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a b s t r a c t 

The main objective for understanding fluorescence microscopy data is to investigate and evaluate the 

fluorescent signal intensity distributions as well as their spatial relationships across multiple channels. 

The quantitative analysis of 3D fluorescence microscopy data needs interactive tools for researchers to 

select and focus on relevant biological structures. We developed an interactive tool based on volume vi- 

sualization techniques and GPU computing for streamlining rapid data analysis. Our main contribution is 

the implementation of common data quantification functions on streamed volumes, providing interactive 

analyses on large data without lengthy preprocessing. Data segmentation and quantification are coupled 

with brushing and executed at an interactive speed. A large volume is partitioned into data bricks, and 

only user-selected structures are analyzed to constrain the computational load. We designed a framework 

to assemble a sequence of GPU programs to handle brick borders and stitch analysis results. Our tool was 

developed in collaboration with domain experts and has been used to identify cell types. We demonstrate 

a workflow to analyze cells in vestibular epithelia of transgenic mice. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Fluorescence microscopy employs fluorescent dyes and geneti- 

ally encoded fluorescent proteins to reveal target biological struc- 

ures, such as cells and tissues. Three-dimensional (3D) scans are 

btained through optical sectioning using setups such as con- 

ocal [1] and two-photon [2] microscopy. Multiple channels of 

olume data are imaged simultaneously via fluorescent tags of dif- 

erent peak emission wavelengths. The main objective for under- 

tanding these co-registered volume channels is to investigate and 

valuate the fluorescent signal intensity distributions as well as 

heir relationships. On the one hand, an investigator qualitatively 

xamines the data visualizations and draws conclusions about a 

ypothesis based on whether fluorescent signals in a predefined 

egion are detected; on the other hand, objectivity and repeata- 

ility are emphasized through quantitative and statistically tested 

nalyses. We often combine qualitative and quantitative analyses 

or real-world data. For example, the colocalization analysis of- 

en starts with the examination of the superimposed channels 

n distinct excitation and emission spectra, continues with the 

omputing of the Pearson Correlation Coefficient [3] or Manders 

olocalization Coefficient [4] , and concludes with a probability of 
∗ Corresponding author. 
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oundness by comparing the results with those from random sam- 

les [5] . As noted in previous research, inclusion or exclusion of 

he background information can significantly influence the quan- 

itative analysis results [6] . To reduce the bias introduced by the 

rrelevant intensity signals to an experiment, a subjective prun- 

ng process has been recommended for the colocalization analy- 

is [6] . Likewise, many other data analysis tasks need an effective 

ool with a well-balanced and tightly integrated design, enabling 

oth subjective evaluation and objective quantitation to collabo- 

ate. According to this design philosophy, the analysis of 3D flu- 

rescence microscopy data needs interactive tools for visualization 

nd data quantitation. More importantly, users of such a tool will 

e able to apply data quantitation at designated regions instantly 

nd intuitively. 

In practice, several technical challenges exist in building such 

n interactive tool. The major obstacle is a growing data size from 

 series of high-resolution microscopy techniques [7,8] . We per- 

ormed several speed benchmarks to compare the performance be- 

ween volume rendering and common analysis routines. The re- 

ults demonstrated that data analyses on the GPU usually de- 

anded higher computational power than rendering the same data 

et (see the supplementary benchmarks). When an existing visual- 

zation tool is extended for quantitative analysis, we estimate the 

ata size that can be interactively processed to be limited to sev- 

ral tens of megavoxels. Common practice in biomedical experi- 

ents suggests that such small data size do not meet researchers’ 

https://doi.org/10.1016/j.cag.2021.05.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2021.05.006&domain=pdf
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emands because a single full-resolution scan from conventional 

onfocal microscopy easily reaches several hundred megavoxels. 

owever, in an interactive analysis workflow, the amount of data 

hat needs rapid processing is constrained by a limited scope of 

omentary user attention. In other words, techniques such as 

treamed rendering are applicable for interactive data analysis, 

here GPU-based data processing only applies to a portion of an 

ntire data set at a time under user guidance. For such streamed 

isualization and analysis, we precompute a large volume into par- 

itions, which are also known as bricks for a regular partitioning 

rid. Unlike the standard volume rendering in a stream, streamed 

ata analysis presents a challenge as more inter-partition infor- 

ation is required when an integral structure can easily locate 

n brick borders or span multiple bricks. A systematic approach 

s thus needed to enable data gathering from multiple bricks, so 

hat a standard workflow is repeatable for various analyses. Fur- 

hermore, the linking between user interactions and data analy- 

is workflow needs to be seamless for usability. Since we provide 

rushing as an intuitive user operation for isolating structures and 

ocusing analysis on relevant features, computations for analysis 

eed to keep track of the brushing results in order to constrain 

ata load and achieve rapid processing. 

Here, we present the design of an interactive data analysis 

ool for 3D fluorescence microscopy data. Our main contribution 

s the implementation of common data quantification functions 

n streamed volumes, providing interactive analyses on large data 

ithout lengthy preprocessing. The innovative features of the tool 

nclude: 

1) Enhanced Synthetic Brainbows for cell segmentation. We added 

two criteria to the Synthetic Brainbows framework to handle 

uneven intensity distribution and fused cells in fluorescence 

data. 

2) Diffusion calculation for brushing on large volume data of mul- 

tiple bricks. We chose to compute the brushing results using 

the morphological diffusion to achieve high-quality selection 

borders. The design allows diffusion to propagate across data 

bricks and keeps track of selected bricks for efficient data pro- 

cessing. 

3) Brick stitching. We used graphs to connect segmentation results 

and guide the assemblance of data analysis results from multi- 

ple bricks. 

4) Demonstration of usability in real-world biomedical research. 

Specifically, we identified and classified the progenitor-like cells 

in the mouse semicircular canals. 

. Related work 

We drew our ideas to implement a volume data analysis tool 

rom previous work on interactive visualization, segmentation, and 

uantitative measurements. We improved a series of techniques for 

fficient GPU implementations and brought them together for a 

onsistent workflow. 

.1. Brushing for interactive selection of volumetric structures 

Many volume data analysis tools support user-defined areas 

f interest (AOIs). An axis-aligned box is the most commonly 

sed AOI type, which is often created by dragging a computer 

ouse from orthographic views or directly inputting coordinates. 

here are also tools that allow lassoing or brushing 2D sec- 

ions for more freedom in selection. But the quality of a result- 

ng selection of 3D structures is often compromised by unsmooth 

ontours. It also becomes difficult to correctly select complex 

tructures just from 2D sections. Using the volume intersection 

echniques proposed by Martin and Aggarwal [9] and Kutulakos 
139 
nd Seitz (Space Carving) [10] , direct 3D selections from pro- 

ected 2D views became possible. More sophisticated methods em- 

loyed sketch-based interactions. Yuan et al. presented a method 

or cutting out 3D volumetric structures based on simple strokes 

rawn on volume renderings [11] . Chen et al. enabled sketch-based 

eed placing for interactive region growing in a volume manip- 

lation tool [12] . Owada et al. proposed several sketching user 

nterface tools for region selection [13] . Abeysinghe and Ju used 

D sketches to constrain skeletonization of intensity volumes [14] . 

an et al. designed a brush tool with dual-stroke stamps for si- 

ultaneous seeding and growing to segment neural and cellular 

tructures [15,16] . We based our brushing interactions on a dual- 

troke brush for its ability to generate smooth selection masks 

rom fluorescence microscopy data, where structures usually do 

ot possess clear borders as signal intensity drops gradually. The 

ifficulty of applying the diffusion-based volume selection for large 

ata is finding the smallest sub-volume that only contains the dif- 

usion flow. Our implementation partitions a large data set into 

ricks and allows the diffusion to grow from one brick to another 

ithout significant overhead. 

.2. Volume segmentation 

Early volume segmentation tools used a single threshold value 

s seen in the interactive level-set visualization algorithm by 

efohn et al. [17] . Lundström et al. [18] introduced the α- 

istogram, which amplified data ranges corresponding to spatially 

oherent materials. They applied the method to magnetic reso- 

ance angiographies for vessel detection. Leveraging a precom- 

uted volume tracking the feature size, Hadwiger et al. [19] pre- 

ented a method for interactive exploration of volumes for fea- 

ure detection and quantification. Lindholm et al. [20] estimated 

he material distributions in dual-energy CT data by weighing local 

eighborhoods of the data against approximations of material like- 

ihood functions. They used the information to enhance transfer- 

unction design to focus on clinically important aspects. We de- 

igned cell segmentation methods extending the Synthetic Brain- 

ows Wan et al. [21] . Briefly, the Synthetic Brainbows technique 

andomly colorizes connected structures in a volume data, mim- 

cking the results from its counterpart from bioengineering re- 

earch [22] . The Synthetic Brainbows technique leveraged a cel- 

ular automaton for segmentation [23] , which was implemented 

s computational kernels on GPUs. Specifically, the random asyn- 

hronous behavior of the GPU implementation was utilized to ac- 

elerate convergence. It was also called chaotic relaxation in com- 

uting, which theorized the necessary and sufficient conditions for 

n asynchronous and chaotic process to reach an expected solu- 

ion [24] . For segmenting cells in a volume data, integer IDs were 

huffled and uniquely assigned to every nonempty voxel. These IDs 

ere then iteratively merged based on a series of criteria, which 

ere designed to separate structures by stopping ID merging at 

tructural borders. The calculation for ID merging is similar to the 

iffusion for brush selection. Therefore, to support large data with 

ultiple bricks, we applied the Synthetic Brainbows to every brick 

nd then stitched them to consolidate the result. 

.3. Biological data analysis 

Tools commonly used in biomedical research for data analy- 

is include ImageJ-Fiji [25,26] , Amira [27] , and Imaris [28] . With 

n increase of volume data size in research, the ability to quickly 

ocate important structures and make quantitative assessment be- 

ame highly desirable. Traditional tools are insufficient in terms of 

nteractivity and large data support. There has been much work on 

arge volume visualization and introducing the resulting interac- 

ive tools to the biomedical research community. Out-of-core ren- 
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ering was independently proposed by Gobbetti et al. [29] and 

rassin et al. [30] . Fogal et al. [31] demonstrated that the actual 

mount of visualizable data in typical volume rendering is bound 

onsiderably lower than the GPU memory, and the major limita- 

ion of most rendering approaches is the inability to switch sam- 

ling rate quickly. Meyer et al. [32] used hierarchical rendering for 

eal-color biomedical image data. Agus et al. [33] developed an in- 

eractive visualization system for medical data such as CT, MRI, and 

ET scans. Jeong et al. [34] visualized large-scale biomedical image 

tacks using display-aware processing and GPU-accelerated tex- 

ure compression; large-scale neuroscience data sets were visual- 

zed and analyzed with tools called SSECRETT and NeuroTrace [35] . 

ogal and Krüger [36] developed the ImageVis3D system, which 

sed an optimized out-of-core, bricked, level-of-detail data repre- 

entation to visualize large medical data. Hadwiger et al. [37] pre- 

ented a visualization system that scaled to petascale volumes 

rom high-resolution electron microscopy streams. Solteszova et al. 

ptimized the filtering on streamed volume data to prioritize vox- 

ls with high contribution to the final visualization [38] . However, 

he divide-and-conquer methodology for large data visualization 

ften poses challenges to quantitative measurements, especially 

hen interactive data analyses are demanded. We addressed sev- 

ral commonly used measurements, including intensity distribu- 

ion, shape, and colocalization. Our work suggested that a frame- 

ork for computational modules to be easily and seamlessly as- 

embled into a workflow was needed. 

. Methods 

The description of methods generally follows a typical work- 

ow for immunohistochemistry [39] . First, we segmented individ- 

al cells using an enhanced version of the Synthetic Brainbows 

ramework. Then, we used brushing to select relevant cells or 

orrect the automatically generated segmentation results. Finally, 

e obtained the detailed information about intensity distribution 

n each cell. Biologists leveraged both qualitative evaluations and 

uantitative measurements to identify and classify cell types. Our 

mplementations emphasize interactivity and large data support, so 

hat users can enjoy a fluid experience and make interactive anal- 

sis directly on visualization results without following a specific 

rder of procedures. 

.1. Synthetic Brainbows enhanced for cell segmentation 

The original Synthetic Brainbows framework included scalar- 

ntensity and gradient-magnitude cutoff criteria for merging shuf- 

ed IDs into separate structures [21] . These criteria became insuf- 

cient for data acquired from many exploratory experiments, as 

he image clarity may need improvements in early-stage protocols. 

owever, the Synthetic Brainbows framework provided plenty of 

reedom for the type and amount of cutoff criteria. For each itera- 

ion in the ID merging process, a voxel is checked against a series 

f criteria to determine if an ID merge with its neighbors occurs. 

e added two more criteria and provided new adjustment settings 

o better handle cell segmentation in a broad range of situations 

here multiple cells may have obscure borders. 

Criterion 1: Density field. The density field is computed based 

n two commonly used image processing routines: adaptive his- 

ogram equalization and density-based clustering [40] . We derive 

hree scalar fields from the original scalar intensity in two steps. 

tep 1: the original scalar field ( Fig. 1 a) is low-pass filtered to gen-

rate a blurred version. For rapid processing, we chose a box filter 

hose window size is an adjustable parameter. The resulting scalar 

eld is defined as I df ( Fig. 1 b). Step 2: we compute a local inten-

ity distribution for each voxel of I df . For the sake of simplicity, we

stimate a Gaussian distribution in the intensity domain instead of 
140 
 complete histogram. Hence, we compute the mean and standard 

eviation on I df . To further accelerate the computation, we adopted 

n approximation approach used for the adaptive histogram equal- 

zation [41] . We divide I df into regularly sized blocks and compute 

he mean and standard deviation only once for each block ( Fig. 1 c).

hen, we obtain the mean and standard deviation of each voxel by 

ilinearly/trilinearly interpolating among the neighbor blocks. The 

lock size for interpolation is an adjustable parameter. We define 

he resulting scalar fields I mean and I std for the mean and standard- 

eviation fields respectively. 

Similar to the clustering methods based on density, a voxels 

embership in the Synthetic Brainbows ID merging process is in- 

erred by comparing its density field value I df (x ) against its local 

ensity distribution, described by I mean (x ) and I std (x ) , where x is

he spatial coordinates of the voxel. Specifically, a cutoff value is 

djustable to stop ID propagation when the voxels density value 

alls outside of its local density distribution ( Fig. 1 d). The density- 

eld criterion is useful for separating structures in data sets of un- 

ven signal intensities, which can be results from insufficient pen- 

tration of fluorescent stains and occlusion of laser beams for flu- 

rescence microscopy data. 

Criterion 2: Distance field. Whereas the density-field criterion 

ims to segment when structural boundaries are still identifiable as 

onnected and low-intensity signals in the density distribution, the 

istance-field criterion handles over-saturated signals, when struc- 

ural boundaries need inference from morphological information. 

e compute a scalar field whose values represent the distance of 

 voxel to a global structural boundary. A two-step process is also 

mployed to compute the distance field. Step 1: the original scalar 

eld is low-pass filtered and binarized ( Fig. 1 e-f). Both the filer 

indows size and threshold for binarization are provided as ad- 

ustable parameters. We call the boundary of the structure in the 

inary image the global boundary, from which distances of inner 

oxels are computed. Step 2: in an iterative process, the voxels on 

ach new boundary obtained from successive morphological ero- 

ion calculations are assigned with an integer of ascending order as 

he distance ( Fig. 1 g). Specifically, we start with the background as 

 s and the global boundary 1 s , and assign each subsequent bound- 

ry from morphological erosion with 2, 3, etc . The total number 

f iterations to generate the distance field is adjustable according 

o structure sizes. A standard thresholding on the distance field is 

ufficient to separate fused structures, whereas the threshold value 

s user adjustable ( Fig. 1 h). 

We compute the morphological erosion using a 4-connected 

eighborhood in 2D and 6-connected neighborhood in 3D. The re- 

ulting distance field is an approximation, which computes dis- 

ances based on the iteration number. Nevertheless, the distance- 

eld criterion is sufficient for stopping ID merging and segmenting 

ifferent types of cellular structures. Notably, we often combine it 

ith other criteria in the Synthetic Brainbows framework. 

Our tool provides five criteria for ID merging including three 

xisting criteria in the Synthetic Brainbows framework: scalar in- 

ensity, gradient magnitude, density field, distance field, and size 

onstraint. The user interface of our tool provides independent 

ontrols to enable or disable each criterion other than the scalar 

ntensity thresholding. When only the scalar-intensity criterion is 

vailable, the most basic settings have two adjustable parameters; 

hen all criteria are enabled, users can adjust 12 parameters ac- 

ording to characteristics of biological structures. Our experimen- 

al user interface started the Synthetic Brainbows calculations after 

 user clicked a button. So, a user first adjusted the parameters, 

licked a button, and waited for the result. If further adjustments 

o the parameters were needed, which was often the case, the user 

licked the button again and waited for the updates. This turned 

ut to be a cumbersome process, as users often did not fully un- 

erstand the meaning of each parameter and felt frustrated about 
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Fig. 1. New criteria in the Synthetic Brainbows framework for cell segmentation. (a) Two objects in proximity are separated using the density-field criterion. (b) Low-pass 

filtering result. (c) The data set is divided into blocks to obtain local density distributions. (d) A voxels density distribution is interpolated from neighbor blocks and compared 

against its density to stop ID merging and separate structures. (e) Two objects fusing at the border are separated using the distance-field criterion. (f) A binary image is 

computed by filtering and thresholding. (g) A distance field is generated on the binary image. (h) A proper thresholding on the distance field stops ID merging and separates 

the structures. 
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nding an effective configuration. Therefore, we changed the de- 

ign to evaluate the Synthetic Brainbows whenever a parameter is 

hanged via the user interface for an intuitive user experience. For 

xample, a user drags the threshold slider of the scalar-intensity 

riterion and observes that the segmentation result updates in the 

ender view. For small data sets, we achieved parameter adjusting 

t an interactive speed, which allowed users to learn and become 

uent with the settings quickly. 

We compute the Synthetic Brainbows locally to maintain inter- 

ctivity for large data. Users are able to define a region of interest 

y brushing, which adopted the interactive segmentation method 

y Wan et al. [15] . The dual-stroke brush generates or updates a 

ask to register selected voxels as users paint on the 3D render 

iew. The mask is a scalar volume, in which higher intensities in- 

icate more certain selections and attenuate on structural borders 

or smooth selections. Each Synthetic Brainbows criterion is imple- 

ented in two GPU kernel code versions: for small volumes, the 

ntire data set is processed at once; for large volumes, only vox- 

ls marked by nonzero mask values are processed. When the mask 

ode is used, unprocessed voxels maintain their Synthetic Brain- 

ows IDs to support the use case when multiple masks are se- 

uentially applied to segment different regions. Therefore, we sup- 

ort an interactive segmentation workflow as follows. A user first 

aints directly on the render view to select structures of interest, 

nd then adjusts the parameters of the Synthetic Brainbows while 

bserving the changes in the resulting visualization. When correc- 

ions are needed or more structures are to be segmented, the user 

aints and adjusts the parameters again. The combination of the 

ynthetic Brainbows criteria and 3D brushing, all implemented on 

he GPU, provides a means to perform detailed analysis on biolog- 

cal structures, such as individual cells. 

.2. Volume brick support for diffusion-based brushing 

The success of our interactive segmentation workflow depends 

n its computing speed, which is constrained by both data size and 

he GPU computing power. To maintain interactivity for a broad 

ange of use cases, the segmentation and analysis in our tool em- 

loyed a streamed processing approach similar to that for large 

olume visualization. For one, it is unrealistic to require all users to 

se the latest and most powerful computing hardware. For another, 

igh-resolution acquisition techniques in fluorescence microscopy 
141 
enerate data that cannot be entirely processed at an interactive 

peed even when the most powerful consumer-level hardware is 

sed. We adapted the streamed visualization tool developed by 

an et al. [42] , which partitioned and processed a large volume 

ata set in a stream of data bricks. Our design leverages the se- 

ection masks from brushing to constrain data analysis within the 

inimum number of bricks, so that the small portion of a large 

olume is processed at an interactive speed. This section focuses 

n brushing and presents methods that enable the propagation of 

iffusion flow to cross brick borders while maintaining the inter- 

ctivity of the brushing operation itself on large data. 

Using the settings of Wan et al. [42] , the data partitioning grid 

s configured before loading a volume data set. The resulting bricks 

rom partitioning are stored in a linear data structure whose order 

s updated according to the bricks priority in rendering. We added 

 flag for each brick to indicate the association with a selection 

ask from brushing. To initialize, all mask flags are set to OFF. We 

eep track of the content of the selection masks and update a flag 

o ON when an empty mask becomes selected. The paint brush 

ool has an inner brush stroke for seeding and an outer one for 

iffusion [15,16] . Therefore, we also update the mask flags within 

he two steps of seeding and diffusion. 

Step 1: Search and flag bricks covered by seeding stroke. We 

tart seeding and diffusion calculations only on bricks covered by 

he inner stroke when a user paints on the view plane ( Fig. 2 a). We

onsider that each pixel of the seeding stroke emits a ray into the 

olume and use ray-box intersection detection to determine brick 

overage ( Fig. 2 b). Therefore, we flag a brick as selected when at 

east one ray from the seeding stroke intersects its bounding box. 

 complication to computing the result is that there are an indefi- 

ite number of rays emitted from an arbitrary shape from freehand 

ainting. Our implementation leverages GPU parallelization, where 

ach computing thread checks one pixel in screen space. When a 

iew-plane pixel is painted by the inner stroke, the thread gen- 

rates a ray based on the render view transformation and checks 

he ray’s intersections against all bricks within the render view. 

e flag a brick for selection when its bounding box is intersected 

y at least one ray. We obtain all flagged bricks by processing 

ll screen-space pixels in this manner. Only the flagged bricks are 

rocessed subsequently for seeding to constrain the computational 

oad. When users keep using brief strokes for selecting cellular 

tructures, usually a very small number of bricks are involved. 
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Fig. 2. We use ray-box intersection and brick face checks to include only the necessary bricks for diffusion calculations. (a) User paints on the view plane to select 3D 

structures from a volume data set, which is partitioned into bricks for streamed processing. The selection brush paints two strokes simultaneously. The inner stroke (red) 

is for seeding and the outer (green) for diffusion. (b) The screen pixels of the inner stroke emit rays to detect the bricks for seeding. The red brick is flagged for seeding 

because it is the only one intersected by the rays. (c) In an iteration of the diffusion calculation, we check the faces (red) of the flagged brick for diffusion flow crossing. We 

copy the brick face voxels to its neighbor when the diffusion flow reaches the faces. (d) We flag the neighbor bricks (green) for diffusion calculation. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Step 2: Flag neighbor bricks during diffusion flow propaga- 

ion. Seed voxels selected by the inner brush stroke propagate us- 

ng the morphological diffusion [15] , which is constrained by the 

arger outer stroke. Because we only compute diffusion on flagged 

ricks, new bricks reached by diffusion flow during propagation 

eed to be flagged. Here, we adopted a different approach than 

hecking ray-box intersections in Step 1. In an iterative process of 

he morphological diffusion, we check the faces of each flagged 

rick for each iteration. We define the face of a brick as the voxels 

n the outermost slice of thickness 1. Two neighbor bricks share 

ne face: the original volume data are duplicated at brick faces, 

hich allow certain calculations such as the gradient magnitude 

o be seamless over brick borders. Similarly, selection masks are 

uplicated at brick faces to enable diffusion flow crossing. When a 

rick face in the mask volume contains at least one voxel marked 

s being selected, all voxels of the face are copied to its neigh- 

or brick, which is then flagged for selection ( Fig. 2 c-d). Check- 

ng and copying the face voxels are parallelized on GPU as sepa- 

ate image-processing kernels. Compared to flagging all bricks cov- 

red by the outer brush stroke at once using the method in Step 

, checking brick faces saves the computing time for diffusion cal- 

ulations when they are necessary. Furthermore, knowing exactly 

hen to copy face voxels across bricks makes efficient data ex- 

hanges. The actual number of iterations to complete the diffusion 

alculation is user adjustable and usually requires a value around 

0. Considering that the chance for a diffusion flow to reach and 

ross a brick border in an iteration is low, we further reduced the 

omputing time by checking fewer brick faces. We only check 2 of 

 brick faces for each iteration and rotate the checks in every 3 

terations. For example, we name the brick faces according to the 

oordinate axis a face is perpendicular to, i.e., +X, -X, +Y, -Y, +Z, 

nd -Z. The brick face checks over multiple iterations are: Iteration 

: +X, -X, Iteration 2: +Y, -Y, Iteration 3: +Z, -Z, and repeat. If we

appen to miss a face check using this order, the delay of its copy 

s 2 iterations at most. 

For selecting relatively small structures such as cells from a 

arge data set, our implementation of the brush tool for streamed 

rocessing is able to maintain interactivity, because the number of 

ata bricks that need expensive calculations is constrained. Users 

eed to configure the brick size according to their system’s com- 

uting power, which may need some experiments and getting 

sed to. The results from brushing include a mask volume mark- 

ng selected voxels, which shares the same partitioning grid with 

he original data, and a series of flags to determine if each brick 

s selected. When we combine these results with the enhanced 

ynthetic Brainbows in Section 3.1 , we complete the interactive 
t
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rushing-segmentation workflow for large volumes by constrain- 

ng the workload to only the flagged bricks and masked voxels. 

herefore, our design achieved the goal of interactive segmenta- 

ion for large data based on user guidance. The user interactions 

re also intuitive: a user first uses the paint brush tool to select a 

ortion from a large volume, and then adjusts the sliders for the 

ynthetic Brainbows parameters to visually and interactively con- 

rm the segmentation results. 

.3. Brick stitching 

The segmentation results from Section 3.2 are disjointed when 

ultiple data bricks are present. For both visualization and quan- 

itative analysis, the Synthetic Brainbows results need stitching. 

irstly, users may want to apply the parameters obtained from par- 

ially selected regions to an entire data set. We provide a prac- 

ical and straightforward solution that removes partitioning from 

riginal data and automatically applies existing parameter settings 

or segmentation. The same method is also applicable as a batch 

rocess for time-dependent (4D) data or data from multiple ex- 

eriments. However, this method is time consuming for large data 

nd difficult to use for handling variations within or across data 

ets because, secondly, users may just need rapid analysis results 

n certain structures under a focused study. Therefore, methods to 

titch multiple bricks at an interactive speed are desired. 

In the Synthetic Brainbows results, we use integer IDs to dis- 

inguish structures within a single data brick. The algorithm that 

huffles and then merges these integers indicates that a segmented 

tructure can be assigned with any integer. When multiple bricks 

re present, the Synthetic Brainbows are computed independently. 

o uniquely identify a structure in segmentation results across 

ultiple bricks, we use the Synthetic Brainbows ID and a brick 

D jointly. We name this ID combination the extended ID, or EID, 

hich is available for either flagged bricks from brushing or all 

ricks when an entire data set is processed. To stitch bricks, we 

xamine every brick neighbor pair and check the shared brick face 

o stitch EIDs of contacting structures. A hurdle to a straightfor- 

ard implementation of EID merging is noise because they are 

eaningless structures potentially consuming a significant amount 

f memory. The Synthetic Brainbows method initializes an ID vol- 

me with shuffled integers that uniquely identify individual voxels. 

ot all IDs are merged in the process: low-intensity background is 

lled with disjointed IDs; IDs of noise signals merge into minus- 

ule groups of very low voxel counts. The uncertainty about the 

umber of EIDs to stitch makes it difficult to allocate memory on 

he GPU. We leveraged the size-constraint criterion of the original 
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Fig. 3. The Synthetic Brainbows are computed independently in data bricks and then stitched. (a) Resulting IDs after Synthetic Brainbows. Each structure in a brick is labeled 

by an integer ID, which is visualized as a distinct color. (b) We clean the result according to structure size, removing small structures and disjointed IDs. (c) We compute 

the connectivity between structures for each brick neighbor pair. A bipartite graph is generated for each pair, where a solid line denotes connection at a brick face. (d) Each 

graph is stored as an adjacency matrix in the GPU memory and assembled into an EID graph in the CPU memory. The scalar values of the graph nodes represent contacting 

sizes, which are used to prune the EID graph. 
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ynthetic Brainbows and stitched EIDs from multiple bricks using 

 steps: size-based data cleaning, EID graph building, and graph 

runing. 

Step 1: Size-based data cleaning. We separate meaningful 

tructures from background and noise based on their voxel counts 

 Fig. 3 a-b). Retrieving the voxel count for each unique ID was a 

eature in the original Synthetic Brainbows and used as the size- 

onstraint criterion to control ID merging [21] . Briefly, a tempo- 

ary buffer of the same size as a brick is used to count IDs. Al-

hough an ID may migrate anywhere in a brick during merging, 

ts origin in terms of the XYZ coordinates is uniquely determined 

y the inverse of the ID shuffling function. The origin in the count 

uffer is then used to register the count of this ID as we peruse

he ID volume. Essentially using the shuffling function as an index 

able, different IDs are thus counted in parallel. IDs of meaningful 

tructures are obtained by thresholding the count buffer, whereas 

he threshold is an externally controlled parameter. This imple- 

entation avoided the difficulty of handling dynamically allocated 

emory on the GPU because of the unknown count of meaning- 

ul structures beforehand. We only need to count the values of 

he thresholded count buffer to obtain the number of meaningful 

tructures. Subsequent memory allocations on the GPU becomes 

traightforward. 

Step 2: EID graph building. A bipartite graph is used to de- 

cribe the relationships of contacting EIDs at a brick face ( Fig. 3 c).

gain, to avoid dynamic memory allocation, an adjacency matrix is 

sed to store the graph. The value of an element in the matrix is 

he count of contacting voxels between two EIDs, which are rep- 

esented as the row and column indices. We only need a lookup 

able for the conversion between EIDs and row/column indices to 

opulate the matrix. Similar to the face checks for brushing, our 

PU code simultaneously reads two slices of IDs from two neigh- 

or bricks colocated at the brick face. When two colocated IDs are 

onzero and exist as row/column indices of the adjacency matrix 

checked through the lookup table), we increase the value of the 

orresponding matrix element by 1. 

Step 3: Graph pruning. The resulting adjacency matrices con- 

ain EID contacting information at brick faces. The value of a ma- 

rix element describes the degree of contacting between two struc- 

ures. A complete EID graph includes contacting information for all 

rocessed bricks. Considering that one structure may span more 

han two bricks, the final EID stitching needs to find all con- 

ected components on the graph. We read back the adjacency ma- 

rices from the GPU memory to the CPU memory and assemble 

hem into a complete EID graph. The size of an adjacency ma- 

rix for contacting structures on a brick border depends on both 

tructure size and brick size. For an analysis of cells, the num- 

er of border-spanning structures in a matrix is often small, up 

o 10 − 20 , when a typical brick size setting around 256 is used for

 cell diameter of several tens of voxels. The assembled EID graph 

s sparse and can be considerably larger, containing several thou- 
143 
and cells. Therefore, we leveraged the Boost Graph Library and 

sed the linked lists to store and process the assembled graph [43] . 

 nonzero element on the EID graph indicates contacts between 

wo EIDs ( Fig. 3 d). The EID graph is pruned according to contact- 

ng size, because we do not want to stitch EIDs that are slightly 

onnected. 

To summarize, applying an interactive brushing-segmentation 

orkflow on a multibrick scalar volume, we obtained derived data 

s follows: a multibrick mask volume to identify brush-selected 

tructures, a multibrick ID volume to segment distinct structures, 

 series of flags to identify processed bricks, and an EID graph to 

titch structures among bricks. 

.4. Data analysis in streamed processing 

Leveraging the data derived from the interactive brushing- 

egmentation workflow, we provide a series of quantitative anal- 

ses at an interactive speed. Users can choose to perform anal- 

sis on an entire volume, partial volume marked by a selec- 

ion mask, or grouped EIDs from segmentation. We describe 

hese analysis functions with regard to segmented structures be- 

ause that is the most complex case to implement. We have ob- 

ained all needed information to constrain the calculations to seg- 

ented structures within a multibrick volume so that quantita- 

ive analysis becomes interactive. The supported analyses are as 

ollows. 

Size. ID counting in a brick, which was discussed in Step 1 of 

ection 3.3 , is the basis for most analyses that compute results by 

ccumulating values from voxels. Leveraging the EID graph, we ob- 

ain the voxel count of a segmented structure by summing up the 

D counts in multiple bricks. Once the voxel count of a structure 

s obtained, its physical size is computed as the product of the 

ount and the physical size of a voxel, which is either provided by 

he metadata of a fluorescence microscopy scan or user defined. 

 pitfall in reading the size information directly from voxel count 

s that a structure’s size value changes significantly when a large 

umber of low-intensity voxels can be included or excluded dur- 

ng brushing or segmentation without much user awareness. Many 

actors influence the membership of a low intensity voxel in an 

nteractive analysis workflow, including brushing operations, seg- 

entation settings, and visualization adjustments. We provide the 

ntensity-weighted size, which accumulates the normalized values 

intensity values mapped to [0 , 1] ) instead of ID counts, to reduce 

he influence of low intensity voxels and enable meaningful com- 

arisons. Its computation is similar to voxel counting, but an ad- 

itional buffer for accumulating intensity values is needed. These 

ccumulation calculations (IDs and intensity values, as well as sub- 

equently discussed analyses) can be performed simultaneously in 

 single pass. 

Center location. We compute the center coordinates of a struc- 

ure by accumulating coordinates of voxels and dividing it by voxel 
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Fig. 4. Bounding box is insufficient to compute the extent of a rotated structure. (a) We compute the principal components (red and green vectors) and bounding box (dotted 

lines) of a Gaussian distribution. (b) The distribution is rotated to align the principal components with the spatial coordinates. The new bounding box (blue) is oversize. (c) 

We use four bounding points (red) contacting the original bounding box to describe its extent. (d) The new extent (red) from the bounding points is a better approximation 

to the true bounding box (green) after rotation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ount. The influence of low intensity voxels to the computing of 

enters is less obvious, especially for cellular structures, because 

he spatial distribution of voxel intensity in a fluorescence mi- 

roscopy scan can be considered symmetric in general, as high 

ntensity structures attenuate into background at similar rates in 

ll directions. However, if intensity-weighted center coordinates 

re required, the accumulation can be computed similarly as the 

ntensity-weighted size. 

Intensity distribution. We compute four entries to describe the 

istribution of scalar intensities in a segmented structure: mean, 

inimum, maximum, and standard deviation. The mean intensity 

s computed from the accumulated intensity ( I(x ) ) and voxel count 

 N ): Ī = 

∑ 

I(x ) /N . The minimum and maximum values are com- 

uted similar to the accumulated intensity, but additional buffers 

re needed. We derived an equation for the standard deviation for 

treamed processing because the textbook formula needs the mean 

ithin a summation, which we do not know beforehand. To com- 

ute the standard deviation in one pass, we separate the mean 

rom I(x ) : 

 std = 

√ 

1 

N − 1 

N ∑ 

x =1 

(I(x ) − Ī ) 2 (1) 

= 

√ 

1 

N − 1 

√ 

N ∑ 

x =1 

I (x ) 2 + N ̄I 2 − 2 ̄I 

N ∑ 

x =1 

I (x ) (2) 

onsequently, we compute 
∑ 

I(x ) and 

∑ 

I(x ) 2 independently and 

lug in Ī and N later when they become known. The computing of 
 

I(x ) 2 is the same as 
∑ 

I(x ) , which needs a separate buffer. 

Principal components. We included the principal component 

nalysis (PCA) for the 3D orientation of a segmented structure [44] . 

he covariance matrix of the voxel coordinates is computed in a 

ingle pass using the same method as the standard deviation. Sup- 

osing the coordinates of a voxel is (x, y, z) , we accumulate these 

alues independently: 
∑ 

x 2 , 
∑ 

y 2 , 
∑ 

z 2 , 
∑ 

xy , 
∑ 

xz , and 

∑ 

yz . The 

ovariance matrix is then computed after the mean coordinates 

ecome known. The eigen decomposition of the covariance ma- 

rix gives us three vectors indicating the spatial orientation of the 

tructure. To compute the extent of the structure in the new ori- 

ntation, we leveraged the idea of a bounding box to avoid parsing 

hrough all voxels again. Computing the extent directly from a ro- 

ated bounding box is obviously inaccurate ( Fig. 4 a-b). Instead of 

he corners of a bounding box, we want to use points from the 

tructure and sample as many as possible to approximate its true 

hape. A good approximation was achieved using 6 points contact- 

ng the original bounding box (+x, −x, +y, −y, +z, −z, Fig. 4 c). These

bounding points” are rotated to compute a new bounding box, 

hich is closer to the true bounding box ( Fig. 4 d). We consider

he result a good trade-off for its negligible overhead and accuracy 

n the major axis. 

Colocalization. The colocalization analysis is a quantitative 

easure of the spatial relationships of intensity distributions 
144 
mong multiple channels. Specifically, we count the number of 

oxels from two channels that coincide and are both above a 

hreshold value. Its implementation on the GPU is similar to the 

oxel count in a single channel, except that two volumes are sam- 

led simultaneously. In light of that the intensity-weighted size of- 

en provides a robust measurement when brushing is employed to 

solate structures (refer to size analysis), we provide three methods 

or colocalization analysis. 1) Threshold-Coincidence computes the 

verlapping regions by first thresholding the channels, and then 

ounting the overlap as the voxels in both channels that have in- 

ensity values above a threshold. 2) Min Value accumulates the 

inimum intensity (normalized to [0 , 1] ) from two channels at 

ach voxel. 3) Product accumulates the product of intensity val- 

es (normalized to [0 , 1] ) from two channels at each voxel. For 

ore than two channels of volume data, we evaluate the colo- 

alization in pairs and compose the pairwise results in an adja- 

ent matrix. The presentation of the resulting matrix can be fur- 

her customized for easy comparison. 1) Ratio displays each ele- 

ent of the matrix as a percentage value for the ratio between 

atrix element (r, c) and (r, r) , where r and c are indices of rows

nd columns. 2) Intensity-Weighted displays the intensity-weighted 

oxel counts. Therefore, the Manders’ coefficients [4] are computed 

y enabling Threshold-Coincidence , Ratio , and Intensity-Weighted . 3) 

hysical Size displays the physical size using the voxel size in- 

ormation from metadata. 4) Color Map displays the matrix cells 

n colors, which are configured in volume channels’ visualization 

ettings. 

.5. A framework for rapid analysis 

A complete workflow for analyzing fluorescence microscopy 

ata is assembled by concatenating the functions that we have 

resented ( Fig. 5 a). The fluidity of operations to end users de- 

ends on the combined processing time when all modules are 

xecuted: users paint to select structures from the render view, 

djust parameters afterward, and expect to see the analysis re- 

ults immediately on the selection. For standalone modules, we 

lready presented computational details that enabled GPU code 

unning at an interactive speed. We further developed a program- 

ing framework to manage multiple GPU programs and memory 

bjects, providing an easy-to-use interface by grouping API calls 

nd an efficient workflow by reducing memory exchanges in back- 

o-back executions. Our framework also provides integrated sup- 

ort for the data bricks in streamed processing, i.e., the execu- 

ion of GPU code automatically loops through bricks flagged for 

rocessing. 

We used OpenGL and OpenCL to develop the interactive data 

nalysis tool, leveraging OpenGL-OpenCL interoperations for re- 

ource sharing on GPU. Data analysis methods presented in pre- 

eding sections were implemented as OpenCL kernel programs. We 

esigned a KernelProgram class to manage the code for standalone 

nalysis routines, which included features as follows ( Fig. 5 b). 1) 
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Fig. 5. We designed a framework to organize kernel programs and GPU memory objects for rapid analysis workflows. (a) An illustration of a typical workflow, where multiple 

kernel programs are used. We use the Argument class to manage memory objects and data exchange. The loops of kernel programs are controlled by the brick data structure. 

(b) An illustration of the relationship between the KernelProgram and Argument classes. 
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Table 1 

Summary of performance benchmarks. 

Time (Sec.) / Full ∗∗ 2048 1024 512 256 128 

Brick size ∗

Paint selection 1.1541 0.8537 0.4337 0.3400 0.3196 0.4214 

Segmentation N/A ∗∗∗ 11.3171 3.1100 0.8188 0.2654 0.0488 

Colocalization 2.8404 1.9349 0.3332 0.0791 0.0259 0.0043 

∗The maximum voxel count in any spatial dimension of a brick. ∗∗Undivided volume 

as a single brick ( 3179 × 2047 × 181 voxels). ∗∗∗Program crash. 
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he KernelProgram integrates the code for system initialization. 2) 

 program can manage multiple kernels, which are grouped to- 

ether because an analysis function usually needs multiple passes 

f processing or different settings for an analysis are implemented 

n multiple kernels. The actually executed kernels as well as their 

xecution order are controlled via settings externally. 3) The Ker- 

elProgram is executed in a loop for either an iterative process or 

ultiple data bricks ( Fig. 5 a). The execution loop is driven by the

ata structures for bricks and their selection flags. Non-selected 

r empty bricks are skipped automatically in the loop. 4) Mem- 

ry management and argument assignment for the KernelProgram 

re grouped under a separate class, called Argument. Each ker- 

el argument of the OpenCL code maps to an Argument object, 

hich in turn maps to local memory objects, CPU memory, or 

hared OpenGL resources. Sharing memory objects among kernel 

rograms on GPU is important to reduce data exchange and exe- 

uting time. We further detail the design of the Argument class as 

ollows. 

We designed the Argument class to manage OpenCL memory 

bjects and map them to kernel arguments ( Fig. 5 b). We aimed at

n efficient memory management for GPU computing to minimize 

he number of operations for allocation and duplication, includ- 

ng copying data from CPU memory to GPU memory, reading data 

ack from GPU memory to CPU memory, and allocating duplicated 

ata on the GPU. We designed the Argument class to automate the 

emory management scenarios as follows. 1) Constant. Constants 

re parameter settings passed from CPU memory. 2) Buffer. We 

se buffers for temporary storage or results to be read back to CPU 

emory. A buffers contents are initialized using a kernel or copied 

rom CPU memory. More importantly, a buffer can be shared by 

ultiple kernels to avoid data exchange with the CPU. The initial- 

zation and release of an Argument object are controlled indepen- 

ently of that of a kernel, which allows buffers to pass among ker- 

els. However, we also organize kernels sharing temporary buffers 

nder one KernelProgram, so that the temporary buffers can be 

roperly released after all data bricks are processed amid a work- 

ow ( Fig. 5 a). 3) 2D texture. The Argument class also manages re-

ource sharing with OpenGL, including reading 2D textures gen- 

rated in visualization. For example, the paint brush creates a 2D 

exture object for the render view framebuffer. The com puting of 

ay-box intersections reads this 2D texture as an argument. 4) 

D texture. Both original and derived volume data are stored as 

D texture objects, including data bricks, selection masks, and ID 

olumes. 
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. Results 

The methods for interactive analysis of cellular structures in 

arge volume data were implemented as modules in the FluoRen- 

er system, which is an open-source project at https://github.com/ 

CIInstitute/fluorender . The interactivity for analyzing large volume 

ata was validated by a series of speed benchmarks detailed in the 

upplementary materials. Table 1 summarizes the performance re- 

ults. Our implementation allowed the computing time to track the 

ata size linearly for commonly used brick sizes. Therefore, interac- 

ive data analysis was achieved on computer systems with varying 

erformance levels when large data were partitioned and only the 

ubset of interest was processed at a time. 

We applied the tool for the identification and classification of 

rogenitor cells in the mouse inner ear. Most of the methods pre- 

ented here were the result from the seminal work that needed in- 

uitive and rapid data analysis for 3D fluorescence microscopy. For 

etails about the biological background, experiment protocols, and 

cientific significance, please refer to the publications by Holman 

t al. [39,45] . Briefly, the biologists investigated transgenic cells in 

he vestibular and auditory systems. A transgenic mouse specif- 

cally enabled the observation of progenitor-like cells organizing 

nto rosettes in the eminentia cruciatum ( EC ) of vertical semicir- 

ular canals. The identification of previously uncharacterized cells 

hed light on their roles for the development and repairing of 

nner-ear mechanosensory structures. Our tool was used to exam- 

ne a large amount of confocal microscopy data consisting of var- 

ous ages and cell stages in whole mount fixed tissues. To locate 

nd portray individual progenitor-like cells, several hundred cells 

n a single tissue sample were segmented and classified accord- 

ng to morphology. Common in exploratory studies where vaguely 

haracterized cells are being investigated, an investigators analy- 

is based on visual examination and assisted by immediate quan- 

https://github.com/SCIInstitute/fluorender
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itative evaluations played a crucial role in determining cell types. 

he computational modules presented here were assembled into a 

orkflow for researchers to make quick classification and reliable 

omparison. 

In the study, mice of either sex at early postnatal ages were 

sed. Images of epithelia from anterior crista were acquired us- 

ng confocal microscopy. Our tool visualized multiple channels of 

olume data from confocal microscopy using interactive volume 

endering. Before any quantitative analysis, we enhanced the vi- 

ualization for each channel using rendering properties including 

aturation, luminance, Gamma, and threshold [46,47] . A clarified 

isualization of the cells allowed researchers to focus on the most 

mportant part of a data set. More details about the intensity, size, 

nd morphology were first obtained on select cells using brush- 

ng. We enabled the paint brush tool and moved the mouse cursor 

nto the 3D render view. The stamp of the paint brush was indi- 

ated by two circles, which were for seeding and diffusion, respec- 

ively. We clicked and dragged the mouse within the 3D render 

iew and made sure the brush stroke covered a cell whose infor- 

ation we wanted to retrieve. We released the mouse button to 

nish the brush stroke as well as the selection in 3D. A satisfactory 

election on the cell could often be obtained because we consid- 

red factors including intensity, gradient, and occlusion when the 

iffusion was evaluated within the projected region of the brush 

troke. Additionally, we were able to modify the selection interac- 

ively by adjusting threshold settings and brushing from a rotated 

iewpoint to append or erase selections. Quantitative analysis re- 

ults were immediately obtained for the selection. 

When a group of cells were selected, we used the Synthetic 

rainbows segmentation to identify and separate them. From the 

ser interface, we set the segmentation to be applied only to the 

rush selected regions. The segmentation results were visualized in 

D as individual cells were assigned with distinct colors. When a 

onfocal scan was noisy or the selected region contained cells ob- 

tructed by background noises, we adjusted the parameters for the 

ynthetic Brainbows and observed the changes interactively. We al- 

ays started with the threshold parameter and made fine adjust- 

ent using the density-field and distance-field settings. Sometimes 

 size-constraint was applied to stop ID merging between differ- 

nt cells. If a satisfactory segmentation of the selected cells could 

ot be quickly obtained by parameter adjustments, we made mod- 

fications to the selection mask by brushing. Specifically, an eraser 

rush of hairline size was used to separate two fused cells by eras- 

ng their borders in the selection mask. We also used the eraser 

rush to remove problematic cells entirely, so that the remain- 

er could be easily segmented. We adjusted the Synthetic Brain- 

ows parameters again to fine-tune the segmentation results on 

he updated selection. During this interactive process, we paid at- 

ention to the settings that were effective so that they became first 

hoices for data analyzed later. Occasionally it was difficult to ob- 

ain settings that were universally effective to correctly segment 

very cell. This was where an interactive tool became instrumental 

or users to obtain desired results eventually. The strategies used 

nclude: 1) we visually divided one data set into several regions, 

sed the brush tool to select each region, and then adjusted seg- 

entation settings for each region; 2) we applied universal set- 

ings to an entire data set, making sure that most cells were cor- 

ectly segmented, and then made fine adjustments to individual 

oorly segmented cells. 

Accurate cell information was important to the study because 

e filtered and classified cells according to sizes. We also com- 

ared cell sizes across a series of scans at various development 

tages. Therefore, the interactive analysis workflow in our tool be- 

ame indispensable for not only separating cells correctly, but also 

btaining correct cell sizes under user guidance. After carefully ex- 

mining the cell segmentation in 3D and referencing the quanti- 
146 
ative measurements on a list, we confirmed the results and pro- 

eeded to cell classification. An initial sorting of the cells was ob- 

ained only by size. However, we obtained cell types by meticu- 

ously evaluating every cell and considered factors including mor- 

hology, fluorescence intensity, and location. To obtain correct spa- 

ial locations within the organ (crista), we kept the users oriented 

y rotating the scans from various development stages to a com- 

on coordinate frame. We brush selected the characteristic fea- 

ures, such as the apical protrusion in EC , and then applied PCA 

o obtain the organ orientation as the common coordinate frame. 

o make sure accurate cell classifications, each data set was cross- 

xamined by at least two users. Fig. 6 is the result from four scans 

t different development ages ( Fig. 6 P1-533, i.e., 1 day to 533 days

fter birth). We classified the cells into four categories: clino2 cells, 

air cells, supporting cells, and unidentified types. Since the study 

ocused on the unique characteristics of the clino2 cells, we also 

nalyzed their growth over time. Detailed in Holman et al. [39] , 

he discovery of the clinocytes and clino2 cells led to a hypotheti- 

al model that outlined the lineage and potential regenerative ca- 

acity of these cells in the mammalian vestibular neuroepithelium. 

We performed precise colocalization analysis on individual cells 

ased on results from brushing and segmentation. We copied the 

election mask painted on one channel ( Fig. 7 b immunolabeling 

TOH1) to another ( Fig. 7 a immunolabeling SOX2). Notice that a 

ell in the SOX2 channel has lower signal intensity at its nucleus. 

ut the cell was stained in entirety in the ATOH1 channel. We 

ere able to quantify this qualitative observation by separating 

 cell into nucleus and cytoplasm ( Fig. 7 c&d) and obtaining the 

olocalization measurements separately. Fig. 7 g shows a series of 

olocalization coefficients between the SOX2 and ATOH1 channels. 

ithout a selection mask, the result (All channel in Fig. 7 g) was 

ifferent from those when a single cell was selected. Obviously, 

he staining of the nucleus only in the ATOH1 channel yielded 

he ratio difference between the SOX2 and ATOH1 channels. When 

he nucleus was either removed or isolated, the two channels be- 

ame highly coincident in the cytoplasm (Cytoplasm in Fig. 7 g) and 

TOH1-dominant in the nucleus (Nuc. Only in Fig. 7 g). Analysis at 

he cellular level confirmed that the coefficients from using inde- 

endent cell masks (Ind. masks in Fig. 7 g) were mainly influenced 

y, and indicate, the uneven intensity distribution at the nucleus 

etween the two channels. Fig. 7 h shows the colocalization coeffi- 

ients for 24 cells, which exhibit varying levels of coincidence be- 

ween channels. Such quantitative information provided us knowl- 

dge on the different characteristics of nuclear staining for SOX2 

nd ATOH1 at the specific age, which was not immediately obvi- 

us from just the visualizations in Fig. 7 e-f. 

. Discussion 

We combined a series of techniques, from volume visualization 

o data analysis, and made a tool for rapid measurements on fluo- 

escence microscopy data. Many design choices were made with an 

ltimate goal in mind: maintaining interactivity for large data on 

onsumer-level computers. Unlike interactive volume visualization 

or large data, there are fewer leverages for analyzing large volume 

ata. Commonly found in volume visualization tools, multiple res- 

lution levels are generated to accelerate the search and sampling 

f voxels in large data. A version of the data with reduced resolu- 

ion accommodates interactive viewing at low magnifications be- 

ause a computer display has a finite resolution, and a human user 

annot comprehend very much visual information simultaneously. 

here were problems applying the same approach to data analy- 

is because the results obtained on a down-sampled version of the 

riginal data often did not satisfy the requirement for accuracy. 

hile there are methods that leverage precomputed information 

bout intensity distribution [4 8,4 9] , they limit the types of analy- 
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Fig. 6. Four vertical semicircular canals from mice at different development stages (P1-533) were imaged and analyzed. We segmented cells for each scan. Each cell was 

examined and classified into one of four categories. The top row shows the cells colored by the Synthetic Brainbows; the bottom row shows cell categories by colors. 

Fig. 7. A rapid cell analysis workflow allowed focused and precise colocalization analysis between two channels. (a) The highlighted selection mask did not include the 

nucleus in a channel immunolabeling SOX2. (b) The cell, including the nucleus, was highlighted using the selection mask in the ATOH1 channel. (c) Colocalization analysis 

was performed based on the selection mask excluding the nucleus. (d) Colocalization analysis was performed based on the selection mask including only the nucleus, which 

was obtained by subtracting one mask from another. (e) The Synthetic Brainows result. Each cell in the SOX2 channel was assigned an ID and unique color. (f) The Synthetic 

Brainbows result for the ATOH1 channel. (g) The quantitative colocalization analysis results of a single cell in a–d. Ratios were calculated as the Manders coefficients (the 

Threshold-Coincidence method with Intensity-Weighted option). All channel means that the analysis was performed on two complete channels without selection mask; Ind. 

masks means that selection masks were generated independently for each channel according to their structures; Merged mask means that the masks from both channels 

were merged and applied to both; Cytoplasm means that a selection mask excluding the nucleus was used; Nuc. Only means that a selection mask defining only the nucleus 

was used. (h) A detailed colocalization analysis was performed on each cell. A total of 24 cells were analyzed. 
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is that can be subsequently performed. Our use case scenario de- 

anded a tool that allowed users to visualize and analyze volume 

ata as soon as they were acquired from a 3D fluorescence micro- 

cope for high-throughput applications. Users often needed a se- 

ies of quantitative measurements to analyze data initially as they 

re being acquired. As a result, we decided to leverage user inter- 

ctions to constrain data size to be processed in our tool. Specif- 

cally, we used brushing to isolate structures and constrain anal- 

sis to regions where users considered important. The resulting 

ool provided intuitive operations because its workflow resembled 

ow we usually approach a new piece of material in real life: we 

rowse for an overview, locate relevant parts, make annotations, 

ake notes, and draw sketches. From a users perspective, obtain- 

ng the quantitative information on a structure can be as simple as 

rushing with a single stroke. Multiple computational steps were 

ssembled behind the scene to achieve the simplicity, especially 

hen multiple bricks were present to process large data. In prac- 

ice, the interactivity can be influenced by many factors: hardware 

apabilities, data size, settings for brick size, and user experience. 

e performed several speed benchmarks to determine a proper 

rick size choice to maintain interactivity on a specific hardware 

latform. The benchmark results are in the supplementary materi- 

ls. A complimentary video demonstrates significant speedup on a 

ommon consumer-level computer. Furthermore, we reported that 

ur tool had contributed to real biomedical research and become 

nstrumental to the identification of new cell types. 

Although we placed emphasis on the efficiency of our method 

unning on the GPU, we did not compromise the quality in our de- 

ign. For example, much computing time could have been saved 

f the diffusion-based brush selection were replaced with sim- 

le thresholding. The morphological diffusion automatically detects 

tructural boundaries in 3D and improves usability. So, we focused 

n methods that correctly flagged data bricks by detecting border 

rossing of the diffusion flow. Additionally, our design of the dif- 

usion brush can be extended for unbounded growth. For example, 

o select a branching structure in 3D, we can set seed points at 

he root and then allow the seeds to diffuse freely. New bricks are 

agged and added for the computations when the diffusion flow 

eaches brick borders. Thus, we plan to extend this work for inter- 

ctive segmentation of neural structures including single neurons, 

euroblasts, and nerve bundles. We will also obtain the topological 

nformation of these structures when we connect the step-by-step 

rowth of the diffusion flow. 

The Synthetic Brainbows technique provided an extensible 

ramework that accommodated multiple criteria to stop ID merg- 

ng. We added more criteria to the original framework to broaden 

he application for various cellular structures. Although interactive 

djustment of the segmentation parameters simplified user opera- 

ions and allowed the visualization updates to be quickly learned 

y users, further improvements are viable using certain machine- 

earning techniques to automate parameter adjustments. Segmen- 

ation results generated by brushing and interactive parameter ad- 

ustments will provide training examples for a machine-learning 

lgorithm. Furthermore, we can record all the user interactions for 

xing segmentation results and feed them back to the machine- 

earning algorithm for an online training process [50] . The trained 

bjective function will be applied to similar data to improve effi- 

iency. 

When we analyzed multichannel data sets using the colocaliza- 

ion functions, the resulting ratios varied with the choice of com- 

uting method. Therefore, we chose a method depending on the 

haracteristics of a data set. The Threshold-Coincidence method 

as used most often. However, setting a threshold value for each 

hannel or structure was laborious. The brushing tool addressed 

his issue because thresholding was built into the brush selec- 

ion calculations. The Min-Value method avoided threshold set- 
N

148 
ings altogether but worked best for two channels having compa- 

able intensity levels. Otherwise, one channel with a significantly 

ower intensity level predominated the colocalization. The Product 

ethod generated a voxels colocalization value between two chan- 

els on the adjacency matrix ( rr < cr < cc, if r < c and r, c ∈ [0 , 1] ).

herefore, the colocalization ratio sometimes exceeded 100% on 

he channel with a significantly lower intensity level. We leveraged 

his phenomenon to determine the relative intensity levels of two 

hannels, whereas all three methods should give consistent results 

or channels with comparable fluorescence intensity levels. 

. Conclusion 

This work presented a tool for interactive analysis of 3D flu- 

rescence microscopy data, emphasizing the analysis of cellular 

tructures. We combined a series of techniques and designed GPU- 

riendly methods for large volume data, which were partitioned 

nto regularly sized bricks for streamed processing. The methods 

ere assembled into an interactive workflow to obtain quantitative 

nformation of accurately segmented cells in biomedical research. 

e achieved our design goals, providing intuitive user interactions 

ncluding brushing and slider adjustments. Quantitative results as 

ell as linked 3D visualizations were updated according to user 

uidance at an interactive speed. We successfully applied the tool 

o whole-mount tissues as demonstrated for mouse vestibular or- 

ans. Quantitative and precise analysis of every cell in the resulting 

olume data would not have been practical without an easy-to-use 

ool, which received contributions from experts of diverse domains. 

he collaborative work between biologists and computer scientists 

as reported in a sister Elsevier journal. The future plan for our 

ool includes extensions to further improve usability and broaden 

ata support. Specifically, we will combine machine-learning algo- 

ithms with user interactions to simplify parameter adjustments 

or various data types. We will include more quantitative measure- 

ents based on user feedback. And we will add support for vari- 

us microscopy formats including large data from mosaicking and 

uper-resolution microscopes. 
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