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Abstract—In-situ processing alleviates the gap between com-
putation and I/O capabilities by performing data analysis close
to the data source. With simulation data varying in size and
content during workflow execution, it becomes necessary for in-
situ processing to support resource elasticity, i.e., the ability to
change resource configurations such as the number of computing
nodes/processes during workflow execution. An elastic job may
dynamically adjust resource configurations; it may use a few
resources at the beginning and more resources towards the
end of the job when interesting data appears. However, it is
hard to predict a priori how many computing nodes/processes
need to be added/removed during the workflow execution to
adapt to changing workflow needs. How to efficiently guide
elasticity operations, such as growing or shrinking the number
of processes used for in-situ analysis during workflow execution,
is an open-ended research question. In this paper, we present
an adaptive elasticity policy that adopts workflow runtime
information collected online to predict how to trigger the addition
and removal of processes in order to minimize in-situ processing
overheads. We integrate the presented elasticity policy into a
staging-based elastic workflow and evaluate its efficiency in
multiple elasticity scenarios. The results indicate that an adaptive
elasticity policy can save overhead in finding a proper resource
configuration, when compared with a static policy that uses a
fixed number of processes for each rescaling operation. Finally,
we discuss multiple existing research opportunities of elastic in-
situ processing from different aspects.

Index Terms—In Situ Processing, Data Staging, Elasticity,
Policy

I. INTRODUCTION

In-situ processing addresses the gap between computation

and I/O capabilities by processing data as it is generated on

the same system. Tightly coupled and loosely coupled in-situ

are two major models for in situ processing [7]. In a tightly

coupled system, the simulation program is linked with an in-

situ library. When the API for in-situ processing is called,

the in-situ library transforms the data layout as needed and

executes data analysis or visualization tasks (abbreviated as

ana/vis), using the same computing resources as the simula-

tion. In contrast, the simulation program in a loosely coupled

system is linked using an API for data management. Once

the API is called for in-situ processing, the data generated by

the simulation is transferred to other remote nodes via a high-

speed network [2], [10], [11] or to other processes on the same

nodes via shared memory [28]. The memory used to store the

transferred simulation data, whether local to the simulation

nodes or remote, is sometimes called a data staging area. A

Staging-based scientific workflow adopts the loosely coupled

model to process the ana/vis, and we use in-staging execution
to represent the process of executing ana/vis tasks in the data

staging area.

With HPC simulations moving towards more complex work-

flows, in-situ workflows need to process simulation data that

changes over time in a flexible way. For example, S3D simu-

lation [6] data contains more details near flame fronts. When

performing topological analysis, more computing resources

are required to process the flame front region compared with

other regions. Similarly, interesting phenomenons of the CM1

simulation [23], such as tornadoes, appear at the end of the

simulation. We need more computing resources to do the

analysis once these interesting data appear in order to finish

the data processing within specific time constraints.

In-situ workflows may adopt multiple solutions to pro-

cess varying simulation data and associated ana/vis discussed

above. For example, the processing frequency of simulated

data can be adjusted during workflow execution [19], and the

number of ana/vis tasks can also be adjusted speculatively to

match the data production rate and available resources [18]. In

this work, we focus on solutions that adopt dynamic resource

elasticity, which is identified as a key research challenges for

processing dynamic workloads [13], [24]. Computing resource

elasticity consists of abstract primitives: the resource join
operation can start a new task or schedule new computing

resources, and the resource leave operation can release com-

putation resources when they become idle. The term expand/-
contract or grow/shrink is also used in related works [1], [15]

with a similar meaning.

Checkpoint/restart is a classical mechanism with which to

implement elasticity. It consists of stopping the current job

and starting a new job with an adjusted number of nodes

or processes [15], [25]. The restart operation, however, adds

overhead to the workflow execution, and data redistribution

can be difficult. With the support of dynamic process in the

MPI standard 2.0 and associated extensions [9] or MPI-like

communication libraries1, resource elasticity can be achieved

in an online manner without restarting the job and application.

With the support of elasticity in the communication layer, the

batch scheduler can dynamically add or remove nodes during

the job execution [1], [5]. In addition, these communication

1e.g. https://github.com/mochi-hpc/mochi-mona
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libraries also facilitate the simulation program [20] and asso-

ciated in-situ processing [13] for elasticity.

With an infrastructure supporting elasticity primitives, one

research question to answer is when and how to trigger
these primitives for elasticity. Depending on whether we

know the requirements for computation resources before the

workflow execution, the elastic workflow execution policy can

be divided into two patterns [15]. In a plan-driven method,

the user provides an elastic plan before workflow execution.

For example, we can specify rules such that the job will be

rescaled to a particular resource configuration after a specific

run time or at a specific iteration. In an event-driven method,

the trigger of elasticity operations depends on the detection

of specific events, such as changes in key metrics during

the workflow execution. The elasticity policy is in charge of

issuing these triggering events. Once the trigger for elasticity

is determined, a question remains: how many processes/nodes
should be added or removed during the rescaling operation.

In this work, we present an adaptive elasticity policy to

control the triggering of elasticity operations, such as adding

or removing processes. The presented adaptive elasticity policy

utilizes workflow runtime information to predict how in-

staging execution time changes with the number of running

processes and decides how many processes should be added

or removed accordingly. We integrate the presented policy into

a staging based elastic workflow and evaluate its efficiency in

multiple elasticity scenarios. Compared with the static elastic

policy, the results show that the adaptive elasticity policy

takes less overhead to find a proper resource configuration

that is favorable for in-situ processing. At last, we discuss its

limitation and future research opportunities for implementing

a full-fledged elastic in-situ workflow.

The rest of the paper is organized as follows. Section II

discusses the background and motivation. In Section III, we

elaborate on the details of the adaptive elasticity policy. In

Section IV, we further discuss the implementation details of

integrating the adaptive elasticity policy into the in-staging

processing. The evaluation results are discussed in Section V,

then we present existing research opportunities in Section VI.

We discuss related work in Section VII, and conclude the paper

in Section VIII.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce the workflow with elastic

in-staging processing, then we discuss potential solutions to

predict how available computing resources influence the in-

staging execution time.

A. Workflow with elastic in-staging processing

Figure 1 illustrates key stages of a workflow with elastic

in-staging execution [17]. We assume the data staging service

supports resource elasticity, and the elasticity primitives can

be triggered at any iteration of the simulation computation.

The Rescale and sync stage of the simulation program checks

if there are newly added or removed data staging processes

and confirms that the current simulation process knows which

......

......

Computation
Rescale 
and sync

Data transfer
In-staging

 processing

Simulation

Data staging
service

Overhead

Wait time

Fig. 1. In-staging processing workflow with resource elasticity.

processes of the data staging service are alive. The number of

data staging processes for executing ana/vis remains constant

during the processing of a single analysis task. If in-staging

execution takes too long to complete, the simulation needs

to wait until it is finished before the next Rescale and sync
stage. The extra wait time increases the overhead of in-situ

processing. If there is a way to adjust the in-staging execution

time by dynamically using more computing resources, we

may avoid this overhead. On the other hand, if the data

staging service finishes faster than the simulation computation,

we can remove some of the processes used for data staging

service and give them back to the scheduler (if the resource

scheduler supports elasticity) without introducing extra wait

time. Furthermore, if the simulation program also supports

elasticity, we may redistribute the computing resources used

by the simulation and data staging service dynamically to

decrease the workflow execution time.

B. Distribution of in-staging execution time

Although we can decide when to trigger the rescaling opera-

tion by monitoring the wait time discussed in subsection II-A,

it is still hard to properly predict how many processes should

be added or removed for each rescaling operation. If there is a

way to predict how the in-staging execution time will change

with the number of data staging processes, we can compute

how many processes should be added or removed in a more

accurate manner.

Fig. 2. An example that shows how the in-staging data processing time
changes with the number of data staging processes. The log scale with base
2 is used for both x and y axis.

Figure 2 illustrates an example of how the in-staging exe-

cution time changes when varying the number of data staging

processes. We use the Gray-Scott mini-application2 as the data

source and visualize its data in the staging area using Paraview

Catalyst [3]. We construct multiple combinations of simulation

data size and number of data staging processes; then, we

execute the associated visualization pipeline and record the

2https://github.com/pnorbert/adiosvm/tree/master/Tutorial/gray-scott
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execution time. From the results, in-staging execution time is

inversely proportional to the number of processes. The speedup

of the execution time keeps comparatively constant when we

double the number of data staging processes. A similar distri-

bution can be observed in other parallel computations [21].

As the results illustrated in Figure 2, we need to gradually

add more processes to keep execution time decrease at the

same rate. For example, when 2GB of data is generated by

each simulation iteration, and there are 4 processes, adding

4 more processes can reduce in-staging execution time by

approximately 1 second in the log scale. However, when

there are 64 processes, adding 4 more processes is trivial for

decreasing the in-staging execution time, and it needs up to 64
more processes to reduce execution time by around 1 second.

This fact shows that adding a particular number of processes

achieves different benefits depending on existing available data

staging processes. In order to design a proper elasticity policy

to trigger the elasticity primitives such as process joining or

leaving, we need to collect workflow run-time information and

use this information to predict how the execution time changes

with a variation in the number of processes. Then we can

confirm how many processes need to be added/removed in

order to achieve the targeted execution time. The details of

designing elasticity policies are discussed in Section III.

III. METHODS

In this section, we first describe procedures that control

when to trigger the elasticity operations with both static and

adaptive strategy in subsection III-A. Then we discuss designs

of adaptive elasticity policy for two typical scenarios. For the

first scenario discussed in subsection III-B, the number of

processes assigned to the job can vary during the workflow

execution. The data staging service can add/remove processes

based on workflow runtime information. For the second

scenario discussed in subsection III-C, the total computing

resources assigned to the job are fixed before the workflow

execution, and we can switch the process between different

programs during the workflow execution. For example, we

may remove some processes from the simulation and add

corresponding processes to execute the data staging service

to optimize resource utilization.

A. Static vs Adaptive elasticity strategy

The main goal of the elasticity policy is to decide when and

how to trigger elasticity primitives such as adding or removing

processes. Depending on different scenarios of elasticity, we

need to specify the conditions to trigger the elasticity and the

number of processes added into (or removed from) data stag-

ing or simulation programs. Assuming the trigger condition

is specified, one critical step of the aforementioned elasticity

policy is to estimate the value of k, which is the number of

processes added or removed during the rescaling operation.

When the Static strategy is adopted, we set key parameters

manually and add or remove a fixed number of processes,

such as 1. With the Adaptive strategy, we first check the status

Algorithm 1: Adaptive strategy for rescaling with both

process adding and removing

1 if Tw > TH1 then
2 k = estimateProcessesNum(join, Tp − Tc);

3 doProcessJoin(k);

4 if Tc − Tp > TH2 then
5 k = estimateProcessesNum(leave, Tc − Tp);

6 doProcessLeave(k);

of the model that expresses the relationship between the in-
staging ana/vis execution (or simulation computation) time
and the number of processes (discussed in subsection III-B).

If the parameters used by the model are not initialized, we can

predict key parameters based on historical data in an online

manner. If there is not enough historical data, such as the

first iteration of in-staging processing, the policy still returns

a fixed number as the rescaling number of processes. If key

model parameters have existed, we use the current model to

calculate how many processes need to be added or removed

to achieve an expected in-staging execution time3. Besides,

we may adopt more constraints, such as the total number

of available processes we can use or the minimal amount of

memory for in-staging execution to decide the final number

of processes for elasticity.

B. Rescaling the data staging service

Based on the discussion of elastic workflow in subsec-

tion II-A, we may add processes to the data staging service

whenever possible to decrease wait time. Algorithm 1 illus-

trates when and how to trigger the elasticity in this case. This

algorithm can be executed at the rescale and sync stage of

the elastic workflow shown in Figure 1. In particular, when

the time to wait for the in-staging execution to finish (Tw) is

longer than a threshold (TH1), we add k processes into the

data staging service; conversely, we remove k processes if the

difference between the latest computation time (Tp) and in-

staging execution time (Tc) is longer than a threshold (TH2).

One critical step in Algorithm 1 is to compute the number of

processes added or removed for each rescaling operation. For

the example shown in Figure 2, the in-staging execution time is

inversely proportional to the number of data staging processes.

In order to express this relationship in a more general form,

we can use y = a · xb as a fitting function4. y represents the

execution time of the in-staging processing, and x represents

the number of processes; a and b are two parameters influenced

by the properties of ana/vis tasks and processed data size, and

b is usually a negative real number. For the convenience of

computing the parameters used in the model, we can take the

logarithm of both sides of the original equation and change

it to a linear equation as follows: ln y = ln a + b · lnx. We

then need only two data points to estimate the values of a

3This value can be specified by the trigger conditions.
4This is one typical form of power-law distribution [8]. Although we adopt

the power-law distribution as a fitting curve in this work, the model for
anticipating the process number can be expressed by different equations.
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Fig. 3. Example of the model prediction based on power-law distribution.
The solid dot represents the actual value, the dash line is drawn based on
estimated model.

and b. Based on this model, given an execution time of in-

staging processing, the associated number of processes can be

expressed as:

x = exp(
ln y − ln a

b
) (1)

Assuming the current number of processes is x0, the current

execution time is y0, and the targeted execution time is y1. If

we try to predict how many processes need to be added into

the staging service to decrease the execution time from y0 to

y1, we need to calculate:

k = exp(
ln y1 − ln a

b
)− exp(

ln y0 − ln a

b
) (2)

The value of k is the number of processes that we will add

to the data staging service. Similarly, we can compute how

many processes need to be removed from the data staging

service if we need to increase the in-staging execution time to

a specific value.

Figure 3 shows an example of how it works to anticipate the

parameters used in the model discussed above. Assuming we

try to predict a model that matches the ana/vis execution time

shown in Figure 2. We need at least two data points as input to

estimate unknown parameters in power-law distribution y =
a·xb. Figure 3 shows the estimated data using a dashed line and

actual data using solid dots for the equation with log operators,

namely ln y = ln a+b·lnx. As shown in results, the estimated

data calculated by the model can well match the actual data

with different simulated data sizes. With the online prediction

of key parameters for the model, we can conveniently compute

how many processes need to be added (removed) to decrease

(increase) the data staging execution time to a particular value.

C. Rescaling data staging service and simulation

Instead of adding more resources during the execution of the

job, in this scenario, we assume the total computing resources

are fixed, and processes assigned to the simulation or data

staging service can be redistributed dynamically during the

workflow execution. To find out if there exists a more efficient

scheme of resource configuration, we consider how the number

of available processes influences both simulation and in-

staging execution time. Assuming the simulation computation

time Tc is equal to f1(Psim) and the data staging execution

Algorithm 2: Adaptive strategy for rescaling with both

the simulation and the data staging service.

1 while step < totalstep do
2 Computing the k value;

3 Exiting k simulation processes;

4 Starting k data staging processes;

5 Waiting for the simulation rescaling to finish;

6 Simulation computation;

7 Waiting for previous ana/vis to finish;

8 Updating models based on key metrics;

9 Waiting for the data staging rescaling to finish;

10 Calling the data transfer RPC;

11 Calling the execution RPC;

12 Syncing new step value;

13 end

time Tp is equal to f2(Pstage), where Psim and Pstage repre-

sents the number of processes used by simulation computation

and data staging service, respectively, if the elasticity policy

switches k processes from simulation program to the data

staging service, we end up with T ′
c = f1(Psim− k) and T ′

p =
f2(Pstage+ k). The elasticity policy needs to find out if there

exists a value k that satisfies max(T ′
c, T

′
p) < max(Tc, Tp).

If there exist multiple eligible values, we select one that can

minimize the max(T ′
c, T

′
p). Therefore, removing k processes

from the simulation then adding them to the data staging

service can decrease the in-staging processing time.

We list key operations in the simulation program that

support the elastic resource redistribution in Algorithm 2.

From line 2 to line 4, we make the elasticity decision based

on the aforementioned adaptive strategy and correspondingly

decrease (increase) simulation (data staging service) processes.

In particular, we may try to remove the current process from

the simulation program and send a signal to an elasticity

trigger to start a new staging process. From line 5 to line 8, we

wait for the simulation rescaling to finish and then update the

communicator used by the simulation computation based on all

alive simulation processes. After the simulation computation,

we wait for the ana/vis to finish and update the models to

compute the simulation (ana/vis) execution time based on the

latest metrics. In this work, we assume the distribution of

execution time does not change during the workflow execution;

however, we may also update key model parameters if the error

between the estimated value and the actual value is larger than

a threshold. The data redistribution and migration are also key

issues to guarantee the correctness of malleable simulation

computation [20]; however, these issues depend on specific use

cases and are out of the scope of current work5. From line 9

to line 12, we wait for the data staging rescaling operations to

finish and update records for all alive data staging processes.

Besides, the simulation process updates the endpoints record

of alive data staging processes. Next, we call the data transfer

RPC to put data into the data staging service, then call the

5The mini-simulation used in the evaluation of this paper only requires
updating its communicator to support elasticity.
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Fig. 4. The architecture for implementing the in-staging processing with the
elasticity policies.

execution RPC to trigger associated ana/vis tasks. At last,

we increase the step value and update it for each existing

simulation process.

IV. IMPLEMENTATION OVERVIEW

Figure 4 illustrates the architecture for implementing the

staging-based workflow with elasticity policies. Major compo-

nents adopted by the simulation (clients) and the data staging

service (servers) are shown in the figure. In particular, the

data staging service is built on Mochi data services [26]:

Margo and Thallium provide the service of remote procedure

call (RPC), which is built on Mercury for transferring data

by RDMA, and Argobots for user-level thread management;

Colza6 can execute customized ana/vis pipeline in data staging

service. The user-defined ana/vis can be executed based on

the user-level thread provided by Argobots and the collective

communication primitives provided by Colza. Although the

implementation is built on Mochi-based runtime, the elasticity

policies discussed in section III are not limited to the Mochi

data services; they can also be adapted to other data staging

services that support elasticity primitives.

The newly added components for elasticity in this paper are

circled by the dashed line. In particular, Endpoints manager
records all alive processes and updates the communicator

based on the latest endpoint list. A Leader-worker strategy

is adopted to manage the consistency of alive processes. In

particular, the added/removed processes send an RPC to the

leader process (the process with rank 0) to register/deregis-

ter their endpoints; then, the leader process broadcasts the

updated endpoint list to all worker processes to update their

communicator. The Endpoints manager can be integrated with

both the simulation program and the data staging service to

support elasticity. The main function of the Elasticity policies
is to collect the workflow runtime information and decide

when and how to execute the elasticity primitives based on

the policy discussed in section III. When it decides to add a

new process, a signal is sent to the elasticity trigger to start a

new process. The signal can be a dedicated configuration file,

and the elasticity trigger can be implemented by bash code,

which calls srun to start new processes.

6https://github.com/mochi-hpc/mochi-colza

(a) Static elasticity policy

(b) Adaptive elasticity policy

Fig. 5. Comparison between the static and the adaptive elasticity policy.

V. EVALUATION

The evaluation in this paper is divided into three categories.

In subsection V-A, we evaluate how the elasticity policy can

dynamically find a resource configuration that minimizes the

wait time for in-staging execution. Furthermore, in subsec-

tion V-B, we evaluate the efficiency of the elasticity policy

that dynamically switches the process between simulation and

data staging service. At last, we use more realistic ana/vis to

show the efficiency of elasticity policy in section V-C. All

experiments in this evaluation were performed on the Cori

supercomputer’s Haswell partition [22]. The corresponding
code7 is publicly available.

A. Efficiency of adding data staging processes

In this experiment, we aim to evaluate the adaptive elasticity

policy discussed in subsection III-A. We use the Mandelbulb

mini-simulation8 as the data source in this experiment. The

simulated data is processed by synthetic ana/vis, which is a

sleep function that changes sleep time according to the number

of processes based on the power-law distribution.

Figure 5(a) illustrates key metrics during the workflow

execution with the static elasticity policy. In this case, the

elasticity policy checks the wait time (illustrated in Figure 1) at

the beginning of each iteration; if it is larger than 0.1 seconds,

we add one new process into the data staging service.9 With

the number of processes for data staging services increasing

from 2 to 7, the wait time gradually decreases to zero. After

7https://git.io/J0UCc
8https://github.com/mdorier/MandelbulbCatalystExample
9We assume one newly added process runs on one node in this experiment.
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Fig. 6. The overhead of adding processes into the data staging service.

that, the simulation computation overlaps with the in-staging

processing, and we do not further add data staging processes

for the subsequent workflow executions.

Figure 5(b) shows the results of adopting the adaptive

elasticity policy discussed in subsection III-B. For the step

1 and 2, the wait time is larger than 0.1 seconds, and

there is not enough data to build the model discussed in

subsection III-B; therefore, we add one new process for these

two steps. After the third step, the adaptive elasticity policy

confirms that adding three new staging processes can decrease

the in-staging execution time to a proper level, in which there

is full overlap between the simulation computation and in-

staging execution. Compared with the static elasticity strategy

shown in Figure 5(a), the adaptive elasticity strategy takes

fewer iterations to find a proper configuration to decrease the

wait time to zero. In this way, we can avoid extra overhead of

resource rescaling.

The overhead of starting new processes comes from three

aspects: (1) building the model and deciding when or how

to trigger elasticity; (2) sending the signal to trigger an

addition of new process; (3) updating the communicator in

staging service when there are added/removed processes. In

our experiment, the overhead of (1) and (3) are trivial, which

are less than 1 second; however, the signal sending and new

process triggering may take a long time when the performance

of the parallel file system and batch scheduler is poor. This

is because the trigger of srun command depends on the

detection of the configuration file served as a triggering

signal. The high workload on the system may increase the

delay of the file detecting and process triggering. In our

evaluation, this overhead10 can vary from several seconds

(illustrated in Figure 5) to tens of seconds. Figure 6 shows

more details on the rescaling performance. We gradually add

4 data staging processes at each iteration and increase the

number of processes from 2 to 128 within 30 steps. Most of

the rescaling operations (the sync stage time) can finish within

2 seconds. Around 2/3 rescaling operations finish in less than

0.5 seconds, which is negligible compared with the decrease of

wait time enabled by elasticity strategies shown in Figure 5(a)

and Figure 5(b).

10The time period from the moment of executing the configuration file write
operation to the moment that the batch scripts detect the dedicated file.

B. Efficiency of the dynamic resource redistribution

In the previous experiment, we assume the computing

resources assigned to the simulation program are fixed, but

the data staging service is elastic. Therefore, the computation

resources assigned to the job can also be elastic during the

workflow execution. In this experiment, we assume both the

simulation program and the staging service are elastic, and

the total computation resources are fixed during the workflow

execution. We redistribute the computation resources assigned

to the simulation and data staging service to find a proper

resource configuration dynamically based on adaptive elastic-

ity strategy discussed in the subsection III-C. For example,

if the benefits of adding one process to the data staging

service exceed the overhead of removing one process from the

simulation program, we can decrease the simulation process

and then start the staging service on the process removed

from the simulation program. In this way, we may further

decrease the execution path of the staging-based workflow

without adding new computing resources to the job.

We update the mini-simulation used in experiment V-A and

make it elastic based on the endpoints manager described

in implementation details in section IV. When one process

leaves the simulation program, the endpoints manager updates

its list for all alive processes and recreates the collective

communicator based on existing processes to guarantee the

correctness of simulation computation. Besides, a dedicated

configuration file is written to the parallel file system when one

simulation process leaves. The batch script keeps monitoring

the file system and starts a new data staging process when

there is the detection of the corresponding configuration file.

Figure 7(a) shows the results of adopting a static elasticity

policy to switch the process between the simulation and data

staging service. The elasticity policy monitors the wait time of

each in-staging processing; if it is larger than 0.1 seconds, we

remove one simulation process then start another data staging

process. With more computing resources adding to the data

staging service, the static elasticity policy decrease the wait

time to zero. Compared with the decrease of the wait time,

the increase of the simulation computation time is not obvious

even if we decrease the simulation number of processes. This

is because that the simulation computation is insensitive to

the variation of the number of processes based on the current

resource configuration in the experiment. Specifically, the

simulation program computes 256 data blocks. When there are

37 processes, 7 blocks are updated by each process at most;

when there are 32 processes, 8 blocks are updated by each

process at most. This difference is trivial for the simulation

computation time. Compared with the static elasticity policy

shown in Figure 7(a), the adaptive elasticity policy illustrated

in Figure 7(b) shows a better performance to achieve a proper

resource configuration for both simulation and data staging

service. The elasticity policy decides to remove three processes

at the third step and start new staging processes accordingly;

it decreases the overhead caused by rescaling new processes

based on the adaptive elasticity policy.
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(a) Static elasticity policy

(b) Adaptive elasticity policy

Fig. 7. The performance of changing process from simulation program to
the data staging service with different elasticity policies. The number in the
parenthesis of the horizontal label represents the number of the simulation
processes and the number of the staging processes, respectively.

C. Towards actual ana/vis

In the previous two experiments, we use a sleep function

that follows the power-law distribution as a synthetic ana/vis.

In this evaluation, we update the tasks executed in the data

staging service and make it closer to the actual ana/vis.

In particular, we convert the simulated data into the VTK

format [27] and write it out to the VTK image files. This

commonly used in-staging processing can be further integrated

with complicated data filters or other downstream visualization

tools. In this experiment, the total computing resource assigned

to the job is also fixed during the workflow execution. We

reuse the adaptive elasticity policy evaluated in section V-B

to redistribute the process between the simulation and data

staging service. In order to construct different types of in-

staging executions for evaluation, we run the aforementioned

VTK data ana/vis task with different iterations. For Case 1

shown in Figure 8(a), we execute it for 10 times, and for Case

2 shown in Figure 8(b), we execute it for 20 times.

For the results shown in Figure 8(a), the policy works

as expected, and it finds a proper resource configuration

between simulation and data staging service at the fourth

step.11 Then the in-staging execution can overlap with the

simulation computation. However, for the results of Case 2

shown in Figure 8(b), when the wait time becomes trivial at the

4th step, it then becomes large at the 5th step. This is because

that the in-staging execution becomes unbalanced at this step.

11We set number of processes that can be switched between the simulation
and data staging service as 6 in this experiment.

(a) Case 1

(b) Case 2

Fig. 8. The performance of the adaptive elasticity policy that adjusts the
resource configuration with different cases of in-staging executions. The
number in the parenthesis of the horizontal label represents the number of the
simulation processes and the number of the staging processes, respectively.

Most of the in-staging execution finish at around the 5 seconds,

and some particular process needs dozens of seconds. The wait

time depends on the longest in-staging execution in this case.

These situations break up assumptions for methods discussed

in section III-B where the total execution time follows the

power-law distribution. After checking the log of data staging

service in details, most of the in-staging execution follows the

power-law distribution except several special processes. We

will update the elasticity policy to support this scenario in

future work. One potential solution is to dynamically change

the available data staging processes when transfer and execute

the ana/vis tasks. If the in-staging execution did not finish

within a specific threshold value, the simulation program will

put data to other data staging processes for the next iteration.

VI. RESEARCH OPPORTUNITIES

In the evaluation of this paper, we use the synthetic ana/vis

that does not require a collective operation. One research op-

portunity is to try to adapt the existing in-situ ana/vis pipeline

to support the elastic in-staging processing. For example, the

exiting visualization pipeline, such as Paraview Catalyst [3]

is built on the static communicator that assumes process

size does not change during the workflow execution. It is

interesting to explore how to update these ana/vis to support

elasticity and integrate it with the current elasticity policy for

in-situ workflow.

The data staging service used in this work for the proof

of concept only provides the minimal capability of in-staging

data management. It is interesting to integrate the elasticity
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policy and elastic ana/vis with the state-of-the-art data staging

services such as DataSpaces [10] and Damaris [12] to compare

their efficiency for elastic in-situ processing.
Because of the limitation of the evaluation platform in this

work, we did not adopt the actual batch scheduler that supports

elasticity. Instead, we reserve enough nodes in advance but

use several of them to show the efficiency for elasticity

for the proof of concept. It is interesting to integrate the

presented elasticity policy with the latest job scheduler [1]

that supports the resource elasticity. Furthermore, it deserves

to explore a more efficient process trigger procedure. The

signal represented by the configuration file is influenced by

the performance of the parallel file system that causes an extra

overhead of process triggering.
For the adaptive elasticity policy discussed in this paper,

we assume both the execution time of in-staging execution

and the simulation computation time follow the power-law

distribution. However, it is possible that in-staging execution is

more complicated, such as the single process with unbalanced

execution time shown in subsection V-C. The model prediction

of execution time can also be updated to adapt to various

scenarios. Besides, if there is workflow runtime information,

such as the performance of the srun operation, the adaptive

policy can make a more accurate decision to decide if the

resource rescaling is necessary.

VII. RELATED WORK

Tong et al. [17] present a resource adaptation policy to

rescale the computation resources used for data staging service

and to improve the resource utilization efficiency. However,

they did not explain details of how to properly determine the

number of processes to join/leave the computation group.
Fox et al. [15], and Chadha et al. [5] focus on how to provide

elasticity from the job scheduler’s perspective. They discuss

how to update the existing scheduler to support elasticity

primitives. Our work focuses on the policy to trigger these

primitive, which is complementary to their works.
In the context of the fault-tolerance, Duan et al. [14] use

elasticity as a mechanism to support the data failure detection

and recovery for data staging processes. The User Level Fail-

ure Mitigation (ULFM) [4] presents MPI extensions to detect

communicator failure, along with solutions to recovery from

the failure. The trigger of the elasticity primitives depends on

the error detection mechanism for these works; however, our

work mainly focuses on rescaling data staging resources to

achieve more efficient resource utilization.
Elasticity is also an important aspect of cloud computing.

Ghanbari et al. [16] summarizes typical approaches to support

elasticity in the context of cloud computing. Zahedi et al. [29]

discusses how to use the Amdahl utility function to decide

the process allocation. Our work focus on the elasticity policy

from the application perspective in the context of the in-situ

processing for scientific workflow.

VIII. CONCLUSION AND FUTURE WORK

We presented the design and evaluation of the adaptive

elastic policies that can trigger elasticity primitives online for

staging-based in-situ processing. The evaluation shows that the

adaptive elasticity policy can efficiently find a proper resource

configuration and decrease the overhead caused by rescaling.

In future work, we will integrate the presented elasticity policy

with full-fledged in-situ processing that contains the elastic

ana/vis pipeline and uses an elastic batch scheduler.
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