transit, data-driven, adaptive work-
flow, monitor, near-real-time decision

I. INTRODUCTION

In-situ processing addresses the gap between computing and

I/O capabilities by processing data as it is generated on the

same system as the data source (e.g., a simulation). Tightly
coupled and loosely coupled in-situ1 are two fundamental

models for in-situ processing. In a tightly coupled system, the

simulation program is linked with an in-situ library. When

the API for in-situ processing is called, the in-situ library

transforms the data layout as needed and executes the in-situ

tasks such as data analysis or visualization (abbreviated as

ana/vis), using the same computing resources as the simula-

tion. In contrast, the simulation program in a loosely coupled

system is linked with an API for data management. Once the

API is called for in-situ processing, the data generated by the

simulation is transferred to other remote nodes via a high-

speed network, or to other processes on the same nodes via

shared memory. The memory used to store the transferred

simulation data, whether local to the simulation nodes or

remote, is sometimes called a data staging area. Analysis or

1The definition of concepts related to in-situ processing in this paper are
consistent with those presented in [4], which standardizes the terminology for
in-situ analysis and visualization systems.

visualization tools can interface with a data staging service

that manages the data staging area to run in-situ ana/vis. Since

the simulation data has been stored at the staging area, in-situ

ana/vis can run concurrently with the simulation.

The effective implementation of in-situ processing work-

flows requires optimizing several design parameters, such as

where workflow ana/vis are placed on the system, how data

is exchanged between ana/vis, and how ana/vis are executed.

Hybrid in-situ systems or workflows include both tightly and

loosely coupled sub-systems in one in-situ workflow. For

example, lightweight data analysis can run in a tightly coupled

manner, and the processed data can be sent to dedicated

nodes for further processing or visualization in a loosely

coupled manner. Hybrid in situ systems however bring some

challenges, such as the proper placement of specific in-situ

ana/vis to reduce overheads and maximize performance. Such

decisions require comparing the characteristics of data ana/vis

before the workflow starts. However, unexpected changes in

the generated data during workflow execution may introduce

uncertainty regarding, for example, the execution time of a

data analysis, making it more difficult for the user to select a

proper configuration a priori.

We can determine ana/vis placement for a hybrid work-

flow [18] if the necessary information about the data distribu-

tion and associated ana/vis is known before starting the work-

flow. Several prior research efforts [1], [5], [6], [22], [23] have

discussed policies for making decisions about whether to use a

tightly or loosely coupled approach based on prior knowledge

about the workflow. When little prior knowledge is available,

adaptive methods can be used to monitor key parameters and

use associated policies to decide the workflow decisions, such

as for example, data placement based on access pattern [20]

and data analysis placement based on computing or memory

resources constraints [6]. The critical issue underlying any

adaptive method is the accuracy of the predicted parameters

used for decision-making based on workflow runtime infor-

mation. Dynamically changing simulation data (and runtime

system state) can make it challenging to accurately predict key

parameters such as task execution time or data transfer time.

However, few existing researches discuss errors in parameter

prediction and decision-making in the context of data analysis

placement for in-situ processing with dynamically changing

simulation data and associated processing methods.

In this work, we collect information during workflow ex-
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ecution from the data staging service and from simulation

processes. Using this information, we compare the estimated

in-situ processing overhead in advance and adaptively choose

the data analysis2 placement pattern that results in the smallest

execution time3. In order to decrease errors in decision-making

and provide more accurate estimations, we propose estimation

algorithm and identify relations between key parameters of

the workflow, such as analysis execution time, data transfer

time, and simulation computation time. Furthermore, we also

make data analysis placement adjustments for edge cases, such

as avoiding unnecessarily waiting for a singular process to

finish its long-running tightly coupled in-situ processing. In

summary, our contributions in this paper are threefold.

• By modeling the in-situ processing, we present an algo-

rithm for data analysis placement decision-making, and

discuss errors in the decision-making. We further present

algorithms with associated heuristic strategies to estimate

key parameters and decrease the decision-making errors.

• We present the architecture and the implementation of a

system that can enable existing data staging services to do

the dynamic analysis placement decision-making online.

• We evaluate the presented online data analysis placement

mechanisms for both synthetic and real analysis at large

scales using different configurations. Our results show

that the online data analysis placement mechanism can

save up to 25% of in-situ processing time compared to

predetermined analysis placement for real data analysis.

The rest of the paper is organized as follows. Section II

presents background and motivation. Section III presents on-

line data analysis placement policies. It also describes the ar-

chitecture and the implementation to achieve the data analysis

placement mechanisms. In Section IV, we evaluate presented

solutions using synthetic and real data analysis. Related work

is discussed in Section V. Finally, we conclude the paper and

discuss future work in Section VI.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce several hybrid in-situ

processing workflows. By analysing their execution processes,

we discuss the role of data analysis placement in workflow

design. Next, we discuss how the solution based on an in-

situ trigger performs online configuration adjustment during

workflow execution. Finally, we use an example to show how

analysis placement facilitates workflow performance.

A. Hybrid in-situ processing approaches

1) Hybrid in-situ processing with data reduction: This in-

situ processing pipeline is divided into two stages. The first

stage is usually a lightweight task that can reduce the size

of the simulated data [11], and the second stage includes

ana/vis which may need dedicated resource [18] or work on a

2We mainly use data analysis as an example of in-situ processing in this
work, and our method can also be adapted to data visualizations.

3We consider the workflow execution time when deciding the data analysis
placement in this work. The decision-making process can also be influenced
by other factors such as resource efficiency and programming flexibility.

refactored data structure [15]. The first stage is processed in

a tightly coupled way because of its lightweight nature, and

the second stage is executed in a loosely coupled way based

on specialized data staging services.

2) Hybrid in-situ processing with optional task executions:
When the simulated data contains interesting patterns war-

ranting in-situ analysis, different stages of in-situ processing

can be executed based on the content of the simulated data.

Based on the detection results of the first stage [3], the task of

the second stage is only executed when upon the appearance

of interesting patterns. In particular, the interesting patterns

can be the situation when a critical metric value locates in a

specific range [17], or the detection of a topology property [2].

3) Generalized hybrid in-situ processing: The generalized

hybrid in-situ processing mixes loosely coupled and tightly

coupled paradigms with few assumptions about data analysis

placement and execution. We can not properly determine the

correct design before starting the workflow for the lack of

prior knowledge regarding the simulation output or ana/vis.

The placement of ana/vis can be decided by user-defined

policies [6] during the workflow executions and supported by

an in-situ tool that executes the same task either in a loosely or

tightly coupled way [23]. Trigger primitives [10] can indicate

the conditions to execute in-situ ana/vis.

B. Trigger adaptations for in-situ processing

Multiple works [3], [6], [10] adopt trigger mechanism to

support adaptation for in-situ processing. The description of

trigger is constructed by detection, condition, and actions.

In particular, domain-specific trigger can efficiently support

hybrid in-situ processing with optional ana/vis execution. The

detection operation may use domain knowledge to detect the

interesting phenomenons in the simulated data. The condition

of the trigger relates the trigger actions with the trigger

detection; the action of the trigger specifies the ana/vis task

that is executed when the condition is satisfied.

A domain-agnostic trigger focuses on more general aspects

of in-situ processing, especially for the workflow design

configurations with multiple options. In addition to the data

analysis placement options discussed in this work, the data

processing frequency [12] and the computing resource [19]

of in-situ processing can also be adjusted based on triggers

during workflow execution. For example, the trigger action for

data analysis placement adaption can be an indicator parameter

that shows the data analysis placement patterns. The trigger

detection and condition may adopt user-defined policies to

specify which option is preferred in which situation based on

workflow runtime information.

C. Requirements for adaptive data analysis placement

With changing simulation data across iterations, the exe-

cution time of the ana/vis may change in various ways. For

example, we use the Gray-Scott simulation4 as the data source

shown in Figure 1 (a), then process the data generated by each

4https://github.com/pnorbert/adiosvm/tree/master/Tutorial/gray-scott
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(a) Initial data (b) Isosurface (c) The largest iso-
surface area

Fig. 1. Visualization of data processing for the Gray-Scott simulation.
Sub-figure (a) shows the initial data, Sub-figure (b) shows the results after
isosurface extraction. Sub-figure (c) shows the largest isosurface area.

Fig. 2. Visualization of in-situ data analysis execution time. Darker colors
represent a longer execution time.

simulation iteration. In particular, the data blocks are processed

by isosurface filter shown in Figure 1 (b), then the largest

isosurface area illustrated in Figure 1 (c) is extracted. If we

use 16 ranks to generate 128MB of data for each computation

iteration then run the data processing pipeline in the tightly

coupled way. The in-situ processing time of different processes

is visualized in Figure 2. One important observation is that

the data analysis time varies across steps for every single rank

and across ranks for the same step. These variations between

steps and ranks showcase an opportunity to adopt different

analysis placement strategies to reduce workflow execution

time. For example, if the overhead of transferring data to a

staging service is less than 2.0 sec, the simulation program can

start the next iteration with less waiting time by processing the

data analysis in the loosely coupled manner.

However, if we transfer a large number of data blocks and

trigger an excessive number of threads in the staging area

for loosely coupled processing, even if the overhead on the

simulation can decrease, it is possible to overload the staging

service, resulting in an increase in the execution time to finish

in-situ processing. Therefore, a trade-off exists between the

tightly coupled and the loosely coupled approach for data and

associated analysis placement strategies during the workflow

execution. Monitoring necessary information and adjusting the

analysis placement strategy online is therefore a promising

approach to reduce workflow execution time compared to a

predetermined analysis placement strategy.

III. ADAPTIVE DATA ANALYSIS PLACEMENT POLICIES

In this section, we model the workflow execution time

for both the tightly coupled and the loosely coupled in-

situ processing. Based on this model, we present a data

analysis placement decision algorithm and discuss the types

and reasons for decision-making errors. We also discuss how

TABLE I
MAJOR NOTATIONS USED IN MATHEMATICAL MODELING

S Simulation computation time for one iteration
At Tightly coupled data analysis execution time
Al Loosely coupled data analysis execution time
T Data transfer time from the simulation to the staging service
Wl Waiting time to schedule the loosely coupled analysis

to collect the necessary information and estimate parameters

required by the data analysis placement algorithm to decrease

decision-making errors. We further discuss solutions based on

heuristic strategies to decrease the decision errors and improve

the workflow execution efficiency.

A. Modeling of data analysis placement

1) A motivating scenario: We assume the simulation com-

putation contains two iterations (step 0 and step 1), and the

in-situ processing is carried out at every iteration. In order to

choose a suitable data analysis placement strategy, we need

to compare the remaining time of the workflow execution

after the first simulation iteration, which can be modeled by

equation 1. Table I summarized the notations used for our

mathematical modeling.

RW 0
t = A0

t + S1 +A1
t ,

RW 0
l = T 0 +max{S1 +A1

t ,W
0
l +A0

l } (1)

The RW 0
t (RW 0

l ) represents the remaining execution time
of the workflow after the first simulation computation step with
the tightly (loosely) coupled in-situ processing pattern. For the

tightly coupled case (RW 0
t ), we process the data generated

by the first iteration (step 0) of the simulation program, which

takes A0
t , then start the next simulation iteration (S1). For the

data generated by the next simulation computation (step 1), it

is unnecessary to transfer data to staging service when there

is no subsequent simulation computation; the tightly coupled

approach (A1
t ) is adopted in this case. In contrast, the loosely

coupled approach (RW 0
l ) transfers the data generated by the

first iteration to a staging service, which takes T 0, then starts

the next iteration. The analysis in the staging service takes

W 0
l to schedule5 a thread to execute the analysis, then it takes

A0
l to finish the execution; however, since there is an overlap

between the loosely coupled analysis and the next simulation

iteration, the completion time of the full program is influenced

by the maximum value between S1 + A1
t and W 0

l + A0
l .

Furthermore, we can use RS0 to represent the term S1 +A1
t ,

which denotes the remaining execution time of the simulation
program after the step zero in-situ processing. Since the RS0

is the common term between RW 0
t and RW 0

l , equation 1 can

be reorganized as follows:

RW 0
t = A0

t +RS0,

RW 0
l = T 0 +max{RS0,W 0

l +A0
l } (2)

Using RS as the x axis and RW as the y axis6, we can

further illustrate equation 2 by Figure 3 (a), which shows how

the workflow execution time is affected by RS. In particular,

the black color line represents the RWl, when RS < Wl +
Al, RWl equals to T + Wl + Al, which is not affected by

RS; the lines with other colors represents several possible

RWt values, which are affected by value of At; Ata, Atb

and Atc represents the typical execution time of the tightly

5The time between the reception of the RPC in the staging service and the
moment at which the analysis thread actually runs in the staging service.

6We omit the superscript that represents the step number for the simplicity
of visualization.
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RSWl+Al

T+Wl+Al

RW
T+RS

T+Wl+Al-Atb

T

Wl+Al

Time

T-Ata

T+Wl+Al-Atb RS
(a) (b)

Ata+RS

Atb+RSAtc+RS

Atc-T

Atb-T

tightly
coupled AtcAtbAta

loosely
coupled

Atc-T+RS-Wl-Al

Atb-T+RS-Wl-Al

T-Atb+Wl+Al-RS

T-Ata+Wl+Al-RS

Fig. 3. Sub-figure (a) illustrates how the data analysis placement decision is
influenced by different parameters. Sub-figure (b) shows the time saved by
making the proper decision.

coupled analysis, respectively. Furthermore, Figure 3 (a) also

visualizes the regions of preferable analysis placement pattern.

If RWt locates in the red dotted region (RWl < RWt), the

loosely coupled pattern is preferable; if RWt falls into the

black dotted region (RWt < RWl), the tightly coupled pattern

is preferable. According to the value range of RS, we can

identify three sub-domains (shown in grey, blue and green

color, respectively), and the strategies to choose a preferable

data analysis placement pattern are described as follows:

1) If RS ≥ Wl + Al, when At ≥ T , the loosely coupled

approach is preferred; otherwise, the tightly coupled

approach is preferred.

2) If T +Wl+Al−At ≤ RS < Wl+Al, when At+RS ≥
T +Wl +Al, the loosely coupled approach is preferred,

otherwise, the tightly coupled approach is preferred.

3) If RS < T +Wl+Al−At, the loosely coupled approach

becomes ineffective, and we always adopt the tightly

coupled approach to run analysis.

We also visualize the benefits of adopting the preferable

data analysis placement decision in Figure 3 (b). For example,

for the line Ata + RS shown in Figure 3 (a), the preferable

data analysis placement strategy is the tightly coupled pattern.

Compared with adopting a loosely coupled pattern, it can

save T − Ata when there is RS > Wl + Al, and save

T +Wl +Al − (Ata +RS) when there is RS ≤ Wl +Al. If

we separate the second part of the performance improvement

into T −Ata and Wl +Al −RS, it is clearer to show where

the advantage comes from. In particular, T − Ata represents

the reduction of the overhead of the simulation program when

processing in a tightly coupled fashion (Ata) as compared to

transferring it to the staging area (T ). The data staging service

needs Wl+Al to finish the in-situ processing, which is longer

than the remaining simulation process execution time (RS).

Therefore, the Wl + Al −RS represents the reduction of the

workflow completion time if we adopted a proper analysis

placement strategy. Similarly, there are different performance

improvements with the changing of preferred data analysis

placement options depending on the different values of At,
such as Atb and Atc shown in the Figure 3 (b).

2) An algorithm for data analysis placement decision-
making: For a workflow that contains multiple simulation

Algorithm 1: Data analysis placement decision based

on workflow runtime information.

1 CouplingMethod = Tight;
2 if step == 2 then
3 CouplingMethod= Loose;

4 else if step > 2 then
5 CouplingMethod= Tight;
6 RS,At, Al, T,W = GetAndEstimateParameters();

7 if RS > Wl +Al then
8 if At > T then
9 CouplingMethod=Loose;

10 else
11 if At +RS > T +Wl +Al then
12 CouplingMethod=Loose;

13 end
14 return CouplingMethod;

iterations, we can extend the model presented in Figure 3 (a)

with minor modifications. Assuming that there is a barrier at

the beginning of the simulation iteration, different processes

can start at the same time when making the data analysis

placement decision. We can reinterpret and extend equation 2

to determine the preferable analysis placement pattern of

in-situ processing in any step. For the overhead of in-situ

processing after ith computation, if we adopt the tightly

coupled pattern for this step (RW i
t ), it takes Ai

t to process

the data generated at ith step and then takes RSi to finish

simulation program. If we adopt the loosely coupled pattern

for this step (RW i
l ), it takes T i to transfer the data. In this case,

the workflow completion time depends on the maximal value

between the RSi and the finish time of in-staging processing

(W i
l + Ai

l) for ith step. Therefore, equation 2 can be viewed

as a particular case where the i equals 0.

If we reuse the conclusion shown in Figure 3 (a) for

deciding analysis placement pattern at any step. The process

of dynamically making data analysis placement decisions can

be further described by Algorithm 1. In this algorithm, we

set variable CouplingMethod to Loose or Tight to represents

corresponding data analysis placement decisions. We force the

data analysis to be processed in a tightly coupled manner in

the first two steps7 and in a loosely coupled manner for the

third step of the in-situ processing. This allows us to have

initial data records for all parameters used in the decision-

making process. GetAndEstimateParameters() function, which

is described in subsection III-B, can access and estimate the

key parameters used in decision-making. Depending on the

value of RS, we use different conditions to select the proper

data analysis placement pattern, and these conditions come

from the results shown in Figure 3 (a). It is worth noting

that Algorithm 1 can be executed by simulation processes

separately, and every process may adopt different data analysis

placement decisions. Subsection III-D introduces more details

about how the analysis placement decision-making of one

7The first step starts from zero, and it may contain initialization that
influences the analysis execution time.
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TABLE II
DECISION ERROR TYPES AND REASONS

Error types Reasons
Tightly→Loosely ↑ At ↓ T ↑ (At +RS) ↓ (T +Wl +Al)
Loosely→Tightly ↓ At ↑ T ↓ (At +RS) ↑ (T +Wl +Al)

process is affected by other processes.

3) Error of the decision-making: In Algorithm 1, we

use GetAndEstimateParameters() to estimate the key parame-

ters for decision-making based on collected historical values.

It is necessary to discuss how errors in estimating these

parameters influence the decision results made by Algorithm 1.

The first column of Table II lists two typical errors for

decision-making. In particular, the “Tightly→Loosely” (ab-

breviated as TL error) represents the case that the tightly

coupled pattern is misclassified as the loosely coupled pattern.

Conversely, the “Loosely→Tightly” (abbreviated as LT error)

means we mispredict and perform tightly-coupling instead of

processing it in a loosely coupled way. According to line 8

and line 11 in Algorithm 1, the TL error happens if there

is a higher estimation of the left-hand side term or a lower

estimation of the right-hand side term. In contrast, a lower

estimation of the left-hand side term or a higher estimation

of the right-hand side term may cause the LT error. We

summarize these reasons in Table II. For example, ↑ At

represents a higher estimation of At compared with its real

value. The real value might be less than T , and the tightly

coupled pattern should be adopted, but we misclassified it

as the loosely coupled pattern. When decision error occurs,

Algorithm 1 cannot achieve the benefits illustrated in Figure 3

(b). Subsection III-B and subsection III-C further illustrate

typical scenarios that cause errors in decision-making and

how our solutions eliminate errors through online parameter

estimation techniques.

B. Parameter collection and estimation

From line 6 of Algorithm 1, we need to estimate the follow-

ing parameters for making the analysis placement decision: the

remaining execution time of the simulation program after the

current in-situ processing step (RS); the future data analysis

execution time when executed in a tightly coupled and loosely

coupled manner (At and Al); the future data transfer time (T )

and the wait time (Wl) to schedule computing resources in the

staging service. However, what we can measure directly are

the latest Al and Wl from the data staging service, and At,

S, and T for the previous in-situ processing steps from the

simulation process. Algorithm 2 provides details to estimate

the future value of these key parameters based on the collected

metrics during the workflow execution.

From line 1 to line 2 of Algorithm 2, we acquire the key

parameters from a metric store8 integrated with the simulation

process and staging service. For the naive strategy in line

3, it returns the measured parameters directly. However, this

strategy may introduce inaccurate parameter estimations and

multiple decision-making errors. In particular, RS in Algo-

rithm 1 represents the remaining execution time of the simula-

8The infrastructure to collect key parameters is discussed in Section III-E.

Algorithm 2: Getting and estimating the key parame-

ters during the workflow execution.

1 At, S, T = getLatestMetricsSim();

2 Al,Wl = getLatestMetricsStage();

3 if strategy==“naive” then
4 return S,At, Al, T,W
5 // For the strategy based on the parameter estimation
6 EAl = Al, EAt = At;

7 if lastDecision==“tightly” then
8 // Updating records about loosely coupled analysis
9 if Al < At then

10 EAl = At;

11 if Al > At and stageIsIdle then
12 EAl = At;

13 P = At;

14 else
15 // Updating records about tightly coupled analysis
16 if Al < At and Al �= 0 then
17 EAt = Al;

18 if Al > At and stageIsIdle then
19 EAt = Al;

20 P = T ;

21 end
22 Updating Tavg , Savg and Pavg by Iterative Averaging;

23 Rstep = totalSimStep− currentSimStep;

24 ERs = Rstep× (Savg + Freq × Pavg);
25 return ERs,EAt, EAl, Tavg,Wl

tion program after the current in-situ processing step. However,

the naive strategy in Algorithm 2 returns the computation time

for one iteration step, which leads to the RS value being

smaller than the actual situation with multiple computation

steps. Besides, we only execute the data analysis either in a

loosely coupled or tightly coupled way, if the last decision is

the loosely coupled pattern, there is no latest record of At;

on the contrary, the recorded Al value is outdated, which may

also lead to inaccurate parameter estimations.

In order to improve the accuracy of the parameter estima-

tions, we need to utilize the collected information in a more

efficient way. Since the computing resources used for the in-

staging service are usually less than the simulation program,

executing the same analysis function in the loosely coupled

pattern may not achieve a faster execution time compared with

executing it in the tightly coupled pattern. Therefore, when

there is Al < At, we can confirm that one of them is outdated.

At line 9 and line 16 in Algorithm 2, we estimate associated

outdated values according to the decision of the last step. In

contrast, when Al > At, we only update the outdated value

if the staging service is comparatively idle and light loaded,

such as line 11 and line 18 in Algorithm 2.

When numerous threads saturate the data staging service, it

needs far more time to finish the data analysis execution in

a loosely coupled pattern compared with the tightly coupled

pattern. If we update the At based on the latest Al value, it may

cause an estimation of At to be higher than the actual value.
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In order to detect the load of the staging service, we define

the metric staging service load by the number of running

threads divided by the number of available threads in the

data staging service. The analysis placement procedure can

acquire the latest metric value from the staging service before

deciding the placement pattern. We classify the staging load

by two threshold values, which is a classical dynamic load

balancing strategy [14]: if the stage load is less than a lower

threshold, it is under-loaded; if the stage load is larger than a

high threshold, it is over-loaded; the staging service is normal-
loaded when the stage load locates between two thresholds.

We assume the stage service is idle when it is under-loaded.

Line 11 and line 18 only guarantee there is high confidence

estimation of Al or At value when the staging service is

under-loaded. When the staging service is not under-loaded,

we can not use the At(Al) to estimate Al(At) because of the

interference of the high staging load. We address these edge

cases in subsection III-C based on a heuristic strategy.

At line 22 in Algorithm 2, we update the average data

transfer time (Tavg) and simulation computation time (Savg)

based on the latest measurements. We also compute the

average time to do the in-situ processing from the perspective

of the simulation program (Pavg); the in-situ processing time

at the current iteration is determined by the analysis placement

pattern (line 13 and line 20). Based on the estimated At

and Al values, we can estimate the remaining simulation

execution time if there is prior knowledge about the total

number of steps of the simulation and the frequency of in-

situ processing. At line 24 in Algorithm 2, we estimate

the remaining simulation execution time based on average

simulation computation time and in-situ processing overhead

on the simulation process. However, the current estimation

of the remaining time only works well for simulations in

which there is a small difference (white noise) in computation

time between different iterations. Otherwise, we may need

prior knowledge, such as the distribution of the simulation

computation time, when estimating the remaining execution

time of the simulation. Another assumption behind the current

estimation algorithm is the gradual and smooth change for

key parameters between two adjacent decision-making steps.

The frequent fluctuations of key parameters may cause more

false attempts and decrease the efficiency of the adaptive data

analysis placement mechanism.

C. Adjusting decisions for edge cases

At line 11 and line 18 in Algorithm 2, we update Al(At)

value when the staging service is idle (under-loaded). If the

staging service is normal-loaded or over-loaded, Al > At is

caused by either the performance degradation of the staging

service or the actual increase of the data analysis execution

time. We still fail to estimate the Al(At) because of the

difficulty to accurately identify how the high staging load

influences data analysis execution time. We present a heuristic

strategy to decide the analysis placement pattern.

Heuristics 1: When the staging service is neither over-

loaded nor under-loaded, for the process that adopts the tightly

coupled pattern in the current step, and there is Al(At) > T ,

we reset them to the loosely coupled pattern.

The aforementioned heuristics is applied after Algorithm 1

finishes. In particular, when the staging service is over-loaded,

we have high confidence that there is service performance

degradation, Algorithm 1 can guarantee that the proper anal-

ysis placement is a tightly coupled pattern. When the staging

service is normal-loaded, we may underestimate At or over-

estimate the Al with the fact that Al > At. As a consequence,

some “Loosely→Tightly” errors exists based on decision error

reasons listed in Table II. In order to decreases the possibility

of these errors, we adjust placement decision to the tightly

coupled pattern for cases where the data analysis execution

time may longer than data transfer time.

D. Adjusting decisions from collective perspective

In previous subsections, we mainly discussed the data

analysis placement decision-making mechanism across differ-

ent steps for one simulation process. However, the suitable

decision for one process may not be the proper one from the

perspective of multiple processes. For example, it is common

for simulation programs to use barriers at the beginning of

each iteration for the correctness of parallel computation. If

one process needs a much longer time to finish the in-situ

analysis than the other processes, and this process happens

to place the data analysis in a tightly coupled manner, it can

cause unnecessary wait for other simulation processes.

Heuristics 2: When the staging service is not over-loaded,

we compute the average analysis execution time based on

the latest records (both for At and Al). If the data analysis

placement decision is a tightly coupled pattern and the current

At or Al value exceeds a threshold, such as the average

analysis execution time, we reset the data analysis placement

decision to the loosely coupled pattern.

We use Heuristics 2 to identify tightly coupled analysis with

a long execution time compared with the average execution

time, then reset them as the loosely coupled pattern. In this

way, the simulation program will not be blocked by a few long-

running analysis and can quickly move to the next iteration.

E. Implementation overview

Figure 4 illustrates the architecture to support the adaptive

data analysis placement decision algorithms. To implement

loosely coupled placement strategy, we use the existing data

staging service [21] that is built with the Mochi frame-

work [16] to store and process the data based on RPC

and RDMA. It can store the data block in the memory of

the staging service and triggers the associated data analysis

running by user-level threads. Every simulation process binds

to a staging process at the beginning of the workflow. The

data block is transferred to the corresponding staging process.

The Metric data store is a map that stores metric values

under different keys, and metric values are stored in a circular

buffer since we only use several latest measurements to decide

the analysis placement pattern in Algorithm 1. The Metric
estimation component in the staging service is responsible for
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Fig. 4. The architecture of the online monitor and decision-making service
for in-situ processing.

collecting metrics such as data analysis execution time and

waiting time to schedule the data analysis during the workflow

execution. It also records the number of active threads in order

to calculate the load of the staging service. Every simulation

process can access this information from the associated data

staging service by getStageStatus RPC.

Before each in-situ processing step, the simulation process

calls the getStageStatus RPC to get the metrics stored in

the data staging service. Combined with metrics recorded in

Metric data store, such as simulation computation time, data

transfer time, and tightly coupled data analysis execution time,

the Policy engine adopts Algorithm 1 to make the data analysis

placement decisions. The Metric estimation is in charge of es-

timating key parameters for data analysis placement decision-

making based on the mechanism discussed in subsection III-B,

III-C and III-D. If the data analysis placement decision is the

tightly coupled pattern, the data analysis is scheduled to run

on the same computing resource as the simulation after each

simulation time-step. For the loosely coupled decision, the data

block is transferred to the staging service and executed in the

staging area asynchronously. The simulation moves to the next

iteration when all processes finish in-situ processing.

IV. EVALUATION

A. Platform and applications

The evaluation in this work is executed on the Haswell

partition of NERSC Cori System [13]. The code and scripts
used for evaluation are publicly available.9 The workflow

used for evaluation contains several components: the mini-

simulation10 programmed with MPI; the real-life data analysis

and synthetic analysis11; the in-situ library that can process

the data analysis in a tightly coupled way; the data staging

service that processes the data analysis in the loosely coupled

fashion on separate nodes, and components that store and

estimate the key parameters for adaptive analysis placement

decision-making. In this workflow, the data produced by

simulation processes is analyzed in each iteration and the

output of each analysis step are several orders of magnitude

smaller than the simulation output. We compare multiple data

analysis placement strategies and their impact on the total

9https://git.io/JZhja
10https://github.com/pnorbert/adiosvm/tree/master/Tutorial/gray-scott
11The synthetic analysis is constructed by the for loop with a configurable

iteration number. In each iteration, it sleeps 1ms and generates random double
values to fill in a vector. Then we add values stored in the vector together.

workflow execution time. For Tightly pattern, we process all

data for every in-situ processing step in a tightly coupled

fashion. For Loosely pattern, we process all data for every

in-situ processing step in a loosely coupled manner. Instead

of fixing the data analysis placement pattern before running

the workflow, dynamic strategies update it during the work-

flow execution. For Dynamic-naive pattern, we use the latest

parameter values collected during the workflow execution as

the input for policy to decide the data analysis placement

strategy. In contrast, Dynamic-estimation pattern uses the

parameter estimation discussed in Algorithm 2 as the input

for data analysis placement decision. Dynamic-estimation-
heuristics adopts both parameter estimation and the heuristics

discussed in subsection III-C and subsection III-D to adjust

the data analysis placement decisions. For the experiments in

subsection IV-B, we use synthetic analysis to compare the

efficiency of the dynamic data analysis placement strategies.

We configure the analysis execution time to construct various

scenarios with variable key parameters during the workflow

execution. Furthermore, experiments in subsection IV-C eval-

uate the benefits and limitations of the dynamic data analysis

placement strategies in more diverse and large-scale cases for

real-life data analysis.

B. Experiments with synthetic data analysis

In this experiment, we aim to show the efficiency of the

adaptive data analysis placement strategy for several typical

cases adopted by in-situ processing. There are 32 processes

(4 physical cores for each process) for the simulation and 8
processes (8 physical cores for each process) for the data stag-

ing service. We choose the aforementioned process number to

guarantee there is enough memory to process the simulated

data. The simulation iterates 60 steps in total, and there is

1GB of data generated by the simulation in each step. We

extract several representative cases from the workflow that

contains real-life data analysis, and these cases pave the way

for evaluating the workflow that contains more complicated

data analysis (discussed in subsection IV-C). For Case 1 shown

in Figure 5(a), we run the workflow by Loosely and Tightly
pattern separately and illustrate collected metric values in the

figure. In particular, the analysis starts from a comparatively

short execution time, increases to a large value, and then falls

back to a small value. This case imitates the situation when

interesting data appear gradually, and we need more analysis

time to process these data. In contrast, for Case 2 illustrated

in Figure 5 (b), the analysis execution time starts from a

comparatively large value and then decreases to a small value

and again increases to the large level at last. This case imitates

the situation when interesting data disappear for a while and

appear gradually. For Case 3 shown in Figure 5 (c), the data

analysis execution time fluctuates around the data transfer time

periodically. This case imitates the situation when data analysis

execution time is approximated to the data transfer time.

Figure 5 (d), Figure 5 (e) and Figure 5 (f) present the

online data analysis placement decision results for three as-

sociated cases, respectively. Since different processes use the
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(a) Case 1 (b) Case 2 (c) Case 3

(d) Dynamic decisions for Case 1 (e) Dynamic decisions for Case 2 (f) Dynamic decisions for Case 3

Fig. 5. Sub-figure (a), (b) and (c) show key parameters during the workflow execution for different cases. Sub-figure (d), (e) and (f) visualize associated
dynamic data analysis placement decisions of each in-situ processing for the rank 0 process. The “Nai”, “Est” and “Heu” represent the Dynamic-naive,
Dynamic-estimation, and Dynamic-estimation-heuristics, respectively.

Fig. 6. The workflow execution time for the cases with a varied analysis exe-
cution time. The gray dash line labels the accumulated simulation computation
time on average. The error bar represents the standard deviation.

(a) Analysis time (b) Naive (c) Estimation (d) Heuristics

Fig. 7. Sub-figure (a) indicates the data analysis execution time when
the in-situ processing runs in Tightly pattern for different processes. The
darker color represents a longer execution time. Sub-figure (b), Sub-figure (c),
and Sub-figure (d) visualize the data analysis placement decisions based on
the Dynamic-naive, Dynamic-estimation, and Dynamic-estimation-heuristics
patterns, respectively.

same synthetic analysis, there are similar parameters between

different ranks during the workflow execution. We use the

process with rank equals 0 as a sample for data analysis

placement decision visualization. Compared with Dynamic-
naive pattern, Dynamic-estimation and Dynamic-estimation-
heuristics pattern can better capture the changes of the work-

flow execution. In particular, for the decision results shown

in Figure 5 (d), both the naive strategy and the estimation

strategy can capture the change at the 16th step, but the data

is always outdated for the naive pattern, and it can not capture

the change at the 45th step. However, using the estimation-

based strategies, we can properly detect the switch between

decision changes. Similarly, for Figure 5 (e) and Figure 5 (f),

the naive strategy can not detect the parameter change because

of the inaccurate parameter estimations.

Figure 6 illustrates the workflow execution time associated

with cases shown in Figure 5 for various data analysis place-

ment strategies. In particular, for Case 1 and Case 2, the

dynamic patterns show better performance than the Tightly
pattern. Besides, the patterns that adopt parameter estimation

can better detect the workflow changes than the naive strategy,

leading to a shorter workflow execution time for both cases.

However, for Case 3 shown in Figure 5, even if the dynamic

patterns based on parameter estimation can capture the change

of the workflow, the frequent switch between data analysis

placement options also introduces many trial-and-error data

analysis placement for collecting the latest data. There is not

much time saving for dynamic patterns in this case since the

overhead counteracts the benefits.

C. Experiments with actual data analysis

This experiment aims to evaluate the efficiency of dy-

namic data analysis placement strategies for actual in-situ

data analysis. We use the data analysis pipeline presented in

subsection II-C, which extracts the isosurface from simulated

data and calculates the largest area. We use 64 MPI processes

(2 cores for each process) for the simulation and 4 MPI

processes (8 cores for each process) for the data staging

services. We run the simulation for 40 iterations, and there is

2GB of data generated at each iteration. The data is processed

after the simulation computation for each iteration.

Figure 7 (a) illustrates the data analysis time of differ-

ent ranks across different data processing steps when there

are 64 simulation processes. The load unbalances of data

analysis execution time between different data analysis is

observable. Figure 7 (b), Figure 7 (c) and Figure 7 (d) show

decision results of different data analysis placement strategies,

respectively. In particular, for Dynamic-naive pattern, there

are frequent fluctuations when the data analysis execution

time is comparatively large. This is caused by the outdated

data of the key parameters. For Dynamic-estimation pattern,

the decision region is more continuous, but there are some
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Fig. 8. The execution time of workflow using real data analysis. The horizontal axis represents different simulation process numbers. The gray dash line
shows the accumulated time for simulation computation on average. The shadowed area represents the time spent on the staging area after the simulation
program finishes. The error bar represents the standard deviation of execution time.

different discrete decisions around the 36th step. These in-

consistent decisions cause other data analysis to wait for the

unbalanced analysis with a longer execution time, such as

the dark color region shown in Figure 7 (a), which causes

unnecessary overhead. Dynamic-estimation-heuristics pattern

adopts the heuristic strategies discussed in subsection III-C

and subsection III-D to further decrease decision errors and the

overhead to wait for long-running data analysis. The decisions

after the 30th step are more consistent, and more data blocks

and associated analysis are transferred into the staging service

compared with other patterns based on dynamic strategies.

For evaluating the performance of the dynamic analysis

placement strategies in different configurations, we increase

the simulation process number from 64 to 2048 with the

same number of data staging services and the same simulated

domain size. The data block number increases and the data

block size decrease with the increase of the process number.

As illustrated in Figure 8, when there are 64 or 128 processes,

Loosely pattern shows better execution time compared with

Tightly pattern; this is because of the unbalanced data analysis

that increases the simulation execution time for Tightly pattern.

However, dumping all the data into the data staging area

can overload the data staging processes. For example, when

there are 256 processes, the execution time of Loosely pattern

is slightly longer than Tightly pattern. This is because the

overhead caused by saturating all staging resources exceeds

its benefits. The dynamic analysis placement strategy tries

to balance the analysis execution and available computing

resources of the data staging service. In particular, compared

with the pre-configured pattern that takes less execution time,

such as Loosely pattern for 64 processes and 128 processes,

and Tightly pattern for 256 processes, the in-situ processing

time12 decreases by around 25%, 19% and 12%, respectively.

With an increase in the number of simulation processes,

such as 512 processes, the data analysis time decreases, and

the Tightly pattern tends to be optimal. Our dynamic strategies

based on parameter estimation can achieve a similar workflow

execution time. If we further increase the simulation processes

from 1024 to 2048, the simulation computation did not de-

crease anymore. With the continuing decrease of the block size

and analysis execution time, most of the analysis are preferable

to be processed by the Tightly pattern. However, with the

12The workflow execution time minus the accumulated simulation compu-
tation time.

increase of the simulation process number such as 1024 or

2048, the Dynamic-estimation-heuristics pattern shows extra

overhead. This is because the heuristic strategy needs to do the

collective operation to detect the long-running data analysis

based on the average value; without prior knowledge about

how the simulation and associated analysis execution time

change across multiple steps, dynamic strategies can achieve

performance improvements for all configurations as compared

to a static approach. While one can run the workflow several

times to determine its characteristics manually, it is preferable

and more efficient to run the workflow once with a fairly small

overhead to determine the placement of analysis adaptively.

Further efforts include making the dynamic analysis place-

ment strategies run in a more autonomic way. For example,

we can select a proper dynamic strategy as needed; for the

situation where the tightly coupled pattern is definitely prefer-

able, and overhead of collective communication for heuristics

exceeds its benefits (such as cases where simulation adopts

1024 or 2048 processes in Figure 8), we can avoid using the

heuristic strategies.

V. RELATED WORK

Jin et al. [6] presented a framework that can dynamically

change the data analysis placement strategy of in-situ process-

ing based on adaptive policies. This work also uses collected

workflow run-time information to guide the data analysis

placement decision in a hybrid way. However, this work does

not elaborate on how to process the situation where ana/vis

varies across steps for every single rank and across different

ranks for the same step. Besides, they did not discuss details

about how to collect and estimate the key parameters used for

ana/vis placement decision-making.

Tu et al. [5] and Wang et al. [21] presented models to

compare tightly coupled and loosely coupled in-situ process-

ing. Similarly, Kress et al. [7], [8] evaluated the tightly and

loosely coupled in-situ visualization pipeline with varied con-

figurations such as available resources, type of visualization

algorithms, and visualization frequency, and they show each

pattern are preferred in a particular configuration. However,

they did not discuss how to use the model to guide the ana/vis

placement strategy during the workflow execution.

Zhang et al. [23] presented FlexIO that aims at providing the

flexibility of ana/vis placement among the I/O path for in-situ

processing. This work focuses on the capability to place the

in-situ ana/vis. Our work focuses on using similar capabilities
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in a more strategic way based on the workflow run-time

information. Sun et al. [20] focus on adaptive data placement

in the data staging area to decrease the data access time;

however, our work focuses on the adaptive task placement

for decreasing workflow execution time.

Another set of works model resource cost and utilization of

in-situ processing. In particular, Kress et al. [9] explore how

to chose proper node or core partition for different types of in-

situ processing. Aupy et al. [1] presented a memory-constraint

model to determine the resources used for the in-situ analysis.

However, our work assumes the computing resource is fixed

at the beginning of the workflow and tries to place the ana/vis

dynamically to facilitate the workflow execution.

VI. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated the advantage of adjust-

ing the in-situ processing data analysis placement strategy

dynamically to decrease workflow execution time. By mod-

eling in-situ processing and developing online data analysis

placement policies, we showed the benefits and limitations of

presented policies in various experimental configurations. In

future work, we plan to integrate the presented online data

analysis placement mechanism into workflows that contain

more complicated in-situ processing pipelines.
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