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Fig. 1. Full-detail ray tracing of giga-particle data sets. From left to right: CosmicWeb early universe data set from a P3D simulation
with 29 billion particles; a 100 million atom molecular dynamics Al2O3− SiC materials fracture simulation; and a 1.3 billion particle
Uintah MPM detonation simulation. Using a quad-socket, 72-core 2.5 GHz Intel R©† Xeon R©E7-8890 v3 Processor with 3 TB RAM and
path-tracing with progressive refinement at 1 sample per pixel, these far and close images (above and below) are rendered at 1.6 (far)
/ 1.0 (close) fps (left), 2.0 / 1.2 fps (center), and 1.0 / 0.9 fps (right), respectively, at 4K (3840×2160) resolution. All examples use our
balanced P-k-d tree, an acceleration structure which requires little or no memory cost beyond the original data.

Abstract—We present a novel approach to rendering large particle data sets from molecular dynamics, astrophysics and other
sources. We employ a new data structure adapted from the original balanced k-d tree, which allows for representation of data with
trivial or no overhead. In the OSPRay visualization framework, we have developed an efficient CPU algorithm for traversing, classifying
and ray tracing these data. Our approach is able to render up to billions of particles on a typical workstation, purely on the CPU,
without any approximations or level-of-detail techniques, and optionally with attribute-based color mapping, dynamic range query, and
advanced lighting models such as ambient occlusion and path tracing.

Index Terms—Ray tracing, Visualization, Particle Data, k-d Trees

1 INTRODUCTION

With ever increasing compute power, simulations produce increas-
ingly large quantities of data to be visualized. The largest computa-
tional codes predominantly generate particle data: molecular dynam-
ics materials computations, mesoscale or macroscale atomistic simula-
tions, and cosmology and astrophysics n-body codes. The largest cos-
mology simulations now generate trillions of particles at scale; these
petabytes of data are seldom even stored, let alone visualized. Exam-
ples of such data are shown in Figure 1.

At such scale, traditional rasterization-based approaches to render-
ing such data sets become problematic: simply rendering each particle
with a tessellated sphere becomes prohibitive, and even splatting and
impostor techniques are limited by rasterization performance, GPU
memory limitations and PCI bandwidth. This becomes more challeng-
ing if the user desires to interact with multiple data time steps, apply

†Intel, Xeon, and Xeon Phi are trademarks of Intel Corporation in the
United States and other countries. Other names and brands may be
claimed as the property of others.
1Intel Corporation
2Scientific Computing and Imaging Institute, University of Utah
3Argonne National Laboratory
4Northern Illinois University
5Member, IEEE

Manuscript received 31 Mar. 2014; accepted 1 Aug. 2014; date of
publication xx xxx 2014; date of current version xx xxx 2014.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

different attribute color mappings, or perform interactive parameter
range selection. State-of-the-art GPU techniques [17] can render up to
10 billion particles on a single GPU with level-of-detail (LOD). How-
ever, LOD approaches must be specifically tuned to individual data
and rendering modalities. For extremely large datasets from cosmol-
ogy, showing full-detail data is challenging but crucial to understand-
ing both structure and scale of the simulation (Figure 2). Ideally, we
wish to visualize data at full-resolution without LOD. GPU visualiza-
tion clusters can render on the order of hundreds of billions of particles
with no LOD in parallel [25]. However, repartitioning and composit-
ing massive point data can be costly, and requires data-parallel soft-
ware architectures and significant compute resources.

With the right algorithms, large-scale visualization is achievable
on single-node CPU hardware. Visualization is a big data problem
– the chief challenge is accessing large memory efficiently and di-
rectly. CPU memory is cheap, plentiful and fast: a laptop CPU has
more memory (16 GB) than even a high-end GPU (12 GB), and a
large-memory workstation with 768 GB can be acquired for less than
$10,000. New vis clusters commonly feature nodes with 256 GB, and
“fat” nodes are capable of 1–6 TB. Directly visualizing large data on
a single resource is attractive, but requires fast memory-efficient ren-
dering techniques for the CPU. CPU ray tracing has proven a viable
approach for particle data (e.g., [8, 15]), but previous methods used
standard acceleration structures with high overhead or algorithms spe-
cific to older SIMD architectures. General-purpose ray tracers like
Embree [30] offer performance and portability, but incur high mem-
ory cost and lack the ability to efficiently query data.



Fig. 2. Half-4K (3840x1080) rendering of the 432 GB Cosmic Web 83 dataset (29 billion particles), rendering at 6.4 frames per second (fps) with
ambient occlusion – 1 sample per pixel (spp) with progressive refinement – on a 72-core 2.5 GHz Xeon E7-8890 v3 with 3 TB RAM.

In this paper, we describe a novel approach for visualizing large
particle data sets using a ray tracing acceleration data structure based
on the original balanced k-d tree [2]. Our approach rearranges data in-
place into an acceleration structure that requires no additional mem-
ory footprint. Balanced k-d trees are different from the spatial k-d
trees (BSP trees) commonly used in ray tracing, and to the best of
our knowledge we are the first to employ this sturcture in directly ray
tracing particle data at this scale. Moreover, our technical contribu-
tions are augmenting the balanced k-d tree into a P-k-d tree support-
ing additional range queries and efficient traversal and classification in
a packet ray tracing environment. We achieve performance compet-
itive with existing BVH ray tracing approaches, while requiring sig-
nificantly less memory. We implement our approach in the OSPRay
visualization framework [21], and use it to ray trace billion-particle
data sets (Figures 1 and 2) on commodity workstations.
2 BACKGROUND
2.1 Particle and Point Visualization
Efficient rendering of point data has been a popular topic in graphics
(see, e.g., [9]). In this paper, we are principally interested in visual-
izing volumetric particle data from molecular dynamics and other La-
grangian simulations. Points fill interior space as opposed to defining
a surface, and have one or more attributes, e.g. atom type, tempera-
ture, etc. Approaches for rendering such data vary, but can roughly be
categorized into glyph, volumetric and implicit surface approaches.

Glyph techniques have long been explored on both GPU and CPU.
Most relevant to our work, Gribble et al. [8] employ coherent ray trac-
ing algorithms on the CPU to efficiently render millions of opaque
sphere glyphs. Knoll et al. [16] employed BVHs in a predecessor of
OSPRay for ray tracing megascale ball-and-stick models on CPU and
Xeon Phi architectures. Megamol [11, 10] uses a combination of GPU
rasterization, ray casting of sphere impostors, and image-space filter-
ing to efficiently render millions of atoms. More recently, Le Muzic
et al. [17] demonstrated a dynamic LOD system for rendering up to
10 billion atoms at 10 fps. With LOD, the system effectively renders
on the order of 107 primitives on-device. They used this approach for
real-time molecular animation, procedurally deformed with Brownian
motion and user interaction. This approach works principally because
the GPU controls both level-of-detail and movement of particles; it
would likely face IO challenges if applied to large-scale, time-varying
simulation data. In our work, we propose a CPU-based solution to
rendering full-scale data, without LOD.

Volumetric approaches to rendering large point-based data vary
widely. With LOD, systems have proven capable of rendering billions
of particles; Fraedrich et al. [6] implemented an extremely fast out-
of-core LOD particle renderer for real-time rendering of astrophysics
data. However, image-space reconstruction is insufficient to recon-
struct smooth surfaces classified from volume data. For that, one gen-
erally has the choice of resampling particle data onto a grid, or em-
ploying direct SPH/RBF volume rendering. Kähler et al. [14] demon-
strate the former, using an octree to simultaneously splat particle data
(simplified using LOD) and volume-render approximated data on a
structured grid. Fraedrich et al. [5] dynamically resample from an oc-
tree into perspective-space uniform grids of predetermined size, and
achieve nearly interactive performance on an NVIDIA 280 GTX for

up to 42M particles (0.1 fps). Orthomann et al. [20] describe a similar
system traversing an octree, using “packets” of rays computed on the
GPU. Reda et al. [24] use the GPU to efficiently volume ray cast ball-
and-stick glyphs, structured volumes, and RBF volume data. Knoll
et al. [15] demonstrate direct RBF volume rendering on the CPU and
Xeon Phi at interactive frame rates, using a BVH which incurs signif-
icant memory overhead.

Extracting surfaces from point data has been common in the molec-
ular vis community, starting with the solvent-accessible surfaces of
Connolly [3]. Wyvill et al. [31] employed the first implementation
of marching cubes in polygonizing implicit surfaces from “blobby”
RBF objects. For visualization, Navrátil et al. [19] use marching
cubes to extract single iso-surfaces from multi-field cosmological data.
Stone et al. [26] implement CUDA-accelerated iso-surface extrac-
tion from Gaussian RBF fields for fast computation of molecular sur-
faces. Though efficient, these approaches would sacrifice reconstruc-
tion quality and limit opportunities for dynamic classification.

Lastly, the astrophysics and cosmology communities have several
tools for parallel batch visualization of particles [23, 4, 27, 1]. Gen-
erally, these do not take advantage of SIMD, have limited if any GPU
acceleration, and are not designed for interactive rendering.

Irrespective of the type of data, rendering large numbers of particles
can also be seen as a special case of more general large-model render-
ing techniques, for which we refer interested readers to state-of-the-art
papers on CPU [30] and GPU [7] approaches, as well as more recent
work involving large-model ray tracing on GPUs [18].
2.2 Ray Tracing Acceleration Structures
Ray tracing describes an entire family of algorithms that solve for the
intersection of rays with geometric primitives, and the transport of
light (or other properties) across a spatial media. At its core, ray trac-
ing relies on spatial data structures, or acceleration structures, such as
grids, binary space partitioning (BSP), (spatial) k-d trees, or bounding
volume hierarchies (BVHs) (see Figure 3a-b).
Bounding Volume Hierarchies (BVHs, Figure 3a) are object hier-
archies that store the bounds of all enclosed primitives in each node.
Inner nodes specify tree topology; leaf nodes store primitives. Each
primitive is referenced in exactly one leaf node, and nodes can spa-
tially overlap. BVH trees are generally highly unbalanced.
Spatial k-d trees, in contrast (see Figure 3b), rely on hierarchical
space partitioning. Spatial (subdivision) k-d trees are just a special
case of more general binary space partitioning (BSP) trees, in which
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Fig. 3. BVHs (left) and k-d trees (center) as used in ray tracing to
hierarchically organize geometric primitives. Right: Balanced point k-d
trees (such as our P-k-d tree) encode k-dimensional points. Point k-d
trees (right) and ray tracing k-d trees (center) share similarities, but also
have important differences (see Section 3).



split planes are axis-aligned but may be placed anywhere in space. In-
ner nodes of a spatial k-d tree specify axis-aligned partitioning planes
that recursively subdivide space; leaf nodes store references to geo-
metric primitives. Nearly all “k-d trees” in ray tracing, collision and
graphics are of this variety.
Range Trees BVHs, spatial k-d trees, etc can all be augmented with
additional information to store, for each node, the min/max ranges
of the attribute values associated with primitives in this sub-tree; this
can then be used to, interactively reject sub-trees outside of a given
parameter range (see, e.g., [28, 8]) These structures are often called
min-max trees or interval trees.
2.3 Balanced k-d Trees
In contrast to spatial k-d trees used in ray tracing, in this paper we
build upon the original balanced k-d trees of Bentley [2], illustrated
in Figure 3(c). Spatial k-d trees and balanced k-d trees sound similar,
and both subdivide space via axis-aligned split planes. However, they
are fundamentally different data structures with very different proper-
ties. In particular, balanced k-d trees are explicitly designed to store
points (not geometric primitives), which make them not immediately
applicable to ray tracing. They do, however, have some interesting
properties, specifically that a balanced k-d tree is:
(i) complete: all but the lowest levels of the tree are filled,
(ii) left-balanced: all nodes are on the left side of the tree, and
(iii) pointer-less: children of node i live at 2i+1 and 2i+2
These allow balanced k-d trees to encode a spatial hierarchy simply by
reordering the original data, requiring no memory at all other than for
the particle positions themselves [2]. We discuss the properties of k-d
trees, and our variant the p-k-d tree, in greater detail in Section 3.
2.4 ISPC, Embree, and OSPRay
Our implementation make use of several open-source projects that in-
fluence how exactly our technique was implemented.
The Intel R©SPMD Program Compiler (ISPC) [22, http://ispc.
github.io] is an open-source Single-Program Multiple Data (SPMD)
compiler that performs vectorization by mapping different instances
of a scalar program to different vector lanes. ISPC is similar in spirit
to other SPMD languages like OpenCL or OpenMP 4.0, but is de-
signed to better allow for using CPU-like programming models. ISPC
supports all major CPU instruction set architectures (ISAs), including
Intel R©Streaming SIMD Extensions (SSSE), Intel R©Advanced Vector
Instructions (AVX, AVX2, and AVX-512), and the Intel R©Many Core
Instructions (IMCI) used by the current version of Intel R©Xeon Phi
TM

processors.
Embree [30, http://embree.github.io] is a high-performance ker-
nel framework for efficient CPU ray tracing. It offers a set of low-level
kernels for building and traversing ray tracing data structures that are
particularly optimized to exploit modern CPUs’ vector instruction sets
through highly optimized, hand-tuned kernels. Embree allows for us-
ing user-defined primitive types (e.g., spheres), but handles all accel-
eration structure kernels (e.g., type of BVH) internally and opaquely.
OSPRay (ospray.github.io) is a ray tracing based rendering engine
for high-fidelity visualization. OSPRay builds on both Embree and
ISPC, using Embree for everything related to tracing rays, and ISPC
for everything involving rendering and shading. OSPRay generally
achieves interactive performance even on a single laptop or worksta-
tion (depending on the number of rays traced per pixel) and supports
effects such as shadows, reflections, transparency, or ambient occlu-
sion. Improving on Embree, OSPRay allows for new shading models
and user-defined data representations and acceleration structures.
2.5 Challenges in Ray Tracing Large Particle Models
Initially, when we set out applying ray tracing to particle visualization
we did not expect this would require anything new; we initially took
the OSPRay ray tracing engine (which internally builds on Embree),
used Embree’s user defined geometry functionality to add a sphere
primitive to OSPRay. This enabled us to render complex models with
many millions of particles, but soon revealed two major issues.

The first issue is the desire to interactively color-map and discard
(i.e. query) particle data based on range or other attributes. This is

impossible with the standard Embree BVH. Simply discarding deacti-
vated particles during traversal is performance-prohibitive when large
regions of particles are inactive; they are traversed but never actually
intersected. One solution is to use min-max trees [28, 15]; but these
cannot easily be realized within the Embree framework. We required
a new data structure and traversal mechanism for efficient query.

The second problem is the memory overhead required to handle the
ray tracing acceleration structures, in particular if the memory required
for each primitive itself is relatively small. For example, using sphere
glyphs in Embree’s user-defined geometry requires 16 bytes for the
primitive and 32 bytes per BVH leaf, leading to an overhead of up to
7× for leaves with one primitive each. While copious CPU memory
encourages waste if performance can be gained, in many cases ineffi-
ciency can mean the difference between being able to handle a data set
or not. Also, in an in situ visualization context, the memory overhead
required for rendering would leave only a fraction of memory for the
actual simulation.
3 RAY TRACING USING BALANCED P-K-D TREES

In this paper, we propose a novel approach to efficiently handle large
particle data in a ray tracer—in particular taking into account mem-
ory consumption and construction time of the acceleration structure.
We apply this technique to interactive visualization of large particle
data sets using the OSPRay CPU ray tracing framework. Given the
challenges outlined in Section 2.5, we need a way of ray tracing large
numbers of particles that:

• allows large numbers of particles to be rendered without losing
ray tracing’s ability to scale logarithmically in model size,

• has significantly lower overhead than 7×; and
• achieves competitive, interactive performance.
We take an approach based on balanced k-d trees which achieves

these goals. Our method works by representing each primitive i via
a single representative point xi (in the case of spheres, their centers),
and computing the maximum spatial extent Rmax that any primitive
deviates from this point (in the case of spheres, the maximum radius
of any sphere). We then organize these points in a balanced “point”-k-
d tree which has several nice properties for our particular application
– in particular memory consumption – and devise a novel ray traver-
sal scheme that, given the point-k-d tree and Rmax can efficiently ray
trace the primitives encoded in this tree. Our P-k-d tree is thus a bal-
anced k-d tree with several modifications to enable efficient rendering
of particle data, namely:

• we use maximum extent [13] instead of round robin [2] to pick
split planes, we encode the split axis in the tree data itself

• we re-arrange particle attributes into separate balanced trees, so
they may be queried separately

• we preprocess attributes into (optional) min-max trees for faster
query, incurring only modest extra cost of 1–2 bytes per particle.

3.1 Balanced vs. Spatial k-d tree Traversal
As discussed in Section 3, balanced kd-trees are quite different from
spatial k-d trees commonly used in ray tracing. This has important
consequences for ray traversal.

In spatial k-d trees, splitting planes are used to separate different
primitives that all have a spatial extent. Different sub trees’ spatial
extends do not overlap, and primitives will often be referenced in mul-
tiple leaf nodes. In the spatial k-d tree, inner nodes correspond to
splitting planes and store a plane description; leaf nodes correspond
to regions of space and store (references to) primitives. Being able to
place partitioning planes at arbitrary locations allows the spatial k-d
tree a wide variety of construction options [12]. Properly built spatial
k-d trees can enclose their geometric primitives quite well, but require
significant memory overhead for interior nodes, and pointers for both
tree topology and primitives.

Balanced k-d trees, in contrast, always and exclusively encode
points (not 3D primitives), and place planes always right through the
data points. When building the k-d tree such that the resulting tree is
binary, complete, and left-balanced, balanced k-d trees can be encoded
in completely pointerless fashion: the children for the node ni are al-
ways n2i+1 and n2i+2, respectively, and a child exists if and only if its
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index i is less than the number of points N. In each node ni, the par-
titioning plane’s dimension di is defined implicitly through the node’s
tree level Li = f loor(log2(i)) (as di = Li % k, where k is the number of
dimensions), and the plane’s position—going through ni then is xi,d,
where xi, i ∈ [0..k) are the k coordinates of point i. Stored in that way,
a balanced k-d tree can encode N k-dimensional points with exactly
zero memory other than for the points themselves.

The drawback of the balanced k-d tree is that a node does not parti-
tion its primitives into exclusively left and right sides, but instead also
contains a primitive at each inner node itself. These inner nodes must
be intersected by every ray entering this sub-tree, usually unsuccess-
fully. The root node, for example, is guaranteed to be intersected by
almost every ray traversing the data structure (though early termina-
tion may avoid its traversal). This data structure would be impractical
for geometry whose intersection tests are expensive. However, for vi-
sualization of spheres, the cost of unnecessary intersection is low.
3.2 Naı̈ve Balanced P-k-d Tree Traversal
In order to efficiently allow 3D object queries such as ray traversal a
data structure has must allow for recursive traversal that quickly rejects
sub-trees that do not intersect the query (e.g., a ray, frustum, range,
etc). A spatial k-d tree style traversal does not easily work for the
P-k-d tree data structure; the balanced k-d tree is in fact closer to an
object hierarchy (like a BVH), where each node partitions its objects
into disjoint sets of those objects on the left, those on the right, and
the root node—and even though the representative point of an object
may lie to the left of the root node’s plane it is not guaranteed that the
entire object is exclusively on that side.

Given a maximum radius Rmax we can compute conservative
bounding boxes for its two children as depicted in Figure 4. Off-
setting the node x’s plane Px into +Rmax and−Rmax yields two implicit
planes Px,lo and Px,hi that, when clipped against the bounding box for
the given sub-tree, yields two bounding boxes that can easily be guar-
anteed to conservatively bound all the primitives in that sub-tree. This
then leads to the simple recursive traversal depicted in Algorithm 1.

function recurse(Object Q, Node n, box aabb)
if (Q does not intersect aabb)
return;

Q.process(n);
box aabb_l = aabb.clip(n.Plane + Rmax);
box aabb_r = aabb.clip(n.Plane - Rmax);
if (has left child)

recurse(Q,leftChild,aabb_l);
if (has right child)

recurse(Q,rightChild,aabb_r);

function traverse(Object Q, K-D tree tree)
box aabb_root = tree.bounds().extend(Rmax);
recurse(Q,tree.root,aabb_root);

Algorithm 1: A naı̈ve recursive traversal algorithm applicable for
3D object query (ray, frustum, range, etc.).

3.3 Optimized Ray Traversal
Several optimizations to such a naı̈ve algorithm can significantly im-
prove performance. In particular, for ray traversal we want to traverse
as much as possible in front-to-back order, in order to maximize the
likelihood of skipping entire subtrees once a close hit is found. Like in
a spatial k-d tree, we can actually guarantee a front-to-back traversal
using only local traversal decisions. However, unlike in a spatial k-d
tree, we can not early-terminate a ray upon the first found intersection:

Rmax

x

Px

Px,lo

Px,hi

Fig. 4. Recursive traversal of a balanced k-d tree assuming each primi-
tive is represented by a point, and bounded by a sphere with a radius of,
at most, Rmax . Given a bounding box known to enclose all the primitives
in a sub-tree, the plane Px associated with the subtree’s root node x im-
plicitly defined two planes Px,lo and Px,hi. Clipping the subtree’s bounds
against those two planes gives two (conservative) bounding boxes for
the left and right child trees, allowing for recursive traversal.

since sub-trees can overlap, our data structure and traversal are actu-
ally closer to a BVH, and other sub-trees may still contain a possibly
closer intersection.

Another important observation to make is that when traversing from
one node to any of its children, only one of the six box sides will ac-
tually change. Thus, performing full ray-box intersection tests would
redundantly re-compute 5 of 6 values every time. Instead, we can
adopt an idea from spatial k-d tree traversal that, rather than track-
ing the bounding box itself, instead tracks only the ray interval that
overlaps the current box, and incrementally changes that based on the
distance to the respective plane(s). We do not employ actual recursion,
but emulate the recursion using a manually-maintained node stack as
commonly done for both BVHs and spatial k-d trees. In addition, we
add some logic for traversal of the min-max range trees, optionally
computed for each particle attribute we wish to query (described in
Section 3.6.2). The final pseudo-code is given in Algorithm 2.

function traverse(Ray R, K-D tree tree) {
box aabb_root = tree.bounds().extend(Rmax);
(t_in,t_out) = clip R to aabb_root;
if (t_out >= t_in) return DONE;
Node n = tree.root;
while (true)
while (true)
if (node is leaf)
intersect particle n; break;

// particle range culling:
if (n out of valid range)

break;
// compute dist to near and far plane
t_lo,t_hi = distance to P_lo,P_hi
// node IDs for near/far child
k = split_dim(n)
s = sign(R.dir[k]);
(n_nr,n_fr) = (2n+2-s,2n+1+s)
// entry/exit dist for nr/fr child
t_fr_in = max(t_in,min(t_lo,t_hi))
t_nr_out = min(t_out,max(t_lo,t_hi))

if (t_in > t_near_out)
// entire [t_in,t_out] on far side
n = t_far; continue;

if (t_fr < t_far_in)
// entire [t_in,t_out] on near side
n = t_near; continue;

push(n,n_far,t_far_in,t_out)
(n,t_out) = (n_nr,t_nr,out)

// pop from stack:
while (true)
if (stack is empty) return;
(n,n_far,t_in,t_out) = pop();
if (ray.t_hit < t_in) continue;
intersectPrim(n);
break; // go on traversing

Algorithm 2: Optimized algorithm for traversing rays through a P-k-
d tree, including attribute range selection. The algorithm is a hybrid
between spatial k-d-tree and BVH traversal.

3.4 Handling Particles With Different Radii
Though all our data sets use a fixed radii for all particles, it would
be possible to also support different radii (for example, by storing a
radius per particle, or by deriving a particle from a mapped attribute),
and even non-spherical shapes such as balls-and-sticks, triangles, etc.
All the P-k-d tree needs to guarantee correctness is a conservative Rmax
value that, when used to shift a subtree’s planes, properly bounds all
primitives in that subtree. The tightness of the bounding primitive (i.e.,
how tightly the sphere with radius Rmax bounds the actual primitive)
will impact traversal performance. In cases where a handful of large
particles are mixed with many tiny particles, performance will suffer.
There are ways of addressing this (e.g., storing a maximum radius per
sub-tree); we leave them outside the scope of this paper.

3.5 Ray Tracing and Shading
By implementing the P-k-d traversal routine within OSPRay [21],
we are automatically able to use the material, rendering and shading
pipeline of that ray tracing engine. When a ray terminates in traversal,
the OSPRay renderer is given a geometry ID (a pointer to the parti-
cle), from which it can look up the material via the chosen attribute
and transfer function. This material is then passed to the chosen OS-
PRay renderer (ray cast, ambient occlusion, path tracing, etc.), which
integrates the color accordingly and generates secondary rays as nec-
essary. Like Embree [30], OSPRay allows for progressive refinement
an option, ensuring consistent interactivity and allowing path-traced
images to converge to production-quality renderings. Examples of



diffuse-only ray casting, ambient occlusion and path tracing are shown
in Figure 5.

Fig. 5. Rendering modalities, illustrated on a 3500-atom zeolite struc-
ture. Left to right: ray casting (106 fps), ambient occlusion (5 fps at
16 spp; 45 fps at 1 spp with progressive refinement) and path tracing
(0.041 fps at 512 spp; 18 fps with progressive refinement).
3.6 Tree Construction
Generally, balanced k-d trees rely on a dimensional sort, and pick the
literal median element as the pivot point. Unlike spatial k-d trees [12],
they offer no flexibility in placing split planes: once the split dimen-
sion has been chosen, the balance of the tree dictates exactly which
particle along that axis has to be the root node. Nevertheless, there are
a variety of choices in particular with respect to data layout that we
want to briefly discuss.
3.6.1 Round-Robin vs Maximum-Extent Partitioning
Traditional balanced k-d trees [2] chose the partitioning dimension in
a round-robin (RR) manner, in which case each node’s dimension is
implicit in the node’s depth in the tree. As shown by Jensen [13], it
is often advantageous to instead partition along the axis of the current
subtree’s maximum extent, and since such a maximum extent (ME)
splitting scheme will minimize the surface area of the two child nodes,
this will also be advantageous for ray traversal. Generally, we found
that ME splitting gave a 30% performance advantage over round robin.

Maximum-extent partitioning also simplifies our algorithm, as we
no longer have to track the tree depth on the stack. However, we now
must store the chosen split axis. We currently squeeze this two-bit
information into the particle position, i.e. the lowest two bits of the x,
etc. Alternately, one could employ unused bits of the min-max tree,
or of the atom type attribute, etc. In the worse case, one could store
these bit explicitly in an separate array, requiring two additional bits
per particle.
3.6.2 Range Trees, Queries and Multi-Attribute Data
The balanced P-k-d tree is different from standard balanced k-d trees
in that it is designed for volumetric particle data with queryable at-
tributes. Our goal is to efficiently traverse the tree and cull unwanted
branches based on a transfer function or other range query. This is
useful, for example, in materials science when isolating atoms of one
or more types, or in cosmology to filter out low-density particles to
better reveal structure (Figure 6).

In the P-k-d tree, each attribute is its own array of attribute val-
ues. Attributes are ordered in the same way as particles, i.e. for
given attributes M, D, and V, the V value for particle i is stored at
pkd.attribute[V].value[i]. Range trees are built on top of attributes,
and traversed alongside the P-k-d tree as in Algorithm 2. To build the
range tree, we first build the P-k-d tree, then simply compute min-max
information of the component attributes. To store the min-max tree,
we currently use one integer per inner node of the tree, which gives
us a 32-bit mask of which attribute values are present in the given
sub-tree. While this adds some overhead, it is typically small com-
pared to the size of the attribute data in the inner nodes; moreover one
mask suffices for multi-attribute data. This mask is computed as a pre-
process every time the transfer function changes. While the added cost
of the mask is relatively small (13%), it is purely optional; the user can
traverse all data without culling sub-trees.
3.6.3 Construction Algorithm
For actual tree construction we use an in-place partitioning scheme in-
spired by the well-known quick-sort algorithm. The method proceeds
as follows: first, using either round-robin or maximum extent, we pick
the axis on which to sort. Then, using the current root particle as a
pivot we iterate through left and right sub-trees (in heap indexing), to

Fig. 6. Attribute-based query, based on atom type, in the Al2O3-SiC
fissure data set. Left to right: full data set; silica carbide particles only;
indentations in the alumina.

find “wrong” particles in the left and right sub-tree; i.e., a particle on
the left that is larger than, and a particle on the right that is smaller
than, that pivot. If these exist (at, say, positions i and j) we swap these
two particles, and continue scanning at i+1 and j+1.

If a wrong particle could only be found on one side—say, i on the
left—then i becomes the new pivot by swapping with the root, and we
again search for wrong nodes in both subtrees (but noting that from
now on, we will no longer have to scan any earlier than i on the left);
the right-side case is analogous. If no wrong particle could be found on
either side, then the current root is the proper pivot, the tree is properly
partitioned in that node, and we can recursively build its children.

For thread parallelization, we fork a new thread to handle the left
sub-tree when sub-trees contain more than a certain number of (cur-
rently, 16K) elements. Though this strategy does not achieve perfect
scalability, it works reasonably well for larger data for which scala-
bility is needed most, e.g., delivering around 70% scalability to 16
threads on a 16-core 2.7 GHz SandyBridge CPU (Table 5).

The P-k-d tree is currently built in a pre-processing step when
we convert from the external input file formats to OSPRay’s internal
XML-based binary data format; this saves re-building the tree every
time a model is loaded, and since our data structure is very compact
there was no obvious reason not to store readily built trees.

3.7 OSPRay Implementation
We implemented our P-k-d method in the OSPRay [21] framework.
With its object-oriented design, all ray-intersectable geometric objects
are derived from a common, abstract ospray::Geometry type.
We subclass this into a new ospray PKDGeometry type that performs
the ray traversal, range culling, and particle intersection. This allows
all other components of OSPRay—camera, materials, renderers, par-
allel rendering mode, etc. — to work “out of the box”, requiring no
new implementation.

OSPRay internally implements all objects in a hybrid C++/ISPC
fashion, where components that aren’t performance critical (book-
keeping, reference counting, etc) are implemented in C++, while
performance-critical traversal routines are implemented in ISPC; the
interface to all such functions—ray generation, traversal, intersection,
shading, etc—is based on varying rays (i.e., they internally operate
on N rays in parallel, one per vector lane, where N is the architec-
ture’s vector width). A naı̈ve implementation of Algorithm 2 in ISPC
would—just like in other SPMD languages like OpenCL or CUDA—
lead to each lane simply executing its own independent traversal, with
each lane having (and maintaining) its own stack, traversing its own
path through the tree, typically traversing different nodes and inter-
secting different particles, etc. However, as ISPC allows a program-
mer to explicitly specify which data is uniform (i.e., scalar) vs which
is varying (i.e., once per vector lane) it is relatively easy to also imple-
ment a “packet” traversal in which the different rays remain ganged
together (see e.g., [29]), and either all rays skip a sub-tree, or the en-
tire packet enters this sub-tree (even those rays that would not have
needed to). Despite worse SIMD utilization, packet traversal is con-
sistently faster: The naı̈ve SPMD implementation is limited by the the
efficiency of gathering of up to N different particles (in general very
different memory locations) in each traversal step. Moreover, stack
operations and masked traversal logic, executed in uniform, are far
simpler for the packet code. For the 180 million atom Uintah data
set, for example, the packet code is roughly 2× faster than the naı̈ve
SPMD method for primary rays, and even 3× faster for ambient oc-
clusion rays. We thus use the packet variant in all our experiments.



4 RESULTS
We evaluate our implementation on several different hardware plat-
forms enumerated in Table 1. These cover a wide range of machines
from personal laptops to high-end workstations and HPC nodes. In all
cases, we only use the systems’ CPUs, the GPUs (where available) are
only used to display the final rendered image. Unless otherwise noted,
all benchmarks are performed at 1024× 1024 (1 megapixel) resolu-
tion, on the 72-core Intel R©Xeon R©E7-8890 v3 workstation with 3 TB
RAM, using ambient occlusion with 1 sample per pixel and progres-
sive refinement.

name #CPUs cores memory
Laptop (Macbook Pro) Core i7 4 x 2.7GHz 16GB
Xeon Phi Workstation (CPU) 2x Xeon E5-2650 16 x 2.7 GHz 64GB
Xeon Phi Workstation (Phi) Xeon Phi SE7110P 61 x 1.24 GHz 16GB
Xeon E7-8890 v3 Workstation 4x Xeon E7-8890 v3 72 x 2.5 GHz 3 TB

Table 1. Hardware used to evaluate P-k-d performance.

4.1 Overall Performance
In Tables 2 and 4, we evaluate our technique by comparing a range
of data sets from 740 thousand atoms to 29 billion particles on the
72-core Xeon E7-8890 v3 workstation. Overall, we achieve solidly
interactive results for ray casting (29–135 fps) and both ambient oc-
clusion (24–90 fps) and path tracing (5–33 fps) at 1 sample per pixel
with progressive refinement rendering. More expensive ray tracing
modalities (ambient occlusion at 16 spp, path tracing at 64 spp) per-
form non-interactively, but at rates suitable for efficient batch render-
ing. We note that performance is only loosely dependent on data size;
the structurally similar SiO2 and Al2O3-SiC fissure simulations per-
form at nearly identical frame rates despite a factor of 20 difference in
data size. We note similar behavior for the Uintah data sets.
4.2 Memory Consumption Relative to the Embree BVH
At the bottom of Table 3, we compare our P-k-d technique with the
standard Embree [30] quad-BVH in OSPRay. The BVH is built di-
rectly on top of a single sphere per particle/atom; Embree chooses its
own optimal number of primitives per leaf node (generally, 1). With
an Embree quad-BVH at default (i.e., performance-optimal) settings
(1 primitive per leaf), the total memory overhead is over 5×; however
performance is on average 1.48× faster than our P-k-d tree. For far
views, this difference is not as great as for close views (7% slower vs
43% slower); and in some cases the P-k-d traversal is actually faster.
This is particularly interesting given that Embree uses hand-tuned,
low-level SIMD routines for BVH traversal (the ray-sphere intersec-
tion is the same in both variants), while our traversal is, so far, coded
exclusively in ISPC, thus leaving potential for low-level optimizations.

Embree by default uses a single primitive per leaf. In principle,
this leaves another, simpler, way of reducing memory consumption by
adopting shallower BVHs with more primitives per leaf. To quantify
this effect we modified our version of Embree to use different thresh-
old for leaf generation (up to a maximum of 8, which is the smallest
that Embree can internally encode), and measured both performance
and memory consumption of the resulting BVH relative to our P-k-d
tree. As seen in Table 3, using the shallower BVH can indeed cut Em-
bree’s memory overhead by half, but it is still 2.7× larger than the P-
k-d tree’s. Even shallower BVHs would reduce this overhead further;
however, we already achieve performance parity at a leaf threshold of
8 (see Table 3). For shallower BVHs, our P-k-d tree would thus have
still lower memory consumption, and also yield higher performance.

We note that the Embree BVH is built only around raw particles;
it does not encode any range information. Prior to implementation of
the P-k-d tree, we experimented with standard range trees in a binary
BVH, both performance and memory proved worse with this approach
than with the P-k-d tree; generally by about 2× and 3×, respectively.
4.3 Range Tree and Query Costs
From Table 2, we see that range trees cost a relatively minor 13% of
the original data size. However, the time to compute the range tree is
O(N), which is interactive for megascale data but can take on the order
of minutes for 29 billion CosmicWeb dataset. Once computed, the
range tree accelerates traversal of a subsets of data by skipping entire
P-k-d subtrees. Frame rate is generally slower when performing these

queries than when rendering full data, due to the extra branching and
worse overall cache behavior. When changing the transfer function,
in addition to the time required to rebuild the range tree, one may
see temporary performance hits of 2x, which recover quickly as cache
is filled appropriately. This behavior varies with data set and chosen
classification. While it falls outside the scope of our work in this paper,
it would be worth further investigation.
4.4 Build time
Table 5 shows scalability for several data sets, and Table 4 shows con-
struction time for our reference data sets. We achieve roughly 70%
scalability up to 16 threads; while we did not explicitly measure the
time to build larger data sets we anticipate their scalability would be
comparable. Overall, P-k-d construction times are small compared to
the time to read from disk. Surprisingly, for the data we tested all build
times were slightly lower than those of the Embree BVH.

data set # particles 1 core 16 cores scalability
nanosphere 740K 220ms 50ms 28%
SiO2 5M 1.75s 330ms 33%
CosmicWeb 13 51M 41.6s 3.6s 72%
Al2O3-SiC 100M 80.4s 7.2s 70%

Table 5. Build time, and scalability up to 16 cores, for select data sets
measured on a 2.7 GHz 16-core E5-2650 workstation with 64 GB RAM.
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Fig. 8. Top: CosmicWeb subsets from 13 to 83. Left: frame rate vs
log10(data size). Right: square root of frame rate vs number of pixels.
4.5 Scalability to Data and Image Size
In Figure 8 (left), we examine the scalability of our algorithm to data
size, rendering varying subsets of the CosmicWeb data from 13 (51
million particles) up to 83 (29 billion particles) on the 4-socket, 72-
core Xeon E7-8890 v3 workstation. We used default camera positions
that render the full extents of the particle volume into a full-screen
window. As expected, performance varies linearly with logarithm of
data size, with some drops in performance reflecting NUMA.

In Figure 8 (right), considering performance with respect to frame
buffer size, we plot number of pixels against the square root of frame
rate, and find a mostly linear curve, rendering the 51M Cosmic 13 sub-
set. Effective throughput increases as we process larger frame buffers,
likely due to improved memory coherency.
4.6 Comparison to GPU Techniques
There is no readily-available GPU ray tracer for large molecular and
particle data with which to compare. State-of-the-art GPU meth-
ods [10] employing OpenGL-rasterized impostors are capable of real-
time performance – for kiloscale or megascale data these would be
faster than our ray tracing approach, particularly on laptop or tablet
CPUs. To render gigascale and larger particle data on the GPU, one
must use simplification, out-of-core approaches, or distributed-parallel
rendering. Geometric simplification methods on the GPU [17] have
handled up to 10 billion (simplified to 200 million) atoms at 10 fps at
2 MP, combining illustrative rendering with screen-space ambient oc-
clusion; the p-k-d technique on our workstation exhibits roughly com-
parable performance (10–20 MRays/sec) on the full, unsimplified data.
Out-of-core LOD methods (e.g., [6]) are capable of even greater per-
formance, but more are difficult to explicitly compare to. In more re-
cent work involving parallel compositing on the GPU [25], the authors
render 32 billion particle imposters without LOD on a 128-GPU clus-
ter in roughly 3 seconds for an 18 MP image (6 million primary rays/
second). With a LOD strategy picking 10% of the full number of par-
ticles, they achieve linearly better performance (60 MRays/second).
While comparison between splatting transparent imposters and ray



Fig. 7. Reference scenes (ambient occlusion, 16 spp). From left to right: nanosphere (740K), SiO2 fissure (5M), Al2O3−SiC fissure (105M atoms),
Uintah detonation (180M particles), large Uintah detonation (1G particles), CosmicWeb 63 (12.2G particles), CosmicWeb 83 (29G particles).

Dataset nanosphere SiO2 Al2O3-SiC Uintah180M Uintah1B CosmicWeb63 CosmicWeb83

#particles 740K 5M 105M 180M .97G 12.2G 29.0G
#time steps 1 121 400 188 72 - -

P-k-d = raw data size 11.3 MB 73 MB 1.58 GB 2.67 GB 14.4 GB 182 GB 432 GB
Range tree (optional) 1.4 MB 9.1 MB .20 GB .336 GB 1.8 GB 23 GB 54 GB

P-k-d build time 220 ms 575 ms 6.6 s 10.2 s 110 s 1700 s 3900 s
ray cast fps 1 spp 125 / 90 135 / 70 111 / 95 80 / 75 46 / 29 37 / 55 35 / 54
AO fps 1 spp 67 / 49 90 / 49 75 / 44 53 / 37 26 / 24 28 / 15 26 / 28

16 spp 14 / 6.6 21 / 6.9 20 / 6.0 13.1 / 5.12 3.70 / 2.56 5.9 / 6.2 5.2 / 4.6
path tracing fps 1 spp 20 / 10.2 28 / 9.1 33 / 9.4 19.3 / 9.0 7.45 / 5.0 11.5 / 10.9 10.2 / 6.0

16 spp 1.46 / .690 2.37 / .622 3.0 / .642 1.50 / .638 .520 / .222 .945 / .905 .830 / .505
64 spp .377 / .174 .591 / .157 .811 / .162 .385 / .160 .130 / .052 .220 / .215 .191 / .120

Table 2. Memory cost and frame rate for (far / close) views, on the 72-core Xeon E7-8890 v3 workstation, rendered at 1024x1024 pixels. We
report numbers for ray casting, ambient occlusion (AO), and path tracing (PT, using a diffuse-metal material), at 1–64 samples per pixel (spp).

OSPRay using P-k-d tree (our technique), including range trees and parameter sub-range selection
Dataset nanosphere SiO2 Al2O3-SiC Uintah180M Uintah1B average

raw data=P-k-d size 11 MB 73 MB 1.7 GB 2.67 GB 14.4 GB
P-k-d AO fps 1 spp 67 / 49 90 / 49 75 / 44 53 / 37 26 / 24
OSPRay using Embree quad-BVH (Embree “best performance” mode - 1 particle / leaf)

qBVH size 58 MB 347 MB 8.8 GB 13.2 GB 71 GB
qBVH+particles 69 MB 420 MB 10.5 GB 15.8 GB 85 GB

qBVH build time(s) 226 ms 3.15 s 9.1 s 14.5 s 140 s
qBVH/P-k-d size ratio 5.2x 5.8x 6.2x 5.9x 5.9x 5.8x

BVH AO fps 1 spp 81 / 72 68 / 71 60 / 67 47 / 52 45 / 74
BVH/P-k-d fps ratio 1.21x/ 1.46x .76x / 1.45x .80x / 1.52x .89x / 1.41x 1.73x/ 3.0x 1.07x / 1.76x (1.41x)
OSPRay using Embree quad-BVH (“performance parity” at roughly 8 particles / leaf)

qBVH size 20 MB 120 MB 2.7 GB 4.8 GB 24.2 GB
qBVH+particles 31 MB 193 MB 4.4 GB 7.5 GB 38.6 GB

qBVH build time(s) 120 ms 4.0 s 7.5 s 10.1 s 52 s
qBVH/P-k-d size ratio 2.8x 2.6x 2.6x 2.8x 2.6x 2.7x

BVH AO fps 1 spp 70 / 62 72 / 55 70 / 67 53 / 55 28 / 30
BVH/P-k-d fps ratio 1.04x/ 1.26x .80x / 1.12x .93x / 1.42x 1.0x / 1.48x 1.08x/ 1.25x .97x / 1.3x (1.14x)

Table 3. Memory usage and performance of our P-k-d tree relative to an Embree quad-BVH built around raw particle data (no range trees). For
Embree, we report data for both “best performance” BVH settings (targeting 1 particle per leaf) and for a “performance parity” setting in which
Embree is about as fast as our P-k-d tree. At best performance Embree is slightly faster than our P-k-d tree, but at 5x memory overhead; at
performance parity, it still has 2x overhead; memory parity is not possible (Embree always requires more memory).

Data Set nanosphere SiO2 Al2O 3-SiC Uintah180M Uintah1B
#particles 740K 5M 105M 180M .96B
data/P-k-d size 11 MB 73 MB 1.7 GB 2.7 GB 36 GB
Xeon E7-8890 v3 (2.5 GHz, 72 cores, 3 TB) 67 / 49 90 / 49 75 / 44 53 / 37 26 / 24
IvyBridge laptop (2.7 GHz, 4 cores, 16 GB) 6.4 / 4.3 10.3 / 3.6 9.6 / 3.5 2.7 / 1.4 - / -
SandyBridge 2.7 GHz (2.7 GHz, 16 cores, 64 GB) 18 / 13 30 / 12 27 / 11 15 / 9.1 5.5 / 5.1
Xeon Phi 7110P (1.33 GHz, 61 cores, 16 GB) 14.3 / 12.5 27 / 13.5 20 / 10.1 14.5 / 8.3 - / -

Table 4. Performance for (far / close) views, in frames per second at 1024x1024 resolution for the reference data sets shown in Figure 7, on
different CPU and Xeon Phi coprocessors. All results shown for ambient occlusion, 1 sample per pixel.

tracing (mostly opaque) sphere glyphs is not completely fair, we are
able to achieve comparable performance for primary rays on our single
72-core workstation. Moreover, though current GPUs support up to 12
GB RAM per device (750 million particles), Rizzi et al. [25] suggest
rasterization performance would drop below interactive rates at 50-200
million particles depending on the GPU and technique used. Though
outside the scope of this work, ray tracing with the P-k-d structure may
prove useful on future distributed-memory GPU architectures.

5 SUMMARY AND DISCUSSION
We have presented a method for fast ray tracing of massive particle
data on CPU architectures, with virtually no memory overhead. With
this approach, a suitably fast CPU with enough memory can handle
extremely large particle data, with no level-of-detail. Data size has
relatively little impact on rendering performance: kilo-scale and giga-
scale particle data exhibit similar frame rates. The data chosen in our
experiments include some of the largest molecular and materials sim-



ulations data, and significant subsets of cosmology simulation runs.
With the balanced P-k-d structure, we are able to handle 5× larger
data than BVH methods, with performance (using a naı̈ve ISPC im-
plementation for our P-k-d tree) on average 67% that of state-of-the-
art BVH ray tracing (using hand-tuned kernels). Our performance is
competitive with state-of-the-art distributed-parallel, out-of-core and
LOD-based GPU methods. Thanks to its implementation in OSPRay
and ISPC, it can be deployed on a wide range of CPUs.

Some remaining problems merit discussion. Balanced k-d tree ad-
dressing leads to huge jumps in memory address when traversing up
and down the tree (in particular close to the leaves), posing a chal-
lenge for any memory system. A hybrid structure, such as a sepa-
rate grid or BVH containing P-k-d trees, may greatly improve perfor-
mance at some small memory cost. At large scale, the time to read
and write from disk remains the main bottleneck for both interactive
and batch visualization. The time to build a P-k-d tree on a single
machine is also non-trivial. While it would be possible to improve on
our thread-parallel build, a better strategy might be a data-parallel ap-
proach in which different nodes build P-k-d trees over their own data,
thus enabling distributed-parallel IO, distributed build of the accelera-
tion structure, and interactive ray tracing – offline, in coprocessing or
in situ. Alternately, one could pursue true in-memory in situ rendering,
i.e., distributed parallel ray tracing on the compute resource.

Rendering up to billions of particles on millions of pixels means
that thousands of particles can project to a single pixel. Though a ray
tracer can handle this cost-wise, it creates challenges in terms of alias-
ing, and ultimately one must question whether glyph representation
is the best way of visualizing such data. We believe the capability to
visualize full particle data at high resolution (Figure 2) is compelling,
particularly for production-quality still images. However, antialiasing
solutions borrowing from LOD techniques would be desirable to re-
move artifacts and improve overall image quality, particularly during
rapid camera movement and animation.

Lastly, the balanced P-k-d structure’s optional range trees enable
fast query and implicit classification of multi-attribute data. Simula-
tions such as Uintah or CosmicWeb may have tens to hundreds of at-
tributes. Choosing how to efficiently traverse and classify multi-field
particle data, for example detecting halos or correlating combustion
variables, could be of interest from an applications standpoint.
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