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Abstract
Research on microscopy data from developing biological samples usually requires tracking individual cells over time. When
cells are three-dimensionally and densely packed in a time-dependent scan of volumes, tracking results can become unreliable
and uncertain. Not only are cell segmentation results often inaccurate to start with, but it also lacks a simple method to evaluate
the tracking outcome. Previous cell tracking methods have been validated against benchmark data from real scans or artificial
data, whose ground truth results are established by manual work or simulation. However, the wide variety of real-world data
makes an exhaustive validation impossible. Established cell tracking tools often fail on new data, whose issues are also difficult
to diagnose with only manual examinations. Therefore, data-independent tracking evaluation methods are desired for an explo-
sion of microscopy data with increasing scale and resolution. In this paper, we propose the uncertainty footprint, an uncertainty
quantification and visualization technique that examines nonuniformity at local convergence for an iterative evaluation process
on a spatial domain supported by partially overlapping bases. We demonstrate that the patterns revealed by the uncertainty
footprint indicate data processing quality in two algorithms from a typical cell tracking workflow – cell identification and as-
sociation. A detailed analysis of the patterns further allows us to diagnose issues and design methods for improvements. A 4D
cell tracking workflow equipped with the uncertainty footprint is capable of self diagnosis and correction for a higher accuracy
than previous methods whose evaluation is limited by manual examinations.

Categories and Subject Descriptors (according to ACM CCS): I.4.6 [Segmentation]: Pixel classification—I.4.8 [Scene Analysis]:
Tracking—J.3 [Life and Medical Sciences]: Biology and Genetics—

1. Introduction

Tracking time-varying structures is an important data analysis task
for image-based biology. In biological research, 4D (3D over time)
fluorescence microscopy generates a temporal sequence of volu-
metric data via continuously scanning fluorescently stained living
specimens. The capability to track moving structures from 4D scans
is fundamental to answer many questions about development, func-
tions, and diseases. However, there is no satisfactory solution, es-
pecially for densely packed structures with irregular and chang-
ing morphologies. We have been working on a real-world research
project – segmenting and tracking cells from time varying (4D)
confocal microscopy of zebrafish eye development [KOK∗12]. It
is a difficult tracking problem for two reasons. 1) The cells to be
identified are densely populated three dimensionally in each time
point. There are noisy signals to confuse the identification pro-
cess, resulting many under- and over-segmented components. 2)
Cells may emerge, disappear, split, merge, accelerate, and change
shape over time. Combined with imperfectly segmented results, it
is a challenge to establish the correct associations of cells between

time points. We have tested several cell tracking methods and tools
from recent publications, including graph-based maximum match-
ing and probability association methods [CGCR13] [ALM∗14]. No
matter how their parameters were adjusted, we could not obtain
satisfactory outcomes for our data sets. The tracking success rates
were much lower than the claimed results. It indicates the limited
scopes of existing tracking methods and tools. A method worked
perfectly on one benchmark data set may fail completely on an-
other. The same can be said for a single data set as well. Different
regions exhibit localized characteristics, which may require differ-
ent methods or adaptive parameter settings. We started working on
our own tracking tool, where a data-independent metric to evaluate
the tracking performance seemed necessary to overcome the issues
in existing tools.

Therefore, we propose the uncertainty footprint, a technique de-
veloped to study the local convergence patterns in an iterative eval-
uation process, which can be used for both cell identification and
association in a typical tracking workflow. We derived the uncer-
tainty footprint from the observation that, for several optimiza-
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tion processes in our study, the convergence rates at different lo-
cations over a spatial domain sometimes exhibit strong nonunifor-
mity, which is introduced by conflicts or uncertainties from com-
petitions between evaluations of neighboring basis functions. We
leverage the uncertainties to detail and characterize a process’s be-
havior. For example, we can infer whether a sequence of func-
tions { ft(x)} obtained from an optimization process converges on
global or local maxima from its convergence pattern. The uncer-
tainty footprint accumulates local value changes over iterations, a
simple calculation that can be incorporated into most iterative eval-
uation processes. It then visualizes the uncertainty patterns using a
traditional toolset for volume rendering, such as color mapping and
multidimensional histograms [KKH02]. Insights gained from the
uncertainty footprint can further regulate an optimization process,
including early iteration termination and parameter adjustments.

For 4D cell tracking, the benefits of the uncertainty footprint are
twofold. 1) It allows evaluation and comparison of tracking results
through visualizations of both the histograms and the volume ren-
dering with color-mapped uncertainty foot print values. We can op-
timize initial conditions and algorithms based on feedback from
the uncertainty footprint. For a tracking system, this was previously
achieved by comparing with manually generated results, which was
extremely time consuming and needed to be regenerated for every
new data set. There were also simulated/benchmark data, which
could hardly be representative for the complex cases in general ap-
plications, as seen in our test of existing methods. 2) It allows co-
ordination and cooperation among different algorithms. Since seg-
mentation errors contribute to most tracking issues, we can use the
uncertainty footprint to locate the issues and apply a more effective
algorithm than that is used for the initial segmentation. Therefore,
segmentation and tracking algorithms can mutually support each
other and progressively refine the result. It is also more economical
at computing resources to allocate more expensive algorithms for
only isolated subdomains.

2. Background

2.1. On convergence and uncertainty

Uniform convergence, which requires a sequence of functions ft(x)
to converge at a uniform speed for each point on its domain X , is an
important concept in mathematical analysis. Several properties of
the sequence, such as continuity, integrability, and differentiability,
can then be effectively discussed [Rud76]. The discussion of con-
vergence and uniform convergence started with Cauchy’s study on
sequences of numbers and functions. A Cauchy sequence of real
numbers {xt |t ∈N } is convergent, which requires that for any ar-
bitrarily small positive real number ε, there is a positive integer N
such that for all m and n > N, |xm−xn|< ε. In other words, the val-
ues of the sequence get arbitrarily close as the sequence progresses.
Cauchy tried to use this definition in the study of function continu-
ity and proved that the limit f (x) of a series of continuous functions
ft(x) is also continuous. Abel quickly found the flaw in the proof,
realizing that ft(x) might not converge at the same rate for different
x’s [Sør05]. Later work on this topic shaped the modern definition
of uniform convergence, which requires the same positive integer
N for all x’s of the function domain.

Convergence is used as one measure of uncertainty in a sys-

tem [Liu15]. However, convergence is usually considered as a col-
lective behavior over function domains for numerical analysis ap-
plications. This is because uniform convergence is often proved
in the derivation from differential equations and functions under
discussion are assumingly well-behaved. We feel the need to re-
visit the concept of convergence rate for certain optimization prob-
lems, where the function is defined by a series of partially overlap-
ping bases. The iterative evaluation of the function at the borders
between two bases may generate rapidly changing values, intro-
duced by conflicts and competitions of the bases. Thus, conver-
gence rates at different locations of the function domain can ex-
hibit strong nonuniformity, revealing varying uncertainties. When
convergence is only considered collectively, subdomains of high
uncertainty overwhelm other low uncertainty ones. For example,
an optimization may require many more iterations at only isolated
locations when results have converged on most of its domain. On
the other hand, slow local convergence may propagate and intro-
duce a global impact. For example, convergence on local maxima
can be considered as a less certain state, whose local convergence
patterns may look distinctively different than that of convergence
on global maxima. Therefore, it is necessary to design a tool for
local convergence/uncertainty analysis.

2.2. On cell tracking

In biological research, structures to be tracked in a temporal data
set are commonly modeled as particles, where their spatial loca-
tions are considered in tracking calculations [Sax08]. Another im-
plication for particle tracking is that segmentation and tracking
are considered as two separate procedures. Spatial locations are
generally calculated as centroids of segmented components and
input into a tracking system for evaluations. Because manually
detecting and following large numbers of individual particles is
not feasible, automated computational methods have been devel-
oped by many groups [MUS∗14] [CSdC∗14] [JD09]. For compu-
tational methods for particle tracking, we refer to a series of sur-
veys from Meijering et al. [MSD06] [MDSC09] [MDS12]. They re-
viewed particle tracking methods including nearest-neighbor link-
ing [HBK∗10], spatiotemporal tracing [BDC05], probabilistic data
association [GOM04] [GLE∗11], and graph-based optimization ap-
proaches [SK05] [MJGB15]. They also listed and compared exist-
ing tracking tools.

To take advantage of the spatiotemporal relationship of seg-
mented components, matching algorithms based on a graph are
commonly used and relatively sophisticate for tracking in biolog-
ical research. Jaqaman et al. [JLM∗08] designed a tracking algo-
rithm that addressed challenges in particle tracking, including high
particle density, particle motion heterogeneity, temporary particle
disappearance, and particle merging and splitting. They formu-
lated the particle linking steps as global combinatorial optimization
problems and identified the overall most likelihood of trajectories.
Similar strategies are perhaps best modeled as the maximum bipar-
tite matching problem in graph theory [TK06]. Segmented parti-
cles from two consecutive time points are naturally separated into
two groups T and T + 1; only two elements from different groups
can be paired; the tracking problem is solved by finding the most
pairs based on certain criteria, which are usually consolidated as
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edge weights of a graph. The solution is equivalent to a maxi-
mum flow problem and similar to finding the shortest path on a
graph [Sch02]. It repeatedly searches for augmenting paths with
maximum weights. Mosig et al. [MJW∗09] used overlap between
time points for maximum bipartite matching and tracked moving
cells from videos. Chatterjee et al. [CGCR13] used distances be-
tween particles to calculate weights, which were then minimized
along with the cardinality (number of link pairs). Like the Dijk-
stra’s shortest path algorithm [Dij59], single weight is desired for
the maximum bipartite matching, while the multiweighted problem
is NP-hard.

However, uncertainty analysis in cell tracking is overlooked, de-
spite that data complexity often makes tracking results unreliable.
Although research literature usually uses several benchmark data
sets from real-world scans or simulations, the tracking validation
and diagnosis in practice are still based on manual examinations,
because no benchmark data can represent the variety/complexity in
real applications and the choice of benchmark data is easily biased
to favor a method under discussion. Uncertainty quantification and
visualization have made substantial progress in other areas, such as
MRI scans and simulations [vPOBB∗10] [vPOBB∗11], ultrasound
data [BDH∗15], and nonparametric model extraction [ASE16]. As
cell tracking is performed on a complex 4D data set, the lack of
quantified uncertainties at different locations of the data domain
limits previous tracking methods. A generally applicable and intu-
itive uncertainty analysis method is thus desired.

3. Uncertainty footprint

3.1. Definition

For an iterative process over iterations T = {t|t ∈N }, its evalua-
tion outcome is a sequence of functions ft(x), whose domain is X .
The uncertainty footprint is defined as:

gt(x) =

{
0, t = 1

∑
t−1
1 | fτ+1(x)− fτ(x)|, t > 1

(1)

Here, | · | is the absolute value for real-valued functions, although
other norms can be used, to measure the pointwise difference be-
tween two functions from consecutive iterations. Notice that the
definition differs from a commonly used criterion for convergence,
which sums over the function domain at each iteration, while our
definition sums over iterations at each point of the domain. In plain
language, the uncertainty footprint accumulates the pointwise dif-
ference between two iterations over all iterations. Intuitively, it
leaves a "footprint" each time there is a value change at any lo-
cation on the function domain. We can compare the footprints left
from different local subdomains and measure uncertainty. The it-
erative process can be seen as making value adjustments based on
its algorithm, without the explicit knowledge about the true value.
The more the process is uncertain about an adjustment, the greater
it changes the value, hence more footprints left in that area. Over
iterations, we can observe the accumulation of the footprints and
trace to the areas of high uncertainty. By analyzing the patterns of
how uncertainty footprints accumulate, we can draw conclusion on
the cause and design improved methods.

3.2. Characteristics

Several characteristics of the uncertainty footprint allow it to be
easily analyzed.

Sharing of iteration numbers. The uncertainty footprint is a
conjugal sequence to the original function sequence ft(x). There is
one "snapshot" of uncertainty for each iteration. It also means that
the uncertainty footprint must be computed within the iterations.

Sharing of function domain. The uncertainty footprint shares
the function domain with the original sequence ft(x). It means that
each point x on the domain has a sequence of values to represent
its evolving uncertainty. Maintaining an uncertainty record at each
point on the domain allows us to compare and differentiate regions.

Nonnegative and real-valued. The uncertainty footprint values
are monotonically increasing from 0 at initial conditions. They are
naturally mapped to a range from low uncertainty (close to 0) to
high uncertainty (far from 0). We can compare and order uncer-
tainty footprint values. They can also be color mapped and visu-
alized using similar techniques for the presentation of the original
sequence ft(x), such as volume rendering.

3.3. Histograms of uncertainty footprint values

For each iteration, we can study the uncertainty footprint value dis-
tribution using a 1D histogram. The histograms of all iterations are
concatenated to form a 2D histogram. Several meaningful patterns
in the 2D histogram may be observed for a detailed study of the be-
havior of the process. We made an illustration of the 2D histogram
of uncertainty footprint values (Figure 1). For an iterative process,
local features with nonuniform convergence are visualized as lines
or curves in a 2D histogram. The meanings of the 2D histogram
patterns are as follows. 1) Diagonal lines denote the aggregation
of value adjustments. If values of a certain region on the func-
tion domain do not quickly converge, our evaluation of the uncer-
tainty footprint accumulates the changes over time. When the value
change of the region is at a relatively constant rate, a strong linear
relationship between the uncertainty footprint values and iteration
numbers can be observed. Since different regions may differ at the
accumulation rate of their uncertainty footprint values, the diago-
nal lines split and have different slopes, signifying different rates.
A high nonuniformity of the process is visualized as a wide range
of the spread of lines. 2) Horizontal lines denote convergence. The
uncertainty footprint values are fixed once convergence is reached.
Some uncertainty footprint values stay at a low level, denoting a
low uncertainty convergence, while others stay at high uncertainty
levels. 3) Some diagonal lines turn into horizontal lines because of
convergence. However, diagonal lines that do not turn denote oscil-
lation. 4) A noisy 2D histogram not showing any of these patterns
represents a highly nonuniform or divergent process.

The 2D histogram of uncertainty footprint values allows us to
distinguish different patterns representing nonuniform behaviors
and trends of local features, which can be obscured if the 1D his-
tograms are examined individually. For example, we can locate the
iteration number T where two lines separate. Then, we can find out
the two different uncertainty levels at T and filter the result on the
function domain. This allows pinpointing the two regions with dif-
ferent convergence rates. Since many optimization problems use a

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Y. Wan & C. Hansen / Uncertainty Footprint

Figure 1: An illustration of a typical 2D histogram of the uncer-
tainty footprint values in an iterative process. The 2D histogram
is a concatenation of a sequence of 1D histograms at consecu-
tive iteration numbers. Each 1D histogram shows the frequency for
different uncertainty footprint values. Frequency values are color
mapped. Several patterns are interesting to the analysis of a 2D
histogram. Lines or curves represent local features having simi-
lar convergence. Diagonal lines denote the aggregation of value
changes. The steeper a diagonal line is, the faster the changes. Hor-
izontal lines denote convergence. The locations of the horizontal
lines determine the uncertainty at convergence. If a diagonal line
does not turn to a horizontal line, it means oscillation. We can also
find out when oscillation separates from convergence.

mixture of bases with local support, disparity of convergence rates
at different regions can be easily visualized. When a region of high
uncertainty is isolated while most of the domain yield satisfactory
results, we can apply a different setting or change the optimiza-
tion method for the problematic region. The 2D histogram of un-
certainty footprint values is also suitable for automated analysis.
For example, we can use the Hough transform to detect lines and
curves, the intersections of which are separation points [DH72].

4. Applications and results in 4D cell tracking

We designed uncertainty footprint and its histograms for the
study of 4D cell tracking from live scans of zebrafish develop-
ment [KOK∗12]. For the uncertainty footprint values to be calcu-
lated and analyzed, two conditions need to be satisfied in an appli-
cation. First, the computation is an iterative optimization process,
generating a sequence of functions { ft(x)|t ∈ N }. Second, the
functions { f (x)} are defined on a domain supported by a mixture
of local bases. The second condition is less obvious from the def-
inition of the uncertainty footprint. We require local support based
on the empirical observation that nonuniform convergence rates are
more obvious and the analysis results have more clear meanings. As
in the example applications, both conditions can be easily satisfied
or constructed. Here, we adopt a common tracking workflow and
discuss the applications of our method in two stages of the work-
flow – cell identification and association. For cell identification, or
segmentation, we focus on the Expectation-Maximization (EM) al-

gorithm for Gaussian mixtures [DLR77], which is demonstrated
as an introductory example. For cell association, we use a graph-
based optimization method, which is constructed from a maximum
matching algorithm [Gib85] so that the two conditions for uncer-
tainty footprint are satisfied.

4.1. EM for cell segmentation

Figure 2: Visualizations of the uncertainty footprint values from
cell segmentation using the EM clustering method. (A) We use the
EM clustering algorithm to segment two fused cells in a confo-
cal microscopy scan of zebrafish eye development. The first column
shows the two fused cells selected and colored. The second column
shows the parameter estimation for two Gaussian distributions as
the initial condition for the EM. The third column shows the uncer-
tainty footprint result mapped to a purple-green-red lookup table.
The fourth column is the 2D histogram of the uncertainty footprint
values. (B) The same cells in A are segmented using the same EM
process. However, the initial condition is different. The two initial
Gaussian distributions are set to overlap each other. (C) We use
the EM algorithm to segment a single cell with a concave shape.
Despite that certain isolated parts exhibit higher uncertainty than
others, we are able to detect a possibly acceptable segmentation
at the dent on the cell. (D) We use the EM algorithm to segment a
single cell with a round shape. The result exhibits high uncertainty
and slow convergence. For all examples, we truncate or pad the
2D histograms to show the results from 127 iterations. Actual iter-
ation numbers vary for different cases depending on convergence
criteria. However, the trends to reach convergence can be clearly
observed in the 2D histograms.

Cell identification is commonly performed as a separate step in a
tracking workflow. Depending on input data’s complexity, several
image segmentation methods are commonly employed. For exam-
ple, when the cells in a volume data set are well separated by low
intensity spaces, simple thresholding and the connected component
analysis are sufficient for cell identification [GW07]. As input data
become less ideal with the introduction of noise and blurriness,
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more sophisticated methods are needed, such as Otsu threshold-
ing [Ots79] and the watershed algorithm [BM93]. Here, we exam-
ine a specific clustering method, the EM algorithm for the Gaus-
sian mixture [DLR77]. The EM algorithm outperforms many other
methods for segmenting two or several fused cells. Fused cells
are common in confocal microscopy, as diffraction of fluorescence
emission makes it difficult to resolve adjacent fluorescently stained
structures with fine details. Segmentation methods based on local
intensity and gradient values have poor performance because there
are usually no low-intensity borders between fused cells. Therefore,
a shape-based method, such as the EM for the Gaussian mixture, is
more effective, as some types of cells can be modeled using a Gaus-
sian distribution [ALM∗14].

To segment a group of N(N ≥ 2) fused cells, we strictly fol-
low the EM clustering algorithm on a Gaussian mixture. The 3D
coordinates of the voxels of the cell group form the sample set
X = {x j| j = 1..J voxels}. We would like to estimate the parame-
ters for a Gaussian mixture, S = {{τi},{µi},{Σi}|i = 1..N} (τi, µi,
and Σi are weight, centroid, and covariance matrix for each Gaus-
sian distribution), which best approximates the sample set by maxi-
mizing the likelihood function L(S;X) = ∏

J
1 ∑

N
1 Gauss(x j;µi,Σi)τi.

Given an initial Gaussian mixture S0, the EM algorithm is an iter-
ative evaluation process on overlapping bases. For each iteration,
we perform an E step, which updates the membership probabil-
ity (Pi(x j)= (τiGauss(x j;µi,Σi))/(∑

N
1 τkGauss(x j;µk,Σk))) for the

sample set based on current parameter estimation St of iteration t,
and an M step, which updates the parameter estimation St+1 by
maximizing the likelihood function Lt . The iteration terminates if
the change of the likelihood function becomes sufficiently small
(|Lt+1− Lt | < ε), or when a predefined maximum iteration num-
ber has been reached. The reaching of a certain maximum iteration
number is usually considered a divergent result. However, strictly
speaking, the EM convergence is guaranteed for basis functions of
the exponential family with compact parameter space [Wu83], al-
though it can converge to local maxima with undesired segmenta-
tion results.

For cell segmentation, there are three issues preventing the EM
clustering algorithm to be directly applied in real-world data sets.
1) The number of clusters, or Gaussian distributions in the mixture,
needs to be determined before applying the algorithm. It is a diffi-
cult task for a complex data set such as the confocal scan of cells of
zebrafish eye development 2) The clustering results are dependent
on the initial Gaussian mixture estimation. There is the possibil-
ity that a convergent result only achieves local maxima. We need
a more detailed method to evaluate the clustering process than the
simple convergence criterion, so that we may adjust the initial pa-
rameter estimation to improve the clustering result. 3) It is a com-
putationally expensive process. One typical zebrafish eye scan con-
tains several thousand cells. It would be more efficient and accurate
if we could identify fused cells and only apply the EM algorithm
locally. The evaluation of the uncertainty footprint is key to the so-
lutions of these issues.

To evaluate the uncertainty footprint for the EM clustering algo-
rithm, we define the membership probabilities {Pi,t(x j)} at itera-
tion t as function ft(x) in Equation 1. Since {Pi} is vector-valued,
we use the L1 norm to evaluate Equation 1, i.e., summing up the

membership probability changes for the Gaussian distributions. For
each iteration, we first evaluate the standard EM steps, which are
immediately followed by the calculation of the uncertainty foot-
print values for the membership probabilities via accumulating the
changes at each sample point (voxel). Next, a 1D histogram is gen-
erated for the uncertainty footprint values. We terminate the itera-
tion when the convergence condition is satisfied or a maximum it-
eration number reached. The 1D histograms from all iterations are
concatenated to form a 2D histogram. Finally, we visualize both the
2D histogram and the volume rendering with color-mapped uncer-
tainty footprint values.

Figure 2 demonstrates this process for several cell segmentation
examples. We select two fused cells or a single cell to test our
method and observe the visualized patterns from the uncertainty
footprint. Figure 2A shows the segmentation of two fused cells.
We are certain that there are two cells in the group only because the
information can be inferred by examining the time sequence. Oth-
erwise, this is considered as an ambiguous case for segmentation.
We use a simple heuristic to initialize the EM process: the center of
the first Gaussian is placed at the voxel with the highest intensity
value; the center of the second Gaussian is placed at the voxel far-
thest from the first Gaussian; both covariance matrices are the same
and estimated using all voxels from the group (Figure 2A2). A visu-
alization of the color-mapped uncertainty footprint reveals that the
two Gaussians "sweep" through the cell group pivoting at the two
corners and settle down at the desired segmentation (Figure 2A3).
The 2D histogram shows a fast convergence, as horizontal lines
dominate the graph after about 40 iterations. The distribution of un-
certainty is rather uniform (horizontal lines in the 2D histogram),
which can be also confirmed by the regular gradient patterns in
Figure 2A3. Figure 2B shows another result for the same group of
fused cells. However, we use a different initial condition so that
the two Gaussians are overlapping. Comparing the 2D histogram
of Figure 2B to that of A, we observe slower overall convergence,
higher aggregated changes, and less uniformly distributed lines.
The patterns in the 2D histogram show that the Gaussians have dif-
ficulties at pathfinding to the global maximum, as local uncertain-
ties (the isolated curves) propagate and prohibit convergence. The
segmentation result is also undesired, which separates the group
horizontally. Figure 2C shows how the EM clustering works for
a single cell. The patterns in its 2D histogram are similar to Fig-
ure 2A. However, the convergence is slower as demonstrated by
less uniform line distributions. Figure 2D is an extreme case, which
usually would not have been segmented. Its result shows high ag-
gregated changes, uneven propagation, and slow convergence.

For the EM algorithm, the 2D histogram provides a detailed
map for local convergence analysis, which was not available when
only one convergence criterion (e.g., the likelihood function L) was
used. Instead of classifying a clustering result into convergent or
divergent, we are now equipped with a tool to better distinguish
the in-between cases. As shown in the examples, the 2D histogram
of an effective EM clustering should show minimal isolated lo-
cal uncertainty, and the overall value aggregation should be also
low (Figure 2A). When local uncertainties become prominent in
the 2D histogram (shown as the isolated curves in Figure 2B), and
the local uncertainties propagate to influence other parts of the do-
main (shown as the steps at the border between the blue and white
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regions in Figure 2B), a reconfiguration of the initial conditions
should be considered. Otherwise, the convergence is likely on local
maxima. If local uncertainties have a clear general trend to con-
verge but with slow convergence rate, it is most likely to be a dubi-
ous result for a highly ambiguous data set (Figure 2C). Therefore,
through the visualization of the 2D histograms of the uncertainty
footprint, we can improve the EM clustering from several fronts.
1) A desired result shows prominent horizontal lines early in the
iterations. We can terminate the iterations early to save computing
time when agreggated values become horizontal lines. 2) We can
reconfigure the initial conditions to improve the result when strong
nonuniform patterns appear. 3) We can choose to accept or reject a
clustering result based on 2D histogram analysis. We factor the pat-
terns of a 2D histogram into aggregation, which measures how high
the uncertainty footprint values reach, and nonuniformity, which
describes how lines are distributed. The uncertainty value can be
obtained from the height of a 2D histogram (Figure 2), whereas
the nonuniformity is calculated as the mean filtered entropy (MFE)
of the histogram [GW07]. The decision to accept an EM cluster-
ing result is made based on Figure 3. The green region represents
acceptable results with low aggregation and nonuniformity.

Figure 3: A summary of EM result classification using the 2D his-
togram of uncertainty footprint. Two factors are examined. The hor-
izontal axis of the graph represents the aggregation of local value
changes. The vertical axis represents how much local uncertainty
footprint value spreads. The more lines or curves are spread, the
higher nonuniformity of local convergence. We place the four ex-
amples in Figure 2 on the graph. An acceptable result should have
both values low, not just convergence, indicated as the green region.

4.2. Graph-based optimization for cell association

Graph matching is a well-established method for cell association in
a tracking workflow. Especially when cells have been segmented,
the choice of graph matching to associate cells from two adjacent
time points is intuitive: a graph G = (V,E), where V and E are
sets of vertices and edges respectively, defines the domain of an
optimization problem; the vertex set V is a collection of all seg-
mented cells from both time points t and t + 1; the edge set E de-
fines all plausible associations between cells from both time points;
the optimization objective is to maximize the number of nonadja-
cent edges, called matched edges; otherwise, an edge is unmatched.
As the vertex set is naturally divided into two disjoint sets for
time points t and t + 1, and an edge can only connect two ver-
tices from different time points, the graph G is also bipartite and

the optimization process is called the maximum bipartite match-
ing. For cell tracking, a weighted graph is commonly used, where
parameters quantifying the relationships between cells are added
as edge weights, such as distance, overlapping size, size similarity,
shape similarity, etc. The maximum matching on unweighted or
weighted graphs can be constructed using the Edmonds’s matching
algorithm, which is a recursive algorithm exhaustively searching
and comparing all augmenting path combinations to maximize the
matches [Edm65]. An augmenting path is a graph path a) having
alternatively matched and unmatched edges, and b) starting and
ending at unmatched vertices, while a path satisfies a) is an alter-
nating path. Therefore, an augmenting path is also an alternating
path.

When a segmentation result is perfect and cells do not split,
merge, emerge, or disappear over time, the bipartite maximum
matching generates optimal results for the tracking problem. How-
ever, rarely do real-world data meet the perfect conditions. Un-
certainties generated in scanning, preprocessing, and segmenting a
data set can be problematic when applying the maximum matching
algorithm directly. For a weighted bipartite graph, the Edmonds’s
maximum matching algorithm has three intrinsic issues for tracking
imperfect data. 1) Two or even more matchings may have near iden-
tical weights. Simply discarding matchings with smaller weights
does not consider the uncertainties in weights and is not robust.
2) For a densely-packed data set, a large number of vertices on a
graph can be chained together on an augmenting path. A small dis-
turbance on the weights can cause a chain reaction. This "butterfly
effect" is undesired in tracking cells as cell movements are bounded
within a neighborhood. The association of a pair of cells should
not influence the results outside their neighborhood. 3) Multiple
weights can be considered, such as distance, overlap size, similar-
ity, etc. The original algorithm does not provide a solution to the
multiweighted problem. Most of the issues are addressed by the
introduction of the uncertainty footprint in graph matching.

For the uncertainty footprint to be evaluated properly, it requires
an iterative process with progressively updated matching results.
The idea behind our construction is simple: we limit the weighted
maximum matching within a subgraph centered at vertex v (v ∈V ).
The subgraph is extracted by including all vertices that can be vis-
ited from v via paths of length l ≤ L, where L is a predefined max-
imum length. We visit and process all vertices on a graph in one
iteration and then repeat. It resembles an iterative convolution pro-
cess on an image. To leverage the uncertainties in edge weights,
we introduce the concept of weight similarity, which is defined
as |w1−w2|/(w1 +w2), where w1 and w2 are two weights to be
compared. When comparing two locally computed matchings for a
subgraph Gv at vertex v, we choose one over another only if their
weights are not similar. Otherwise, both matching results are kept
for v. Strictly speaking, the union of two matchings is not necessar-
ily a matching. However, we still use the term a matched edge to
denote a valid association between two vertices, and an unmatched
edge for an invalid association that merely means neighborhood re-
lationship. Therefore, unlike a standard matching, we allow a ver-
tex to have multiple matched edges, where the number of matched
edges is called the valence of the vertex. In the iterative process,
a matched edge may change to an unmatched one, or vice versa,
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to describe which we use the term edge flipping. Our constructed
algorithm is detailed by the following pseudocode.

create graph G = (V,E) based on spatial relationship between
time points t and t +1;

assign edge weights w’s;
L = maximum length for subgraph;
T hsim = similarity threshold;
initialize matching result M to {0};
for all iterations do

for each v in G do
if valence of v 6= 1 then

Gv = construct a subgraph using L;
M = M \Gv;
{Mvi} = find all mutually exclusive matchings of

Gv;
Sort {Mvi} by weights;
for all similarly weighted {Mvi} starting from the

maximum weight do
M = M

⋃
Mvi;

end
end

end
end

The adoption of subgraphs and a similarity measure addresses
the robustness issues of the original maximum matching algorithm.
Multiple weights are also supported, as each iteration can be ded-
icated to one type of weight. The subgraphs act as partially over-
lapping basis functions; the iterative matching evaluations at where
they overlap essentially generate inherent local ensembles for the
uncertainty footprint analysis. Updating the values for one basis
also changes its neighbors, creating conflicts and competitions.
Greater conflict means greater uncertainty. To compute the uncer-
tainty footprint, we define the valences of all vertices on graph G
(G is the function domain) as the function sequence ft(x). Equa-
tion 1 is evaluated as the accumulated valence change for each ver-
tex, which is equivalent to edge flipping counts. The meaning of
the uncertainty footprint is intuitive: more conflicts present at one
location induce greater valence change, and therefore greater un-
certainty about the result.

We use the same visualization methods as in Section 4.1 to exam-
ine the uncertainty footprint in the cell association process. Figure 4
shows an example when we track cells between two time points of
a scan of zebrafish eye development. We use the Synthetic Brain-
bows built within the FluoRender system to segment and color the
volume data of both time points [WOH13] [WOCH09]. The result
is then processed with our graph matching algorithm. In this exam-
ple, we set the similarity threshold to 0.2 (two weights are consid-
ered similar when their difference to sum ratio is smaller than 0.2),
and 2 for the maximum path length of subgraph extraction. We run
13 iterations and the 2D histogram of the uncertainty footprint is
in Figure 4. We use two different representations of the 2D his-
togram, as one interesting feature is more obvious in the 3D ribbon
graph: a low peak separates from the main peak and moves with a
constant speed. The low peak must be related to the highly uncer-

Figure 4: Uncertainty footprint result for tracking two time points
of a scan of zebrafish eye development. The top panels show the
volume renderings of the two time points. The volume data are
segmented and colored using the Synthetic Brainbows. The bottom
panels show two representations of the 2D histogram of the uncer-
tainty footprint, a 2D color-mapped image and a 3D ribbon graph.
The 3D ribbon graph shows two prominent ridges, representing
rapidly converged results and uncertain results respectively.

Figure 5: Filtering the volume rendering results by selecting a
range from the histogram of uncertainty footprint. Only cells within
the selected range (red regions on histograms) are colored using
the Synthetic Brainbows. (A) A result generated using a similarity
threshold value of 0.2. (B) A result generated by adjusting the seg-
mentation parameters so that fewer cases of over-segmentation are
present. (C) A result generated from the same segmentation as in
A, but using a similarity threshold value of 0.85.

tain cells that our algorithm has difficulty to match. To study the
nature of this phenomenon in detail, we filter the volume render-
ing result at time point t1 by selecting a range only including the
small peak (Figure 5A). We also play back the time sequence using
the FluoRender system [WOCH12]. The result shows that most of
these high uncertainty cells are generated from over-segmentation
or noise data. Figure 6A and B show two such cases. Uncertainty
in these cases increases because two components are competing to
match with one cell over the iterations. The color-mapped 2D his-
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Figure 6: Examples of high uncertainties in cell tracking. (A) Two
cells are tracked over time. In T1, one cell with varied colors is
identified as noise because of low intensity values, which should
be matched to the cyan cell in T2. Instead, the blue cell in T1 is
matched to both cells in T2. (B) One cell is tracked over time. In
T2, the cell is over-segmented to two parts because of its shape.
The red cell in T1 is matched to both parts in T2. (C) Two cells
are tracked over time. In T1, the two cells are under-segmented and
fused into one green component. In T2, the two cells are correctly
segmented. The green component in T1 is tracked to both cells in
T2. (D) The yellow cell in T1 disappears in T2. The matching of the
cyan cell in T1 to the orange cell in T2 is correct.

togram in Figure 4 also reveals uncertainties propagating at a higher
speed than the low peak, which are lines with steeper slopes. Those
are cases where three or more cells are competing for one compo-
nent.

The uncertainty footprint and visualizations of its 2D histograms
become an effective tool to diagnose and improve our cell track-
ing results, as manually checking each cell is time-consuming. In
Figure 5A, the two peaks have clear meanings: the major peak rep-
resents cells that can be confidently tracked, and the minor peak
consists of mostly segmentation problems. The size ratio between
the two peaks represents the tracking quality, which we can im-
prove in two ways. 1) We can improve the input data by adjusting
segmentation parameters or using a different routine for cell iden-
tification. The uncertainty footprint is used to compare the quality
of input data from different segmentation routines or settings. For
example, we have determined that the high uncertainty of the result
in Figure 5A are from over-segmentations. We adjust the settings of
the Synthetic Brainbows so that the segmentation generates more
under-segmentations. The same similarity threshold (0.2) is then
used to match the two time points. The result is shown in Figure 5B.
We consider the result a minor improvement, as the number of con-
fidently tracked cells increases. Figure 6C and D show two exam-
ples when we filter the volume rendering results by uncertainty:
Figure 6C an example for under-segmentation, and Figure 6D a
case where one cell disappears. For under-segmented cells, we can
leverage the result in Section 4.1, as the EM algorithm is shown
to be effective to separate fused cells. 2) We can make improve-
ments to the matching algorithm. Similar to the over-segmented
case of Figure 6B, despite high uncertainty, many tracking results
of over-segmented cells are in fact valid. In our matching algorithm,
a mechanism to accommodate over-segmented results is adjusting

the similarity threshold value. Figure 5C shows the result when we
adjust the similarity threshold to 0.85 with the same segmentation
input as for Figure 5A. Consider the case in Figure 6B, the two
parts of a cell are considered similar in size; both are matched to
the correct cell and this configuration no longer incurs conflicts.
The histogram of Figure 5C reflects this improvement with a sig-
nificant reduction of the uncertain peak comparing to Figure 5A,
since many of the over-segmented cells in Figure 5A now have
lower uncertainty values. To confirm the result, we manually ex-
amined 1177 segmented and identified components in the results of
Figure 5C. When a similarity threshold of 0.85 is used, there are 75
cases with uncertainty values between 26 and 31 (the minor peak of
Figure 5C), among which, 8 cases are due to under-segmentation,
37 cases due to noise, 19 cases due to over-segmentation, and 11
other cases including mitoses and disappearance of cells. Compar-
ing to the similarity threshold of 0.2, there are 73 over-segmented
cases reduced from the peak in Figure 5A and moved to lower un-
certainties. There are 1030 cells fall under the major peak with
uncertainty values between 1 and 10. We only detected two cases
having problems, where the same under-segmentations were gen-
erated for both time points. There are 55 cells fall between the two
peaks with uncertainty values between 11 and 25. They are gen-
erally considered as correct results, because most are cases simi-
lar to Figure 6B or influenced by noise. The remaining 17 cases
are mostly noise insignificant to the analysis. For those under-
segmented cells, the EM clustering method can be applied to re-
fine the results. In the supplementary results, we include more EM
examples to demonstrate how we evaluate resegmented results us-
ing the 2D histograms of the uncertainty footprint. The results from
manual examinations demonstrate that a good correlation exists be-
tween the tracking/segmentation quality and the uncertainty foot-
print value distribution. It also shows that resegmentation can be
incorporated into the cell matching process and guided by the un-
certainty footprint evaluations.

5. Discussion

We designed the uncertainty footprint in our specific application of
tracking cells in 4D confocal scans, as there has been a real need
for an evaluation tool for such a complex task. Previously, only
manual evaluation was available but not practical. The uncertainty
footprint leverages the nonuniformity of local convergence in an
iterative process and reveals trends of local convergence using his-
tograms. When the disparity of convergence is shown as distinctive
patterns in the 2D histogram of the uncertainty footprint, we can
classify the result back on the function domain using a series of
well-established methods already used in volume visualization. We
have demonstrated the features of the uncertainty footprint for two
different algorithms from our 4D tracking workflow. We can use
the uncertainty footprint to quickly evaluate a tracking result and
pinpoint local structures causing problems. The benefits are most
obvious when data to be analyzed contain complex structures and
noise.

Although a detailed presentation of our complete 4D tracking
workflow and the resulting system is out of the scope, we would
like to emphasize the importance of the uncertainty footprint with
an outline of our tracking workflow. First, we use the Synthetic
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Brainbows to segment and color an input 4D scan of cell develop-
ment. The segmentation is fast and GPU-based, but many segmen-
tation issues may occur. Next, we run the graph-based matching
algorithm of Section 4.2. The uncertainty footprint of the match-
ing results is generated on the fly. However, the matching iterations
are controlled by a real-time analysis on the growing 2D histogram
of the uncertainty footprint. The algorithm examines the histogram
and searches for diagonal lines. When the peak of high uncertainty
separates from the main peak of converged results, the iterations are
interrupted to run a resegmentation. It automatically selects cells or
components based on the high uncertainty values and uses the EM
algorithm for the segmentation. Hence, the EM algorithm is only
applied to local structures with a limited computational overhead.
Furthermore, the cluster number for the EM clustering is also de-
termined from the uncertainty footprint – the number of high un-
certainty edges from one vertex, which can be derived from the line
slope in the 2D histogram. Since high uncertainty cells or compo-
nents are not necessarily under-segmented, we use the uncertainty
footprint again to evaluate the EM results and only accept highly
reliable ones, which are shown in Figure 2 and the supplementary
results. Finally, we repeat the iterations until the user-defined crite-
ria are satisfied.

Essentially, the uncertainty footprint is a binding force in our
tracking workflow. The capability to examine and reevaluate the
segmentation results within the matching iterations substantially
improves the outcome. We made a comparison with the method
of Amat et al. [ALM∗14] Figure 7A1 and A2 show their result
and ours respectively. We used an example data set downloaded
from the link provided by their publication. We manually exam-
ined 1904 cells over 31 time points and counted incorrectly tracked
cells. Despite an extremely clean data set, we counted 18 incorrect
cell associations from Amat et al.’s result, which achieved a success
rate of about 99%. The errors were mainly due to incorrectly link-
ing partially segmented cells, as shown in Figure 7A1. Using our
tracking workflow, a 100% success rate was achieved for the same
sample data, as segmentation issues were detected and fixed auto-
matically. The method of Amat et al. also adopts a tracking quality
evaluation method similar to Kan et al. [KLB∗13], which is based
on track consistency, i.e., if one cell is tracked to two cells or none,
the tracking needs a manual examination. Comparing the uncer-
tainty footprint to their evaluation method, ours can provide more
details and differentiate uncertain cases. As shown in Figure 7B1
and B2, a problem not involving track consistency cannot be de-
tected by their method. We also experimented Amat et al.’s method
on our zebrafish eye scan to test its performance on real-world
data. However, no matter how we adjusted the parameters, a decent
tracking result could not be obtained for comparison. As shown in
Figure 7C1 and C2, only less than 20% of the cells were tracked.
The reliably tracked cells were under 10%. The comparison results
demonstrate that the commonly used benchmark method for cell
tracking may be highly biased. A method with 99% success rate on
one or several test data sets can completely fail on others. This is
the reason that we need methods independent of benchmark data.
We strongly believe that building uncertainty analysis into tracking
algorithms is one viable solution and the uncertainty footprint is
our contribution in this field.

Although the development of the uncertainty footprint is based

Figure 7: A comparison of the cell tracking results between Amat
et al.’s and ours. (A1) One time point from the tracking result using
a sample data set provided by Amat et al. This time point contains
several tracking issues. The inset magnifies one such issue that the
green part is incorrectly tracked to the yellow cell due to an over-
segmentation that separates the green from the orange. (A2) One
time point from the tracking result using our workflow. The inset
shows the correct tracking of the two cells. (B) Two time points of a
magnified region from Amat et al.’s tracking result. The orange cell
in the first time point is tracked to the green part of the cell in the
second time point. Since the track is consistent, the issue cannot be
detected using Amat et al.’s method without a detailed uncertainty
analysis. (C) Two time points from the result by applying Amat et
al.’s method to the 4D scan of zebrafish eye development. The col-
ored cells are those could be tracked, only a portion of which are
correct. All data and results are included in the supplementary ma-
terials and can be interactively viewed using FluoRender.

on our specific application of 4D cell tracking, it is easily general-
ized for uncertainty analysis for most iterative processes. The his-
tograms from the uncertainty footprint provide the visual analytic
tools for human-in-the-loop interactions to regulate the iterative
processes. Quantitative analyses can also be designed using the re-
sults from previous research on simple histograms and multidimen-
sional histograms. We have demonstrated that, depending on the
specific applications, different quantification methods are needed.
For example, for the EM-based cell segmentation, we used the
MFE and aggregation jointly; and for the graph-based cell tracking,
we used the extracted 1D histogram, representing the distribution
of the tracking quality. Our generalized method may also shed light
on many other nonconvex optimization problems. Different from
the conventional uncertainty quantification methods, which would
have introduced perturbations and then quantify the outcome using
statistical methods, our uncertainty quantification is indirect. Just
like a detective using a person’s footprints to analyze his/her be-
havior, we are deriving the uncertainty of an iterative process from
its nonuniform behavior. By comparing the aggregated changes of
different subdomains on a 2D histogram, we can understand confi-
dence in convergence. When distinctive patterns appear for an un-
certain convergence or diverging process, we can isolate the subdo-
mains and perform a detailed study to resolve issues. The topology
of the objective function over the spatial domain can influence how
the uncertainty footprint results are interpreted. Intuitively, when
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many saddle points are in proximity, the process of getting trapped
by one extremum would seem circuitous because of the mutual in-
fluence of subdomains. On the other hand, if a nonconvex objective
function is topologically too simple, the result from the uncertainty
footprint would seem uniform and confident. Our applications are
focused on the problems in cell tracking, which have very distin-
guishable shapes but are also noisy. Therefore, it is possible for us
to determine if segmentation or tracking results are correct. With
an ever-increasing data size in scientific research, the simplicity of
the uncertainty footprint also makes it suitable for real-time anal-
ysis. The computational overhead is nearly negligible. However, it
requires doubling the storage for values from a previous iteration,
if the evaluation of function ft(x) does not explicitly generate the
differences. For memory-intensive applications, we need a subsam-
pling method or a streamed processing.

6. Conclusion

In this paper, we present the uncertainty footprint, a method to
quantify, visualize, and analyze uncertainties in an iterative process
without explicit prior knowledge about its uncertainty. Our study
shows a promising and potentially useful metric for objective and
self-contained validation for a 4D cell tracking workflow. We also
regard it a generally applicable method. In future work, we will
concentrate our efforts on a comprehensive tracking system that
can support a broad range of microscopy data. A self-contained
validation method, such as the uncertainty footprint, will be used
not only for evaluating results, but also for automated error cor-
rections. Classification methods from the computer vision research
will be used to enrich the knowledge from the uncertainty footprint
analysis. The tracking system will also be able to accommodate
multiple metrics so that more algorithms can be implemented to
make automated and progressive improvements.
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