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Abstract—In-situ and in-transit processing alleviate the gap
between the computing and I/O capabilities by scheduling data
analytics close to the data source. Hybrid in-situ processing
splits data analytics into two stages: the data processing that
runs in-situ aims to extract regions of interest, which are then
transferred to staging services for further in-transit analytics. To
facilitate this type of hybrid in-situ processing, the data staging
service needs to support complex intermediate data represen-
tations generated/consumed by the in-situ tasks. Unstructured
(or irregular) mesh is one such derived data representation
that is typically used and bridges simulation data and analytics.
However, how staging services efficiently support unstructured
mesh transfer and processing remains to be explored. This
paper investigates design options for transferring and processing
unstructured mesh data using staging services. Using polygonal
mesh data as an example, we show that hybrid in-situ workflows
with staging-based unstructured mesh processing can effectively
support hybrid in-situ workflows, and can significantly decrease
data movement overheads.

Index Terms—in-situ, in-transit, data-driven, scientific work-
flow, unstructured mesh

I. INTRODUCTION

The growing gap between computation speeds and I/O

bandwidth has resulted in I/O becoming a key bottleneck for

scientific workflows [1], [2]. This gap is the main motivation

for data visualization and analytic pipelines to move from a

post-hoc (i.e., file-based) paradigm to an in-situ paradigm.

The term “in-situ processing” is often used as an umbrella

word to describe systems that process data where (or close to

where) it is generated, bypassing the file system. We follow a

convention [3] that distinguishes the “in-situ” and “in-transit”

terms in this work. The term “in-situ analytics” will be used to

denote processing that shares the same computing resources

with the simulation, in contrast to “in-transit analytics”, in

which a subset (or derived representation of) the raw data

is transferred and processed through separate processors or

staging resources, either on the same machine or different

computing resources in the same system.1

Instead of processing data analytics all-in-situ or all-in-

transit, hybrid in-situ processing adopts both in-situ and in-

transit analytics in one system to improve workflow efficiency.

In particular, in-situ analytics may use various data reduction

techniques [6] before in-transit analytics is done on interme-

diate data products. Since only the reduced data is transferred

1Other works [4], [5] use term “tightly-coupled/inline” and “loosely-
coupled” to distinguish between these processing modes.

to staging services, the pressure on data I/O and computing

resources is alleviated during the workflow execution. The in-

situ detection task may further decrease data movements by

only transferring interesting data regions to subsequent tasks.

In this paper, we use “data-driven hybrid in-situ workflow” to

represent the workflow with the following properties2: (1) the

workflow contains both in-situ and in-transit analytics steps in

a single system; (2) the in-situ analytics is used to reduce

the raw data size using data reduction techniques and the

detection of interesting data; (3) only interesting data blocks

are transferred to the in-transit analytics for further processing.

Several challenges pave the way to achieving efficient data-

driven hybrid in-situ workflow mentioned above, including

how to split a data analytics pipeline into in-situ and in-transit

stages [3]; how to express the control flow with flexible trigger

conditions [7]–[9]; and how to redistribute data partitions

between the simulation and coupled components [10]–[12].

One less explored research challenge lies in how data staging

services process and transfer the intermediate data between the

in-situ and in-transit steps of the pipeline. Indeed while simula-

tions often rely on structured representations such as Cartesian

grids, in-situ data reduction may generate much more complex

data representations [6]. Existing staging services [10]–[12]

have been designed for structured data and, while they can

be used as-is should the in-situ reduction step itself produce

structured data, they lack features and efficiency when dealing

with unstructured data.

One important such reduced data representation is unstruc-
tured meshes [13]; for example, the unstructured polygonal

mesh is crucial to bridge simulation data, topology-based

analytics, and visualization [13]–[15]. Instead of using a

bounding box to describe the mesh implicitly, the unstructured

data contains an explicit mesh described using multiple arrays

of various data types and lengths to describe points, cells,

and attributes. How the staging service transfers and processes

unstructured meshes efficiently and facilitates data-driven in-

situ workflows needs to be explored further. Without enabling

custom data representations generated by data reduction in

staging-based data service, the benefits of the data-driven

hybrid in-situ workflow cannot be fully achieved. In this work,

we 1) compare different strategies for transferring derived

2We mainly consider data analytics in this work, but workflow tasks may
also include visualization.
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(a) raw data (b) threshold (c) isosurface

Fig. 1. Different representations of the interesting data regions.

data with unstructured mesh representations; 2) extend a

staging service to support various data transfer and processing

strategies for unstructured meshes; 3) show that staging-

based unstructured mesh processing improves the efficiency

of data-driven hybrid in-situ workflows. With the capability

of processing unstructured meshes, our experiment shows that

the hybrid in-situ processing decreases the accumulated cost

of data transfer and processing by up to 52.5% compared with

running all analytics in an in-situ manner.

The rest of the paper is organized as follows: Section II

discusses related works, and Section III illustrates motivating

workflows for this paper. We then present the design and im-

plementation details of our work in Section IV. In Section V,

we evaluate our approach and discuss results. Finally, we

conclude the paper and discuss the future work in Section VI.

II. RELATED WORK

Hybrid in-situ processing incorporates in-situ and in-

transit processing in one system to improve workflow effi-

ciency. Bennett et al. [3], [16] describe several examples of

how to decouple analytics into a combination of in-situ and in-

transit stages. For example, the tasks that are highly efficient

and massively parallel can be scheduled in-situ; and the small

scale or serial tasks can be scheduled in-transit. Dreher et

al. [16] present a data-flow oriented framework that composes

in-situ and in-transit analytics flexibly based on python scripts.

Zheng et al. [17] present the placement of analytics based

on performance metrics. Furthermore, more recent works [4],

[9], [18]–[20] try to model the workflow execution process

and decide a proper analytics placement strategy dynamically

using context in various scenarios.

Data-driven in-situ reduction plays a significant role in

decreasing the data movement by selecting data subset for

further processing. Various strategies have been proposed to

reduce the data and extract interesting regions with different

levels of information loss [6]. Data reduction techniques also

aim to extract key geometry features necessary for further

analytics or visualizations. Using the mesh decimation [21]

or the mesh sampling [22], the reduced data can be a coarser

representation of the original representation. The reduced data

may also consist of derived representations such as images [23]

or abstracted topologies [24] from the original mesh for the

convenience of further processing. The decision to transfer

reduced data for further processing may be affected by the

priority value of data blocks [8], [22] or different analytics

requirements from the data fidelity [2], [21].

In-situ unstructured mesh processing extracts, analyses,

and visualizes the generalized unstructured mesh by in-situ

If there are
valid values Connectivities filterSimulation data

Yes

Number of blobs

Surface area of
blobs

Center of blobs

Isosurface
extraction

No
Next iteration

in-transit tasksin-situ tasks

Fig. 2. Data analytics workflow based on mini-simulation.

paradigm. The unstructured data are fundamental representa-

tion for geometry-based data processing [15], [25]. Tom et

al. [14] presented a parallel solution to extract the unstruc-

tured data for Voronoi and Delaunay Tessellation. Jonathan et

al. [26] discussed a zero-copy solution for unstructured mesh

between in-situ coupled analytics. Besides, multiple [27], [28]

frameworks provide the capability to transfer the unstructured

grid to in-situ tasks with the zero-copy strategy.

On the basis of the aforementioned related work, our

work discusses how to optimize the data transfer mechanism

between in-situ and in-transit tasks in hybrid processing,

especially for unstructured data, which is commonly used

for geometry-based data reduction. We also evaluate how the

capabilities for unstructured mesh transfer can facilitate hybrid

in-situ processing pipelines.

III. MOTIVATING WORKFLOWS

One motivating in-situ workflow that runs in a data-

driven fashion is the data analysis workflow developed for

HACC (Hardware/Hybrid Accelerated Cosmology Code), a

cosmological N-body simulation [29]. In the cosmological

simulation, the halo region represents a high-density mass

containing a large number of particles in a comparatively small

region. One important goal of the simulation is to analyse

halo regions’ properties, such as concentration estimation and

formulation of halos. The HACC workflow contains various

analysis tasks with multiple goals in addition to visualization

of the simulated data. In particular, analytics such as halo

identification aims to detect the emergence of halo regions.

The detected halo regions are further analysed by more

compute-intensive analytics that finds the region center. The

halo detection service finishes in a comparatively short time

and runs together with the simulation computation, then the

halo center finding tasks applied on the detected regions are

run by accelerators or dedicated services that may take a

relatively long time.

Inspired by the HACC workflow, we developed a data

analytics workflow based on a mini-simulation as a proof

of concept. We choose a simulation [30] that shows various

Spatio-temporal patterns based on a reaction-diffusion model.

One property of this simulation is that different blobs are

formed during the progression of the workflow. Similar to the

HACC workflow that processes halo regions, analytics in this

workflow aim to analyse the topology properties of simulated

blobs. As illustrated in Figure 1, the data generated by the

mini-simulation is presented with different views. With the

help of isosurfaces or threshold extractions, it is possible to de-

tect interesting data regions, such as blob areas with different

surface values, and use them as an intermediate representation

for further topology analysis. Besides, the reduced data such as
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unstructured mesh with a particular isosurface value is usually

several orders of magnitude smaller than the original data.

As illustrated in Figure 2, we schedule the isosurface

extraction task in-situ and run it in a data-parallel way for

different data partitions. After that, only the valid reduced

data is transferred to in-transit analytics. Other filters, such as

connectivity and blob property analytics, are only applied to

the data represented by an unstructured mesh. These tasks are

triggered when targeted isosurfaces exist in a particular data

partition. In Section V-B, we show how a staging service with

unstructured mesh processing can facilitate the data-driven

hybrid in-situ workflow presented in Figure 2.

IV. DESIGN AND IMPLEMENTATION

A. Strategies for transferring unstructured mesh data

The general strategy to transfer a customized object is mar-

shaling the data into a binary string and unmarshaling it back at

the receiver end. If the data object is organized through regular

mesh such as the Cartesian grid, the mesh information is

usually a fixed-length array that describes a multi-dimensional

bounding box. However, unstructured meshes use an explicit

representation to describe the cells and points, which vary with

the data complexity. This section presents several strategies

to transfer the unstructured mesh with explicit mesh repre-

sentation. We use the polygonal mesh of VTK (Visualization

ToolKit) [13] as an example for convenience of the description,

but the strategies described in this section are not limited to

VTK polygonal data.

Single-segment: The straightforward strategy to transfer the

customized object is to marshal the object into an array that

is continuous in memory; after the transfer, the data can be

unmarshalled back to the original data representation at the

receiver. In this case, there is only one registered memory

segment for RDMA in one RPC call. We use the Marshal-
DataObject function in the vtkCommunicator class to marshal

VTK polygonal data into a VTK char array. When the data is

transferred to the receiver, we use the UnMarshalDataObject
function to reconstruct the VTK polygonal object.

Multi-segment: The alternative method uses multiple seg-

ments to transfer one data object, leveraging the fact that

the unstructured mesh can be decomposed into several sub-

components. In this case, the intact polygonal data structure

can be decomposed into an array of cells, an array of points,

and one or multiple arrays of attributes. These arrays are

registered for RDMA operation separately. In particular, the

Mercury communication library3 used in this work provides

the capability to register several memory segments for RDMA

data transfer in one RPC call. The data transfer time may

benefit from the small size of a single registered memory

segment for RDMA with this strategy.

Multi-segment-optimization: Multi-segment strategy can

be further improved by several optimization methods. Suppose

there is an available API to access the memory address of

the sub-components of the unstructured data model, we can

3https://mochi.readthedocs.io/en/latest/

register memory space for RDMA operation by copying the

memory addresses to save the data marshaling time. However,

if the unstructured data model [26] mix points and cell

connectives, or when there is also no flexible mechanism to

access the memory addresses of sub-components, in these

cases, we need to iterate all cells to split the cell topology

array and point coordinates array. One optimization strategy

is to overlap the process of data extraction and data transfer

for sub-components by non-blocking RDMA calls. However,

it requires multiple RPCs to finish one data object transfer.

The evaluation between different strategies to transfer un-

structured data is discussed in Section V-A. Moreover, in order

to support different unstructured mesh data transfer strategies,

we also extended the data model of our staging service, which

is discussed in Section IV-B in detail.

B. Data model extension of the staging service

The original data object in our previous work [9] contains

an object descriptor and a pointer to the raw data array. In

particular, the object descriptor includes the necessary meta-

information such as the variable identifier and the spatial

bounding box of the raw data. This data model is efficient

to represent a structured mesh, such as a Cartesian grid,

but it is inconvenient to support unstructured mesh data

generated by in-situ analytics. As discussed in Section IV-A,

the unstructured mesh data may be decomposed into multiple

sub-components that are transferred to the receiver separately;

therefore, the staging service should also provide a data model

containing multiple arrays with various types and lengths.

For the extension of the data model, we reuse the object

descriptor as the identifier of the object. Instead of using

an internal raw data array, we introduce an interface class

that defines the data object’s necessary virtual functions, such

as data put, get and delete. The interface class contains the

object descriptor with the meta-information, and it can be

implemented by different data models as needed. For example,

the concrete implementation can be a map that contains

various data arrays in one object to support the Multi-segment

data transfer strategy discussed in Section IV-A. Besides, we

can extend the implementation with VTK smart pointer that

contains a general vtkDataSet, or implement a more flexible

customized data representation without modifying the staging

service code in large amounts.

V. EVALUATION

All experiments in this evaluation were performed on the

Cori supercomputer’s Haswell partition4. The corresponding
code5 is publicly available.

A. Different strategies to transfer unstructured mesh data

In this experiment, we aim to compare different strategies

for transferring unstructured mesh data discussed in Sec-

tion IV-A. We generate polygonal datasets with different sizes

then transfer these data to the staging service using different

4The detailed characteristics of the Cori system are described in [31].
5https://github.com/wangzhezhe/Gorilla/tree/master/example/gssimulation

962

Authorized licensed use limited to: The University of Utah. Downloaded on July 01,2021 at 17:24:00 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. Comparison between different strategies to transfer a polygonal mesh
sphere. The x axis represents the point number in each horizontal and vertical
line of the sphere. The values in parenthesis represent the approximated
polygonal number and associated total data size, respectively.

strategies. In particular, the datasets used in the experiment

are the sphere geometry created by the VTK library, and the

number of polygons is controlled by the number of points in

the vertical and the horizontal dimensions of the sphere. As

illustrated in Figure 3, the x axis labels the polygonal data size.

For example, when there are 256 points in every horizontal and

vertical line, there are around 130K polygons on the sphere

geometry, and the total size for this data is 1.8MB in the format

of the VTK file. The y axis represents the average time spent

on different stages to transfer the data object.
As Figure 3 shows, the distinctions between different strate-

gies become obvious only when the number of polygons

becomes comparatively large. If we use the Single-segment

strategy as the baseline, the naive Multi-segment strategy takes

more time to marshal the data, but there is a benefit for

transferring data with several discontinuous segments in one

RPC. The long data marshaling time is caused by using the

deep copy strategy to extract and register sub-components

for RDMA operation. Furthermore, we can overlap the sub-

components extraction and the transfer process. For example,

the Optim-hybrid method that adopts non-blocking RPC can

mix the data extraction and transfer. This method shows 32.7%
improvements compared with the original Multi-segment. In

addition, since the vtkPolyData provides flexible mechanisms

to access the memory addresses of its sub-components, we can

get the memory address of sub-arrays directly, then transfer

them with RDMA operations. With the optimization that

avoids using the deep memory copy to extract the sub-arrays

from the vtkPolyData (Optim-copy in Figure 3), the data

marshaling time becomes trivial. We can save more than half

of the data transfer time compared with the original Multi-

segment way in total. Finally, the benefits can be accumulated

if we adopt optimizations for both copy and non-blocking

RPC. For example, with 1024 points, the Optim-hybrid-copy

saves around 1.5s compared with the original Multi-segment

method (around 0.5s comes from Optim-hybrid and around 1s

comes from Optim-copy); the total data transfer time can be

reduced by around 97.47 percentage.

B. Data-driven workflow with unstructured mesh processing
This experiment aims to evaluate how the staging service

with unstructured mesh processing can decrease the overhead

Fig. 4. Overhead of data processing in the simulation.

of a data-driven hybrid in-situ workflow. We use 32 MPI

processes to run the simulation for 20 time steps, and there

are 4 MPI processes for staging services (the architecture is

described in [9]). Then we use the data transfer techniques

and associated data model extension discussed in Section IV

to execute the hybrid in-situ workflow presented in Figure 2.

In addition, we also run analytics using an all-in-situ paradigm

and an all-in-transit paradigm for the sake of comparison.

As illustrated in Figure 4, the x axis represents the size

of the data generated at each time step, and the y axis

represents the accumulated in-situ processing overhead on the

simulation run time. In particular, running all analytics in-situ

takes the longest time for all test scenarios. This is because

the connectivity filter and subsequent blob analytics task

need to aggregate all data in one process, but the simulation

cannot progress during this processing. In contrast, the all-in-

transit strategy shows comparatively better performance than

all-in-situ in this evaluation. This is caused by the overlap

between data generation and processing. Furthermore, with

the hybrid strategy that contains both in-situ and in-transit

tasks, we continue to decrease the overhead by transferring

the unstructured mesh data extracted based on isosurfaces.

For example, when 2GB of data is produced at each step,

compared with the all-in-situ and all-in-transit method, the

hybrid method saves up to 52.5% and 32.5% respectively.

It is worth noting that the time spent on processing the data

generated by the last time step needs to be considered (less

than one second in this experiment) when we calculate the

critical execution path. Besides, we may also need to consider

how the simulation might be impacted by the use of separate

resources to run the data staging service. If it takes more

time to reduce the data in-situ than it takes to transfer the

original data to the staging service, the hybrid method becomes

potentially disadvantageous.

VI. CONCLUSION AND FUTURE WORK

In this work, we compared multiple strategies to transfer

unstructured mesh data and process it in a hybrid in-situ

workflow. Our evaluation showed the benefits and discussed

the limitations of using optimizations in the hybrid in-situ

processing. As future work, we plan to use system and

performance metrics to identify how to split more complex

analytics pipelines into in-situ and in-transit stages.
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