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Figure 1: Screenshots from our high-fidelity interactive volume visualization renderer. Top left: volume rendering of a
5123 magnetic reconnection dataset [15]. Top middle: volume rendering of the 2048⇥ 2048⇥ 1920 Richtmyer-Meshkov
instability (RMI) [6]. Top right: visualization of a 2048⇥ 2048⇥ 2612 cardiac volume [22]. Bottom: visualization of the
10240⇥7680⇥1356 DNS dataset [31]. All images are rendered with surface shading.

ABSTRACT

Recent advances in large-scale simulations have resulted in volume
data of increasing size that stress the capabilities of off-the-shelf vi-
sualization tools. Users suffer from long data loading times, because
large data must be read from disk into memory prior to rendering
the first frame. In this work, we present a volume renderer that
enables high-fidelity interactive visualization of large volumes on
multi-core CPU architectures. Compared to existing CPU-based
visualization frameworks, which take minutes or hours for data load-
ing, our renderer allows users to get a data overview in seconds.
Using a hierarchical representation of raw volumes and ray-guided
streaming, we reduce the data loading time dramatically and improve
the user’s interactivity experience. We also examine system design
choices with respect to performance and scalability. Specifically, we
evaluate the hierarchy generation time, which has been ignored in
most prior work, but which can become a significant bottleneck as
data scales. Finally, we create a module on top of the OSPRay ray
tracing framework that is ready to be integrated into general-purpose
visualization frameworks such as Paraview.

Index Terms: Large-scale visualization—Visualization
techniques—Progressive Rendering—Visualization design and eval-
uation methods;
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1 INTRODUCTION

Interactive visualization of large-scale volumetric data, produced by
simulations, astronomical instruments and high-resolution sensors,
allows research scientists to explore scientific data, validate hypothe-
ses and discover new knowledge [21]. However, the increasing data
resolution in current high-performance computing (HPC) simula-
tions can easily surpass the capabilities of host systems, making
interactive visualization of such data challenging. First, loading the
full-resolution data into main memory is impractical due to memory
limitations. Second, for large datasets, the IO latency incurred by the
data loading process is prohibitive in the existing volume renderer,
even if all the data fit into memory. The long IO waiting time for
large dataset degrades the user experience. Therefore, research on
novel techniques for data visualization, processing, storage and IO
that scale to extreme-scale data is required to transcend the limita-
tions of current hardware [1].

Current solutions for scalable volume data visualization mostly
employ GPU architecture, since it has been shown to be effective
for interactive visualization. Prior studies [8, 10, 18] have applied
out-of-core approaches, level-of-detail (LOD) techniques, progres-
sive rendering and data compression schemes to overcome GPU
memory limitations. However, these approaches inevitably employ
extra data structures (e.g., page tables). Meanwhile, they are likely
to incur a CPU-GPU data transfer bottleneck in the extreme case that
massive missing data are loaded during interactive rendering [17].
Some studies also consider architectures employing CPUs, since
the amount of memory directly accessible by a CPU often dwarfs
the amount of VRAM available on even the most powerful GPUs.
Previous studies have shown that an optimized CPU volume ren-
derer can outperform a GPU renderer for sufficiently large volumes
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[23, 36, 39]. However, several studies [3, 20, 32] have focused on
distributed parallel rendering on supercomputers, but very few have
addressed interactive visualization of large-scale volumes on a single
workstation.

In this work, we present an interactive visualization solution for
large-scale volumes on multi-core CPU architectures. Our solution
allows users to get an overview of the large data in seconds rather
than minutes or hours using existing visualization frameworks. We
build our approach on a hierarchical data structure – Bricktree – that
allows for a hierarchical representation of the volume. During the
rendering, we stream the necessary data on demand with separate
threads and employ ray-guided progressive rendering for data re-
finement. As an extension of the OSPRay ray tracing framework,
which already contains various techniques for visualizing scientific
data [19,39,43], we build a Bricktree module along with an efficient
hierarchy generation tool to support large-scale data visualization
on multi-core workstations. Given that OSPRay has been integrated
into Paraview and VisIt, our module is ready to be integrated into
general-purpose visualization frameworks. Specifically, our contri-
butions in this paper are:

• An interactive visualization solution for large-scale volume
visualization, which decouples the data loading and rendering
process on multi-core architectures and dramatically reduces
the amount of time the user has to wait before being able to
explore the data.

• The Bricktree, an efficient and low-overhead hierarchical struc-
ture that allows for encoding a large volume into a multi-
resolution representation. We also evaluate the structure with
several choices of parameters.

• An OSPRay module for large data visualization and a parallel
hierarchy generation tool that are ready to be ”dropped into” a
general-purpose visualization pipeline.

2 PREVIOUS WORK

Although widely used for visualization of 3D scalar fields, vol-
ume rendering remains a computation-, memory- and I/O-intensive
task [45]. Several studies have focused on improving the rendering
performance by introducing efficient packet BVH traversal [23, 39],
empty space skipping [16] and early ray termination [25, 28]. Al-
though efficient for visualizing moderate-size volumes on consumer
desktops, these methods struggle to scale to petascale or exascale
datasets, since they assume that the entire volume is present in
memory. Previous work on large-scale volume rendering can be
categorized as:

1) Parallel/distributed rendering on distributed memory systems.
These approaches parallelize data processing over many nodes [4].
Research has demonstrated strong scalability on both CPU and GPU
clusters [2, 3, 9, 12, 20, 32]. For example, Howison et al. [20] demon-
strated that MPI-hybrid parallelism achieves a sublinear raycasting
speed-up and is more efficient in terms of overall speed and memory
than the MPI-only parallelism. However, previous work [45] has
found that the main performance bottleneck of distributed visual-
ization lies in final image compositing rather than in the volume
rendering process.

2) Visualization of large-scale volumes on a stand-alone worksta-
tion. Much effort has been devoted to the implementation of GPU
renderers due to the great hardware interpolation capabilities [5, 44].
Beyer et al. [1] conducted a detailed survey on this topic. Most
prior work focuses on overcoming the GPU’s memory limitation
and tackling this issue by loading only the visible part of the vol-
ume into GPU memory [29]. The GigaVoxels system [7, 8], the
first to employ this idea, determines the visibility of small blocks
“on the fly”. Although capable of rendering several billion voxels
in real-time, it mainly focuses on entertainment applications and

Figure 2: Comparison of the data structure with an octree, the
GigaVoxel’s hierarchy and an N3-tree (Bricktree) in a 2D repre-
sentation. In a 3D scenario, an octree has a branching factor of
23 and allows for decomposing a node into 23 cells; the hierarchy
used in GigaVoxel [8] has a branching factor of 23 and allows for
decomposing a node into N3 cells; an N3-tree and a Bricktree share
the same data structure but have different layouts. Both have a
branching factor of N3 and allow for decomposing a node into N3

cells.

targets sparse volume datasets. CERA-TVR [10] then extended the
GigaVoxel paper, targeting scientific visualization user cases. In
contrast to GigaVoxel, CERA-TVR is capable of rendering dense
volumes and can progressively refine parts of a framebuffer if the
size of the visible data exceeds the size of the brick pool. Hadwiger
et al. [17] proposed a virtual memory scheme that avoids explicit
tree traversal and supports interactive visualization and streaming of
petascale 2D image data. However, this approach exhibits IO latency
during 3D block construction due to cache misses and requires that
all visible data fit into cache.

In the context of the CPU-based renderers, very little research
has focused on large-scale volume rendering on multi-core work-
stations. As a state-of-art CPU ray-tracing framework for scientific
visualization, OSPRay works well for interactive visualization of
moderate-size volume data and can potentially be extended to large-
scale data. Wu et al. [45] proposed the VisIt-OSPRay system, which
can scale to large-scale datasets. To achieve interactive visualization,
they integrated OSPRay into VisIt as a backend visualization toolkit
and coupled it with PIDX (parallel IO library) [26] for scalable IO.
This study achieved interactive visualization, but it took more than
30 minutes to load the DNS dataset into memory with 64 processors
on Stampede2.

To address these challenges, we decompose large volumes into
a hierarchical representation, with each node representing a small
cubic brick. Within the rendering pipeline, we leverage ray-guided
streaming and progressive rendering to reduce IO latency.

3 BRICKTREES

Adaptive space subdivision and hierarchical data representation are
key to interactive visualization of large-scale volumetric datasets [8].
These techniques enable us to load and update the working set on
demand to address IO latency and memory limitations. As a popular
hierarchical data structure for 3D space subdivision, the octree has
been well studied for direct volume rendering [14]. Hierarchical
grids feature a theoretically optimal number of traversal steps, and
thus have been adopted as general-purpose ray-tracing acceleration
structures [24]. Lefebvre et al. [27] proposed the N3-tree, which
is capable of decomposing a node by an arbitrary number N3 and
has a branching factor of N3. The GigaVoxel system [8] also uses a
hierarchical data structure that is similar to the N3-tree, but with a
smaller branching factor of 23 (as shown in Figure 2). Other struc-
tures, such as kd-trees, have also been used in isosurface rendering
with the trend of coherent ray tracing [34, 38, 40].

In this work, we define a hierarchical data structure –“Bricktree”–
that allows us to represent a structured volume in a hierarchical,
multi-resolution and compressed way (as shown in Figure 3). In
order to guarantee that we can safely index all bricks with a 32-bit
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Figure 3: An illustration of the layout of the Bricktree structure. Each brick (e.g., N0,N1...) is represented with a Valuebrick (colored in
purple), an indexBrickID and an optional Indexbrick (colored in light blue). The indexBrickID stores the index of the Indexbrick if a node has
one. Otherwise, -1 is stored. Both Valuebricks and Indexbricks contain N3 cells. Each cell encodes a float value in a Valuebrick or an int32
reference in an Indexbrick.

int, we tile the volume into a “Bricktree Forest”, which consists
of a list of Bricktrees, rather than encoding the large volume into
a single deep Bricktree. Furthermore, this design not only is con-
ducive to parallel tree traversal on multi-core CPU architectures,
but also avoids encoding a large empty space when the structured
volume is not a perfect cube (M 6= L 6= K). Overall, a Bricktree is a
generalization of an octree where we subdivide a node by N3 rather
than by 23. Furthermore, a Bricktree is similar to the N3-tree in
terms of data structure, but different with respect to data layout in
memory. In an N3-tree node, each cell stores either a data value (for
a leaf node) or a reference to the children (for an inner node). In
this case, if we expect to store data values for inner nodes to apply
progressive rendering, we have to save another index buffer in the
large texture and assign an invalid index (-1) for each cell in a brick
when no cell has children. The number of those indices adds up to
N3 for an N3 brick. However, in a Bricktree, we represent bricks
with two separate buffers. This choice allows us to save memory and
store only one invalid index for an N3 brick if no cell of this brick
has children. Hence, a Bricktree is more suitable for progressive
rendering. In the next section, we will introduce the Bricktree layout
in detail.

3.1 Data Layout
In our design, a “brick” is an N3 set of cells. Obviously, each
cell stores a data value. We denote a brick that stores data values
as a “Valuebrick”. Bricks can be thought of as nodes of a tree.
We call such a tree a “Bricktree”. Each brick can have up to N3

children, where each child brick is associated with exactly one cell in
the parent brick. If a brick does have children, the child indices are
stored in an “Indexbrick”. Thus, we represent a brick as a Valuebrick
and an optional Indexbrick in memory, along with an indexBrickID
to correlate the Valuebrick and Indexbrick.

Each cell of a Valuebrick corresponds to a set of voxels in the
volume. For a “leaf brick” (e.g., N16), one cell corresponds to exactly
one voxel, and the cell’s value equals the voxel’s value. By contrast,
each cell of an “inner brick” (e.g., N0) typically represents a set of
voxels. Accordingly, we can assign a value to each cell. How to
calculate this value is the user’s choice. In our implementation, we
compute this value by averaging over all voxels in this set. Each
cell of an Indexbrick refers to a child brick if the current brick has
children. A “leaf brick” has no children and thus no Indexbrick. In
this case, the indexBrickID of this brick is set to invalid (-1), whereas
for an “inner brick”, its indexbrickID refers to the right Indexbrick,
and the cells in this Indexbrick point to the children. In Figure 3, a
Valuebrick is shown in purple and an Indexbrick in light blue.

Multiple Bricktrees can be combined to form a “Bricktree Forest”.
Recall that this allows us to tile a nonsquare domain efficiently.
Figure 3 (left) illustrates a structured volume with dimension M⇥
L⇥K, which is organized into a Bricktree Forest. Each Bricktree is
specified through a brick size (N), a data type (T) and a tree depth
(D), and represents a set of ND⇥ND⇥ND voxels in the volume.

In memory, each BrickTree < N,T > (D) is represented as three
linear arrays:

1. One linear array of Valuebricks, where each Valuebrick con-
tains N⇥N⇥N values of type T.

2. One linear array of int32 “indexbrickIDs”, with exactly one
such int32 per Valuebrick. If a given Valuebrick’s indexbrickID
is -1, it does not refer to an Indexbrick and thus no cell in the
brick has children; otherwise, this ID refers to an Indexbrick
in the Indexbrick array.

3. One linear array of “Indexbricks“, where each Indexbrick con-
tains N ⇥N ⇥N int32 indices. Each such index can be -1
(meaning the corresponding cell does not have a child); if the
index is greater than or equal to 0, it refers to a brick in the
Valuebrick array.

On a file system, the volume is represented by three types of
files: 1) one high-level XML file represents the Bricktree Forest,
which contains meta-data (N,T,M,L,K etc.) of the input volume; 2)
one XML file for each Bricktree that gives high-level information
(N,T,D, etc.) of the current bricktree; 3) one binary file for each
Bricktree that stores the three arrays (Valuebricks, Indexbricks and
indexbrickIDs).

3.2 Bricktree Overhead
Due to the specific layout, our Bricktree is easy to index and the
overhead is low. Given a Bricktree with a brick size of 4, a data
type of float and a depth of 4 (Bricktree < 4, f loat > (4)), a certain
number of 43 Valuebricks and 43 Indexbricks will be generated when
building the tree. In practice, leaf Valuebricks have zero overhead,
since each costs exactly 256 bytes for 64 float-type cells. The only
overhead lies in the Indexbricks and inner Valuebricks. However,
few of these bricks exist relative to the number of leaf bricks.

In a more ideal case, where many of the inner nodes all point
to the leaf Valuebrick, we store only about one 32-bit int (4 byte)
for a complete leaf Valuebrick. Hence, 4 bytes are used to index
256 “payload” bytes for float data. A less ideal case is that some
children of inner nodes are leaves, whereas other children are inner
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nodes. Recall that for each inner node, we need to store both a
Valuebrick and an Indexbrick, which will result in more memory
consumption than in the ideal case. However, the overhead will still
most likely be considerably less than that of an octree. Benchmarks
in Table 1 show that the in-memory size of a Bricktree with N = 4
is much smaller than a Bricktree with N = 2, which is an octree.
In addition, few bricks are located in the upper levels of the tree.
Assuming a brick size of 4, the number of inner nodes goes down by
a factor of 64 each time we go up one level in the tree. This holds
in practice - the overhead of Bricktree with N = 4 is 8.0% on the
magnetic reconnection dataset and the DNS dataset. The details of
the benchmarks can be found in Section 6. By contrast, the overhead
of an octree (Bricktree with N = 2) that is built on top of those data
is 43% and 72%, respectively.

3.3 Hierarchy Generation in Parallel

As an offline process that is usually run in advance, the performance
of reorganizing the volume into multi-resolution bricks is mostly ig-
nored in the volume rendering literature [13]. However, performance
becomes a significant bottleneck for large-scale datasets. Fogal et
al. reported that the runtime for building a hierarchical structure
for RMI (8.1 GB, 2048⇥ 2048⇥ 1920) is up to 1.5 hours in the
worst case and 13 minutes in the best case [13]. Petascale datasets
might take hours or days. The virtual memory architecture of [17]
alleviates this problem by constructing the brick at runtime. How-
ever, the latency of constructing bricks at runtime will dramatically
influence the framerate, especially when the visible data are missing
in memory.

Our design also makes hierarchy generation more efficient. It is
straightforward to construct the Bricktree Forest in parallel. Rather
than parallelizing the process using tbb :: parallel f or, our “os-
pRawToBricks” tool employs the GNU make command to meet this
goal. This choice allows us to specify a customized number of trees
to build in parallel in case we consume all the host memory. Nor-
mally, make will execute only one recipe at a time. By specifying
the “-j” option, it is possible to execute many recipes simultaneously.
Once parameters N, T and D are set, we first generate an index file
over the Bricktrees as well as a makefile. The makefile is used to
build each Bricktree in parallel. Algorithm 1 shows the algorithm
for recursively constructing a Bricktree. Measurements of the per-
formance improvement from parallelization are shown in Figure 9.

Algorithm 1 The recursive function for constructing a Bricktree.
N,T is defined as template parameters. T hreshold is a customized
parameter for “compression”.

Input: llC - left lower coord; lvl - tree level; lvlWidth - level width.
Output: avgValue - average value of a brick; vRange - value range.

1: function BUILDREC(avgValue, llC, lvl, lvlWidth)
2: cellSize lvlWidth/N
3: brick,vRange
4: if levelWidth == N then

5: brick.value[i][ j][k] input.get(N ⇤ llC+o f f set)
6: vRange.extend(brick.value[i][ j][k])
7: else

8: lowerLe f t N ⇤ llC+o f f set
9: vRange BuildRec(avg, lowerLe f t, lvl +1,cellSize))

10: brick.value[i][ j][k] (T )avg
11: avgValue brick.ComputeWeightedAverage()
12: if vRange threshold then

13: This is a brick with each cell of the same value.
14: Kill this brick (value has been saved in the parent node).
15: else

16: Set this brick into the brick buffer.
return vRange

In addition, our tree construction approach also supports data
format conversion and compression. We can easily convert an input
data format to an interval format, such as double to float. Further-
more, we allow the user to set a threshold (t) that determines which
input regions can be safely collapsed into a single node. For instance,
consider a cell C with a child brick B. Let Value(b) be a function
that obtains the value at cell b 2 B and t be the threshold:

✓
max
b2B

Value(b)
◆
�
✓

min
b2B

Value(b)
◆
 t (1)

If Equation 1 holds, then B and its children are “collapsed” into
C, meaning that C no longer points to a child brick, and is instead
assigned the average value of all cells in B. Our default value of t is
0, meaning that by default, our implementation losslessly eliminates
equal-value regions.

4 VOLUME INTEGRATION

In this section, we illustrate the rendering pipeline with Brick-
trees in a simple case where all data have been read into mem-
ory. Raycasting-based volume rendering consists of marching rays
through the volume with a step size and accumulating color and
opacity along the ray. With a hierarchical structure, rays need to
traverse the structure until reaching a leaf node, an inner node with
an appropriate level-of-detail in current viewport or an unmapped
node.

Algorithm 2 Pseudocode on sampling a given point p and traversal
of the Bricktree structure

1: function BT CPLUS SAMPLE(p)
2: vArray[8] 0
3: voxelCoord[8] Calculate 8 vertex’s coordinates
4: while i < 8 do

5: bTreeID ComputeBrickTreeID(voxelCoord[i])
6: bt GetBrickTree(bTreeID)
7: vArray[i] Bt Cplus GetVoxels(bt,voxelCoord[i])
8: result lerp(vArray[8])
9: return result

10: function BT CPLUS GETVOXELS(bt,coord)
11: brickID 0 . top-down traversal
12: brickStack.push(brickID)
13: while brickStack is not empty do

14: cBrickID brickStack.pop()
15: ibID bt.brickIn f o[cBrickID].indexBrickID
16: cO f f set ComputeO f f set(coord)
17: childBrickID bt.indexBrick[ibID].child[cO f f set]
18: if childBrickID =�1 then

19: return bt.valueBrick[cBrickID].child[cO f f set]
20: else

21: brickStack.push(childBrickID)

For a given sample point p along a ray, we need to query the value
of eight neighboring voxels for interpolation. For each voxel, a tree
traversal is needed to fetch the Valuebrick that the voxel belongs
to. We start the Bricktree traversal from the root node. Assume
that we operate on brick 1 of a BrickTree < 4, f loat > and want to
know if its cell (1,1,2) has a child. First, we look up the brick’s
index brick ID (ibID = indexBrickID[1]). We know that none of
the cells of brick 1 have a child if the ibID is invalid or less than
0. If this is the case, cell (1,1,2) certainly does not have a child.
However, if ibID � 0 (e.g., ibID = 1 in Figure 3), then we look
at cellChildID = IndexBrick[ibID].child[1][1][2]. If this value is
invalid (-1), then this particular cell of brick 1 does not have any
children. Otherwise, valueBrick[cellChildID] is the child brick.

Algorithm 2 describes the general sampling process. Trilinear
interpolation of the eight-nodal value is used to determine the value
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of an arbitrary point p. Bt Cplus GetVoxels traverses the Bricktree
and queries the value of a given cell.

So far, we have obtained a sample kernel that has access to the
Bricktree “forest” and is implemented with C++ code. However,
as a loadable module to the OSPRay ray tracing framework, our
Bricktree module employs the OSPRay rendering pipeline, which is
internally built on top of Embree [41] and ISPC [33]. Embree is a
collection of high-performance ray tracing kernels. The Intel SPMD
Program Compiler (ISPC) allows a number of program instances
to execute in parallel on SIMD hardware. ISPC compiles its own
programming language (a variant of C), and this ISPC code can
call and be called from the C/C++ application code. In OSPRay,
the sampling process maps well to the SIMD paradigm, and is thus
implemented with the ISPC code. Under this condition, we can have
two approaches to implement our sampling process.

4.1 C/C++ Serial Implementation
A simple but inefficient approach is a serial implementation with the
C/C++ code without maintaining a copy of the Bricktree structure
on the ISPC side. We can easily implement a C/C++ version of
the sample function (see Algorithm 2) that has direct access to the
Bricktree structure, and call it serially from the ISPC sample callback
function. The foreach active construct is utilized to specify a loop
that iterates over the active program instances serially. The loop
executes once for each active program instance, and with only that
program instance executing. Algorithm 3 depicts the process of
serially calling the C/C++ implementation of the sampling function
from the ISPC code (programCount, programIndex, lane are built-in
variables in ISPC).

Algorithm 3 Pseudocode for serially calling the C++ version of
sampling function from ISPC code.

1: procedure BT ISPC SAMPLE(varying vec3f samplePos)
2: uniform vec3f uPos[programCount]
3: uniform float uValue[programCount]
4: uPos[programIndex] samplePos
5: foreach active(lane) do

6: uValue[lane] Bt Cplus Sample(uPos[lane])
7: return uReturnValue[programIndex]

4.2 ISPC Vectorized Implementation
A more efficient method involves maintaining a sibling Bricktree
structure and implementing a parallel tree traversal algorithm that
is run on multiple vector instruction set architectures. This method
is feasible due to the ISPC code and C/C++ code being able to
share the same memory. In this work, we implemented an efficient
packet-based variant of Bt ISPC GetVoxels kernel, which is suitable
for packet-based ray-tracing on multi-core CPU. We maintained a
stack to query the Valuebrick for an entire packet of ray samples.
Assuming eight inputs in a packet, the ideal case is all the inputs
will traverse to the same Valuebrick, in which case we can achieve a
theoretical 8x performance improvement. In practice, not all samples
will traverse to the same level, and performance is influenced by
Valuebrick size. We achieved a 2x performance improvement for
N = 4.

4.3 64-bit Addressing
For performance reasons, ISPC uses 32-bit addressing by default,
even with a 64-bit compilation target. In this addressing mode,
ISPC maps all addresses for varying array access to vectors of 32-
bit offsets relative to a shared 64-bit base pointer. However, this
approach limits the volume size to 4 GB. When our data exceed
4 GB, 32-bit addressing will fail in Algorithm 2, line 19. Hence,
we need to treat each array as consisting of smaller segments, and
then iterate over all unique segments addressed by a vector using

ISPC’s foreach unique statement. To do so, we can guarantee that
each segment can be addressed with a 32-bit offset. More details
about the implementation can be found in [37].

With this technique, our implementation can scale to the work-
station’s available memory. However, the implementation has some
performance penalties, because 64-bit addressing is slightly more
costly than 32-bit addressing. In an ideal case, memory accesses are
mostly coherent, and only a few iterations of the aforementioned
loop are necessary. In the worst case, many iterations are needed.
However, the performance is still superior to the performance when
running our application in the ISPC 64-bit addressing mode.

4.4 Sampling Optimization
Although we implement an efficient traversal kernel for packet sam-
pling along the ray, eight neighboring voxels need to be accessed to
perform trilinear interpolation. A naive way to access these voxels
is to call the traversal kernel eight times. Given that the neighboring
voxels are likely located in the same Valuebrick, duplicated traver-
sal can be avoided if we initialize neighboring voxels in the same
Valuebrick.

Ideally, only one traversal of the Bricktree rather than eight is
needed for a given sample point. In practice, the speed-up is lower
than 8x, since we need to retraverse the tree for the neighboring
voxels that are located in neighboring Valuebricks. For large datasets,
data overhead with this approach will be high when a small brick
size is used. Benefiting from the large branching factor of our data
structure, the generated Bricktrees will keep a small tree depth.
Hence, the retraversal at the brick boundary will only slightly impact
the performance. One would expect to achieve a greater speed-up
with a larger brick size, but larger brick sizes incur more possibility
that eight voxels are located in the same brick but with inefficient
empty space skipping [13]. An analysis of the choice of brick size is
conducted in Section 6.2. By performing the optimization mentioned
above, we achieve a 4-5x performance improvement for N = 4.

5 RAY-GUIDED PROGRESSIVE RENDERING

Our Bricktree naturally leads to progressive rendering where data
streaming and rendering are asynchronous in the visualization
pipeline. If the requested data are not yet in memory, the renderer
uses the average value stored in the (already loaded) parent node and
requests the missing brick from a data loading thread. Consequently,
the visualization process can be launched very quickly without wait-
ing for the large data to first be loaded into the memory. In addition,
rendering performance remains stable when the camera position is
updated.

5.1 Valuebrick Streaming
So far, we have illustrated how we sample and traverse the Brick-
tree assuming that all multi-resolution bricks are in memory, which
works well on small- or moderate-size datasets. For large datasets,
however, IO bottlenecks and memory size limit performance and
rendering quality. In particular, IO latency for loading the dataset
into memory before rendering becomes prohibitive when visualizing
large data. Loading a terascale dataset into memory on a contempo-
rary workstation might take hours, even with a parallel IO library
such as PIDX. Furthermore, the memory might not be adequate to
load all bricks.

To solve this problem, we employ ray-guided progressive render-
ing and stream bricks on demand. Although the idea behind this
approach is similar to GigaVoxel [8] and to Hadwiger’s work [17],
our implementation on multi-core CPUs is more straightforward and
avoids the complex data structures needed to store the rendering
context. As mentioned in Section 3.1, each Bricktree stores a linear
array of Valuebricks. All we need to do is maintain a status for each
Valuebrick and update it correctly according to the rendering con-
text. In our solution, two additional bits (isRequested and isLoaded)
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Algorithm 4 Sampling function with progressive rendering on top
of our Bricktree structure

1: procedure BT ISPC GETVOXELS(bt,coord)
2: cBrickID 0 . current brick, set to root
3: pBrickID �1 . parent brick
4: uniform FindStack stack[16] . ISPC stack struct
5: stackPtr pushStack(&stack[0],cBrickID, pBrickID)
6: while stackPtr > stack do

7: �� stackPtr
8: if stackPtr is active then

9: cBrickID stackPtr.cBrickID
10: pBrickID stackPtr.pBrickID
11: if current brick is not requested then

12: bt.brickStatus[cBrickID].isRequested true
13: if bt.brickStatus[cBrickID].isLoaded then

14: childBrickID getChildBrickID()
15: cO f f set ComputeO f f set(coord)
16: if childBrickID =�1 then

17: return value in current brick
18: else‘
19: pushStack(stackPtr,childBrickID,cBrickID)

20: else

21: return average value in the parent brick

are stored for each brick and used to identify the brick’s current
status. In our sample function, isRequested is set when we need to
load the Valuebrick into memory, which allows us to implement a
visibility-based solution that requests only data that are inside the
view frustum.

5.1.1 Progressive Sampling
The sample function needs to be able to handle the equivalent of a
cache miss – the case when a Valuebrick is needed but not in the
memory – to generate a correct image. One simple and synchronous
approach mentioned in [8] is to load the missing Valuebrick im-
mediately and for volume integration to stop until the Valuebrick
is loaded. This approach is problematic for interactive visualiza-
tion when many Valuebricks are missing due to the prohibitive IO
latency incurred by Valuebrick loads. Given that the inner node
in the Bricktree stores the average values of its child nodes, we
adopted an asynchronous approach for volume integration. We use
the average value as an approximation for the current sample point
when we request the Valuebrick and refine the output image when
the Valuebrick is loaded in separate threads. Algorithm 4 depicts the
pseudo-code of this process.

5.1.2 Valuebrick Loading Strategy
In this work, multi-threading is employed to decouple the data
streaming and rendering. We create independent threads that are
responsible for determining the streaming sequence and loading the
requested Valuebrick from the file system. These threads are able
to access the Valuebrick buffer and update the isloaded status when
a Valuebrick is loaded. An interactive and smooth visualization is
achieved in coordination with the progressive rendering.

Although we achieve a stable framerate by decoupling the data
streaming and rendering, the Valuebrick loading sequence impacts
the qualitative performance of our progressive refinement strategy.
Given the layout of our Bricktree, three choices are considered.

Recall from Section 3.1 that the volume is encoded as a Bricktree
Forest. Hence, the naive approach is to map the whole Bricktree into
memory if a Valuebrick in the respective Bricktree is requested. We
refer to this approach as “streaming by Bricktree”. This approach is
easy to implement but not efficient, because Bricktrees tend to be
large, and because many unrequested Valuebricks will be loaded.

Figure 4: An illustration of streaming the Valuebrick by level. Col-
ored nodes are requested in current time. The red arrow indicates
the loading sequence.

A finer-granularity approach is to “stream by Valuebrick” rather
than by Bricktree. For each Bricktree, the streaming threads will
filter and load the requested Valuebricks. This approach yields bet-
ter performance than the first approach, since loading a Valuebrick
is much cheaper than loading a Bricktree. Visually, the user will
notice a smoother and finer grained refinement (as shown in Fig-
ure 5b). However, for the first few frames, when a large number
of Valuebricks are missing, performance is lackluster, since many
Valuebricks will be requested at once by the ray sample function. In
the worst case, we need to load almost all Valuebricks in the current
Bricktree before moving to the next Bricktree, which results in a
slight performance improvement over the first approach.

Generally, the data exploration process is “overview first, zoom
and filter, then detail-on-demand” [11, 42]. Following this mantra,
the ideal approach is to update the data resolution progressively. In
this work, we adopt an approach similar to level-order tree traversal
and load the requested Valuebricks by level. Figure 4 illustrates this
approach. Given a user-defined view frustum, the streaming thread
selects the requested Valuebricks (colored) by level and pushes them
into a queue to load. Due to the large branching factor (N3) of our
hierarchical structure, only a small portion of the nodes are inner
nodes. For example, in Figure 4, using 43 bricks to encode a 5123

volume, only 1.6% of the nodes are inner nodes. Consequently,
loading the inner node levels takes relatively little time, and we can
achieve smooth visual refinement of our data. Figure 5 compares
visual refinement using different streaming strategies.

Another factor that improves progressive refinement performance
is Valuebrick load speed, although this is highly dependent on IO
throughput. Due to the design of the Bricktree “forest”, the levels
of the Bricktree can be loaded in parallel, since each process is

(a) Stream by Bricktree (b) Stream by Valuebrick

(c) Stream by tree level (d) Ground truth

Figure 5: A comparison of rendering images of the DNS dataset
with three Valuebrick loading strategies at frame 100. Stream by
level shows more detail and smoother data refinement.
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independent. For example, we can load level 2 of tree 1 and tree 2 in
parallel using tbb :: parallel f or. Compared to serial streaming, we
observe that parallel streaming significantly improves performance.

5.2 Early Tree Traversal Termination
So far, we have discussed a ray-guided visibility culling approach
that allows our renderer to load only the visible portion of the volume.
The idea is, for a given viewport, that only part of the data contributes
to the final image. Similar ideas can be applied to improve rendering
performance. In particular, under the right conditions, Bricktree
traversal can be stopped at an inner node that reaches the appropriate
level of detail (LOD).

5.2.1 Level-of-Detail Control
Some primitives are smaller than the output device pixels when
rendering a large dataset at low magnification [35]. Generally, in
this case, it is hard to tell the visual difference in the interactive
rendering if we use higher resolution data. One general-purpose
approach to reduce loading and rendering time is to store data at
a discrete level of detail and select a lower resolution LOD with
primitives that more closely matches the display resolution.

In this work, it is easy to apply LOD-based ideas, since an inner
node can be interpreted as a coarser representation of its descendants.
During traversal, we calculate the projected screen space area of a
Valuebrick and stop the traversal if the area is smaller than a user-
defined threshold. To simplify computation, we use a sphere as an
approximation of a cubic brick. By setting the threshold to one pixel,
we achieve a 2.5x speed-up when we zoom out and view the DNS
dataset at low magnification.

5.2.2 Culling with Transfer Function
We can stop the traversal when the Valuebrick does not contribute to
the final image given the current transfer function. In general, the
performance of interactive visualization depends on the user-defined
transfer function. For example, the framerate drops to 2-3 fps if we
make the interior of the DNS volume transparent and keep the top
and bottom boundaries opaque, because rays terminate much later
when most of the volume is transparent. Furthermore, tree traversal
is still performed on each sample even when its corresponding Val-
uebrick is transparent. Taking advantage of the value range stored in
each node, this can easily be avoided in our implementation. The
callback function getMaxOpacityInRange(cellRange) allows us to
look up the brick’s maximum opacity based on the current transfer
function. If the maximum opacity equals 0, the tree traversal stops
at the current Valuebrick and skips the descendants. Although the
speed-up of this optimization depends on the data and transfer func-
tion, we achieve an average 2x speed-up for the DNS dataset with a
transparent interior.

6 RESULTS

In this section, we evaluate four key aspects of our system: 1) the
performance of the existing OSPRay volume renderer and our Brick-
tree module; 2) the performance of the Bricktree with different brick
sizes; 3) data compression using the Bricktree; 4) the performance
of Bricktree generation. Unless otherwise noted, benchmarks were
performed on a quad-socket workstation (FSM) with four Xeon E7-
8890 v3 CPUs, with a total of 72 physical cores at 2.5 Ghz, along
with 3 TB RAM. All test datasets are stored on a network-mounted
file server over a 1Gb/s network. The maximum I/O throughput of
the file system is 110 MB/s. In the benchmark, volumes were ren-
dered to a 1024⇥768 framebuffer, and the rendering performance
was measured by calculating the average framerate over 100 frames.
Bricktree read and write bandwidths include effects from the filesys-
tem cache, which may result in a measured bandwidth value that
appears to exceed the underlying hardware’s capability. Nonetheless,

the measured read/write times are the ones that would be observed
by a real user.

We tested our renderer with four datasets with sizes ranging
from small (e.g., magnetic reconnection volume [15]), to medium
(e.g., the Richtmyer-Meshkov instability simulation [6] and cardiac
volume [22]) to extremely large (e.g., the DNS dataset [31]).

• The magnetic volume, produced from kinetic simulations, is
a 5123 float-precision dataset (size: 512 MB) that represents
magnetic reconnection in relativistic plasmas.

• The Richtmyer-Meshkov instability (RMI) is a simulation of
carbon hexafluoride being pushed up through a wire mesh, with
a resolution of 2048⇥2048⇥1920 and data type of uint8 (size:
8.1 GB). It is a popular dataset and is also used in [13, 24, 45].

• The cardiac volumes were obtained by way of computed
tomography (CT) imaging on excised, postmortem porcine
hearts. The resolution of the data is 2048⇥2048⇥2612. With
a data type of int16, the size of the data goes up to 21 GB.

• The DNS, produced by the Institute for Computational Engi-
neering and Science (ICES) at the University of Texas-Austin,
is a single 10240⇥7680⇥1536 double precision volume (size:
900 GB) from a turbulent flow simulation. In our experiments,
we use a float version of the DNS data (450 GB).

(a) Overall performance

(b) Loading time before rendering the first frame

Figure 6: A comparison of overall performance and loading time
between existing OSPRay volume renderer and our Bricktree module.
The evaluation was run on Bricktree with a brick size of 4.

6.1 Existing OSPRay Renderer vs. Bricktree Module
In this section, we first compare the overall performance and loading
time before rendering the first frame between our Bricktree module
and the existing OSPRay volume renderer. It is a trade-off. For
our Bricktree module, every individual sample requires traversing a
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hierarchical data structure, whereas the existing OSPRay volume ren-
derer uses a standard structured volume and allows data to be queried
using simple math operations. We would expect each sample to be
several times as costly as for the reference renderer. However, given
our access-friendly data layout and ISPC-optimized tree traversal,
we see in Figure 6 that the rendering performance for fully loaded
data is only about 35% slower. Despite some performance loss,
Figure 6a indicates that our Bricktree module still runs at interactive
framerates. The benchmarks are run from a fixed viewpoint with the
volume covers through 3/4 of the screen and with a semi-transparent
transfer function. Images of the benchmarks are provided in the
supplementary material.

More importantly, our Bricktree module performs much better
than the existing OSPRay renderer when it comes to loading time.
We measured the time that a user must wait before the renderer draws
the first frame (see in Figure 6b). The Bricktree module achieves
much better performance, since it needs to load only metadata prior
to rendering. With both renderers, loading time increases with data
size. However, our Bricktree module slows down much less. For
instance, without the Bricktree module, users must wait more than
20 minutes on the test workstation (FSM) before being able to see a
“bird’s eye view” of the DNS dataset. By contrast, with our Bricktree
module, we get an overview of the DNS dataset in under 40 seconds.

6.2 Choice of Brick Size
A volume renderer’s domain decomposition method can have a large
impact on the performance of the rendering pipeline [13]. Our design
and implementation allow the user to easily set a custom brick size.
We performed a set of experiments to discover how the brick size
affects the tree generation time, tree size, loading time, streaming
performance and overall framerate. Two datasets were tested: RMI
(8.1 GB, int8), which is a sparse dataset, and DNS(450 GB, float),
which is a very dense dataset.

RMI / Brick Size 2 4 8 16

Tree Build (min) 1.61 1.49 1.34 1.96
Tree Size (GB) 7.80 5.90 7.10 9.60
Loading Time (s) 1.48 0.34 0.15 0.56
Stream Performance (s) 0.21 0.13 0.11 0.08
Framerate (fps) 10.56 18.56 10.75 7.78

DNS / Brick Size 2 4 8 16

Tree Build (min) 177.22 92.93 86.66 80.25

Tree Size (GB) 772 486 455 451

Loading Time (s) 92.26 38.27 9.3 7.67

Stream Performance (s) 0.18 0.16 0.13 0.08

Framerate (fps) 15.36 18.38 36.63 45.62

Table 1: An evaluation of tree build time, tree size, loading time,
stream performance (s/1000 Valuebricks) and overall performance
with different brick sizes on a sparse dataset (RMI) and a dense
dataset (DNS). The evaluataion was run on FSM. The tree build
process was executed in parallel with eight processors.

Table 1 shows rendering performance with different brick sizes.
As we know, the smaller Valuebrick size is more likely to be uni-
form in value [13]. In our unbalanced Bricktree, a Valuebrick that
contains uniform values will not be further decomposed and stored
by adopting a lossless fashion (mentioned in Section 3.3) and set-
ting the threshold to the default value (0). Under this consideration,
domain decomposition with a small brick size is more likely to yield
a Bricktree with fewer Valuebricks. Therefore, a small brick size is
more suitable for storage and probably fast traversal.

However, the results in Table 1 indicate a slightly different con-
clusion for different datasets. For a sparse dataset (e.g., RMI), a
brick size of 4 produces a smaller tree and performs better than a

brick size of 8 or 16. A brick size of 2 hampers performance and tree
size, possibly due to an increased number of inner nodes resulting
from greater tree depth.

For a dense dataset (e.g., DNS), where values vary in almost all
cells, the output Bricktree is most likely a balanced tree. Hence, we
found that a smaller brick size results in a larger tree size and longer
construction time. From the perspective of streaming performance, a
large brick size is preferable for disk performance. For instance, the
size of a Valuebrick with a brick size 16 is 4 KB, which equals the
size of a single memory page on FSM. Therefore, a brick size of 16
gives more a friendly memory access pattern. We observed that the
streaming thread will influence rendering performance when many
Valuebricks are requested. For performance reasons, we believe that
a large Valuebrick size is more appropriate for visualizing dense
datasets. Table 1 demonstrates that, for the DNS dataset, the best
rendering performance is achieved with a brick size of 16.

Recall that a Bricktree is an octree when the brick size N is set
to 2. As shown in Table 1, a Bricktree with an appropriate brick
size outperforms an octree in terms of framerate, tree size, tree
construction time and loading time.

6.3 Compression Results
In Section 3.3, we described how a threshold could be specified
in order to collapse a specific input region of volume during the
hierarchy generation. By using the default value 0, we produced
a lossless hierarchical representation of the volume. Section 6.2
indicates that this lossless compression is satisfactory for a sparse
dataset, since regions with uniform values are collapsed. However,
a lossy representation is generated if the threshold is set to a posi-
tive value. Figure 7 displays Bricktree build time, the ratio of the
Bricktree’s size to raw volume and the rendering performance given
different thresholds over the DNS dataset. The build time and tree
size drop dramatically when the threshold is increased, and the ren-
dering performance improves significantly. A detailed quantitative
analysis of the accuracy of the output image over different thresholds
is beyond the scope of this paper. However, Figure 8 depicts the
output image of the magnetic dataset rendered with four thresholds.
Aside from the performance improvement, we observe that only a
slight difference can be discerned in the final images if we select
an appropriate threshed (e.g., 0.05) for the magnetic dataset. On
the other hand, artifacts emerge when the data are visualized with a
large threshold (e.g., 0.3).

6.4 Bricktree Generation
Although hierarchy generation performance has drawn less attention
than rendering performance, it is a significant bottleneck in real-
world usage [13]. In this section, we evaluate the performance of

Figure 7: A comparison of tree build time, size ratio (tree size /
volume size) and overall performance with different thresholds on
the DNS dataset.
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Figure 8: A comparison of the output image rendered with four thresholds on the magnetic dataset (512 MB). With an appropriate threshold,
such as 0.05, we achieve significant performance improvement and produce a final image that is slightly different from ground truth (thres: 0).

(a) RMI (b) Cardiac (c) DNS

Figure 9: Tree build time by running the ospRawToBrick tool with
different numbers of processes on three datasets. The brick size of
the Bricktree is set to 4 in this evaluation.

the “ospRawToBrick” tool. Tree generation time, which benefits
from the parallel build processes, drops dramatically by running
multiple jobs simultaneously. Figure 9 shows hierarchy generation
time with three datasets. For the RMI dataset, [13] claims that the
generation time of their hierarchy structure takes about 13 minutes in
the best case. However, with our solution, it only takes 1.49 seconds
using eight processes. For the DNS datasets, we reduce the offline
construction time from 5 hours with one processor to 1.5 hours with
eight processors.

7 CONCLUSION

In this paper, we have presented a solution for interactive visualiza-
tion of large volumes on multi-core CPU architectures. Our method
is based on hierarchical representation and ray-guided progressive
rendering that allows the user to view and explore hundreds of gi-
gabytes of data without spending minutes or even hours waiting for
data to load. Our solution is a significant improvement compared to
the existing OSPRay volume renderer, which usually takes minutes
or hours to load the data prior to rendering the first frame. Inspired
by many recent renderers, we present a hierarchical data structure – a
Bricktree – with a large branching factor and relatively low overhead.
We have also evaluated and discussed the tradeoffs of the different
parameters. Based on our experimental results, we conclude that
sparse datasets are best used with small brick sizes (e.g., 4), and
dense datasets are best used with large brick sizes (e.g., 16).

Our data structure naturally facilitates compression. Using
the Bricktree to create an easy-to-implement lossless compression
scheme, we reduced the size of the RMI dataset from 8.1 GB to
5.9 GB with a brick size of 4 (Table 1). Furthermore, this scheme
can easily be extended to support lossy compression.

Finally, we implemented our solution as a module for the OSPRay
ray tracing framework. Since OSPRay is already interfaced with
tools like Paraview and VisIt, users should have no difficulty putting
our results into production.

In the future, we hope to further investigate data compression.
For instance, Valuebricks are natural candidates for float-point data
compression using ZFP [30]. In addition, a detailed quantitative
analysis of how the lossy compression threshold affects the final
image quality should be performed. On the other hand, a hierarchical
structure naturally leads to adaptive sampling. It would be interesting
to further apply the adaptive sampling to our Bricktree module.
Eventually, we would like to integrate our Bricktree into general-
purpose visualization frameworks. We are also interested in testing
the Bricktree structure in GPUs architecture.
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