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Figure 1: Results from our synthetic Brainbow technique and a true Brainbow image. A: Cells in the eye of a zebrafish embryo. B:
Neurons in a Drosophila brain. C: Eye of a Drosophila. D: The cerebral cortex of a mouse (Confocal image by Tamily Weissman.
Mouse by Jean Livet and Ryan Draft. Image source: http://www.conncoll.edu/ccacad/zimmer/GFP-ww/cooluses0.html). A, B,
C are single-channel confocal scans processed with our synthetic Brainbow technique, in comparison with the true Brainbow
image in D.

Abstract
Brainbow is a genetic engineering technique that randomly colorizes cells. Biological samples processed with
this technique and imaged with confocal microscopy have distinctive colors for individual cells. Complex cellular
structures can then be easily visualized. However, the complexity of the Brainbow technique limits its applications.
In practice, most confocal microscopy scans use different florescence staining with typically at most three distinct
cellular structures. These structures are often packed and obscure each other in rendered images making analysis
difficult. In this paper, we leverage a process known as GPU framebuffer feedback loops to synthesize Brainbow-like
images. In addition, we incorporate ID shuffling and Monte-Carlo sampling into our technique, so that it can be
applied to single-channel confocal microscopy data. The synthesized Brainbow images are presented to domain
experts with positive feedback. A user survey demonstrates that our synthetic Brainbow technique improves
visualizations of volume data with complex structures for biologists.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology
and Techniques—; J.3 [Life and Medical Sciences]: Biology and genetics—;

1. Introduction

Brainbow [LWK∗07] is a genetic engineering technique
that randomly colorizes cells. Biological samples pro-
cessed with this technique and imaged with confo-
cal microscopy have distinctive colors for individual
cells. It is useful for disambiguating visual clutter in
confocal data, identifying complex cellular structures,

and for cell tracking. However, the application of the
Brainbow technique on a certain species of animals re-
quires complex transgenic manipulations. In practice,
most confocal microscopy scans use different antibody
staining with typically at most three distinct cellular
structures. These structures are often packed and ob-
scure each other in rendered images making analysis
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difficult. The problem is commonly addressed through
segmentation. Accurate segmentation of confocal mi-
croscopy data, which are typically full of fine details,
depends greatly on users’ prior knowledge of the data.
Such knowledge does not only come from experience,
but also is more and more importantly from visualiza-
tions of the data. Visualizing confocal microscopy data
requires techniques that on the one hand are interac-
tive and preserve the fine details on the other. Inspired
by the Brainbow technique, we explore techniques that
randomly colorize single-channel confocal microscopy
data. The outcome of our random colorization tech-
nique assumes similar appearance of Brainbows. Ad-
jacent complex structures can then be clearly visual-
ized by color variations. Our synthetic Brainbow tech-
nique leverages a process known as GPU framebuffer
feedback loops, which is a random process in the mas-
sive parallel computing environment of GPUs. In ad-
dition, we incorporate ID shuffling and Monte-Carlo
sampling into the technique. The random colorization
in our synthesized Brainbow images respects structural
information and preserves fine details. The results are
presented to domain experts with positive feedback. A
user survey demonstrates that our synthetic Brainbow
technique improves visualization of volume data with
complex structures for biologists.

2. Background and Related Work

Randomness is an inherent character accompanying all
natural processes. Researchers in biology have taken
advantages of randomness. We are particularly inter-
ested in one recent technique in life science: Brainbow.
In [LWK∗07], Livet et al. described a series of strate-
gies to randomly express fluorescent proteins in indi-
vidual cells of mouse nervous system. They exploited
the advantages of the widely used Cre/lox recombi-
nation system [BD04], which is able to turn on or off
the expression of one or several different fluorescent
proteins in a gene sequence. For different cells that are
genetically modified to work with this technique, dif-
ferent combinations of the fluorescent proteins can oc-
cur. This is because the Cre/lox recombination system
randomly chooses the gene expressions for recombi-
nation. The end result is that different cells, despite
the same type, are fluorescently stained with different
colors. This technique is useful to visualize and distin-
guish detailed structures in the nervous system, where
cells are packed and can be touching. However, the ap-
plication of the Brainbow technique on a certain species
of animals is limited because of complex transgenic
manipulations. Disambiguation of cellular structures
in single-channel datasets are commonly addressed by
segmentation techniques (e.g. Cohen et al. [CRT94]),
which usually change the appearance of the original
data and may be undesired for visualization purposes.

Inspired by Brainbow, we would like to use compu-
tational techniques to randomly colorize confocal mi-
croscopy data processed with common antibody stain-
ing. By generating Brainbow-like results where differ-
ent structures are distinctively colored, our proposed
technique is an improvement to the visualization of
single-channel confocal microscopy data.

Our synthetic Brainbow technique leverages a pro-
cess known as GPU framebuffer feedback loops. This
process reads and writes the same framebuffer by mul-
tiple rendering or computing threads on GPU. If the
output value of one pixel is dependent of its neighbors’
values, it essentially creates race conditions among dif-
ferent threads. Without locking or synchronizing of the
threads, the results become nondeterministic. Expe-
rienced graphics program developers avoid the non-
deterministic behavior of GPU framebuffer feedback
loops by framebuffer Ping-Pong, which is a technique
using two framebuffers for reading and writing, thus
synchronizing different threads. In fact, setting up a
framebuffer feedback loop by binding the same frame-
buffer to a shader’s (or computing kernel’s) input and
output is not considered an error by graphics hardware
specifications. Developers are simply warned against
doing so because the results are "undefined" [SA12].
However, considering that a framebuffer feedback loop
is computationally more efficient by saving half the
memory and using fewer context switches, we do be-
lieve it deserves a closer examination. In our research,
we find that the nondeterministic behavior of given
graphics hardware induced by asynchronism can be
statistically tested and determined, which is discussed
in Section 3.

Applications of GPU framebuffer feedback loops are
rare in previous work, due to the fact that determinis-
tic results are generally desired in computations with
GPUs, such as filtering in image processing and equa-
tion solving in simulations. However, its theoretical de-
velopment has long preceded the appearance of GPUs.
An iterative computational model of GPUs is equiv-
alent to a cellular automaton. The framebuffer can
be thought as a grid of the cellular automaton with
its pixels as the cells. The shader or computing ker-
nel provides the rules for updating the states of the
cells. The study of cellular automata dates back to the
early history of computer science, including work of
Ulam and Neumann [vN66]. Different types of cellu-
lar automata have been extensively studied through
the later development of computer technology. Cel-
lular automata have been proposed as computational
models for simulations in physics [Mar84] [RK88], ma-
terial science [Bia94] [SBYR∗91], and biology [HG93]
[NM92]. They have also been extensively used in im-
age segmentation algorithms [VK05] [KP08] [KP10]
[KSH10] [GYXS11] [LCH∗12]. However, most research
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focused on synchronous cellular automata, where the
state of every cell is updated together. Using frame-
buffer Ping-Pong in an iterative computational model
is an example of a synchronous cellular automaton. In
contrast, a framebuffer feedback loop should update
individual cells independently, and the new state of
a cell affects the calculation of states in neighboring
cells, thus an asynchronous cellular automaton. Asyn-
chronous cellular automata are generally less studied
due to their nondeterministic behaviors. A lot of ef-
fort has been spent in recent research on asynchronous
cellular automata to find efficient ways of computing
deterministically without global synchronization. The
research is mostly based on chaotic relaxation (Chazen
and Miranker [CM69]), which described necessary and
sufficient conditions for an asynchronous and chaotic
process to converge. Baudet [Bau78] presented a class
of asynchronous iterative methods for solving a system
of equations. Adachi et al. [AL04] presented an asyn-
chronously updating cellular automaton that conducts
computation without relying on a simulated global
synchronization mechanism. Galilée et al. [GMRC07]
proposed a joint algorithm-architecture for comput-
ing watershed segmentation. Their algorithm is pro-
grammed as a set of concurrent communicating iter-
ative programs that are efficiently mapped onto an
asynchronous parallel architecture. Venkatasubrama-
nian and Vuduc [VV09] described GPU implemen-
tations of Jacobi’s iterative method for the 2D Pois-
son equation. Their implementations include a "wild"
asynchronous example, which removed synchroniza-
tion between iterations. They have shown that the
"wild" asynchronous implementation on GPU has 1.2-
2.5x speedups against best synchronous implementa-
tion, thanks to highly efficient memory bandwidth uti-
lization. For GPU implementations of connected com-
ponent labeling, Oliveira and Lotufo [OL10] discussed
an ID merging method using asynchronous automata
and presented an improved algorithm that included
local and global merging stages. They also reported
their method achieved 5-10x speedup in relation to
Stephano-Bulgarelli’s [dSB99] serial algorithm. We re-
gard the previously presented connected component
labeling methods as primitive forms of more sophis-
ticated colorization. Different from previous research,
we leverage the randomness and use a computational
stochastic process to simulate the results from a biolog-
ical stochastic process: Brainbow.

3. Randomness in a GPU Framebuffer Feedback
Loop

We would like to first examine the behavior of GPU
framebuffer feedback loops. In order to avoid unneces-
sary complexity, we restrict the investigation to integer
textures and turn off texture filtering. The behavior of

GPU framebuffer feedback loops can be studied with
cellular automaton models. This is inspired by Hawick
et al. [HLP10] and Oliveira and Lotufo [OL10], whose
work used cellular automaton models for connected
component labeling. Specifically, we are interested in
a cellular automaton described by Algorithm 1. We

Algorithm 1 Basic ID merging

For each cell
A unique ID is assigned as the initial state;

For each iteration
For each cell

The cell’s state is replaced by the maximum
ID within its neighborhood;

use a 1D example to demonstrate the reason that we
chose this particular cellular automaton for examina-
tion of the random behavior of GPU framebuffer feed-
back loops. In Figure 2, a 1D cellular automaton has
eight cells. At its initial state, each cell is assigned an
integer ID, which is in ascending order. We examine
three different methods of updating the cells. First, the
cells are updated synchronously, which means we need
an extra buffer to save the intermediate results. In this
case, the order of how the cells are updated makes no
difference to the results. It requires seven iterations to
converge to all the same ID. Then, we update the cells
asynchronously, i.e. reading and writing IDs without
using an extra buffer. Since the order of how the cells
are updated can be random and influence the result,
we examine two extreme cases among all the combi-
nations of update orders. The second method updates
the cells asynchronously in order from left to right. The
result looks exactly the same as when the cells are up-
dated synchronously. Lastly, we update the cells asyn-
chronously, but in reverse order. It only requires one
iteration for the maximum ID to propagate. We are able
to make several observations from this example. First, if
we color-map the IDs, we can see a fixed stripe pattern
"marching" through the grid when the IDs are ordered
and the updates are synchronous. Second, when the
updates are not synchronous, the "marching" pattern
is the same as synchronous updates only if the up-
date order is the same as the ID order, and is disturbed
otherwise. We are able to detect such disorderliness
by comparing the result from asynchronous update to
that of synchronous update. Suppose that the occur-
rences of ordered and reverse ordered asynchronous
updates are about the same, the "marching" IDs are so
disturbed that we should not observe regular patterns.
Third, asynchronous update can potentially accelerate
ID propagation.

We extend the above idea and use it to detect the
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Figure 2: Comparison of synchronous and asynchronous
updates of a 1D cellular automaton. The illustration shows
only the first iteration in detailed steps. In the synchronous
case, the original buffer is in red and the extra buffer for
intermediate results is in green. Values are updated according
to the maxima within the moving window (in blue), indicated
by the yellow arrows. In the asynchronous cases, there is no
extra buffer, so updates are immediate. The updated values
in each step when the window moves are in dark red. We
can repeat the iteration for the first two cases until all cells
are updated to the maximum ID. Their results look exactly
the same. The last case has already converged after the first
iteration.

occurrence of asynchronous updates in GPU frame-
buffer feedback loops, which we assume to be the sole
cause of randomness in the process. For a given graph-
ics card and a framebuffer texture of given size, we
first assign IDs in ascending order. In 2D, this can be
row-first or column-first, which does not influence the
result. We run Algorithm 1 once in a framebuffer feed-
back loop and compare the outcome with that from a
synchronous update. In the asynchronous result, we
count the number of pixels that have different IDs than
in the synchronous result. These pixels have differ-
ent IDs because the orders of asynchronous updates
are against the ID order. To count asynchronous up-
dates of the reverse directions, we then do the same
but with reverse ordered IDs. Both experiments are
repeated for ten times. We then calculate the average
percentages of asynchronous updates for both ordered
and reverse ordered IDs. The two average values are
added to estimate the total occurrence of asynchronous
updates. We experimented with four graphics cards
and each with eight different texture sizes. The results
are illustrated in Figure 3. The tested graphics cards
should be representative for current main-stream mod-
els from the two major GPU manufacturers: AMD and
nVidia. The tested results reveal important character-
istics of framebuffer feedback loops. Firstly, contrary
to our initial speculation, framebuffer feedback loops
are not entirely asynchronous. This is due to texture
caching. Framebuffer feedback loop exhibits similar

Figure 3: Test results of occurrence of asynchronous updates
for four graphics cards: nVidia GeForce GTX 460, GTX 680,
AMD FirePro M8900 and Radeon HD 7970. The horizontal
axes of all plots are texture sizes tested. The vertical axes are
the occurrence of asynchronous updates in percentage.

behavior to framebuffer Ping-Pong for small texture
sizes (no asynchronous updates), as texture cache and
graphics memory are working as two buffers for read-
ing and writing. Secondly, occurrence of asynchronous
updates increases as texture size increases. However,
even for asynchronous updates, GPU threads tend to
access memory with ascending order. This can be seen
from the much higher occurrence rate of asynchronous
updates when the IDs are in reverse order. Thirdly,
GPUs from different manufacturers (AMD vs. nVidia)
exhibit different occurrence rates of asynchronous up-
dates. However, GPUs from the same manufacturer
have similar results, even if they are in different se-
ries (for example, GeForce 400 series vs. 600 series). In
conclusion, for specific graphics hardware, the behav-
ior of framebuffer feedback loop is nondeterministic
but predictable within a certain range, which is the re-
sult of a hybrid of synchronous and asynchronous up-
dates. It is worth mentioning that the authors did the
tests within their available resources. The behavior of
framebuffer feedback loop may vary greatly for older
or future hardware, or integrated GPUs. We continue
our discussion in the following sections with regard
to the tested graphics hardware. Framebuffer feedback
loops are always used in the subsequent discussions.

4. Synthetic Brainbows

4.1. ID Shuffling

In fact, Algorithm 1 was discussed in the work of Haw-
ick et al. [HLP10] and that of Oliveira and Lotufo [OL10]
as a local merging step in their GPU implementations of
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connected component labeling. If we introduce a binary
mask into an iterative process, assigning and propagat-
ing IDs only within the masked regions, it converges to
the labeled connected components of the mask. With
framebuffer feedback loops, the result still converges
and is deterministic, since cell values are monotoni-
cally increasing and upper bounded within each con-
nected component. This also can be considered as a
simple case of chaotic relaxation [CM69]. However, if
we focus on the process itself rather than its conver-
gence, we should be able to observe one problem when
IDs are ordered as initial states. For example, a spiral
is used as the binary mask in Figure 4. If we consider
the spiral as a complex structure, the visualization task
here is to decompose the structure into simpler shapes
so that each component as well as the spatial relation-
ships among components can be more easily studied.
Connected component labeling, which considers the
complex structure as one component, does not fulfill
the requirement. A simple solution is to stop the iter-
ative process of local ID merging at fixed iterations.
This generates stochastic patterns due to asynchronous
updates. But also, because the tested graphics cards
largely exhibit synchronous behavior, as discussed in
Section 3, local ID merging generates many small sub-
regions (Figure 4 A and B). The high frequency patterns
in these un-merged regions can be visually distractive.
To compensate for this and generate fewer sub-regions
after certain iterations, we propose ID shuffling. ID
shuffling does not randomly change the order of IDs.
Instead, IDs are meant to be evenly distributed. This is
formally defined as maximizing the grid distance be-
tween any ordered pair of adjacent IDs. Intuitively, it
can be understood as the process of placing IDs, from
large to small, onto an empty grid. Wherever an ID
is placed on the grid, the next smaller ID is placed so
that the pair can be as far apart as possible. The re-
sult is that local merging is centered at local maxima
and small sub-regions are quickly merged into larger
regions (Figure 4 C). For easy implementation, we first
consider an ID shuffling algorithm for grids of size 2n.
The shuffled IDs are easily generated from their grid
coordinates, as the IDs are spatially placed according to
a binary (or quad- for 2D, or oct- for 3D, etc.) encoding
tree. We first introduce the shuffling algorithm for a 1D
grid (Algorithm 2), which is illustrated in Figure 5. In
the algorithm, the function reverse_bit() reverses the
order of the binary code of the input integer. The sub-
traction step at the end is only for indices starting from
0. We want to exclude 0 from valid IDs, since it is used
as a mask value. It is equivalent to increasing the re-
versed index value by 1.

Shuffling algorithms for higher dimensional grids
are extensions of Algorithm 2, as shown below. In Al-
gorithm 3, the function interleave_bit() combines the

Figure 4: A 512×512 binary image of a spiral is used as a
mask for Algorithm 1. After 512 iterations, different ID or-
derings exhibit different patterns when IDs are color-mapped.
A: IDs are in ascending order. B: IDs are in descending or-
der. C: IDs are shuffled with Algorithm 3. The numbers of
remaining sub-regions are shown below the images. Yellow
arrowheads point to regions where high amount of un-merged
sub-regions are present, due to the largely synchronous be-
havior of the graphics card. With shuffled IDs, the algorithm
is able to generate fewer sub-regions with the same number
of iterations. The tests are done on an AMD Radeon HD
7970 graphics card, which exhibits the least asynchronous
behavior in Figure 3. There are fewer remaining sub-regions
when a more asynchronous graphics card is used, e.g. nVidia
cards. However, the difference between ordered and shuffled
ID orderings is still quite large.

Algorithm 2 ID shuffling for a 1D grid

Define N = the number of cells of the grid and
N = 2n, (n ∈ Z);
For each cell

I = the cell’s grid index;
I′ = reverse_bit(I);
ID = N - I′;

bits of its multiple inputs in an interleaving fashion.
For example, in a 3D grid, we have calculated I′x, I′y,
and I′z for one cell. The first bit of the function’s out-
put I′ is the first bit of I′x, and then the second bit of I′

is the first bit of I′y, and then the first bit of I′z, and so
on. For a grid of an arbitrary size, it is considered as a

Algorithm 3 ID shuffling for a high dimensional grid

Define {Ni} = the number of cells in each dimension
and Ni = 2ni , (ni ∈ Z);
Define N =

∏
(Ni);

For each cell
{Ii} = the cell’s grid index in each dimension;
{I′i } = {reverse_bit(Ii)};
I′ = interleave_bit({I′i });
ID = N - I′;

sub-region of a larger grid of size 2n. Then IDs of any
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Figure 5: ID shuffling for an 8-cell 1D grid. The binary code
of each cell index is reversed and then subtracted from the
total cell number. The IDs are placed in the order of visiting
the binary tree shown below, with depth-first traversal. In
the tree, larger IDs are on nodes of higher levels.

grid can be calculated using Algorithm 3. Our algo-
rithm is not the unique way to shuffle IDs. Equivalent
algorithms can be derived for example by swapping
nodes on the same level of the binary tree in Figure 5.
However, our algorithm is suitable for parallel evalua-
tion, as each cell’s ID is uniquely defined by its indices.
For repetitive evaluations of different grids, IDs can be
pre-calculated and reused. Furthermore, in addition to
asynchronous computing models, ID shuffling is po-
tentially an improvement to existing connected com-
ponent labeling algorithms, since it accelerates the lo-
cal merging step. However, for visualization purposes,
our ID merging algorithm with shuffling can only be
applied on binary data. The decomposition of complex
structures still seems to be arbitrary. In order to ap-
ply it on grayscale data and for the colorization to fol-
low structural information, finer control over the local
merging process is necessary, which is discussed next.

4.2. Monte-Carlo Sampling

Our goal in this paper is to apply ID merging on a sin-
gle channel of confocal microscopy data, and generate
Brainbow-like images. We want the colorization pro-
cess to be applied directly as we do not want to rely on
pre-segmented results. Since we want to have unique
IDs for individual regions, one difficulty of applying
the colorization described in Section 4.1 to grayscale
data is that IDs cannot be simply scaled according to
scalar intensities. However, we can control the merg-
ing speed of IDs based on scalar intensities. This is
achieved through temporal Monte-Carlo sampling. The
algorithm for colorizing a grayscale volume is listed
below. In Algorithm 4, M is a scalar value calculated
from the original scalar volume. It measures the fea-
tures that we use to control the merging speed. For ex-

Algorithm 4 Colorization of a grayscale volume

Define S the scalar volume of original data;
Define ID the ID volume generated by Algorithm 3;
For each cell in ID

M = the measure of features in S;
N = a sample from a 4D noise function;
If M > N

The cell’s ID is replaced by the maximum ID
within its neighborhood;

ample, the stopping function in a standard anisotropic
diffusion [PM90] can be used as the measure of homo-
geneity. We can use this measure if we want the merg-
ing to be faster in homogeneous regions and slower at
edges (less homogeneous). The value N can be seen as a
pseudo-random number generated from a 4D (3D plus
time or iteration) noise function [Gus05]. If the value of
M is higher, there is also a higher chance that the ID is
merged, and vice versa.

Figure 6: Colorization of a confocal scan of a Drosophila
brain (512×512×85×8bit). A: The volume rendering of the
original dataset. B: The volume rendering of the colorized
dataset. Dotted outlines indicate large and homogeneous
structures. It took 200 iterations to generate the result. Gen-
erating the result took around 1 second on an AMD Radeon
HD 7970.

We first experimented with a common measure of
edges, which is defined by the gradient magnitude of
the intensity value S:

M = e−
|O(S)|2

σ2 (1)

Figure 6 shows the result of applying Algorithm 4 on a
confocal scan (512×512×85×8bit) of a Drosophila brain.
The nervous system of the Drosophila brain has complex
structures, where important structures can easily be ob-
scured. We ran 200 iterations of ID merging and exam-
ined the patterns generated from Algorithm 4. Notice
that the ordered ID sequence was repeatedly mapped
to a palette of bright colors that resemble fluorescent
markers. Because of ID shuffling (Algorithm 3), the
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colors were spatially shuffled too. The colored volume
was then modulated by the original scalar intensities.
The number of iterations was chosen to generate the
desired color variations. Comparing the colorized vol-
ume (Figure 6 B) with the original volume (Figure 6 A),
we can observe that large and homogeneous structures
are emphasized, which are indicated by the dotted out-
lines in Figure 6 B. Small structures are also distinctively
colored. This is helpful when one structure is obstruct-
ing another. Their spatial relationship becomes clear,
as they are colored differently. An apparent drawback
of using only gradient magnitude as the measure for
edges is that faintly connected structures, such as the
fibers in the lower right region of Figure 6, are colored
differently even for the same branch. To generate the
result in Figure 6, σ in Equation 1 was set to 0.5. If we
further increase its value, more structures are merged
and colored the same, which reduces the resolving ca-
pability. This is illustrated in Figure 7 by an example
of two idealized touching biological cells, where we
have to increase the σ value in order to merge the sur-
rounding IDs. For just two cells, we can easily stop the
merging process when the two groups of IDs join at the
boundary, similar to Figure 7 D. This becomes imprac-
tical for a large amount of cells or complex structures,
since the iteration number is a global parameter and
cannot be tuned for all structures of different sizes.

Figure 7: An illustrated example of two idealized touching
biological cells. A: The original data. Cells have high inten-
sity and low gradient magnitude at their centers and low
intensity but high gradient magnitude at borders. B: Algo-
rithm 4 is used with the measure in Equation 1. When the σ
value in Equation 1 is low, the centers of the cells are colored
differently. However, they are surrounded by a cloud of vari-
ous colors (IDs), which obscures the content inside. C: When
we increase the σ value, the two cells are fused together. D:
When we introduce a size constraint, the two cells can be
colored as desired.

A great advantage of using the ID merging process
is that the size of each individual structure having the
same ID can be retrieved by counting the number of
cells with the same ID. The size of each structure is
then used to control the merging process. The problem
of two touching cells can be solved using a two-pass
method. In the first pass, a low σ value is used and
the result looks like Figure 7 B. Then we count the

size of each structure having the same ID, similar to
calculating component sizes in connected component
analysis. In the second pass, we use a high σ value and
set a constraint on component size, which is described
in Algorithm 5.

Algorithm 5 Synthetic Brainbow (colorization of a
grayscale volume with size constraint)

Define S the scalar volume of original data;
Define ID the ID volume generated by Algorithm 3;
Define B a Boolean volume whose voxels represent
if they are in a component with size over a threshold;
For each cell in ID

M = the measure of features in S;
N = a sample from a 4D noise function;
If M > N and !B

The cell’s ID is replaced by the maximum ID
within its neighborhood;

If the size constraint is set to lower than the size of
the smaller cell, the surrounding IDs in Figure 7 B are
merged into the two cells. The IDs from the two cells,
however, cannot be merged into one another, because
of the size constraint. The result should look like Fig-
ure 7 D. Notice that although the size constraint is a
global parameter, it is used to safely merge IDs in noisy
regions. So it is usually set at a relatively small value.
Larger structures are merged by adjusting the measure
of features and iteration numbers.

5. Results and User Survey

Using the above method, we generated synthetic Brain-
bows for three single-channel confocal scans. We were
able to adjust the number of iterations, the σ value
in Equation 1, and the size constraint during the ID
merging process. For each scan, we performed sev-
eral experiments with different parameter combina-
tions until reaching a satisfactory result. The results
are listed in Figures 8 to 10. All listed results are from
an AMD Radeon HD 7970 graphics card. We also gen-
erated synthetic Brainbow images with other graphics
cards tested in Section 3. Because occurrence of asyn-
chronous updates is about 5% at the highest for 512x512
textures, only limited variation can be observed from
these results, which are included in the supplementary
material.

For most cases, e.g. Figure 8 and 9, our synthetic
Brainbow technique does not alter information from
original datasets. It enhances visualization by ran-
domly applying colors to different structures. We chose
bright colors that resemble fluorescent markers used in
biology research, so that structures are not accidentally
emphasized/de-emphasized because of color variance.
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Figure 8: Synthesized Brainbow of the same confocal scan
of a Drosophila brain (512×512×85×8bit) in Figure 6. A:
The volume rendering of the original dataset. B: Rendering
of the colorized result generated with size constraint. C: A
close-up of the fibers. Individual fibers are connected and
different fibers are colored differently. In the first pass of ID
merging, iteration number is set to 200, and σ is set to 0.5.
In the second pass of ID merging, iteration number is set to
200, σ to 1.0, and size constraint is set to 100 voxels. The
colorization process took 2.81 seconds on an AMD Radeon
HD 7970.

Figure 9: Synthesized Brainbow of a confocal scan of an eye
of a zebrafish embryo (512×512×33×8bit). A: The volume
rendering of the original dataset. B: The volume rendering of
the colorized result. In the original scan, many structures are
fused together, which are better discriminated in the colorized
result. The colorization took two passes. In the first pass,
iteration number is set to 50, and σ is set to 0.35. In the
second pass, iteration number is set to 300, σ to 1.0, and size
constraint is set to 250. The colorization process took 1.34
seconds on an AMD Radeon HD 7970.

For noisy datasets, e.g. Figure 10, we suppressed noise
with MIP. We believe such colorization can help visual-
izing complex structures in biology research. Since the
colorization process takes relatively short time, it can
be integrated into a biologist’s visualization workflow.
Another prospective use is when a group of biologists
are looking at scans, instead of pointing on the datasets
and referring structures as "this" or "that", specific color
names can be used. However, this can only be validated
when the synthetic Brainbows are used in practice.

Since biologists are the potential users of our tech-
nique, we created an online survey and sent its link

Figure 10: Synthesized Brainbow of a confocal scan of
a Drosophila brain (512×512×115×8bit). A: The volume
rendering of the original dataset. This is a noisy dataset.
B: The volume rendering of the colorized result. The col-
ored volume is rendered with maximum intensity projection
(MIP) [WMLK89] plus a shading overlay, as described by
Wan et al. [WOCH12], in order to see the colored structures
clearly. C: A close-up of the cells. The colorization took two
passes. In the first pass, iteration number is set to 200, and
σ is set to 0.35. In the second pass, iteration number is set to
10, σ to 1.0, and size constraint is set to 50. This 10-iteration
process is then repeated five times in the second pass. This is
because the dataset is noisy and we need to look at the result
and decide if more iterations are necessary. The colorization
process took 1.98 seconds on an AMD Radeon HD 7970,
excluding the time for manual parameter adjustment.

to biologists that are experts in confocal microscopy.
The participants should be familiar with the Brainbow
technique, but they may not necessarily be working
with the technique. There were two parts in the sur-
vey. In each question of the first part, an image was
shown and participants were asked how likely the im-
age was generated by the Brainbow technique. There
were eight images: four generated with our technique,
two true Brainbow images, and two images gener-
ated by first anisotropic diffusion [PM90] and then
thresholding plus connected component labeling. The
images were shown in random order. In the second
part, we revealed the images that were generated by
our technique and showed their original renderings as
in Figure 8, 9 and 10. We asked the participants how
likely they would use this technique for visualization
enhancement in their research. We received answers
from 16 participants, some of which also left comments.
The answers to the first part are plotted in Figure 11.
Most participants agreed that our technique was able
to generate results similar to Brainbow. Furthermore,
70% of the participants showed great interest in using
our technique. Details of the survey can be found in the
supplementary material. From the survey results and
participants’ feedback, we learned that visualizations
altering the appearance of the original data would be
commonly rejected. Researchers often want fine details
and sometimes even noise to be preserved. Interest-
ingly, some of the biologists were able to tell that data
had been altered because of their over-smoothed and
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thus unnatural look. This is the main reason why the
thresholded and labeled results had low scores. The
data in Figure 9 had been pre-processed with a median
filter. We believe this led to the lower score. Thanks to
the ID merging process, our method is able to preserve
fine details of the original data, which is important to
biologists for a visualization technique.

Figure 11: Results from the first part of our survey. The
collective answers to the likelihood of each image being gen-
erated with the Brainbow technique are plotted in one bar
plot. The length of a bar represents the frequency of each
choice being selected (5 - most likely, 1 - most unlikely). Here
the images are grouped according to techniques used. In the
survey, they were shown to the participants in random order.
Above the plots are the combined percentages of the partic-
ipants who answered 5 or 4. The answers to most of our
images are similar to those of the true Brainbows.

6. Discussion and Conclusions

ID merging with asynchronous cellular automata had
been used in connected component analysis, which we
regard as the primitive form of more sophisticated col-
orization. Our quest for computationally generating
Brainbow-like images from single-channel confocal mi-
croscopy data started with examinations of GPU frame-
buffer feedback loops. We initially thought it would
be purely nondeterministic because of asynchronous
memory access in parallel. However, when we tested
its behavior with a cellular automaton, we found the
behavior of GPU framebuffer feedback loop, despite be-
ing nondeterministic, is less random than we thought.
In order to use the patterns generated in the iterative
process of GPU framebuffer feedback loops to synthe-
size Brainbow-like results, we introduced ID shuffling
and Monte-Carlo sampling into the ID merging pro-
cess. Our technique is able to enhance visualizations
of data with complex structures, such as the biologi-
cal datasets demonstrated in this paper. Our technique
has advantages over traditional segmentation plus la-
beling methods because of its speed, and also because
it preserves fine details of original data. Both make it
a visualization technique appealing to domain experts,
as we learned from a user survey. Currently, a draw-
back of our technique is the lack of an intuitive user

interface, which limits its users to the authors and their
close collaborators. We would like to address this issue
in future work.

There are apparent similarities between our tech-
nique and many segmentation methods for cellular or
fibrous structures in biological data. Algorithm 5 can
be considered as a general framework for segmenta-
tion, instead of a specific segmentation method. Firstly,
it combines component labeling and feature detection
into one process. It is also related to fuzzy connected
component analysis [US96]. An important benefit of
such combination is that size information is readily
available and used as a constraint. The size calculated
from component labeling is a more accurate descriptor
than the previously proposed size-based transfer func-
tion [CM08]. Our size descriptor works better with fi-
brous and branching structures, since they may have
big size but be considered small by a local size descrip-
tor. Secondly, the quality of segmentation can be refined
by using more specific feature measures. For example,
a measure of tubeness [SNS∗98] can be added for fibers,
and a measure using similarity between smoothed gra-
dient vectors [LLT∗07] can be added for cells. Thirdly,
Algorithm 5 can be used with or without GPU frame-
buffer feedback loops. The purpose of this paper is to
find a random colorization technique that can be used
with GPU framebuffer feedback loops, which saves
memory and utilizes memory bandwidth more effi-
ciently. We paid more attention to the stochastic pat-
terns generated in the process and did not discuss con-
vergence in great detail. However, when appropriate
constraints are applied, the process can still converge
to a segmentation of the input.

In addition to user interface improvement, in future
work, we would like to make differently colored struc-
tures selectable from three-dimensional views. The se-
lections can then be combined, disconnected, or re-
moved. A further extension would be applications for
time sequence data, as we would like to use this method
to identify similar features through time.
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