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SUMMARY

A novel meshfree method is proposed that incorporates features of the material point (MPM) and gener-
alized interpolation material point (GIMP) methods and can be used within an existing MPM/GIMP
implementation. Weighted least squares kernel functions are centered at stationary grid nodes and used to
approximate field values and gradients. Integration is performed over cells of the background grid and mate-
rial boundaries are approximated with an implicit surface. The proposed method avoids nearest-neighbor
searches while significantly improving accuracy over MPM and GIMP. Implementation is discussed
in detail and several example problems are solved, including one manufactured solution which allows
measurement of dynamic, non-linear, large deformation performance. Advantages and disadvantages of
the method are discussed. Copyright © 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

For many decades the finite element method (FEM) has been trusted with predictive computations
for a wide range of structures and systems; it is known to be robust and accurate. However, there
are classes of problems that remain difficult to solve with FEM. For example, the simulation of
extrusion and molding operations produces extremely large deformations of the mesh, whereas
simulation of failure processes involves tracking of arbitrary and complex cracks and material
interfaces. A common way of dealing with moving discontinuities in FEM has been to re-mesh
the domain frequently, perhaps at every time step. This leads to greater computational effort and
relies critically on automated meshing algorithms that may only be reliable for simple domains or
for linear triangles and tetrahedra.

During the last two decades a plethora of methods has been developed to circumvent the
limitations of FEM. The Smooth Particle Hydrodynamics (SPH) method was developed by Lucy [1],
Monaghan [2], and coworkers to model astrophysics problems and later extended to solid mechanics
by Libersky, Petschek, and Randles [3, 4]. Although it originally suffered from instability and lack
of convergence (see the work of Swegle and Hicks [5] for example) SPH has since been refined and
corrected by Johnson and Beissel [6], Dilts [7], and others. While these modifications improved
the accuracy and stability of SPH, they also introduced some inconvenience, such as keeping track
of additional stress points.
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By reforming the diffuse element method (DEM) of Nayroles et al. [8] in terms of moving
least squares (MLS), Belytschko, Lu, and Gu [9-11] introduced the element free Galerkin (EFG)
method that achieved substantial improvements in accuracy. Several other families of MLS-based
methods appeared soon after including the Reproducing Kernel Particle Method (RKPM) of Liu
and Jun and coworkers [12—-15] and the Meshless Local Petrov Galerkin (MLPG) method of
Atluri and Zhu [16]. Excellent overviews of meshfree methods include the papers of Belytschko
et al. [17] and Fries and Matthies [18], and the text of Liu [19]. MLS-based methods were seen to
be instances of a more general partition of unity framework [20, 21] and convergence properties
were proven for broad classes of MLS-based methods [22].

The MLS-based methods were shown to be useful for new classes of problems for which FEM
was ill-suited; development and application of these methods are on-going. Some limitations exist,
however, such as the application of essential boundary conditions [23] and the substantially larger
computational cost relative to FEM. The cell-based integration schemes used by some MLS-based
methods are particularly troublesome for dynamic problems [24].

Substantial progress in crack propagation modeling has been made through MLS enrichment of
finite element methods, such as the XFEM of Moés et al. [25]. XFEM builds on the generality and
reliability of FEM while freeing crack propagation models from having to re-mesh along crack
boundaries. However, XFEM still appears to share the mesh entanglement limitation of FEM for
modeling of extreme deformations.

The material point method (MPM) was developed by Sulsky et al. [26—28] as an extension to
the FLIP (Fluid-Implicit Particle) method of Brackbill and Ruppel [29], which itself is an extension
of the particle-in-cell (PIC) method of Harlow [30]. MPM is extraordinarily easy to implement
and use for complicated domains, such as foams, geologic formations, or biological structures,
and can be initialized in seconds from imaging data such as a CT scan.

A major correction and improvement to MPM was offered by Bardenhagen and Kober [31]
and called the Generalized Interpolation Material Point (GIMP) method. GIMP retains the
same generality as MPM, though at additional computational cost. For realistic problems GIMP
approaches first-order accuracy [32] but does not enjoy the reproducibility of MLS-based
methods.

MPM and GIMP have been studied and used by many investigators; a subset of these contri-
butions includes: analysis and improvement of time integration properties by Bardenhagen [33],
Sulsky et al. [34], Wallstedt and Guilkey [32], and Steffen et al. [35]; membranes and fluid—
structure interaction by York et al. [36, 37]; implicit time integration by Guilkey and Weiss [38] and
Sulsky and Kaul [39]; conservation properties and plasticity by Love and Sulsky [40, 41]; contact
by Bardenhagen er al. [42]; cracks and fracture by Nairn [43]; tracking of particle extents by
Ma et al. [44]; and enhanced velocity projection and verification via the method of manufactured
solutions by Wallstedt and Guilkey [32, 45].

In this work a new method is proposed that fits within the GIMP framework: it is based on
a cartesian grid and it does not search for nearest neighbors or require a finite element mesh.
The new method is based on a Weighted Least Squares approximation of data surrounding each
grid node and is referred to in the remainder of this paper as “‘WLS’. The method gives up some
of the generality and convenience of GIMP while making substantial gains in accuracy.

Some of the volume decomposition features of WLS are analogous to a method that was presented
by Belytschko e al. [46] for creating structured finite element models from solid models by means
of implicit surface definitions. While their techniques focused on finite element discretizations, the
cell decomposition and implicit surface estimation also apply to the Cartesian background grid
used in the present method.

This paper is organized as follows: Several components of the algorithm are first described
such as the PIC framework, weight functions, least squares scheme, implicit surface definition,
marching cubes polygonization, and off-object node correction. Then these individual components
are combined in a detailed description of the discrete governing equations of the main algorithm.
Finally, several example problems are defined and solved, followed by a discussion of the utility
of the method.
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2. GOVERNING EQUATIONS

An Updated Lagrangian formulation allows straightforward modeling of history-dependant mate-
rials with complicated constitutive models. The equation of motion is

oV+pb=pa (1)

where o is the Cauchy Stress, p is density, b is acceleration due to body forces, and a is acceleration.
Essential boundary conditions may be set on velocity and acceleration, resulting in prescribed
values of displacement u=x—X, where X is position in the reference configuration and x is
position in the current configuration. The deformation gradient is defined as F=0x/0X. Surface
tractions are on=t, where n is normal to the object surface and t is the traction vector on the
surface. The conservation of mass is

po=pJ @)

where p, is density in the reference configuration and J =det(F) is the Jacobian.

A FEM implementation might update the position and velocity of nodes and compute F from
wF=I-(0u/ 0x))~!. However, the current method (as well as GIMP) updates position, velocity,
and deformation gradient. Only linear reproducibility is required, so the WLS basis defined later
in the manuscript can be planar.

The stress can be a function of virtually any variable used in the simulation, but in this work it
is only a function of the deformation gradient F. The rates of position, velocity, and deformation
gradient are x=v, v=a, and F=(VV)F, respectively.

The weak form of the governing equations is obtained by multiplying Equation (1) by an
admissible test function w and integrating over the current configuration Q with boundary I
Integrating by parts over the highest order term, and assuming that w vanishes wherever essential
boundary conditions are applied results in

/pw-adQ:—/a:VWdQ+/w-rdF+/ pw-bdQ 3)
Q Q r Q

The discretization of the governing equations is developed in subsequent sections, culminating in
Equation (25).

3. DESCRIPTION OF THE METHOD

FEM relies on a connected mesh of nodes whereas meshfree methods typically rely on a cloud
of disconnected nodes (along with a background integration grid and octree search structure).
However, the WLS method of this work is embedded within a PIC framework which is also used
for the MPM and GIMP methods. In this way WLS represents a hybrid of PIC and meshfree
schemes.

Values of position, velocity, deformation gradient, and other variables are assigned to discon-
nected particles that are suitably spaced throughout an object such that sufficient information is
present. A stationary cartesian grid facilitates a bucket-sorting scheme so that particle values are
collected, via weighted least squares, to the regularly spaced nodes of the grid to create fields of
acceleration and velocity throughout the domain. Gradients of stress and velocity on the grid are
used to update particle position, velocity, and deformation gradient.

The stationarity of the local least squares equations makes the ‘weighted’ designation in WLS
appropriate, rather than ‘moving’ least squares in which values are collected to mobile, disconnected
nodes based on nearest neighbors.

The subdomains over which numerical integration is performed differ in this method from FEM
and from GIMP, as illustrated in Figure 1.

FEM always forms a contiguous non-overlapping partition of an object into subdomains, which
provides accurate and reliable integration, albeit at the cost of complicated mesh generation. But
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Figure 1. Comparison of volume partition strategies: (a) finite elements;
(b) GIMP particles; and (c) WLS cell volumes.

the GIMP method only forms a contiguous non-overlapping partition of the material for the initial
position; during problem evolution, gaps or overlaps may develop in the partition. Despite this
shortcoming, GIMP’s great advantage is the easy initialization of complicated domains.

The WLS method of this paper forms integration domains that remain contiguous and non-
overlapping by using the cell structure of a PIC method. When a material boundary cuts through
the middle of a cell, the cell is split into two and only a portion of the cell is allowed to contribute to
the integration. The new cell integration method represents an improvement of accuracy compared
to GIMP, while retaining the existing PIC framework, data structures, and initialization procedures.
However, it involves the extra complication of marching cubes polygonization and it tends to
ignore sharp corners, in a manner similar to GIMP.

The WLS method makes use of several mathematical components from the computer graphics
and meshfree communities; detailed explanations of these are given in the following sections.

3.1. Weight functions

Two different shape or weight functions are used within WLS. The shape functions are centered
on nodes of the background grid and are defined in terms of the cell size h. A wide second
degree spline is defined in Equation (4) with 27 node support (in 3D) that allows nodes to ‘see’
particles that are farther away. A narrower piecewise linear function and its gradient are defined in
Equations (5) and (6) with 8 node support that are used to interpolate grid data back to particles.
This ‘see wide, apply narrow’ concept ensures that only nodes with sufficient data are allowed to
influence particle updates. All weights and shapes are expressed in 1D as functions of r =x —x;
and are implemented such that the first available choice in the list is always used; note that
sign(r)=(—1if r <0, 1 otherwise).

2
Wi(r)=1{ (1.5h—|r|)? 3h 4)
7 <=
2h2 2
0 otherwise
|7
1—— |r|l<h
Si(r)= h )
0 otherwise
B sign(r) | <h
Gi(r)= h (6)
0 otherwise

Tensor products of these are used as shapes and weights in higher dimensions and the shapes and
weights become functions of vectors.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 85:1687-1704
DOI: 10.1002/nme



A WEIGHTED LEAST SQUARES PIC METHOD FOR SOLID MECHANICS 1691

A shorthand is frequently used for these functions involving indices of particles or quadrature
points. For example, if particles are indexed with p, then W;, = W;(x, —X;), Sip = S; (X, —X;), and
Gip=G;(Xp—X;).

3.2. Weighted least squares framework

Although many basis functions can be chosen within a weighted least squares framework, the
hyperplane is used throughout this method. The particles that fall within the non-zero region of a
weight function centered at each node contribute to the equation at the node:

fP@=coteix+ery+esz (7
where x, y, and z are components of r =X, —X;. The error norm that defines the WLS formulation is

Lo=Y Wi, (S, — £)* (8)
V4

Differentiating L, with respect to the coefficients ¢ and setting each equation equal to zero results
in the following system:

XWX Wx YWy YWz S W,
p P P P P
co
YWx Y Wx? Y Wxy Y Wiz Y Wipx
P P P P cal |7 ©
YWy Y Wxy L Wy' Y Wyz||e| | Wiy
p p p p p
3
YWz Y Wxz Y Wyz Y wz? > Wipz
L p p p p _ p

The system is rewritten as Mc =1 and M, ¢, and [ are termed as the moment, coefficient, and load
vectors/matrices, respectively. Each local function is found by the following, which is simply a
different form of Equation (7).

HBo=M"11xy )" (10)
A shorthand is defined for the value and gradient of fl.LS(r), at the location of the node:

fi=fBr=0)=c (11)

Vi5=VSr=0=(c ¢z c3)" (12)

3.3. Implicit surface definition

In FEM, surfaces are modeled with the edges or faces of elements, and are accurate insofar as
the element can match the curve of the object. In GIMP, surfaces are implied but never defined.
This means that GIMP does not resolve sharp convex or concave features; however, it also avoids
many of the complications of FEM, such as meshing and special contact algorithms.

The treatment of material surfaces in WLS is one of its most critical components. The method
uses flagged points that are placed on material surfaces and given special treatment in the algorithm.
The surface particles add an extra component of difficulty to the initialization of the method,
as compared to GIMP, but the difficulty is not severe. For geometrically simple objects, such
as pressure vessels and beams, the surface of the object is clearly defined. And for complicated
domains arising from three-dimensional scan data, surface particles can be located by placing them
halfway between data samples that are ‘in” and ‘out’.

A cell subdivision method is developed based on the marching cubes polygonization algorithm
of Lorensen and Cline [47]. For a 3D domain, the marching cubes algorithm requires a cartesian
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grid of points as input. The value stored at each point may be a simple binary flag indicating
whether the point is inside or outside the object. However, a more sophisticated version uses the
value on each point to represent a signed distance from the surface of the object, indicating how
far the point is located away from the object’s surface.

For WLS, a cartesian grid is already used in parts of the algorithm. A means of imposing a
signed distance on each grid node is developed that makes use of existing least squares machinery.
A flag 8, is defined on all particles which is unity for surface particles and is larger for interior
particles; a value of 2 is used. The flag values are summed to nearby grid nodes

Bi=>_SipB, (13)
p
Based on the values of f3; a signed distance d; for every node in the grid is estimated as
h  p;>2
di= ’ (14)

—h otherwise

This first estimate is rough but it serves to initialize all nodes as in or out.

Using the existing shape functions, a local surface location can be defined as the weighted
average of nearby surface particles. The formula shown below forms sums over surface particles
only to find an average distance to the surface for each node that has one or more surface particles
within the non-zero region of its weight function.

. esurf
Xgurf_ ZP S,po

' ZpSiP

Note that xf“rf is only defined on nodes near the surface, and for each such node the following
steps are performed:

5)

surf

1. Define surface normal n at surface position x;"" as the gradient of the particle flags:

n=>Gi(x}"p; (16)
i
2. Signed distance is the projection of distance vector onto surface normal:
dj = —sign((x}"" —x)-m| X" —x; ] (17)

Thus the creation of signed distances for all nodes takes place in two stages. In the first stage
all signed distances are estimated with Equation (14), and in the second stage those nodes that fall
near the surface are given more precise signed distances via Equations (15)—(17).

3.4. Subdivision of boundary cells via marching cubes

The integration domain for an object in WLS consists of the sum of the volumes of each full or
partially full cell that is occupied by the object. Cells within the object are completely filled, cells
on the boundary are partially filled, and cells away from the object are empty.

In order to subdivide each cell’s volume in an efficient manner the Marching Cubes algorithm
of Lorensen and Cline [47] is used. The 2D variation of this algorithm is called Marching Squares.
For a 2D cell each of its four nodes may be flagged as ‘in’ or ‘out’ based on whether the node
is located within the object or outside of it. Thus there exist 2* =16 combinations of node flags,
which may be reduced, with symmetric reflections and rotations, to four unique cases involving
triangles, quadrilaterals, or pentagons; see Figure 2. In 3D there exist 28 =256 combinations of
node flags which reduce to 15 unique cases. This exhaustive listing of possible cases of cell
subdivision makes the Marching Cubes algorithm speedy and robust.

While it is easy to perform integration over cells that are empty or full, the complex polyhedra
generated by Marching Cubes may have variations of topology that, in general, cannot be expressed
in terms of a single hexahedral or tetrahedral finite element. Although it may be theoretically
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Figure 2. Subdivided cell regions: (a) triangle; (b) quad; (c) pentagon; (d) square; and (e) not allowed.

possible to compute the correct weights and locations of Gauss points for a 2D pentagon, for
example, such is not generally done. And the task becomes unmanageable if Gauss points are to
be computed for 15 different polyhedra in 3D.

In lieu of high-order Gauss integration, two methods of approximate integration are discussed,
and one of these is ultimately chosen for implementation in WLS.

3.4.1. Multi-point integration over partially filled cells. The cells of the background grid may be
integrated with increasing precision by filling them with a requisite number of Gauss points. For an
interior cell with sufficient number of Gauss points the integration of a polynomial may be exact.
But if such a cell is subdivided into two regions, only one of which is occupied by the object, then
the integration cannot be exact. However, such a scheme may be considered an approximation.

For example, consider a 2D cell which is populated with 16 Gauss points, and assume that
11 points are within the object and 5 are outside of it. The approximation of the integral over
the cell is then found as the sum of all the weight-value products of the Gauss points, where the
value of the ‘outside’ Gauss points is taken to be zero. Another closely related approximation is
to space 16 sample points evenly throughout the cell, rather than at the Gauss locations, and set
the ‘outside’ points to zero as above. The weight of each ‘inner’ point is simply 1/16th of the cell
volume. Such approximation schemes obviously lose their high order.

The multi-point approximate integration scheme is used by Belytschko et al. for the EFG
method. In their overview of meshfree methods Belytschko et al. state that the background grid
‘strikes many researchers as unacceptably crude, for within a cell, quadrature is performed over
any discontinities and boundaries which do not coincide with the boundaries of the cells. Our
experience so far suggests that the effects are quite minimal [17]’.

However, in a broad review of meshfree methods Fries and Matthies [18] are more critical,
claiming that ‘the integration error which arises from the misalignment of the supports and the
integration domains is often higher than the one which arises from the rational character of the
shape functions’.

3.4.2. Low-order integration over cell subdomains. In this approximate integration scheme the
volume of integration is considered to be more important than the order of integration. The volume
of a cell is subdivided into inner and outer portions and a single sample point is located at the
centroid of the inner region.

In a FEM implementation the deformation gradient and stress are computed at Gauss points
based on information interpolated from the nodes of the element. However, in WLS the stress at
Gauss points is found in three stages. First, stress is computed on each particle; second, functions
of average stress in the neighborhood of each node are created at the node (see Sections 4.1
and 4.3); and third, the stress at Gauss points is interpolated from the stress functions at the cell
nodes (see Equations (21) and (24)). This smoothing and averaging process causes information
from several nearby cells to be included at each Gauss point, rather than information from only
the enclosing cell.

One advantage of this approximation is that the centroid is unique for the region so that
ambiguous configurations are disallowed. The rectangularity and stationarity of the background
cells are assured by construction. The uniqueness of the integration point, the stationarity of cell
boundaries, and the broad and smooth information used at Gauss points, together suggest that zero
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energy modes, such as those occurring with single Gauss point integration of quadrilateral finite
elements, are unlikely to occur. Generally speaking, the mathematical analogies between FEM,
GIMP, and WLS remain tentative due to the major differences between the methods. Each family
of methods must be independently analyzed for limitations and troublesome modes.

Another advantage of the centroidal approximation is that the value of the integral varies
smoothly as the object boundary passes through the cell. In the multi-point approximation, Gauss
points may abruptly ‘turn on’ or ‘turn off” as the object surface passes through them. The single
point integration method of this section is used throughout WLS.

3.4.3. Details of cell subdivision. The signed distance information developed in Section 3.3 is
used to subdivide cell edge segments and enclose a shape within them. If any two nodes are on
the same edge of a cell they are termed ‘adjacent’. And if two nodes are adjacent, yet one of
them is in, and the other is out, then it is clear that the surface of the object passes somewhere
between them. Furthermore, the signed distance information is used to approximate the location
on the segment at which the surface crosses. In the following equation two special node indices
are denoted with capital letters: / is the index of the ‘in’ node and O is the index of the ‘out’ node.
For any two adjacent nodes with one ‘in’ and one ‘out’, the following expression, involving the
signed distances of Equation (17), gives global coordinates for the location at which the material
boundary intersects the cell segment:
X] —X0

Xeut =X7 —dj d —do (18)

The cell boundary cut positions X¢,; are used, together with the ‘in’ node or nodes of the cell
to form the shape indicated by the Marching Cubes scheme. For example, if one node of a cell
is in and the other three nodes are out, then two cut points are created between the ‘in’ node and
its two adjacent nodes. The two cut points plus the ‘in’ node form a triangle, whose volume and
centroid are used for integration.

This integration scheme eliminates the gaps and overlaps of GIMP integration but incurs the extra
inconvenience of initializing surface particles and building a surface. Each WLS cell that is near
a surface is divided into filled and empty portions. This results in a contiguous, non-overlapping
description of the object, although corners tend to be rounded; see Figure 1.

3.5. Surface conditioning

While the weighted least squares scheme provides excellent results for values and gradients at nodes
with sufficient numbers of particles, there are nodes near object boundaries that may end up with
spurious values due to ill conditioning of the moment matrix. Any node whose values cause inaccu-
racy or instability due to ill-conditioning of its moment matrix is considered ‘spurious’. A reliable
way of detecting spurious nodes is described in this section, followed by two remedial procedures.

Some cases of ill-conditioning are easily detected, such as an insufficient number of particles
to form the planar basis (three particles are required in 2D; four in 3D) or a matrix determinant
that is within machine precision of zero. But other spurious nodes frequently arise that cannot be
detected by these means. A more robust and general method of predicting ill-conditioned moment
matrices is as follows.

For weight function W;(r) of Equation (4) a particle has greater weight as it gets closer to the
node; therefore the weight function for each contributing particle is a good approximation for a
dimensionless radius from the particle to the node; see Figure 3(a) and note how the weight contours
are nearly circular. If all sample particles fall outside a chosen weight, then remedial procedures
are performed. Experience suggests that a trigger weight TW in the range 0.1 <TW<0.25 will
indicate an appropriate amount of extra surface conditioning; the TW used throughout this paper
is 0.12 and an example of predicted spurious nodes is shown in Figure 3(b).

For every spurious node the dimension of the moment matrix is reduced. This is accomplished
by replacing Equation (7) with fl.LS(r)zco. Then the inverse of the moment matrix is formed by

setting all values to zero, except for the first row and column: M&)l =1/Mop.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 85:1687-1704
DOI: 10.1002/nme



A WEIGHTED LEAST SQUARES PIC METHOD FOR SOLID MECHANICS 1695

TW =04

TW 0.2 : 77; ?r.Jr Jr % Particles o
TW=01 — T ?L:%.'j: st 2K Good Nodes
TW=0.05 — R R AT T 1l Nodes
TW = 0.005 7){ NEN ¥ -P'%" o[ ¥ Window Node [
PR
K K

+ %%
5 -
%ﬁ%

e K
e+
e X

indow Node " [-] N
\\ 7
%‘_ﬁ CrSS
et
K e e peve sfae
@rg (b) ey

Figure 3. Trigger weight for spurious nodes: (a) trigger weight and (b) spurious nodes. (a) is a magnified
view of the region near the window node of (b).

For the computation of internal forces, experience shows that moment matrix dimension reduc-
tion is insufficient to remedy the effects of spurious nodes, and a more drastic step must be taken.
In these cases the weighted least squares coefficients for internal force at a node are discarded,
and values at the node are found from an average of 26 nodes that surround it in 3D, or 8 nodes
that surround it in 2D. This procedure eliminates the influence of spurious nodes on the gradient
of stress.

4. ALGORITHM SEQUENCE AND DISCRETE EQUATIONS

In this section each stage of the WLS time step is described and the least squares, marching cubes,
and matrix conditioning techniques of previous sections are combined to form the algorithm.

4.1. Current particle density, body force, and stress

From the current particle values of position x,, acceleration due to body forces b, and deformation
gradient F ), the Jacobian J, =det(F), density p,=p,/Jp, and body force density f;’“zppbp
are computed.

Stress is computed on each particle from a constitutive equation ¢, = (F ,), which may be very
general due to the Lagrangian formulation.

4.2. Least squares moment matrix and object surface

A least squares moment matrix is formed at each node to be used for subsequent calculations.
Particles that fall within the non-zero region of the weight function of each node contribute to its
matrix; see Section 3.2.

Special flagged surface particles are used via the procedure of Section 3.3 to determine how far
‘in’ or ‘out’ of the object each node is located.

4.3. Node values via WLS

o 0 o . .
The least squares values v;, p;, £t and 60,- are computed on the nodes via the weighted least

squares framework of Equation (10), keeping in mind the shorthand of Equations (11) and (12).

4.4. Integrate over full and partial cell volumes
Let g be an index over the quadrature points (one for each non-zero volume cell) and i an index
over nodes. Let maxW =max(W;) be the maximum weight of any particle within the support of
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node i (see Equation (4)). Then the values of density, body force density, and stress are found at
each quadrature point by

o
oS0
py = EiZ Sl (19)
i %iSiq
o
ext __ Zi % Siq fiext
i %ivig
o
5, = 22151 % )

> %Sig

where « is unity if a node’s maxW > TW and zero otherwise. By using o in this manner the values
on quadrature points are only based on well-conditioned nodes. In practice the quadrature point
values are not stored; they are computed on-the-fly during integration.

Letting V,, be the volume of each cell (see Section 3.4) the following integrations are performed:

m; = Zsiqpq Vq (22)
q

£ =3 85,8V, (23)
q

"' =3"6:Gy V, (24)
q

4.5. Extrapolation

If a node’s maxW < TW, then the averaging process of Section 3.5 is performed for fl.im only.

4.6. Equations of motion

All necessary data are now collected on the grid and the equation of motion can be solved and

particle variables updated. The grid velocity is found directly via weighted least squares: v; = 13),-.
The equation of momentum is solved on the grid by

_ filnt +fl§3xt

mj

a (25)

4.7. Time update

The time update is a centered-difference scheme commonly used in FEM. Grid acceleration is
used to update grid velocity

1 _1
VIV T La A (26)

1 1

Acceleration is interpolated back to particles and used to update particle velocity

n+% n—%

vV, 2=V +ZSi,,aiAt 27)
4
Position is updated by interpolated grid velocity, not by current particle velocity. This at first
seems unnecessary but is done to ensure that particles at the same point in space have the same
velocity

+1
X;—H ZXZ —}—Z SiI’V7 2 At (28)
i
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The gradient of velocity is calculated on each particle and used to update the deformation
gradient

1

1 1
V, I =YG,v (29)
i
P oy R A (30)
p —Tp p p

The centered-difference update scheme requires that velocity be initialized to a negative half
time step. Velocities at the —% time step are sometimes available, but for typical simulations
they may be impossible to find. Instead, the approach used in this paper is to multiply the grid
acceleration values of Equation (25) by % for the first time step only. This propagates the % through
the algorithm and corrects the first-order error that would otherwise be incurred.

5. EXAMPLE PROBLEMS

A neo-Hookean constitutive model [48] is used for the example problems of this section. The
strain energy function is

P(F)=12(InJ)*— ulnJ + } p(trace(F'F) —2) (31

where p and / are standard Lamé constants. Then the stress in the current configuration is defined
to be

_/Ian
o

For the sake of stability a time step size is chosen to ensure that information cannot travel more
than a characteristic distance in a single time step. However, the integration regions produced from
cell subdivision cannot be used as a characteristic distance because several of them are guaranteed
to be very small at any time within the problem. Experience has consistently shown that the cell
size of the background grid represents a reliable characteristic distance, which is confirmed by the
temporal convergence measurements of the first example to follow.

The maximum wave speed for a 3D isotropic elastic solid is defined as

- I+ g(FFT —1) 32)

A+3
= [ £ (33)

Note that vy, approaches infinity as Poisson’s ratio approaches %
An adaptive time step size may be set throughout the simulation by
min(h)

At(x,t)=CFL——MM——— (34)
Umax +max(|v,|)

where 0 < CFL < 1; see Figure 6(b).

A nominal time step size may be chosen at the beginning of the simulation by assuming that
material properties are constant in space and time and that object velocities are well below wave
speeds

in(h
Ary(x, t):CFme( )

(35
Umax
For comparison purposes an explicit non-linear FEM code based on linear triangles with single
Gauss point integration is constructed according to typical designs; see, for example, the text of
Belytschko et al. [48]. The discrete equations are listed in Appendix A.
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Figure 4. Alternate particle arrangements: (a) Cartesian particle placement used with GIMP and (b) radial
particle placement used with WLS.

5.1. Oscillating ring

In previous work [32] a manufactured solution is developed for a dynamic ring made of a neo-
Hookean material. The full development of the solution is not repeated here but its key element is
the radial displacement of a ring as a function of time and position:

u(R)= Acos(cnt)(ci R+c2R*+c3R%) (36)

where
—6R; 3(Ro+R)) -2

=, C) = ) C3=—F"""""__» 37
Ro(Ro—=3RD)" "~ Ry(Ro-3R) ~ RH(Ro—3Ry) G7

1

A is a user-specified amplification factor, c=+/E/p, E is the Young’s modulus, ¢ is time, R
is radius in the reference configuration, R; is the inner ring radius, and Rp is the outer ring
radius. The manufactured solution is used to measure the accuracy properties of the WLS method
described in this work in comparison to an existing algorithm, GIMP, and to a FEM code.

For PIC methods there is some freedom in the way in which particles are arranged within the
cell structure. The GIMP method typically works best when particles are arranged in a cartesian
manner, because gaps and overlaps between particles are minimized. The cartesian arrangement
of particles is used to discretize the ring for GIMP; see Figure 4(a).

In contrast to GIMP, the ‘particles’ of WLS do not represent volume in the algorithm; they
can be treated as sample points only. Therefore it has been found that performance is improved
by using a body-fitted arrangement of particles as shown in Figure 4(b). Generally speaking the
arrangement of particles at or near the surface has a significant effect on convergence, but the
arrangement of interior particles is less important, provided enough particles are present to avoid
an ill-conditioned moment matrix. For the results that follow, the arrangement of particles is chosen
that produces the best accuracy for each method.

Error is measured on each particle as the magnitude of the difference between computed and
exact displacements:

5p=||(xp_Xp)_uexact(Xp,t)”- (38)

The manufactured solution is always smooth in space and time, therefore a strict definition of
error may be used: the maximum error from all particles and all time steps Lo, =max(d,). This
definition demands that error over all particles be reduced for a problem to be considered more
accurate, instead of merely reducing error for a majority of the particles.

The Poisson’s ratio used for the ring must be zero, else the manufactured solution cannot be
expressed in a closed form. In 2D the number of particles per cell is four with the cartesian
arrangement, and approximately four in the radial particle arrangement. Young’s modulus is 10 000,
initial density is one, and the amplication factor is 0.1. The ring’s initial outer radius is one and
initial inner radius is 0.5. The CFL is 0.3, except for the measurements of temporal convergence.
The relatively low CFL was found to be important for spatial convergence at the finest mesh sizes.
Representative plots of the time history are shown in Figure 5.
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Figure 5. Radial (top) and hoop (right) stress (Pa) for oscillating ring: (a) time =0ms;
(b) time=>5ms; and (c) time=10ms.
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Figure 6. Convergence for the oscillating ring: (a) spatial and (b) temporal.

Results for temporal and spatial convergence of WLS are presented in Figure 6 in comparison
to FEM and GIMP. Temporal convergence measurements are made using the nominal time step
size of Equation (35).

For this problem WLS is an improvement over GIMP. The method behaves in a second-order
manner for coarser meshes, in contrast to the first-order (at best) behavior of GIMP. This suggests
that the method is suitable for use with geometrically simple objects, such as pressure vessels
and beams, for which the accuracy of FEM is customarily expected. The convergence plot reflects
that there is a small first-order error that is negligible until fairly high grid resolution is reached
(50 cells over a unit disk); at this time, analysis has not been performed to identify the source.

Temporal convergence is not displayed for any of the methods used to solve the ring problem
because spatial error dominates temporal error over the region of interest. Temporal convergence
occurs for higher values of CFL used with implicit solvers, but the central difference time integration
scheme used here is explicit. An important and in-depth analysis of time integration for the MPM
family of methods has recently been completed by Steffen et al. [35].

5.2. Single disk impact

Although a contact model is not developed in this paper, the problems for which GIMP and WLS
may be used frequently involve contact, impact, and inter-penetration scenarios, where energy
conservation is a high priority. This aspect of the algorithm is assessed via the frictionless impact
of a disk against a wall as shown in Figure 7.

The Poisson’s ratio is 0.3, the number of particles per cell is about 4, and Young’s modulus
and initial density are both 1000. The disk is 0.4 units in diameter and is initially located within a
unit square of 48 x 48 cells at (0.3,0.3). The disk has initial particle velocities of (0.2, —0.2) with
CFL=0.4. The kinetic energy of the disk is expected to reduce by half during impact, because
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Figure 7. Strain energy per volume for single disk: (a) time=0s; (b) time=2s; and (c) time=3s.
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Figure 8. Energy for single-disk impact: (a) WLS and (b) GIMP.

the y-component of velocity will approach zero during impact, while the x-component will remain
about the same.

This system is modeled with WLS and GIMP, and the strain and kinetic energies are plotted in
Figure 8 as a function of the time.

It can be seen that energy is handled correctly in WLS. The transfer of energy from kinetic
to strain, then back again, occurs smoothly and without significant fluctuation or instability. The
corresponding energy plot is also shown for GIMP which displays the same desirable trends.

For multi-body impact it should be straightforward to implement contact in the manner
commonly used for GIMP, where a separate computational grid is created for each object, and the
contact is handled with a method such as that described by Bardenhagen et al. [42].

5.3. Dynamic hole in plate

A square plate with a circular hole is suddenly subjected to a body force in the horizontal direction.
The body force is modeled with a force vector (5x 10°X,0) in the reference configuration that
increases with X-position but remains constant in time. The solution involves a large deformation,
dynamic simulation with a neo-Hookean constitutive model; therefore no exact answer is available.
The Poisson’s ratio is 0.3, the number of particles per cell is about 4, Young’s modulus is 210 x 10°,
and initial density is 7850. The plate is one unit high and wide and the hole radius is 0.5. The
CFL is 0.4. The progression of the simulation is shown in Figure 9.

In order to compare WLS to GIMP and FEM, a critical area of the problem—the surface of the
hole—is examined in Figure 10 at the final time of 696 ps. For the sake of stress analysis it must
be found what values of stress develop on the hole’s surface so that a determination can be made
about whether the plate is strong enough to withstand the forces on it.
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Figure 9. Von Mises stress (GPa) of plate with hole: (a) time =0ps; (b) time =464 ps; and (c) time =696 ps.
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Figure 10. Comparison of Von Mises stress (GPa) at hole surface.

In Figure 10 the particles or FEM Gauss points that are initially located within a distance of
0.35h from the hole surface, where & is the WLS cell size, are compared for FEM, WLS, and
GIMP. The Von Mises stress is plotted with respect to the angle along the hole surface. The angle
of the bottom face of the bar is zero, and the angle of the left face is ©/2.

The results displayed in the figure suggest that WLS is able to provide a surface stress which is
nearly as accurate as FEM. But GIMP shows some difficulty in predicting surface stress, and the
GIMP result has more scatter. While it would be difficult to determine a reliable failure point for
the surface of the hole using GIMP, the WLS result reflects realistic stresses at the hole’s surface.

6. DISCUSSION

The WLS method introduced in this paper achieves the objective of improving the accuracy of solid
mechanics simulations that are performed within a PIC framework. The method takes advantage
of the concepts of weighted least squares surface estimation and implicit surface definition to more
precisely define the region of integration. The method is motivated by two general requirements.
It needs to provide the accuracy of finite elements, which are well-known and are trusted for
predictive results. And it needs to be as easy to initialize as other PIC methods, while avoiding
nearest neighbor searches and handling contact and inter-penetration scenarios with ease. The
method of this paper represents a compromise between the demands of these two families of
methods and affords several benefits of both.

The method achieves accuracy that is significantly better than GIMP, but somewhat less than
FEM. Its PIC form allows it to be used within an existing MPM/GIMP implementation while
avoiding nearest neighbor searches. However, the complexity of implementation and initialization
are both greater than required for FEM or MPM/GIMP. In addition to the programming effort
required for GIMP, WLS also requires implementation of least squares and marching cubes routines.
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Problems are initialized with the interior particles of GIMP, but also require surface particles,
which may be calculated from three-dimensional image data with additional effort.

The PIC structure of the method allows it to be used side-by-side with GIMP in space or time to
provide additional accuracy for certain objects. The interior particles of WLS may be located at the
same positions as GIMP particles and have the same initial volumes; surface particles have zero
volume. This enables a one-way transfer of algorithm from WLS to GIMP if a problem begins to
display behaviors for which WLS is ill-suited, such as rupture of a surface. For example, an over-
pressurized tank can be modeled up until its point of rupture with WLS, then GIMP may assume
control of the solution using the same particles and continue simulation of the disintegration of
the tank.

APPENDIX A: DISCRETE EQUATIONS FOR THE COMPARISON FINITE ELEMENT CODE

An explicit non-linear FEM code based on linear triangles with single Gauss point integration is
constructed following the text of Belytschko ef al. [48]. The discrete momentum equation at each
node i is

a; =f"/M; +b(X;, 1) (A1)

Mass lumping is defined from the reference configuration as
1
Mi=<p" Y AY (A2)
3%
where the index e loops over the elements surrounding node i. The internal forces are

fM"=—3"6(F.)V,(x;) (A3)

e
where the deformation gradient on each element is
3 -1
Fo={I1-2u;V,(x;) (A4)
1

The updates of nodal velocity and position are

VT2 2 A (AS)
X = Xy 2 (A6)
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