
DOI: 10.1111/j.1467-8659.2008.01313.x COMPUTER GRAPHICS forum
Volume 28 (2009), number 6 pp. 1691–1722

State of the Art in Ray Tracing Animated Scenes

Ingo Wald1,2, William R. Mark1,3, Johannes Günther4,6, Solomon Boulos5,7, Thiago Ize1,2, Warren Hunt3, Steven G. Parker2

and Peter Shirley5

1Intel Corp
2SCI Institute, University of Utah, Salt Lake City, UT, USA

3University of Texas at Austin, Austin, TX, USA
4MPI Informatik, Saarbrücken, Germany

5School of Computing, University of Utah, Salt Lake city, UT, USA
6Real-Time Technologies

7Stanford University, Stanford, CA, USA

Abstract
Ray tracing has long been a method of choice for off-line rendering, but traditionally was too slow for interactive
use. With faster hardware and algorithmic improvements this has recently changed, and real-time ray tracing is
finally within reach. However, real-time capability also opens up new problems that do not exist in an off-line
environment. In particular real-time ray tracing offers the opportunity to interactively ray trace moving/animated
scene content.
This presents a challenge to the data structures that have been developed for ray tracing over the past few decades.
Spatial data structures crucial for fast ray tracing must be rebuilt or updated as the scene changes, and this
can become a bottleneck for the speed of ray tracing. This bottleneck has recently received much attention by
researchers and that has resulted in a multitude of different algorithms, data structures and strategies for handling
animated scenes. The effectiveness of techniques for ray tracing dynamic scenes vary dramatically depending on
details such as scene complexity, model structure, type of motion and the coherency of the rays. Consequently, there
is so far no approach that is best in all cases, and determining the best technique for a particular problem can be a
challenge. In this State of the Art Report (STAR), we aim to survey the different approaches to ray tracing animated
scenes, discussing their strengths and weaknesses, and their relationship to other approaches. The overall goal
is to help the reader choose the best approach depending on the situation, and to expose promising areas where
there is potential for algorithmic improvements.

Keywords: ray tracing, animated scenes, traversal and construction of spatial and hierarchical data structures

ACM CCS: E.1 [Data Structures]: Trees; I.3.7 [Three-Dimensional Graphics and Realism]: Ray tracing

1. Introduction

One of the main elements of a rendering technique is the
visibility algorithm. For example, to produce an image it is
necessary to determine which surfaces are visible from the
eye point, which surfaces are visible from the light(s) and
hence not in shadow, and, if global illumination effects are
being computed, which surfaces are visible from points on
other surfaces. The two most commonly used approaches
to the visibility problem are rasterization-based approaches
and ray tracing based approaches. The performance of this
visibility algorithm is critical for interactive applications.

Rasterization-based approaches are limited to determin-
ing visibility for many rays sharing a single origin. They
also operate in object order (the outer loop is over objects).
These algorithms can be supported very efficiently on special
purpose hardware (GPUs), and with hardware and software
advancements, GPUs routinely obtain real-time performance
for visibility from an eye point or point light even for highly
complex models. In addition, they enable a wide array of
techniques to produce highly compelling graphics effects at
real-time rates. Consequently, virtually all of today’s real-
time graphics use GPU-based rasterization, delivering high-
lycompelling imagery at real-time rates.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and
Blackwell Publishing Ltd. Published by Blackwell Publishing,
9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main
Street, Malden, MA 02148, USA. 1691

1692 I. Wald et al. / State of the Art in Ray Tracing Animated Scenes

Ray tracing algorithms [CPC84, Whi80], on the other
hand, support arbitrary point-to-point visibility queries and
are arguably more powerful for computing advanced light-
ing effects that require such queries. Off-line rendering has
primarily used ray tracing instead of rasterization for these
reasons [CFLB06, TL04]. Unfortunately, ray tracing is com-
putationally demanding and has not yet benefited from spe-
cial purpose hardware, and consequently could not be sup-
ported at interactive frame rates until very recently.

With advances in CPU hardware and increased availabil-
ity of parallel machines, combined with equivalent advances
in algorithms and software architectures, ray tracing has
reached a stage where it is no longer limited to only off-
line rendering. In fact, while the first interactive ray trac-
ers either required large supercomputers [KH95, Muu95,
PMS∗99] or were limited to small resolutions [WSBW01]
and/or simple shading effects [RSH05], there now exists a
variety of different interactive ray tracing systems, many of
which tackle problems that are not easily possible using a
rasterization-based approach [BEL∗07, CHCH06, GIK∗07,
PSL∗98, WBS02].

1.1. The need for handling animated scenes

The key to fast ray tracing lies in the use of data structures
such as kd-trees, grids and bounding volume hierarchies that
reduce the number of ray-primitive intersections performed
per ray. For a long time, ray-tracing research has concentrated
mostly on the effectiveness of these data structures (i.e. how
effective each is in reducing the number of primitive oper-
ations) and on the efficiency of the traversal and primitive
intersection operations (i.e. how fast these operations can be
executed on particular hardware). The time for building these
data structures has typically been ignored – since it is usu-
ally insignificant in off-line rendering – and consequently,
ray tracing evolved into a field that used data structures and
build algorithms that were clearly non-interactive except for
trivially simple scenes. Consequently, as ray tracing started
to reach interactive rendering performance, it was initially
only applicable to walk-throughs of static scenes, or to very
limited kinds of animations.

With the advent of ray tracers running at real-time frame
rates for certain kinds of static scenes (especially Reshetov’s
2005 MLRT paper [RSH05]), it has become clear that build
times can no longer be ignored: with up to a hundred million
rays per second on a desktop PC, ray tracing has the potential
to be used for truly interactive applications like games, but
these depend on the ability to perform significant changes to
the scene geometry every frame.

In fact, this situation opened up an entirely new research
challenge for consideration in ray tracing: to create build
algorithms that were fast enough and flexible enough to be
used at interactive frame rates. While originally ray tracing
data structures were only considered for their effectiveness

and efficiency in rendering, now the build time had to be con-
sidered as well. This not only affects which build algorithm
is the ‘best’ for any given data structure, but also which data
structure to use in the first place. Consequently, many ray
tracing data structures are receiving renewed interest even
though they had previously been discarded as being too in-
efficient. In many ways, lessons learned in the early days of
batch rendering are being revisited, where the acceleration
structure must now pay for itself (with a reduction in ren-
dering time) within the few milliseconds available for given
frame, rather than over several minutes. In fact, the challenge
is even greater than in a batch renderer since interactive sys-
tems use comparatively few samples per pixel and typically
do not have the opportunity to customize the scene for par-
ticular viewpoints as is often done in batch rendering

1.2. Types of animations

One issue that makes it challenging to compare the different
approaches to animated ray tracing is that the term ‘animated’
scene is not well-defined, and covers everything from a single
moving triangle in an otherwise static scene to scenes where
no two successive frames have anything in common at all.
For the remainder of this report, we will use the following
terms: a static scene is one whose geometry does not change
at all from frame to frame;1 a partially static scene is one in
which a certain amount of the primitives are moving, while
other parts remain static, such as a few characters moving
through an otherwise static game environment, or an editing
application where small portions of the scene are moving at
any given time.

The actual motion of the primitives can either be hierarchi-
cal, semi-hierarchical or incoherent: motion is hierarchical
if the scene’s primitives can be partitioned into groups of
primitives such that all of the primitives of a given group
are subject to the same linear or rigid-body deformation. We
will call each such group an object. The exact opposite of
hierarchical motion is incoherent motion, where each primi-
tive moves independently of all others; a hybrid situation is
semi-hierarchical motion, in which the scene can be parti-
tioned into objects whose motion is primarily hierarchical,
plus some small amount of incoherent motion within each
object (similar to a flock of birds or a school of fish).

In addition to the motion of each primitive, animations
can also differ in the way that animation affects the scene
topology: often, an object is stored as a triangle mesh, and
animation is performed by moving only the triangle vertices
while leaving the connectivity unchanged. We call this spe-
cial case a deformable scene, whereas arbitrary changes to
the scene topology can also include the change of triangle

1 Note that we only consider geometric changes – camera, light-
ing or shading information do not affect the efficiency data
structures.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

I. Wald et al. / State of the Art in Ray Tracing Animated Scenes 1693

mesh connectivity, or even the addition or deletion of primi-
tives.2 Often, only certain parts of the scene are deformable
(e.g. each skinned monster is a deformable mesh), while the
scene’s overall animation is more complex.

In practice, different applications use different kinds of
animation. For example, a design review application is likely
to employ either static scenes or semi-hierarchical animation
of complete auto or airplane parts; potentially including the
addition or removal of complete objects from time to time,
but with no non-hierarchical motion at all. A particle sim-
ulation, on the other hand, may use completely incoherent
motion with frequent addition and removal of primitives, or
even completely unrelated primitives every frame. Games,
in fact, can employ all kinds of motion at the same time: a
flight simulator or first-person shooter, for instance, may con-
tain some static geometry, as well as completely incoherent
parts – like explosions. In games, there usually are individ-
ual objects with mostly hierarchical animation (like airplanes
or monsters), but there may be many of them. The motion
of the many objects may itself be an example of incoherent
motion (e.g. characters appearing and disappearing). In addi-
tion, the characters themselves are often skinned, providing
a good example of semi-hierarchical motion. It is likely that
no one technique will handle all kinds of motions equally
well.

1.3. Overview

In the remainder of this paper, Section 2 first sketches the
general problem environment of ‘real-time ray tracing’, and
summarizes the state-of-the-art techniques and data struc-
tures that any modern ray tracer – whether for static or
dynamic scenes – has to make use of in order to achieve real-
time performance. After having outlined these dynamics-
independent issues, Section 3 takes the issue of animated
scenes back into the equation, and discusses the overarch-
ing tradeoffs that a ray tracer for dynamic scene has to face
(e.g. using a good but costly to build data structure over a
simpler but less effective one). Section 4 then outlines the
specific kinds of dynamic motion a scene could contain, and
discusses specific strategies that a ray tracer can use to han-
dle them (such as fast, approximate building, partial updates
or ray transformation). Following these two more abstract
sections, Sections 5, 6 and 7 then discuss the practical appli-
cation of these strategies based on actual systems that used
them. In particular, we first discuss kd-tree based approaches
in Section 5, then bounding volume hierarchy (BVH) based
approaches in Section 6 and finally grid-based approaches
in Section 7. Finally, we summarize and conclude in
Section 8.

2 A deformable scene does not have to consist of only a single
connected object, it can also consist of multiple separate triangle
meshes as long as the overall connectivity does not change.

2. Fast Ray Traversal Irrespective of Animated Scenes

The problem we target – real-time ray tracing of animated
scenes – actually consists of two competing concerns: rea-
ltime ray tracing and handling animated scenes. With the goal
of interactivity, approaches must be able to generate real-time
performance for tracing rays. Ultimately, this requires the
use of acceleration data structures such as kd-trees, grids or
bounding volume hierarchies. The relative effectiveness for
ray tracing (in particular, for animated scenes) of these ac-
celeration structures varies dramatically depending on many
factors, which we discuss below.

This combination of real-time ray tracing with support for
animated scenes raises new issues that we discuss in detail
over the course of this report. For static scenes, the choice
of a data structure and build algorithm can be determined
by looking only at the final rendering performance, since the
build cost is not incurred during the interactive session. How-
ever, as soon as interactivity for dynamic scenes is attempted,
the time for building or updating the data structure can no
longer be ignored.

2.1. Exploiting ray coherence for fast ray traversal

Much of this report will focus on the methods for build-
ing and/or updating acceleration data structures for animated
scenes. However, ray traversal performance is also critical in
animated ray tracing systems, especially in systems that trace
large number of secondary rays. In this section, we review an
important class of techniques used to provide fast traversal
performance in all modern interactive ray tracers.

The rays traced in a typical interactive ray tracer are not
organized randomly; there is substantial spatial coherence in
the rays that are traced (i.e. they can be grouped together in
space). This coherence is particularly strong for eye rays, but
it is also present for hard shadow rays, soft shadow rays and
many other kinds of secondary rays. All modern high per-
formance ray tracers exploit this spatial coherence to reduce
computation costs. At a high level, there are two strategies for
exploiting coherence: beam tracing [HH84] and ray aggre-
gation. Beam tracing performs exact area sampling and thus
does not explicitly represent rays at all. On the other hand, ray
aggregation explicitly represents rays but amortizes the cost
of some of the traversal operations over an entire ‘packet’ of
multiple rays.

Most current systems use ray aggregation techniques,
which combine several rays into a packet and/or frustum.
The first step in that direction was Wald et al.’s ‘coherent ray
tracing’ paper [WSBW01], which proposed tracing rays in
bundles of four through a kd-tree, and using single instruc-
tion multiple data (SIMD) instructions to process these rays
in parallel; the same concept has since been used in numer-
ous ray tracers, and on a variety of architectures.Using packet
tracing allows for amortizing operations including memory

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

1694 I. Wald et al. / State of the Art in Ray Tracing Animated Scenes

accesses, function calls and traversal computations, and per-
mits the use of register SIMD instructions to gain more per-
formance from the CPU. For coherent rays, this can lead to
significant performance increases over single ray implemen-
tations. Though tracing rays in SIMD, ‘plain’ packet tracing
still performs all traversal steps and triangle intersections as
a single-ray ray tracer.

An important evolution of packet tracing is the use of
frustum- or interval arithmetic-based techniques. Instead of
saving only through implicit amortizations and SIMD pro-
cessing, these techniques go one step further: they use much
larger packets than packet tracing, and explicitly avoid traver-
sal steps or primitive intersections based on conservative
bounds of the packet of rays. For triangle intersection, this
concept was first proposed by Dmitriev et al. [DHS04], who
used the bounding frustum to eliminate triangle intersections
for cases where the full packet misses the triangle.3 Reshetov
has recently shown that by building a customized frustum
at each leaf cell that excludes currently inactive rays, even
better performance is possible [Res07]. For traversal, the
concept was first proposed by Reshetov et al. [RSH05] who
applied it to kd-tree traversal, and used interval arithmetic-
based ‘inverse frustum culling’ to cull complete sub-trees
during traversal. The basic concept was later extended to
grids [WIK∗06] and BVHs [WBS07], and a large number
of modified applications are possible (see e.g. [BWS06] for
a more complete overview). Though more research is re-
quired in how such techniques interact with less coherent
rays, packet and frustum techniques are currently the meth-
ods of choice for targeting real-time performance.

In a beam tracer, rays are not explicitly represented except
perhaps in a final sampling step. Instead, a beam tracer eval-
uates exact area visibility. Overbeck et al. [ORM07] have
recently demonstrated that for scenes composed of moder-
ate to large size triangles, beam tracers are competitive with
frustum-based ray tracers for eye rays and soft shadow rays.
They achieved this performance through new techniques for
using a kd-tree acceleration structure for beam tracing. How-
ever, beam-tracing performance becomes less competitive
for small triangle sizes, since small triangles force a large
number of beam splits. An important advantage of beam
tracers is that they eliminate the Monte Carlo sampling arte-
facts produced by traditional ray tracers for soft shadows.
Though most of the systems discussed in the remainder of
this paper do not use beam tracing, the general discussions
on data structures and build/update strategies may apply to a
beam tracing approach as well.

Interactivity for animated scenes requires performance
both for ray tracing as well as for data structure up-
date/rebuilds. Therefore, we will describe the traversal tech-
niques for kd-trees, BVHs and grids in Sections 5, 6 and 7,

3 In a non-interactive context, similar ideas had previously been
pursued by, e.g. Zwaan et al. [vdZRJ95] or Havran [HB00].

respectively. At the current state-of-the-art, grids, kd-trees
and BVHs all support fast traversal algorithms; thus, the fo-
cus of the paper lies on how to handle dynamically changing
geometry. To do so, we first have to discuss the high-level
design issues on how to design a ray tracer for dynamically
animated scenes.

3. Overarching Tradeoffs for a Dynamic Ray Tracer

There are a number of candidate approaches for ray tracing
dynamic scenes. Before discussing any of these approaches
in detail, it is worth considering the general design deci-
sions that must be addressed when attempting interactive ray
tracing of dynamic scenes.

Each of these decisions represents one dimension in the
overall design space of a ray tracer. We present several dimen-
sions of this design space, discussing the possible choices and
the tradeoffs made with these choices. As some of these deci-
sions are interrelated, we also discuss the effect of one choice
on other choices in this space.

Some of these tradeoffs include:

1. What kind of acceleration structure should be used?
The tradeoffs include using a space partitioning hier-
archy versus an object hierarchy; axis aligned versus
arbitrarily oriented bounding planes; one coordinate
system versus many local coordinate systems; adap-
tive to geometry versus non-adaptive; and mechanisms
for organizing bounding planes in the data structure.

2. How is the acceleration structure built or updated each
frame? In large part, this determines the trade-off be-
tween build performance and trace performance. In par-
ticular, rebuild versus update; full update/rebuild (en-
tire scene) versus partial update/rebuild (just portions
needed for that frame); fast versus careful algorithms
for choosing bounding planes. These questions are ad-
dressed briefly in this section and in more detail in
Section 4.

3. What is the interface between the application and the
ray-tracing engine? In particular, how does the ap-
plication provide geometry to the ray-tracing engine:
polygon soup versus sloppy spatial organization (scene
graph) versus ready-to-use acceleration structure? Are
there restrictions or optimizations for particular kinds
of dynamic movement? Static geometry versus rigid
object movement versus deformable meshes versus co-
herent movement versus no restrictions? Is geometry
represented with just one resolution, or many?

Note that many of these tradeoffs may be substantially
different in an interactive system than in a traditional batch
ray tracer, where many of these issues are not faced. We
discuss several of these tradeoffs below.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

I. Wald et al. / State of the Art in Ray Tracing Animated Scenes 1695

3.1. Acceleration structure tradeoffs

As mentioned above, there are a wide variety of accelera-
tion structures that can be used for ray tracing. Specific de-
tails of particular acceleration structures will be discussed in
Sections 5, 6 and 7, but there are inherent tradeoffs between
these techniques that we want to contrast in advance.

The choice of an acceleration structure strongly af-
fects the traversal performance, and also can facilitate (or
inhibit) the choice of certain algorithms for updating or re-
building the acceleration structure. Here, we discuss the dif-
ferent kinds of acceleration structures in terms of their funda-
mental properties. For a more in-depth discussion of spatial
data structures in general, we refer readers to books by Samet
[Sam89a, Sam89b, Sam06] and a survey article by Gaede
and Günther [GG98]. For a more in-depth discussion of how
ray tracing acceleration structures affect ray tracing traversal
performance, we refer readers to the literature listed in the
bibliography at the end of Chapter 4 in PBRT [PH04] to
a previous survey by [SF90], and to Havran’s Ph.D. thesis
[Hav01].

Finding the object hit by a ray is fundamentally a search
problem, and the data structures used to accelerate that search
impose some kind of spatial sorting on the scene. Though a
variety of different data structures exist (e.g. grids, kd-trees,
octrees and variant of BVHs), they fall into only two classes:
spatial subdivision techniques, and object hierarchies.

3.1.1. Spatial subdivision versus object hierarchy

Spatial subdivision and object hierarchies are dual in nature:
spatial subdivision techniques uniquely represent each point
in space, but each primitive can be referenced from multiple
cells; object hierarchy techniques reference each primitive
exactly once, but each 3D point can be overlapped by any-
where from zero to several leaf nodes (also see [Hav07]).
Grids, octrees and kd-trees are examples of spatial subdivi-
sion, with varying degree of regularity (or ‘arity’ of the subdi-
vision [Hav07]); bounding volume hierarchies and their vari-
ants (bounding interval hierarchies, s-kd trees, b-kd trees, . . .)
are object hierarchies. The advantages and disadvantages of
the two approaches follow from these properties.

First, we consider traversal. If we wish to find the first
intersection point along a ray, the problem is somewhat sim-
pler for the space partitioning data structures. Each volume
of space is represented just once, so the traversal algorithm
can traverse these voxels in strict front-to-back order, and can
perform an ‘early exit’ as soon as any intersection is found.
In contrast, for space overlapping data structures the same
spatial location may be covered by different sub-trees, and an
intersection found in one sub-tree may later be overwritten
by an intersection point in a different sub-tree that is closer
to the origin of the ray (potentially having led to superfluous
work). On the other hand, spatial subdivision may lead to

visiting the same object several times along the ray, which
cannot happen with an object hierarchy; the same is true for
empty cells that frequently occur in spatial subdivision, but
simply do not exist in object hierarchies.

Space subdivision also generally leads to a finer subdivi-
sion (an object hierarchy will never generate cells smaller
than the primitive inside), which often encloses objects more
tightly. This often leads to fewer primitive intersections, but at
the expense of potentially more work to be performed during
building, and possibly more traversal steps. For the same rea-
son, the often stated assumption that BVHs consume more
memory than kd-trees is not necessarily true: though each
node does require more data, the number of nodes, leaves
and triangle references in a BVH is generally much smaller
than in a kd-tree; the same observation is true for the cost of
traversing the data structure (a more expensive traversal step,
but fewer traversal steps).

Second, we consider updates to an acceleration structure
as objects move. In a typical object hierarchy data structure,
it is easy to update the data structure as an object moves
because the object lives in just one node and the bounds for
that node can be updated with relatively simple and localized
update operations. In contrast, updates to a space partitioning
data structure are more complex. If split planes are updated,
the changes are not necessarily well localized and may affect
other objects.

3.1.2. Axis-aligned versus arbitrary bounding planes

All of the commonly used acceleration structures rely on
planes to partition space or objects. For some types of accel-
eration structures these planes are restricted, most commonly
to be axis-aligned along the x, y or z axis. However, it is also
possible to allow arbitrarily oriented bounding planes, as
is done in a general binary space partitioning (BSP) tree.
The advantages of using axis-aligned planes include: (i) the
plane’s orientation can be represented with just two bits,
rather than two or more floating point numbers; (ii) inter-
section tests are simpler and faster for axis-aligned planes;
(iii) numerical precision and robustness issues in ray-plane
intersection are easier to characterize and solve for axis-
aligned planes; and (iv) using only axis-aligned planes sig-
nificantly reduces the dimensionality of the search space for
building efficient data structures, and building efficient good
axis-aligned data structures is well understood. Conversely,
the advantages of using arbitrarily-oriented planes include:
(i) arbitrarily aligned planes can bound geometry more tightly
than axis-aligned planes; and (ii) some strategies for incre-
mental update of an acceleration structure might benefit from
the ability to arbitrarily adjust the orientation of bounding
planes to accommodate rotations of objects.

There has been very little investigation to date of general
BSP trees or BVHs with non-axis aligned bounding primi-
tives as ray tracing acceleration structures, even though both

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

1696 I. Wald et al. / State of the Art in Ray Tracing Animated Scenes

have been used for collision detection (see e.g. [GLM96,
HEV∗04, LCF05]). One exception is recent work studying
the use of restricted BSP trees, in which a discrete set of
split-plane orientations is used [KM07].

3.1.3. Adapt to geometry versus non-adaptive

For spatial subdivision techniques, one more option is the
mechanism for subdividing space. In some acceleration struc-
tures, the location of subdivision planes is chosen so as to
adapt to the geometry in the scene (e.g. a kd-tree), whereas
in other acceleration structures the locations of bounding
planes are predetermined, without looking at the geometry
in the scene (e.g. a grid or octree). In this second case, some
acceleration structures are still able to partially adapt to the
scene geometry by adjusting their topology (e.g. an octree or
grid with variable depth), whereas other acceleration struc-
tures do not adapt at all to scene geometry (e.g. a regular,
non-hierarchical grid).

The advantage of the most highly adaptive data structures
is that they are able to compactly and efficiently represent
almost any scene, including those with highly variable den-
sity of geometry such as the ‘teapot in a stadium’. For this
same reason, they also provide good traversal performance
on virtually any scene (also see [Hav01]).

When rays are traced in aggregates such as packets, frusta
or beams – which today is widely believed to be a prereq-
uisite to reaching high performance – there can be dramatic
differences in the traversal performance characteristics of
different acceleration structures. For grids, only one packet-
based traversal scheme is known today [WIK∗06], and since
it is based on frustum traversal, it requires more than 4 rays
to benefit from the frustum traversal; with four or less rays
the performance advantages over a single ray grid are much
lower and it can even perform worse, or fall back to single-
ray traversal. In addition, the grid requires highly coherent
rays to perform efficiently. Adaptive data structures, on the
other hand, seem to be more friendly to different packet con-
figurations. In part, this is because the hierarchical nature of
adaptive data structures allows much of the traversal work
to be done at coarse spatial scales, where the amortization
of costs for large packets is especially effective, even when
the packets are less coherent. It is possible that a hierarchical
grid or an octree might be similarly effective for large packets
with less coherence, but this question has not been studied in
detail yet.

Adaptivity also affects the construction of the acceleration
structure. In general, adaptive data structures are more ex-
pensive to construct than non-adaptive data structures. There
are several reasons for this. First, adaptivity fundamentally
requires that more decisions be made, and these decisions re-
quire computation. Second, when inserting a new object into
an adaptive data structure, some traversal of the data struc-
ture is required whereas none is required for a non-adaptive

data structure such as a grid. Finally, parallelization of
acceleration structure construction is more complex for adap-
tive data structures than for non-adaptive data structures.
From an algorithmic standpoint, building an adaptive data
structure is related to sorting, and typically requires super-
linear time, while building a regular data structure is very
similar to triangle rasterization, and can be done in an single
pass.

3.1.4. Build time versus build quality

For every data structure, there are different ways of building
that data structure for any given scene; commonly, there is
a trade-off between build quality (i.e. how good the data
structure is at minimizing render cost) and build time. For
example, a kd-tree can be built over bounding boxes or over
actual triangles (involving lots of costly clipping operations)
and this difference can have an impact on render performance
of 25% or more [Hav01, WH06].

When building or updating a hierarchical acceleration
structure whose bounding planes adapt to geometry (i.e.
nearly all acceleration structures except grids), the build/
update algorithm must decide how to organize geometry into
a hierarchy and choose locations for bounding planes. Heuris-
tics for evaluating the cost of any given tree configuration
exist (we will go into more detail below), but with an ex-
ponential number of possible tree configurations, finding the
globally best configuration is computationally intractable.
Today, the best-known heuristic is the greedy surface area
heuristic (SAH) (see e.g. [GS87, Hav01, PH04], as well as
Sections 5.1.1 and 6.1), but this requires evaluating lots of
potential split planes, and consequently is not cheap.

At the other extreme, very simple heuristics can be used
such as placing a split plane at the median point within the
current node. However, the acceleration structures produced
by these algorithms generally exhibit significantly poorer
traversal performance than those built by the greedy SAH,
especially when the density of geometry varies significantly
within the scene.

Recently, algorithms have been developed that are de-
signed to approximate the greedy SAH (we discuss these
algorithms in more details below, see Section 5.1). For a
moderate impact on build quality, these usually are substan-
tially faster to build, and typically offer interactive rebuilds
[HHS06, HSM06, PGSS06].

3.2. System architecture tradeoffs

As ray tracing becomes practical for real-time applications,
it becomes increasingly important to consider how the core
ray tracing engine, data structures and algorithms should
interact with the data structures and code of a real application.
For example, how might a virtual reality system or game
application use a ray tracing-based rendering engine?

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

I. Wald et al. / State of the Art in Ray Tracing Animated Scenes 1697

There are currently two broad schools of thought on
this question. The first, embodied in the OpenRT interface
[WBS02], argues that the interface between the rendering
engine and application should be as similar as possible to
the immediate mode APIs used in Z buffer systems such as
OpenGL (and thus, ease the transition to ray tracing). The
second, originally advocated by Mark and Fussell [MF05]
and implemented in Razor [DHW∗07] argues that it is nec-
essary to thoroughly reconsider this interface for ray tracing
systems and adopt an approach that more tightly couples the
application’s scene graph data structure to the ray tracing
rendering engine.

3.2.1. Polygon soup versus scene graph versus
ready-to-use acceleration structure

Hierarchical motion and most kinds of deformable motion
can be readily expressed via hierarchical data structures such
as a scene graph passed between the application and the ren-
dering engine (and most applications actually do this). Fully
incoherent motion must be expressed essentially in the same
way as it is in a Z-buffer system: by passing unorganized
polygons as a ‘polygon soup’ from the application to the ren-
dering engine. However, incoherent motion is often spatially
localized, in which case a hierarchical data structure such as
a scene graph can at least isolate these scene parts from other,
more hierarchically organized scene parts.

It is also possible for the application to pass a completely
built acceleration structure to the rendering engine. This ap-
proach is appropriate either for static geometry; or for an
acceleration structure that can be incrementally updated; or
for a ‘low quality’ acceleration structure such as a scene
graph that will only be used by the rendering engine to build
a higher quality acceleration structure.

In choosing the data structures passed between the appli-
cation and the rendering engine, there is a tension between
the needs of the application and the needs of the rendering
engine. A polygon soup or scene graph is often most natu-
ral for the application, while an acceleration structure is most
natural for the rendering engine. The considerations involved
are complex and to some extent will depend on the particular
kind of application.

3.2.2. Pre-transformed geometry

Traditional acceleration structures typically use a single
global coordinate system to represent all objects and bound-
ing planes in the acceleration structure. It is also possible to
use hierarchical transformations to enable different coordi-
nate systems in different portions of the acceleration struc-
ture [LAM01, WBS03]. Typically this is done by including
coordinate-transform nodes in the acceleration structure.

There are several advantages to supporting local coor-
dinate systems in the acceleration structure. First, as will
be discussed in Section 4.3, this mechanism provides an

extremely simple way to animate entire objects by transla-
tion or rotation [LAM01, WBS03] – only the coordinate-
transform node needs to be changed. For this same reason,
coordinate-transform nodes are almost always supported in
scene graph data structures [Ebe05]. Second, in an accel-
eration structure such as a kd-tree that restricts bounding
planes to be axis-aligned in the local coordinate system, the
coordinate-transform node provides a mechanism for effec-
tively allowing arbitrary orientation of the planes (also see
[GFW∗06]). On the downside, systems that use local coor-
dinate systems for animation are limited to supporting hi-
erarchical animation of rigid bodies; and the data structure
and traversal algorithm become more complex, potentially
slowing down the traversal.

3.2.3. Level-of-detail and multi-resolution surfaces

Support for ray tracing of multi-resolution surfaces and/or
objects can have a pervasive effect on the entire ray tracing
system. A full discussion of these issues is beyond the scope
of this paper but we will highlight some of the key interactions
between multi-resolution surfaces and support for dynamic
geometry.

First, we note that there are two basic approaches to sup-
porting multi-resolution surface patches. The first is to tessel-
late the surface patch into triangles at the desired resolution
(e.g. [DHW∗07]), and the second is to directly intersect rays
with the surface patch (e.g. [AGM06, BWS04]). Both of
these techniques have been used for many years in off-line
rendering systems.

In a system that tessellates the surface patch into trian-
gles, all surfaces in the system effectively become dynamic
geometry in the sense that the tessellation can change from
frame to frame. This situation provides an especially strong
incentive to efficiently support dynamic geometry.

There are two different forms of multi-resolution ray trac-
ing. The first, eye point directed multi-resolution, sets the
tessellation rate of a surface patch-based on its distance from
the eye point. This approach is similar to what is done in
Z buffer systems, and insures that there is only one rep-
resentation of a surface patch in any particular frame. It
is relatively straightforward to implement. The second, ray
directed multi-resolution, allows each ray to independently
set the resolution of the surfaces it intersects, using infor-
mation taken from ray differentials [Ige99, SW01]. In this
approach, a surface patch may have several different rep-
resentations, each of which is used by a different ray. In a
system that tessellates patches into triangles, this second cat-
egory of multi-resolution requires substantial changes to the
acceleration structure, traversal algorithms, and intersection
algorithms to perform efficiently and avoid cracking artefacts
[DHW∗07]. Hybrids of these two approaches are also pos-
sible, as is used by Pixar’s PhotoRealistic RenderMan batch
renderer [CFLB06, CLF∗03].

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

1698 I. Wald et al. / State of the Art in Ray Tracing Animated Scenes

In a system that supports multi-resolution surfaces – either
via tessellation of surface patches or via other mechanisms
such as progressive meshes – this capability must be exposed
to the application. For example, Razor accepts Catmull-Clark
subdivision patches [DHW∗07], and Benthin’s free-from ray
tracing system accepts cubic Bezier splines and Loop sub-
division surfaces [BWS04]. However, the impact of multi-
resolution surfaces is not limited to the application interface;
they can dramatically affect almost all aspects of the ray
tracing engine as will be discussed below.

There are several advantages to multi-resolution surfaces.
The first is the ability to represent curved surfaces without
requiring a high a priori tessellation rate that would result in
an extremely high polygon count. The second is the ability
to represent the scene database more compactly than would
be possible with a polygon representation. In an appropri-
ately designed system this more compact representation can
reduce memory bandwidth requirements. Multi-resolution
surfaces also offer a form of anti-aliasing for highly detailed
objects.

The disadvantage to multi-resolution surfaces is that they
add considerable complexity to the system. They may also re-
duce performance due to the need for on-demand tessellation
and/or complex ray-surface intersection algorithms.

4. General Design Choices for Updating/Rebuilding
Acceleration Data Structures

Given the design space of acceleration structures presented
above, we now discuss the tradeoffs that are common with
all of the known acceleration structure strategies.

Arguably the most important question that arises in de-
signing an interactive ray tracing system for dynamic scenes
is how to rebuild or update the acceleration structure of each
frame (or time step). We note that this same general problem
has been studied extensively in the context of collision de-
tection [JP04, LAM05, LM04, TKH∗05, vdB97], although
the goals and constraints are somewhat different in ray trac-
ing. The problem is also a specialized form of the sorting
problem, so Knuth’s book on this topic [Knu98] can often
provide valuable insights.

In general, there is a trade-off between build time and
traversal performance: investing more time into building to
get a better data structure can save time spent in traversal and
intersection, but is only worthwhile if the savings in traversal
are not outweighed by the additional time spent on preparing
the data structure. The costs of build (or update) and of
traversal are in turn strongly affected by two broad factors:
the characteristics of the rendering task, and the choice of
acceleration structure. We will discuss the key characteristics
of the rendering task first, since those in turn strongly interact
with the choice of acceleration structure.

The most important characteristics of the rendering task
that affect the trade-off between build time and traversal
performance are:

1. Kinds of motion in the scene: As discussed earlier in
Section 1.2, there are a variety of kinds of motion. For
example, gradual movement of rigid objects presents
a very different kind of problem than random creation
and deletion of geometry every frame. This first case
can be handled easily with minor updates to an acceler-
ation structure while the second case strongly favours
approaches that can efficiently rebuild the entire accel-
eration structure. Techniques and systems may or may
not take advantage of the properties of that motion.
Separating static objects from dynamic objects is com-
monly employed. For example, a static building or tree
might have its own static acceleration structure built at
great expense, while a dynamic character might ben-
efit from different strategies. Characters, vehicles and
other common objects usually experience limited defor-
mations and seldom change topology. These properties
can be exploited in the acceleration structure.

2. Geometric complexity of the scene: More specifically,
the total amount of geometry, the amount of geometry
that is visible to rays, and the variation in spatial den-
sity of the geometry are all important to the choice of
algorithms.

3. Total number of rays: All other things being equal, if
more rays are being traced it may be worthwhile to in-
vest more time to build a good acceleration structure.
Ray count is determined primarily by image resolu-
tion, sampling density and by the average number of
secondary rays per primary ray.

4. Kind of rays: Secondary rays, especially those for area
light sources and hemisphere sampling, may access the
acceleration structure less coherently than primary rays.

5. Ray aggregation strategy: Traversal time can be
strongly affected by the choice of ray aggregation strat-
egy (e.g. frusta, packets, beams, etc). For example, a
frustum tracer may benefit less from tighter fitting leaf
nodes than a single-ray tracer.

Build (or update) time and traversal performance are also
strongly affected by the choice of acceleration structure.
However, the strengths and weaknesses of each acceleration
structure should be evaluated in the context of the characteris-
tics of the rendering task just discussed. Generally speaking,
grids are currently considered to be fastest to build but the
least efficient for traversal/intersection; kd-trees to be the
most efficient ones for traversal/intersection but most costly
ones to build, and BVHs somewhere in-between in build
time, and close to kd-trees for traversal.

These considerations are weighted differently for interac-
tive ray tracers than they have been for other kinds of systems

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

I. Wald et al. / State of the Art in Ray Tracing Animated Scenes 1699

in the past. In an off-line rendering system, any build strat-
egy that is sub-quadratic (lower than O(N2) for N primitives)
in time and linear (O(N)) in memory is considered practi-
cal. With a large number of rays traced, these acceleration
structures easily recouped the cost of build within a single
frame, or the acceleration structure could be computed off-
line and stored with the model. In an interactive system with
static geometry, the cost of building an acceleration struc-
ture can be amortized over many frames or can be computed
as a pre-process. Thus, build performance is even less of a
concern.

In the following subsections, we present the design space
for systems that support scenes whose geometry varies from
frame to frame. Most of these strategies can be used with a
variety of different acceleration structures.

4.1. Rebuild versus update versus static

There are three fundamental approaches to obtaining an ac-
celeration structure for dynamic geometry. The first is to
rebuild the acceleration structure from scratch. The second
is to update the acceleration structure, typically starting from
the one used in the previous frame. The third is to recognize
that in some cases part or all of the scenes can be treated as
static geometry (possibly with respect to some moving local
coordinate system), eliminating the need to modify part of
the acceleration structure.

The most general method for handling dynamic scenes is
to rebuild the data structure from scratch every frame. The
primary advantages to this approach are that it can handle
arbitrary movement of dynamic geometry; it is simple, and
it is relatively straightforward to ensure that the acceleration
structure is well optimized. The primary disadvantage to this
approach is that it can be expensive to rebuild the acceler-
ation structure from scratch especially for large scenes and
hierarchical, adaptive data structures.

In practical applications, there is significant coherence
among successive frames. Instead of rebuilding each frame’s
acceleration structure from scratch, it is possible to update
the bounding planes and possibly some of the topology of
previous frame’s acceleration structure to be correct for the
new frame’s configuration of geometry. The feasibility of
this approach depends significantly on the actual accelera-
tion structure and on the kind of motion present in the scene.
The primary advantage to this approach is that it is often less
time consuming to update the data structure than to rebuild
it, because much of the information about the geometry sort
can be reused. This approach also has the potential to fa-
cilitate the use of other forms of frame-to-frame coherence
(e.g. in light transport). The primary disadvantage of this
approach is the tendency for the quality of the acceleration
structure to degrade after some number of updates, espe-
cially if the topology of the acceleration structure is not up-
dated. There are strategies to mitigate this problem (discussed

later in the paper), but they introduce additional complexity.
To date, incremental updates have been proposed primarily
for BVHs [EGMM06, IWP07, LYTM06, WBS07, YCM07],
and to a lesser degree also for grids [RSH00] and kd-trees
[GFW∗06].

Finally, if large parts of the scene are static, build/update
time for those parts of the scene can be eliminated by storing
the static geometry in a separate precomputed acceleration
structure or sub-structure. This approach is very fast, but ob-
viously is limited to geometry that is not fully dynamic. This
strategy is usually hybridized with more general strategies.
For example, a system that animates rigid objects using a hi-
erarchy of transformations can precompute the acceleration
structure for each object and refer to each of these precom-
puted acceleration structures from within a rebuilt/updated
top-level acceleration structure via a coordinate-system ro-
tation node [LAM01, WBS03]. This strategy is discussed in
more detail in Section 4.3.

Various hybrids of all three of these general strategies
are possible. In particular, when rebuilding or updating an
acceleration structure it may make sense to avoid touching
those parts of the acceleration structure that are known not
to have changed (because their geometry is not currently
moving), and reuse those parts of the acceleration structure
from the previous frame.

4.2. Complete versus partial update/rebuild

The simplest approach to updating or rebuilding the accel-
eration structure is to recreate the entire acceleration struc-
ture, or even just the objects that moved. We refer to this
strategy as the complete rebuild/update strategy. This ap-
proach has the advantage of being simple and robust, but it
also can be very expensive for scenes with large amounts of
geometry.

There is an opportunity to reduce this cost by realiz-
ing that a full build/update does unnecessary work. When
rendering any particular frame of a scene with high depth
complexity, most of the geometry is occluded. This prop-
erty is particularly true for primary rays, but also applies
to secondary rays. There is no need to include this oc-
cluded geometry in the acceleration structure. Thus, if we
can determine which geometry is needed, it is only neces-
sary to partially rebuild or update the acceleration structure,
so that it just includes the visible and perhaps nearly-visible
geometry.

There is one difficulty with this approach: to determine
which geometry should be placed into the acceleration struc-
ture, we need to know which geometry is visible. But that
in turn looks a lot like the original ray tracing problem we
were trying to solve. For this technique to work in practice,
the entire scene geometry must already reside in a hierar-
chical spatial data structure, i.e. an acceleration structure

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

1700 I. Wald et al. / State of the Art in Ray Tracing Animated Scenes

of sorts. It is perfectly acceptable for this initial accelera-
tion structure to be a low quality one such as the bounding
volume hierarchy associated with a typical scene graph. If
we traced rays through this data structure directly, traversal
performance would be terrible, but the data structure does
provide sufficient spatial sorting to allow the system to de-
termine which geometry must be used to build or update the
high quality partial acceleration structure. With this scheme,
the partial high-quality acceleration structure is built on de-
mand (i.e. lazily) from the complete low-quality acceleration
structure.

There are several advantages to this technique. First, it
allows the system to rebuild or update just the needed parts
of the high-quality acceleration structure. This reduces build
time and reduces storage required for that structure. Further-
more, the update/rebuild work that still needs to be done is
more efficient, because the hierarchy information from the
low-quality acceleration structure provides a partial pre-sort
of the geometry. A second advantage of this technique is
that it allows the low-quality and high-quality accelerations
structures to be more highly tuned for their particular use
than in a system that uses just a single acceleration struc-
ture, avoiding the tension between scene management and
ray tracing that occurs in a system organized around a sin-
gle acceleration structure. Finally, there is an opportunity to
perform other useful work when copying geometry from the
low-quality acceleration structure to the high-quality accel-
eration structure. For example, this is an opportune point at
which to tessellate curved surfaces into triangles.

There are also several disadvantages to this technique.
First, it requires that the rendering engine be more tightly
coupled to the software layer above it than has tradition-
ally been the case, and that this layer above maintain the
low-quality acceleration structure (i.e. scene graph). Second,
this technique is substantially more complex than non-lazy
techniques. In particular, lazy construction of the accelera-
tion structure may be more challenging to parallelize, and
may be more challenging to support on specialized hard-
ware. Third, when depth complexity is low, this technique
does not provide any significant performance advantage. Fi-
nally, the approach assumes that a scene graph exists, and
that there is some information in this scene graph that the
builder can exploit (such as bounding boxes for geometric
objects, and a rough hierarchical grouping). Though it is pos-
sible to devise cases where this is not the case, most practical
applications – and, in particular, games – seem to fulfil these
requirements.

Most interactive ray tracing systems use complete re-
build/update, but the Razor ray tracing system [DHW∗07]
(Section 5.2) uses partial build of a high-quality kd-tree from
a low-quality BVH scene graph. Similar techniques could
also be used to build a high-quality BVH acceleration struc-
ture from a scene graph, but no results with interactive per-
formance have been published for this approach yet.

4.3. Hierarchical animation through multi-level
hierarchies

As briefly mentioned earlier in Section 4.1, if motion in a
scene is organized hierarchically, the acceleration structure
update can also be handled in a hierarchical way. If an entire
group of primitives is subject to the same linear transfor-
mation, one can also transform the rays with the inverse
transformation, and intersect those transformed rays with the
original geometry. As the geometry itself is never actually
transformed, the object’s own acceleration data structure re-
mains valid, and can thus be pre-built off-line. If more than
one of these linearly transformed objects exist, one can build
an additional acceleration structure over the world-space in-
stances of these objects, and transform the rays to the respec-
tive objects’ local coordinate systems during traversal (an
instance is a reference to a static object, plus a transforma-
tion matrix).

The core idea of using multiple hierarchy levels and trans-
forming rays instead of objects was first proposed by Lext
et al. [LAM01]; in an interactive context, it was first applied
by Wald et al. with the OpenRT system [WBS03]. In their
paper, the authors also proposed to use a two-level hierarchy
for mixing different strategies; in their case, by encapsu-
lating incoherent motion into special objects that are then
rebuilt per frame. As a side effect, this approach also sup-
ports instancing since the same object can be referenced by
multiple instances. In addition, it can also be used to support
pose-based animation. In many games, animating an object
is done by having multiple predefined poses for each charac-
ter, and switching those per frame depending on what pose
is required. Using the multi-level approach, this can be han-
dled by having one separate object for each pose, and only
instantiating the one required per frame. This was, for exam-
ple, used in the proof-of-concept ‘Oasis’ and ‘Quake4/RT’
games [SDP∗04, FGD∗06], and has proven very effective.

Essentially, the core idea of this approach is to trade off
per-frame rebuilding against per-frame ray transformations
during traversal. This reduces the complexity of per-frame
rebuilds to only rebuilding the top-level hierarchy over the
instances. The obvious disadvantages of this approach are
(i) that performance may degrade if objects overlap signifi-
cantly, (ii) that transforming rays adds an additional cost to
traversal and (iii) that the information on what primitives to
group into which objects has to be supplied externally. On
the positive side, the concept is very general, and, in particu-
lar, completely orthogonal to all other techniques discussed
below. It is also the only currently proposed technique that
remains sub-linear in the number of (visible) triangles, as all
other techniques have to at least update all of the triangle
positions.

4.4. General strategies for speeding up rebuild

A straightforward rebuild algorithm (discussed originally in
Section 4.1) can be made faster in one of the two ways:

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

I. Wald et al. / State of the Art in Ray Tracing Animated Scenes 1701

improving single-thread build performance or parallelizing
the build. Higher single-thread build performance obviously
requires low-level optimizations like the use of SIMD ex-
tensions [HSM06, PGSS06, SSK07], but primarily revolves
around investigating build algorithms with a quality-vs-speed
trade-off, i.e. in simpler build strategies that yield data struc-
tures with inferior traversal performance, but produce them
at much faster rates [HHS06, HSM06, PGSS06, WK06].

Parallel rebuilding for real-time builds has only been con-
sidered fairly recently; parallel data structure builds have
been studied in the context of static scenes (e.g. [AIÖ94,
Ben06, BGES98, SGS95]), but with the growing availabil-
ity and size of multi-core systems is currently receiving in-
creased attention. Fast, parallel and scalable builds today are
available for both grids [IWRP06] and kd-trees [SSK07],
both of which are discussed in more detail below. The Razor
system parallelizes its kd-tree build by allowing each pro-
cessor to lazily build its own kd-tree [DHW∗07]. While this
strategy is actually building multiple kd-trees in parallel, each
on its own core, each tree is incomplete; so when ray tracing
work is carefully allocated to processors, this strategy does
surprisingly little redundant work and has been demonstrated
to be effective for eight cores. Parallel BVH building has re-
ceived less attention, but the parallel kd-tree builds should
also generalize to BVHs.

4.5. Fast rebuild with application/scene graph support

Initial work on ray tracing of dynamic scenes assumed that
it would be necessary to restrict the kind of motion or to
use a poor-quality (but quick to build) acceleration structure
in order to achieve interactive frame rates. However, recent
work [DHW∗07] has shown that by exploiting knowledge of
the scenegraph and application, combined with a lazy rebuild
strategy, one can achieve efficient acceleration structures for
arbitrary dynamic motion. This approach will be discussed
in more detail for kd-trees in Section 5.2.

5. Kd-tree-based approaches

In this section, we present a variety of approaches for ray
tracing dynamic scenes using a kd-tree acceleration struc-
ture. Some of these techniques may be applicable to other
acceleration structures, but are discussed here because they
were first developed for use with kd-trees.

Kd-trees are considered by many to be the best-known
method to accelerate ray tracing of static scenes. Their pri-
mary disadvantage for dynamic scenes is that updates are
very costly (at least efficient update methods are not yet
known). Various approaches have been developed to avoid
this limitation. The first approach is to accelerate the con-
struction of the tree by clever approximations and by paral-
lelization. The goal is to build the kd-tree fast enough from
scratch every frame, thus supporting arbitrary modification

of the scene geometry. The second approach is to avoid the re-
build of the kd-tree by transforming rays instead of geometry.
And finally, a kd-tree can instead be lazily rebuilt restricting
the construction to sub-trees that are actually traversed by
rays.

5.1. Fast kd-tree construction using scanning/streaming

Several algorithms have been developed to quickly (re-)
construct kd-trees from scratch [HSM06, PGSS06, SSK07].
These algorithms have very few assumptions on the input
data: they all work with a ‘triangle soup’ (or more precisely
‘primitive soup’) and thus retain maximal flexibility regard-
ing dynamic changes of the scene. If additional information
from a scene graph is exploited, the constructions can be
accelerated further (described further in Section 5.2).

A kd-tree construction is typically based on a comparison-
based sorting operation; thus, it cannot be expected to find
faster algorithms than O(N log N). Therefore, a fast kd-tree
builder must concentrate on lowering the constants rather
than asymptotically faster algorithms. Construction speed
can be improved by algorithms that are better adapted to
current hardware architectures, by applying parallelization
techniques to exploit the power of multiple CPU cores, and
by introducing approximations to save computation. In par-
ticular, the currently best known heuristic to produce the
highest-quality kd-tree for ray tracing, the SAH [MB89], can
be approximated without significant degradation of kd-tree
quality.

Before discussing the details of the fast construction al-
gorithms, we will first give some background regarding the
SAH and briefly cover previous construction methods.

5.1.1. The surface area heuristic

The SAH [GS87, MB89, MB90, Sub90] provides a method
for estimating the cost of a kd-tree for ray tracing based
on assumptions about the distribution of rays in a scene.
Minimizing this expected cost during construction of a kd-
tree results in an approximately optimal kd-tree that provides
superior ray tracing performance in practice.

Ray tracing costs are modelled by the SAH by assuming
that rays are uniformly distributed lines, in which case the
probability Phit of a ray hitting a (convex) volume V is pro-
portional to the surface area SA of that volume [San02]. In
particular, if a ray is known to hit a volume V , the probability
of hitting a sub-volume VS is

Phit (VS |V) = SA(VS)

SA(V)
. (1)

The expected cost CR for a random ray R to intersect a
kd-tree node N is given by the cost of one traversal step
KT , plus the sum of expected intersection costs of its two

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

1702 I. Wald et al. / State of the Art in Ray Tracing Animated Scenes

children, weighted by the probability of hitting them. The
intersection cost of a child is locally approximated to be
the number of triangles contained in it times the cost KI to
intersect one triangle. Given a node V with two children l and
r (with volumes Vl and Vr, respectively, and with the number
of contained triangles nl and nr, respectively), the expected
cost CR is

CR = KT + KI [nlPhit (Vl |V) + nrPhit (Vl |V)]

(1)= KT + KI

SA(V)
+ [nlSA(Vl) + nrSA(Vr)]. (2)

During the recursive construction of the kd-tree, one needs
to determine where to split a given kd-tree node into two
children or to create a leaf. According to the SAH, the best
position (and dimension) is when CR is minimal. If the min-
imal CR is greater than the cost of not splitting at all (KI · n),
a leaf is created. The minimum of CR can only be realized
at a split plane position where primitives start or end, thus
the bounding planes of primitives are taken as potential split
plane candidates. Furthermore, CR depends on the surface
area SA of the children – which can be directly computed –
and the primitive count of the children – which is the hardest
part to compute efficiently.

5.1.2. Brief discussion of previous construction methods

Consequently, previous methods to efficiently construct SAH
kd-trees concentrated on the fast evaluation of the primitive
counts. One method is to sort the primitives (and thus the
split candidates) at one dimension. Then, one iterates through
the split candidates and incrementally updates the primitive
count of the children. The overall complexity of this con-
struction method is O(N log2 N) because sorting is needed
for every split of a node. By sorting the primitives once in
advance – and maintaining the sort order in each splitting
stage – this complexity can be reduced to O(N log N), the
theoretical lower bound [WH06].

Although reaching the optimal asymptotic complexity of
O(N log N), this construction algorithm has several main
drawbacks. First, the sort at the beginning makes lazy builds
(Section 5.2) ineffective, because this sorting step requires
O(N log N) operations. Second, maintaining the sort or-
der during splitting introduces random memory accesses
that severely slows down construction speed on cache-based
hardware architectures.

Realizing these problems, new state-of-the-art construc-
tion methods avoid sorting, and emphasize streaming/
coherent memory access. This is possible by giving up exact
SAH evaluation. Instead, the SAH function is sub-sampled
and its minimum is only approximated.

The approaches presented in [HSM06] and [PGSS06] both
use a sampling and reconstruction approach to finding the
global minima in the SAH function. The former uses two

sets of eight samples each and uses a linear approximation for
the distribution of the geometry in the scene and a quadratic
approximation to the SAH function. The latter uses 1024
samples and uses a linear approximation of the SAH function.
Both have been shown to produce relatively high quality trees
for ray tracing, with (trace) performance similar to a full
SAH build trees. These scanning/binning approaches have
the advantage of simple, system friendly implementations
and O(N log N) asymptotic performance.

5.1.3. SIMD scanning

An approach to improve memory performance on a modern
architecture while approximating the SAH was provided by
Hunt et al. [HSM06]. This method uses two passes to adap-
tively sample the distribution of geometry in the scene and
then constructs an approximate SAH cost function based on
these samples. In the first pass, they take eight uniformly dis-
tributed samples, which can be performed very efficiently in
one scan over the primitives by using several SIMD registers
to count the primitives on either side of eight planes. In the
second pass, the gathered information is used to adaptively
place eight additional samples in a way that minimizes the
overall error of the approximation of the SAH cost function.

The end result of these two sampling passes is a piece-
wise quadratic approximation to the SAH cost function. Hunt
et al. also proved that the error of this approximation scheme
is bounded by O(1/k

2) with k being the number of samples
per pass. To choose the split plane location for the node, they
consider the analytic local minima of each of the 2k − 1
piecewise quadratic segments, and place the split plane at
the overall minimum.

When the recursive construction reaches the lower levels
of the kd-tree with only few primitives left, the piecewise
quadratic approximation becomes inexact. Therefore, Hunt
et al. switch to the exact SAH cost function evaluation once
the number of primitives in a node to split is below 36.
The exact evaluation is done using the same SIMD scanning
algorithm, but this time placing the samples at all split can-
didates. Although theoretically a slow O(N2) algorithm, this
approach actually turns out to be faster than all other known
strategies (including the sorting method described above),
due to a machine-friendly implementation.

5.1.4. Streamed binning

Popov et al. [PGSS06] linearly approximate the SAH cost
function with 1024 uniformly distributed samples. Using a
binning algorithm, they efficiently evaluated the SAH cost
function at these sample locations in two phases: In a first
phase, they stream over the primitives and bin the minimum
and the maximum extent (the bounds) of each primitive.
The second phase iterates over the bins and reconstructs
the counts of primitives to the left and to the right of the

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

I. Wald et al. / State of the Art in Ray Tracing Animated Scenes 1703

border of each bin (these are the sample locations) with partial
sums. When performing the split of a node, its children are
binned at the same time, which considerably reduces memory
bandwidth.

The authors additionally present a conservative cost func-
tion sampling method. Exploiting certain properties of the
SAH cost function, they can identify and prune bins that can-
not contain the minimum of the cost function. The remaining
bins are then resampled with 1024 additional samples. With
very few iterations, only one bin with only one primitive bor-
der remains, quickly yielding the true minimum and thus the
optimal split position.

Because binning becomes inefficient when the number of
primitives is close to the number of bins, Popov et al. also
revert to exactly evaluating the SAH cost function. Once the
working set fits into the L2 cache, they switch to an im-
proved variant of the classical O(N log N) SAH algorithm
(Section 5.1.2). They use a fast O(N) radix sort [Knu98,
Sed98] instead of an comparison-based O(N log N) sorting
algorithm to sort the primitives of this sub-tree. Note that
radix sort is only efficient when the working set fits in the
cache because it accesses memory in random order. Addi-
tionally, the random memory accesses for maintaining the
sort order during splitting – originally the motivation for the
streamed binning algorithm – stay now in the L2 cache, and
are thus not a performance problem any more.

5.1.5. Results and discussion

Both scanning and binning are an order of magnitude faster
than previous work with a construction performance of about
300k and about 150k primitives per second in [HSM06] and
[PGSS06], respectively. This speed allows for rebuilding the
kd-tree per frame to handle arbitrary dynamic changes in
smaller to medium sized scenes. Hunt et al. also report num-
bers for a variant where they trade kd-tree quality for con-
struction speed: when scanning only one dimension per node
instead of all three, they can construct a kd-tree for the 1.5 m
triangle Soda Hall scene in only 1.6 s.

Although this approach uses only an approximation of
the ‘correct’ SAH, the resulting kd-trees are still of high
quality, coming close to an ‘optimal’ SAH kd-tree within
2%–4% (measured in expected ray tracing cost and cross-
checked with actual rendering speed). This also means that
the conservative sampling approach using rebinning of Popov
et al. will only be necessary if the optimal kd-tree quality is
desired.

Comparing the timings [HSM06] is significantly faster
than [PGSS06]. Although different hardware was used for
both papers, the reason is most likely due to the simpler (and
thus faster) inner loop of [HSM06]. Additionally, Popov et al.
switch much earlier to the more exact but slower constructing
algorithm than Hunt et al.

Both sampling algorithms have different properties and
asymptotic behaviours. With n being the number of primi-
tives in the current node and k being the number of samples
to evaluate the SAH with, SIMD scanning has complexity
O(n · k) while streamed binning has complexity O(n + k).
This is the reason that Hunt et al. can only afford a small
number of samples (16), whereas Popov et al. can easily
handle a large number of samples (1024).

The small number of samples of [HSM06] is redeemed by
the adaptive placement of the samples, and a quadratic ap-
proximation of the cost function. In [PGSS06], the uniform
placement of many samples results in a linear approximation
of the cost function. However, because we are only interested
in the minimum of the SAH cost function, it is not neces-
sary to minimize the total approximation error as done in
[HSM06]. Additionally, the cost function is smoother with
larger n suggesting that the quadratic approximation with
few samples will be quite accurate with larger n, whereas
the linear approximation with many samples will be more
accurate with smaller n. Thus, it could be advantageous to
combine the ideas of both papers when implementing a fast
kd-tree builder.

5.1.6. Scalable parallel kd-tree construction

While these methods increase single-thread performance
of kd-tree construction, further speedups can be achieved
through multi-threading. This is becoming increasingly im-
portant with the ongoing trend in CPU and GPU architectures
to deliver increased multi-core parallelism.

Schemes for building ray tracing acceleration data struc-
tures go back even to the 1990s (see e.g. [AIÖ94, SGS95].
At that time, however, building these data structures was
not as much of a bottleneck as it is today in an interactive
system. Nowadays, with parallel architectures being more
widely available and with building often being the actual bot-
tleneck in a dynamic ray tracing, this topic is slowly being
reinvestigated. Benthin [Ben06] showed parallelized kd-tree
construction, but with only two threads. A preliminary at-
tempt at parallel construction was also shown in [PGSS06],
but with rather limited success due to poor scalability. The
difficulties in multi-threaded kd-tree (or any other accelera-
tion structure) construction lie in balancing the work, and in
avoiding communication and synchronization overhead.

The first successful, scalable parallelization of kd-tree con-
struction was shown by Shevtsov et al. [SSK07]. Their kd-
tree builder closely follows Popov et al.’s streamed binning
[PGSS06]. Each thread independently builds its own sub-tree
in dedicated memory space, thus communication overhead is
minimized. To equally distribute the work over the threads,
the sub-trees need to contain a similar number of primi-
tives, which is simply achieved by placing the first splits at
the object median. The median can be approximated very
fast by performing one streamed binning pass counting the

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

1704 I. Wald et al. / State of the Art in Ray Tracing Animated Scenes

Figure 1: Left: using Shevtsov et al.’s technique, this scene
with 63k static and 171k animated triangles can be ray traced
with 7.2 fps at 10242 pixels on a four core 3 GHz Intel Core 2
Duo including shadows from two point lights [SSK07]. Right:
using Hunt et al.’s technique [HMF07], the kd-tree acceler-
ation structure for this view of this scene with 541023 quads
(of which 9392 are visible) is lazily built in 0.12 seconds on
a single core of a 2.67 GHz Intel Core 2 Duo.

primitives and then to place the split between bins where
the primitive count is similar to the left and to the right. To
improve scalability, this first scanning can also be done in
parallel by dividing the set of primitives among the threads,
and merging their bins afterwards.

With their approach, Shevtsov et al. [SSK07] demon-
strated linear scalability with up to four threads, including
kd-tree construction and rendering (see Figure 1a).

5.2. Fast rebuild of adaptive SAH acceleration structure
from scene graph

Through the combined use of several ideas that we summa-
rize here, it is possible to build a high-quality acceleration
structure (e.g. an approximate SAH kd-tree) at interactive
frame rates without any substantive restriction on the kind
of motion. These ideas have been demonstrated in the Razor
system to build a kd-tree acceleration structure [DHW∗07]
and could be adapted with minimal changes to other accel-
eration structures such as a BVH.

The key ideas are:

1. Application stores scene geometry in a scene graph:
This scene graph serves as a ‘poor quality’ bound-
ing volume hierarchy that is updated every frame.
(Razor does a complete update, but a lazy update is also
possible).

2. Build the acceleration structure lazily: Only those parts
of the kd-tree acceleration structure that are needed in
the current frame are built. The lazy build relies on
the scene graph to provide initial information about the
organization of geometry in the scene.

3. Use the hierarchy information from the scene graph
to speed up construction: When building the higher
levels of the kd-tree, the builder uses bounding volumes
from the scene graph hierarchy as proxies for all of the
geometry they contain, making it very quick to build
upper levels of the kd-tree. The Catmull–Clark patches
at the leaf nodes of the scene graph provide an additional
implicit hierarchy for their tessellated quads that is also
used in the same way.

4. Use a scan-based approximation to the SAH: Hunt
et al.’s scan-based approximation to the SAH is used
to build the kd-tree [HSM06]. This fast builder is par-
ticularly important when the scene graph hierarchy is
relatively flat and the sort required by a traditional kd-
tree builder would be expensive.

5. Use a specialized acceleration structure for mesh ge-
ometry: Tessellated triangles from each surface patch
are stored in their own simple bounding volume hier-
archy. (If the number of triangles gets large, several
such bounding volume hierarchies may be created for
each patch.) Each of these small bounding volume hi-
erarchies is a leaf node in the kd-tree. Because the sys-
tem has an implicit hierarchy for the triangles within a
patch, the explicit bounding volume hierarchy can be
built very quickly yet serve as a very high quality ac-
celeration structure. (This approach has recently been
extended to triangle meshes [LYM07]).

It can be shown that several of these techniques – indi-
vidually and in combination – asymptotically improve the
performance of the build algorithm compared to standard
techniques [HMF07]. Furthermore, they are all complemen-
tary to each other; if any of them are disabled, overall build
time increases [DHW∗07].

Let n be the total number of ‘atomic’ objects/polygons, v

be the number of visible or nearly-visible objects/polygons
and assume that v � n. Traditional algorithms build the
entire acceleration structure and require O(n log n) operations
[WH06]. By using a ‘good’ hierarchy from the scene graph or
elsewhere (as defined in [HMF07]), this cost can be reduced
to O(n). Intuitively, this improvement is due to the fact that the
hierarchy is essentially a pre-sort of the scene. If a hierarchy is
used in conjunction with lazy evaluation, the operation count
for the build is reduced to O(v + log n), which simplifies
to O(v) with the reasonable assumption that log(n) � v.
The scan-based approximation to the SAH does not change
any of these asymptotic results as compared to a sort-based
SAH builder when using hierarchy, but does provide better
constant factors. For the case of lazy build without an initial
hierarchy, the scan-based SAH does reduce the asymptotic
operation count from O(n log n + v log v log v) to O(n +
v log v), given certain other reasonable assumptions.

These operation counts do not include the cost of updating
the scene graph hierarchy each frame. For coherent motion

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

I. Wald et al. / State of the Art in Ray Tracing Animated Scenes 1705

Table 1: Summary of kd-tree build performance with and without
lazy build and multi-resolution.

Multires/ Total Touched Touched Build
lazy kd patches patches triangles time

No/No 543868 543868 21404 3.86 s
No/Yes 543868 27617 21404 0.131 s
Yes/No 543868 543868 1240978 4.50 s
Yes/Yes 543868 26655 1240978 0.705 s

All results use the scene graph hierarchy and a scan-based SAH
approximation. The multi-resolution setting tessellates patches to a
specified maximum size (in this case, 64 pixels/triangle-vertex for
eye rays) and uses a specialized acceleration structure for tessellated
surface patches that is always instantiated lazily even when the
kd-tree is not built lazily. These results are taken from Razor on a
single core of a 2.6 GHz Intel Core 2 Duo, for frame 230 of the
‘Courtyard64’ animation.

in a system with a ‘good’ hierarchy and lazy updates, that
cost is O(log n), so the total cost of scene graph update plus
build remains O(v +log n), which is a major improvement
over the O(n log n) cost without these techniques.

Table 1 shows that lazy build is very effective at reduc-
ing build time in a scene with high depth complexity. It also
shows that when multi-resolution patch tessellation is turned
on (producing a large number of triangles), the use of a spe-
cialized acceleration structure for mesh geometry permits the
build to remain relatively fast. Figure 1b presents additional
results for this technique, showing that when patch tessela-
tion is turned off, the lazy build of the kd-tree for a scene
with 541023 patches (quads), of which 9392 are visible, takes
0.13 s on a single core of a 2.67 GHz Intel Core 2 Duo.

5.3. Handling semi-hierarchical motion using motion
decomposition and fuzzy kd-trees

Although the presented methods to construct kd-trees are
much faster than previous work, they still need considerable
time when the number of visible triangles is large.

Figure 2: Motion decomposition together with fuzzy kd-trees allow for ray tracing deforming meshes by decomposing the
motion of the mesh into an affine transformation plus some residual motion: (a) one frame of an animated hand; (b) the
deforming mesh is split into sub-meshes of similar motion, shown in the rest pose; (c) reconstruction of frame (a) using the
affine transformations of each cluster only; (d) close-up view of (c) revealing the erroneous mesh when approximated only by
affine transformations; (e) adding the residual motion handled by the fuzzy kd-trees yields the original mesh.

Another approach that exploits coherence of motion in
animations and dynamic scenes was introduced in 2006 by
Günther et al. [GFW∗06]. Their motion decomposition tech-
nique builds on the idea of transforming rays instead of mov-
ing geometry [LAM01, WBS03].

Coherently moving parts of the scene are found automat-
ically in a pre-processing step and affine transformations
are computed to express the common motion. The residual
motion is handled by a so called fuzzy kd-trees. Because
the fuzzy kd-trees allow for small movement of its primi-
tives, they can be built in a pre-processing step and stay
valid during scene animation, almost completely avoiding the
expensive reconstruction of kd-trees. At least for skeleton-
driven skinned meshes – by exploiting the present bone and
skinning information, Günther et al. have shown that this
limitation to predefined animations can also be removed
[GFSS06].

5.3.1. Method overview

The concept and motivation of the motion decomposition
framework is sketched in Figure 2. In the following, we
describe in more detail the individual parts.

Motion decomposition. The motion decomposition ap-
proach requires that the connectivity of the deformable mesh
is constant and that the motion is semi-hierarchical. In partic-
ular, Günther et al. assume that the motion is locally coherent.
If this is the case they can decompose the motion into two
parts: affine transformation and residual motion. Subtract-
ing the affine transformation from the deformations yields
a local coordinate system in which the (residual) motion of
the vertices is typically much smaller (see Figure 3). To find
the affine transformations that approximately transform the
coherent parts of a predefined animation to the next timestep,
a linear least square problem on the vertex positions is solved
[GFW∗06]. For skinned animations, this task is simpler: The
affine transformations are directly provided from the appli-
cation in the form of bone transformations [GFSS06].

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

1706 I. Wald et al. / State of the Art in Ray Tracing Animated Scenes

Figure 3: Example of a motion decomposition. Top row:
three frames of an animation where a ball is thrown onto a
floor, together with the bounding boxes and local coordinate
systems of the two objects. The motion of these objects is en-
coded by affine transformations. Bottom row: visualization of
the bounded residual motion in the local coordinate system of
the ball – coherent dynamic geometry is now ‘almost static’.
Note that the affine transformations can also compensate the
shearing of the ball in the third frame yielding smaller fuzzy
boxes.

Fuzzy kd-tree. The residual motion is only in seldom cases
zero (e.g. when there are only rigid-body transformations).
To handle non-zero residual motion, Günther et al. intro-
duced fuzzy kd-trees. The residual motion of each triangle
is bounded by a fuzzy box, a box bounding the motion of
each vertex in the local coordinate system. A kd-tree is then
built over the fuzzy boxes of the triangles instead of the trian-
gles themselves, resulting in a fuzzy kd-tree. As long as the
fuzzy boxes are not violated by too strong residual motion,
the fuzzy kd-trees stay valid even during mesh animations.
Thus, fuzzy kd-trees can be built in a pre-processing phase
and do not require rebuilding.

For predefined animations, conservative fuzzy boxes can
be computed in a pre-processing step [GFW∗06]. For skinned
animations, the fuzzy boxes are found by sampling the pose
space of the skinned mesh [GFSS06].

Two-level kd-trees. Because the relationship between the co-
herently moving parts of an animation and their motion is de-
termined by affine-only transformations, Günther et al. use
a two-level acceleration structure in the spirit of [LAM01]
and [WBS03]. For each frame to be rendered, they update
the transformations and current bounding boxes of objects
having an own fuzzy kd-tree. Then, a small top-level kd-tree
is built over these bounding boxes. Only this top-level kd-
tree needs to be rebuilt every frame, which can be done very
quickly because the number of moving objects is usually
small (less than 100), allowing interactive frame rates.

Ray traversal works, as in [WBS03], by transforming the
rays into the local coordinate system of objects encountered

in top-level leaves and continuing traversal of the correspond-
ing fuzzy kd-tree.

5.3.2. Clustering of coherently moving primitives

Motion decomposition is only efficient when it operates on
coherently moving primitives. However, there are often nu-
merous parts of a dynamic scene that move independently.
Thus, it is necessary to identify and to separate these parts,
which is performed automatically in a pre-processing step by
specialized clustering algorithms. The measure to guide these
clustering algorithms is the residual motion, which should be
minimized to get efficient fuzzy kd-trees.

Predefined animations. To partition the primitives of a pre-
defined animation into clusters, Günther et al. apply a gen-
eralized Lloyd relaxation [DFG99, Llo82]. In each itera-
tion, they first find affine transformations that minimize
the residual motion of each cluster and subsequently reas-
sign each primitive to the cluster where its residual motion
is smallest. The iteration process stops when the cluster-
ing converged, i.e. when no primitive changes its cluster
anymore.

As Lloyd relaxation is prone to find local minima and the
optimal number of clusters is not known in advance, they start
with one cluster and iteratively insert a new cluster until the
cost function converges. When inserting a new cluster, it is
initialized with few seed primitives – the primitives with the
largest residual motion. The already existing clusters are also
newly initialized with seed primitives having the smallest
residual motion in each cluster. These seed primitives act as
prototypes of the common motion of the (currently) clustered
primitives and ensure a stable clustering procedure.

Skinned meshes. For skinned meshes the clustering is sim-
pler because the potential clusters are already given in the
form of bones. By sampling the pose space Günther et al.
assigned each primitive to the bone/cluster where its residual
motion is smallest. The full pose space can be sampled by
rotating each bone arbitrarily. However, tighter fuzzy boxes
and thus better ray-tracing performance can be achieved by
restricting the bone rotation relative to its parent bone. Ad-
ditional information from the rendering application – such
as joint limits – can be used to restrict the pose space, be-
cause arbitrary bone rotations are quite unnatural for most
models.

5.3.3. Results and discussion

Using motion decomposition, interactive frame rates have
been reported for both animations [GFW∗06] and on-the-fly
skinned meshes [GFSS06] (see Figure 4). Ray tracing with
a top-level kd-tree and fuzzy kd-trees is about 2× slower
compared to using a kd-tree optimized for one single time

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

I. Wald et al. / State of the Art in Ray Tracing Animated Scenes 1707

Figure 4: ‘Cally’ featuring self shadowing in interactively
changeable poses, ray traced with 4 frames per second at
10242 pixels on a single 2.4 GHz AMD Opteron [GFSS06].

step (that does not support dynamic changes). This overhead
is caused by (i) the reduced culling efficiency of the kd-trees
due to overlapping object bounding boxes and/or overlapping
fuzzy boxes, (ii) the time needed to rebuild the top-level tree,
and (iii) the more complex ray traversal that includes the
transformation of rays between coordinate systems.

However, using a top-level acceleration structure also pro-
vides additional benefits. It is easy to instantiate one object
several times. Furthermore, the local coordinate system of the
axis-aligned fuzzy kd-trees can be rotated to achieve better
bounds and thus performance.

The motion decomposition approach is restricted to semi-
hierarchical, locally coherent motion – handling random mo-
tion is not supported. Furthermore, the help of the application
is needed to provide additional information such as bone and
skinning information.

These motion clustering methods can also provide topo-
logical information to guide the construction of other accel-
eration structures, e.g. for a BVH to minimize degeneration
after bounding box updates due to moving primitives.

6. BVH-based approaches

As mentioned before, kd-trees have enjoyed great popularity
in real-time ray tracing [RSH05, SWS02, WSBW01], and
have even once been declared the ‘best known method’ for
fast ray tracing [Sto05]. While a strong contender for the most
efficient data structure with respect to rendering time, they
also have a number of drawbacks, partially addressed above.
First among these is that kd-trees are not particularly well
suited to dynamic updates, because even small changes to the
scene geometry typically invalidate the tree. Consequently,
kd-tree-based ray tracers must typically build a new kd-tree
from scratch for every frame, either using the fast build tech-
niques described in Section 5.1, or a lazy/on-demand build
scheme as outlined in Section 5.2.

As also argued above, bounding volume hierarchies differ
from kd-trees in that a BVH is a hierarchy built over the
primitives, with bounding information stored at each node
in the hierarchy. The beauty of BVHs with respect to dy-
namic scenes is that they are much more flexible in terms of
incremental updates as has been heavily exploited in the col-
lision detection community [JP04, LAM05, LM04, TKH∗05,
vdB97]. For deformable scenes, just refitting a BVH – i.e.
recomputing the hierarchy nodes’ bounding volumes, but not
changing the hierarchy itself – is sufficient to produce a valid
BVH for the new frame. BVHs also allow for incremental
changes to the hierarchy [EGMM06, YCM07] (see below),
and referencing each primitive exactly once greatly simplifies
the build [EGMM06, WBS07, WK06].

Though a BVH’s advantages with respect to dynamic
scenes are well known, many researchers previously assumed
that a bounding volume hierarchy could not be competi-
tive with either kd-trees or grids with respect to render time
[HPP00, ML03].4 Consequently, BVHs have long been ig-
nored in real-time ray tracing, until their advantages with
respect to dynamic updates led to renewed interest. How-
ever, in practice properly constructed BVHs achieve quite
competitive performance even for single ray code. Beyond
just building strategy, many of the techniques originally de-
veloped for tracing packets or frusta with kd-trees are also
applicable to BVHs [LYTM06, WBS07]. In the remainder
of this section, we will first discuss how to quickly traverse
BVHs, and then discuss the various approaches to using them
for animated scenes.

As for kd-trees, traversal performance for a BVH depends
on two parts: the effectiveness of the actual hierarchy and
the efficiency of the traversal methods. In principle, BVHs
can use arbitrary branching factors, and arbitrarily shaped
bounding volumes. In practice, however, BVHs are usually
binary trees of axis-aligned bounding boxes (AABBs) and
we will focus on these.

6.1. Building effective BVHs

The effectiveness of a BVH depends on what actual hierarchy
the build algorithm produces. Like for kd-trees, best results
seem to be achieved using top-down, SAHs-based builds. The
earliest method specified the hierarchy by hand [RW80], but
this was soon replaced by split in the middle with cycling
axes [KK86]. Both techniques can result in rather inefficient
BVHs, and realistically only the automatic generation of a
BVH is feasible.

4 Arguably, the reason these studies indicated inferior perfor-
mance is that these studies only considered BVHs built with
Goldsmith Salmon-like, bottom up build strategies, which tend
to perform worse than kd-tree like top-down builds (also see
[Hav07]).

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

1708 I. Wald et al. / State of the Art in Ray Tracing Animated Scenes

Goldsmith and Salmon proposed the use of a cost estimate
to minimize a BVHs expected traversal cost [GS87]. This
was later refined by MacDonald and Booth [MB89] into a
greedy build for kd-trees. The original Goldsmith and Salmon
algorithm built a tree incrementally by successively inserting
primitives into a tree, and letting those ‘rickle down’ into the
sub-trees with minimum expected cost.

Today, the state of the art in building effective BVHs is to
use SAH top-down builds similar to the way SAH kd-trees
are built. Applying an SAH build to BVHs was first proposed
by Müller and Fellner [MF99], but unfortunately that result
was not widely appreciated until recently. The same is true
for related work by Masso et al. [ML03].

Following [WBS07], a pseudo-code implementation for a
top-down SAH build (with O(N log2 N) runtime complexity)
is detailed in Algorithm 1. The BVHs built with this algo-
rithm are essentially the same as the ones built by Müller’s

Algorithm 1: Centroid-based SAH partitioning

function partitionSweep(Set S)
bestCost = Ttri∗|S| {cost of making a leaf}
bestAxis = −1, bestEvent = −1
bestAxis = −1, bestEvent = −1
for axis = 1 to 3 do

sort S using centroid of boxes in current axis
{sweep from left}
set S1 = Empty, S2 = S
for i = 1 to |S| do

S[i].leftArea = Area(S1) {with Area(Empty) = ∞}
move triangle i from S2 to S1

end for
{sweep from right}
S1 = S, S2 = Empty
for i = |S| to 1 do

S[i].rightArea = Area(S2)
{evaluate SAH cost}
thisCost = SAH(|S1|, S[i].leftArea,
|S2|, S[i].rightArea)
move Triangle i from S1 to S2
if thisCost < bestCost then

bestCost = thisCost
bestEvent = i
bestAxis = axis

end if
end for

end for
if bestAxis = −1 then {found no partition better than leaf}

return make leaf
else

sort S in axis ‘bestAxis’
S1 = S[0..bestEvent); S2 = S[bestEvent..|S|)
return make inner node with axis
‘bestAxis’;

end if
end

method except that Algorithm 1 uses the centroid of the
primitive’s bounding box to decide on which side of a ‘split
plane’ to place a primitive instead of using the axis aligned
‘edges’ of the primitive. Note, however, that even though
the decision on which side to place a polygon is based on
its centroid, the cost evaluation uses the correct bounding
volumes over the primitives, not over the centroids.

The just described technique provides a baseline in build-
ing efficient BVHs, and is already faster than corresponding
techniques for kd-trees [Wal07] – but still far from real time.
Some recently developed techniques allow for significantly
improved BVH building performance by employing the same
approximate techniques we have already described for kd-
trees. We will cover these techniques in Section 6.4.2.

6.2. Fast BVH traversal

After the BVH is built, there are many factors that determine
the overall traversal speed. Given AABBs as bounding prim-
itives, one of the first choices is which ray-box test to use.
A variety of tests exist [KK86, MW04, WBMS05], but most
systems today seem to use the SLABS algorithm [KK86]
(also see [BWS06]). In addition, a number of useful opti-
mizations for single ray code related to tree layout or traver-
sal order have been proposed [Hai91, Mah05, Smi98]. Most
of these optimizations are still useful to packet traversal.

6.2.1. Packet tracing

The use of packets for BVH traversal was proposed inde-
pendently by Wald et al. [WBS07] and Lauterbach et al.
[LYTM06]. Both demonstrated that by using packets, BVHs
can be competitive with kd-trees for raw rendering perfor-
mance. Lauterbach’s system originally used SIMD packet
traversal with 2 × 2 rays per packet, but later implemented
a frustum method similar to Reshetov et al. [RSH05] for
higher performance – depending on scene complexity – for
packets of up to 16 × 16 rays (also see Figure 5).

6.2.2. DynBVH packet-frustum traversal

In addition to SIMD packet tracing proposed by Lauterbach
et al., Wald et al. [WBS07] proposed a modified traversal al-
gorithm that can lead to higher amortization – and ultimately,
higher performance – than that afforded by SIMD alone. The
algorithm proposed in [WBS07] essentially combines four
independent algorithmic optimization into one new traversal
algorithm: a speculative ‘first hit’ descend, first active ray
tracking, interval arithmetic-based culling, and SIMD pro-
cessing for all operations.

Early hit test with speculative descent. In a standard packet
tracer, all rays are tested at each tree node (albeit possibly 4
at a time if SIMD instructions are used). In principle, there is

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

I. Wald et al. / State of the Art in Ray Tracing Animated Scenes 1709

Figure 5: Two screenshots from Lauterbach et al.’s BVH
based ray tracing system. Left: one frame from a 40k triangle
dress simulation animation, running at 13 frames per second
(512 × 512 pixels, one point light) on a dual 2.8 GHz Pentium
IV PC. Right: a fracturing bunny including shadows and
reflections, running at an average of six frames per second
on same hardware.

no need to test all rays, as even a single hit requires recursion
into that respective sub-tree. For kd-trees or bounding plane
hierarchies, the fastest known traversal algorithms track the
active ray intervals [Hav01, Wal04], and thus have to process
all rays even if recursion is already required. For a BVH,
however, this is not the case, and upon any successful in-
tersection, the packet can immediately enter this sub-tree
without considering any of the remaining rays.

By having all rays in a packet descend to the two children
when the first ray hits the parent, the N × N (packet size)
ray-box tests are often replaced with only a single test. This
comes at the cost of some rays (speculatively) descending
that miss the parent, but this is no different from a pure
SIMD packet traversal.

Tracking the first active ray. As just described, as soon as
any ray in a packet hits the box they all descend. However,
the ray that hits the box may not be the first ray in the packet.
Moreover, a ray that has missed a node will also miss all child
nodes. Packets can take advantage of this by not testing rays
that have already missed an ancestor of the current node.

This is easily accomplished by storing the index of the first
ray that has not yet missed an ancestor and starting the loop
over rays at that index. Packets still immediately descend as
soon as a hit is detected.

Early miss exit. The combination of early hit tests and first
active ray tracking essentially makes those cases in which
the packet actually overlaps the box very cheap. However, if
the packet misses the box, all the rays in the packet would
still be tested to find that none of them hits the box.

For this case, BVHs can employ a similar idea as proposed
for kd-trees by Reshetov et al. [RSH05]. Using interval arith-

metic, an approximate (but conservative) packet-box overlap
test can be performed. This conservative test can immedi-
ately signal that the traversal should skip further tests as no
rays in the packet can possibly intersect the box. Instead of
interval arithmetic, one can also use actual geometrical frusta
[RSH05, BWS06], the efficiency is similar.

The first hit test and early miss test can also be combined.
Combining the two inexpensive tests allows the traversal to
usually determine whether or not the packet should descend
with at most two tests for a full N × N packet. It is important
to note that the two tests cover orthogonal cases and so the
order in which they are applied is not critical.

Testing the remaining rays. If both the first hit test and the
conservative miss test failed, the remaining rays in the packet
are intersected until one is found to hit. The pseudocode for
the resulting packet-box intersection test is given in Algo-
rithm 2. Compared to the other two cases that have constant
cost, testing the remaining rays is linear in the number of rays
in the packet. Though implemented in SIMD the test can be
quite costly. Fortunately, this case happens rarely as shown
empirically in Section 6.2.3.

Leaf nodes. When reaching a leaf node, the triangles in that
leaf get intersected. In addition to the first active ray, the

Algorithm 2: Pseudo-code for the fast packet/box intersection.
Both ‘full hits’ (i.e. first ray that hits parent also hits box) and
‘full misses’ (i.e. a covering frustum misses the box) are very cheap,
and have a constant cost independent of packet size. Only for rays
partially hitting the box does the method perform more than the first
two cheap tests

{Compute ID of first ray hitting AABB box}
{‘first’ is the ID of the first ray hitting box’ parent}
function findFirst(ray[maxRays], int first, AABB box)

{First: Quick ‘hit’ test using ‘first’ ray}
if ray[parentsFirstActive] intersects box
then

{first one hits → packet hits. . .}
return parentsFirstActive

end if

{Second: Quick ‘all miss’ test using either frustum or
{or interval arithmetic}
if frustum(ray[0..N]) misses box then

return maxRays {all rays miss}
end if

{Neither quick test helped, test all rays}
for i = parentsFirstActive .. do

if ray[i] intersects box then
return i {all earlier ones missed}

end if
end for
return maxRays {all rays have missed}

end

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

1710 I. Wald et al. / State of the Art in Ray Tracing Animated Scenes

Table 2: Relative number of cases where Algorithm 2 can imme-
diately exit after the first test, after the second test, and during the
loop over all rays, respectively, for ray casting with 16 × 16 rays
per packet.

Scene (A) Early hit (B) Frustum (C) Last resort
exits (%) exits (%) packet test (%)

erw6 52.3 42.9 4.8
conference 51.9 35.3 12.8
soda hall 49.5 27.5 23.0
toys 49.7 32.2 18.1
runner 44.1 25.3 30.6
fairy 49.1 30.2 20.7

Data from [WBS07].

original DynBVH system also computed the last active ray
every time a leaf was reached, and intersected only all rays
inbetween. In some cases, higher performance can be reached
by testing all rays against the box, and skipping triangle
intersections for inactive rays [WFKH07]. Obviously, the
triangle intersections are performed in SIMD batches of four,
and with SIMD frustum culling [BWS06, DHS04].

6.2.3. DynBVH performance

Compared to a pure packet traversal algorithm [WBS07], the
fast early hit and frustum exit tests can reduce the number of
ray-box tests by roughly an order of magnitude (Table 2). In
combination, algorithmic optimizations and SIMD process-
ing allow the DynBVH system to achieve performance that
is quite interactive, and roughly on par with the best known
performance for kd-trees (see Table 3).The actual impact of
the algorithm depends heavily on scene and ray distribution:
as the traversal algorithm exploits coherence, its performance
somewhat suffers for packets with lower coherence and for
scenes with subpixel-sized geometry, and performance in
those cases can deteriorate significantly.

Extensions. In its original publication, the DynBVH algo-
rithm was presented only for triangle meshes, for relatively
simple shading and ray distributions, and for a refitting-only
approach to handling changing geometry. Since then, Boulos
et al. [BEL∗07] have investigated how the algorithm would
behave for more realistic ray distributions like those produced
by either Whitted-style recursive ray tracing and Cook-style
distribution ray tracing (see Figure 6b and c). They found that
the algorithm worked quite well even for these non-primary
ray distributions, and that both Whitted- and Cook-style ray
tracing achieved similar number of rays per second as ray
casting with shadows (RCS) (i.e. within a factor of 4). Al-
though the increase in the total number of rays in a frame
resulted in lower absolute frame times. It should be noted that
Boulos et al. disabled several optimizations in their system

Table 3: Performance in frames/s (at 10242 pixels, single 2.6 GHz
Opteron CPU, including simple shading) compared to the OpenRT
and MLRTA systems.

OpenRT MLRTA BVH
Pentium Xeon 3.2 GHz Opteron

Scene Animated #Tris 4.2.4 GHz w/ HyperThr. 2.6 GHz

erw6 No 800 2.3 50.7 31.3
conf No 280k 1.9 15.6 9.3
soda No 2.5 M 1.8 24 10.9
toys Yes Ilk – – 21.9
runner Yes 78k – – 14.2
fairy Yes 180k – – 5.6

Performance data is taken from [WBS07], and is for a variety of
both static and animated models detailed in that publication.

that only apply to ray casting or RCS that were used in the
original paper [WBS07]. These differences, including dif-
ferences in the shading model and normalized directions for
camera rays, account for their lower performance for RCS.

As compared to secondary ray tests by Reshetov [Res06],
the Boulos et al. [BEL∗07] system retained SIMD benefits for
several bounces of reflection. In addition to a SIMD benefit,
the traversal algorithm still provided further speedup beyond
a simple SIMD benefit alone.

While the original DynBVH system relied exclusively on
refitting, the current code base also includes fast from-scratch
rebuilds in the spirit of Wächter et al. [WK06] and Shevtsov
et al. [SSK07] (see Section 6.4.2 below), as well as a hybrid
approach that mixes refitting and fast, asynchronous rebuild-
ing [IWP07]. A CELL variant of the DynBVH algorithm
was presented by Benthin et al. [BWSF06], which through
low-level, architecture-specific optimizations achieved up to
8x the performance of the CPU-based variant, up to a total
of 231.4 frames per second (for ray casting the erw6 scene)
on a single 2.4 GHz CELL processor.

Apart from its application to triangle meshes, the Dyn-
BVH algorithm was also applied to interactively visualizing
iso-surfaces in tetrahedral meshes [WFKH07] (Figure 6d). It
allowed for handling time-varying data, and achieved inter-
active frame rates even for highly complex models.

6.3. Variations and hybrid techniques

In the previous section, we have focused on the DynBVH
system, as its traversal algorithm gives it a speed advantage
over other, single ray or purely packet-based systems. How-
ever, a large number of possible variations exist, most of
which are orthogonal to the techniques used above. For ex-
ample, Yoon et al. [YM06] have proposed cache-oblivious
data layouts that improve memory efficiency (similar tech-
niques exist for kd-trees [Hav97]); Mahovsky et al. [MW06]

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

I. Wald et al. / State of the Art in Ray Tracing Animated Scenes 1711

Figure 6: Some DynBVH examples. (a) The Utah Fairy model (180 k triangles), with textures and shadows from one point
light, running at 3.7 frames per second (including BVH updates) on a 2.6 GHz dual-core Opteron PC [WBS07]. (b and c) The
same system, extended to handle Whitted-style ray tracing and distribution ray tracing [BEL∗07], though running at much lower
frame rates (largely due to the higher number of rays to be traced). (d) An extension of that system to ray tracing iso-surfaces of
tetrahedral meshes, showing a 225k tet ‘buckyball’ running at 42 frames per second on a 2.4 GHz 16-core Opteron workstation.

proposed a Q-Splat like compression approach to reduce
the BVH’s memory footprint. Other variations that have not
been properly investigated yet include the use of BVHs with
higher branching factors than two, or BVHs with non-AABB
bounding volumes, both of which may be beneficial.

SKD-Trees. One particular popular variation is to encode
the BVH using a hierarchy of bounding planes: instead of
storing a full 3D bounding box in each node, each node
stores a set of two parallel planes that partition the current
node’s bounding volumes into two (potentially overlapping)
halves. The resulting data structure looks similar to kd-trees
but behaves like a bounding volume hierarchy. In particu-
lar, the data structure allows for refitting like a BVH does,
and, while known outside graphics since Ooi’s paper in 1987
[OSDM87], for ray tracing was proposed independently by
Zuniga et al. [ZU06], Havran et al. [HHS06], Woop et al.
[WMS06] and Wächter et al. [WK06] (albeit under differ-
ent names, calling them DE-trees, skd trees, b-kd trees and
bounding interval hierarchies, respectively).5

Though their data structure is similar in nature, there are
several important differences in the focus of each of those pa-
pers. Wächter et al. focused on fast building and presented an
O(N) algorithm for building the tree. Their build strategy only
uses spatial median builds that may prove inefficient. Zuniga
also uses a spatial median build, but in addition proposes a
‘wide object isolation’ technique. Woop et al. [WMS06] use
a four-plane hierarchy in each node (two planes per child)
that leads to a slightly different data structure; apart from
that, they focus on using this technique to support dynamic
scenes on a ray tracing hardware architecture that was orig-
inally built for kd-trees [SWS02, WSS05]. The paper by
Havran et al. [HHS06] follows Ooi’s originally proposed
skd-trees, but goes a step further, and proposes H-trees that
consist of two splitting planes: bounding nodes and splitting

5 Though all four papers appeared in the same year 2006, Zuniga
actually filed a patent on this data structure as early as 2004
[Zun].

nodes (skd-tree nodes). Bounding nodes are put only option-
ally based on an approximative SAH cost model. The paper
also contains the description of AH-trees that resembles the
use of radix sort for spatial data structures with construction
time O(N log log N).

How bounding plane hierarchies compare to traditional
BVHs has not been fully investigated, yet. On the positive
side, bounding plane hierarchies are similar to kd-trees, and
allow for using traditional kd-tree traversal algorithms with
a minimum of modifications. They also have a smaller node
layout than BVHs, but are as fast to build and as easy to up-
date. On the downside, traditional BVHs will yield somewhat
tighter bounding volumes (since they bound each sub-tree in
three dimensions, not only one), do not have to deal with
splits producing ‘empty’ sub-trees, and feature somewhat
simpler traversal codes (because the traversal does not have to
track per-ray overlap intervals). Lauterbach et al. [LYTM06]
report roughly comparable performance for his BVH im-
plementation than for a reference skd-tree implementation;
Wald et al.’s BVH-based system [WBS07] is much faster
than either, but uses a different traversal algorithm that could
also be applied to skd-trees.

6.4. Fast BVH building and updating

Like any data structure, BVHs become invalid if the under-
lying geometry undergoes motion. Though their suitability
to refitting was one of the main reasons for using BVHs,
refitting only works for deformable meshes. While refitting
may cover an important class of applications, no practically
relevant ray tracer will be able to rely on refitting alone.

In practice, both BVHs and kd-trees are binary, axis-
aligned and hierarchical data structures that are ideally built
using top-down SAH strategies. As such, most of the trade-
offs and techniques for handling rebuilds and updates for
kd-trees (see previous Section) apply similarly to BVHs. In
particular, any or all of the techniques used in the Razor
framework (scene graph-guided rebuild, lazy construction,

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

1712 I. Wald et al. / State of the Art in Ray Tracing Animated Scenes

and multi-resolution geometry) would be applicable without
major changes; the same is true for approaches like motion
decomposition (Section 5.3), rigid-body animation through
local-coordinate transformations (Section 4.3), and fast, ap-
proximate SAH builds (Section 5.1).

6.4.1. Incremental updating

As already mentioned before, if the scene only contains de-
formable geometry, a BVH can be updated to reflect the new
positions of the geometry. While this can lead to deteriora-
tion of the BVH, a BVH chosen over a range of animation
can help to reduce this deterioration [WBS07]. While this
deterioration can be reduced for either known animations or
for ranges of motion similar to known poses, other kinds of
motion require more general techniques.

Periodic rebuilding. Rebuilding per frame is the most gen-
eral, but also most expensive; refitting is extremely fast, but
can lead to excessive BVH deterioration. Instead of rely-
ing on only one of these techniques, they can be combined.
This was first proposed by Lauterbach et al. [LYTM06],
who used fast refitting most of the time, and only rebuilt the
BVH from scratch whenever a given cost heuristic indicated
excessive quality deterioration of the BVH. This lowered
the average frame time, sometimes significantly; however,
the frame waiting for the rebuild to finish would take much
longer to complete, leading to a disruptive pause. Ize et al.
[IWP07] handle the refitted BVH deterioration without intro-
ducing disruptions by using a fraction of the computational
resources for rebuilding a BVH asynchronously, while the
rest of the computer renders and refits the current BVH.
Then, when the asynchronously built BVH is ready, it can be
used for rendering and refitting while a new BVH is rebuilt.
This takes advantage of the growing parallelism in multi-core
architectures.

Incremental hierarchy updates. Instead of always rebuilding
BVHs from scratch, incremental updates should suffice for
coherent motion. Since each node in a BVH is referenced
exactly once, incremental updates are rather simple: an entire
sub-tree can be moved by updating a few pointers and refitting
the affected nodes and some of their ancestors. The tricky part
lies in determining which updates to perform.

The basic idea for this approach was also proposed by
Lauterbach et al. [LYTM06], who proposed to selectively
rebuild those parts of the hierarchy that his rebuild heuris-
tic flagged as deformed. However, this did not affect nodes
higher up in the tree, so unsatisfactory results were reported.
More recently, Yoon et al. [YCM07] presented an approach
to selectively update BVHs that could also handle highly
complex scenes with strong deformations: based on a heuris-
tics that essentially measures the overlap of sub-trees, the
algorithm recursively finds – and fixes – pairs of BVH nodes

whose overlap is (i) high and (ii) can be reduced through
swapping their sub-trees. Keeping these pairs in a priority
queue, the algorithm always fixes the worst deformations
first, and can, in particular, be given a fixed time budget. The
generated trees will likely not be as efficient as those built
from scratch (in particular, the generated trees are not the
same as those built by a SAH), but the overall performance
for complex dynamic scenes has been shown to be faster than
using a rebuild heuristic [YCM07].

6.4.2. Fast BVH (re-)building

Refitting and incremental updates can handle a wide range
of different models, but are inherently limited to deformable
models. For other cases, full rebuilds are required. The BVH
build algorithm mentioned in Section 6.1 (Algorithm 1)
serves as a baseline for the state of the art in building good
BVHs. Though much faster than corresponding SAH-builds
for kd-trees (compare, e.g. [WBS07] and [WH06]), it is still
non-interactive except for trivial models. As for kd-trees,
there is a trade-off between build quality and build time,
and significantly faster build times are possible if a certain
rediction in BVH quality is allowed.

BIH-build: Fast spatial median build. Probably the fastest
way of building BVHs known today is an adaption of the
fast spatial median split introduced by Wächter et al. in their
Bounding Interval Hierarchy paper [WK06]. While this al-
gorithm was originally proposed for two-plane hierarchies,
it can be applied directly to BVHs. Just like Algorithm 1,
the BIH-style build works only on the centroids, not on ac-
tual primitives, but instead of building with an expensive
cost function, it successively splits along the spatial median
until less than a threshold number of primitives per leaf is
reached. A key point of the algorithm is to compute the cen-
troids’ bounding box only once at the beginning, and then to
successively subdivide this box just like a spatial subdivision
would do (i.e. without ever recomputing a sub-tree’s bound-
ing box until the BVH is fully built); this not only results in
a very regular subdivision that could be built in O(N) com-
plexity, it also seems – at least in our experience – to result
in better trees than those produced by successively splitting
the bounding box of each sub-tree, though the exact reasons
for this are still somewhat unclear.

As no cost function is used, the spatial median build pro-
duces BVHs that are somewhat less efficient than those built
with Algorithm 1, but its build times are roughly 20×(!)
lower (see Table 4). Note that another O(N) algorithm for
building BVHs has been proposed independently by Eise-
mann et al. [EGMM06], but real-time data is not available
for this algorithm.

Binned SAH builds. It is also possible to implement an SAH-
based binning strategy as discussed for kd-trees in Section 5.1

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

I. Wald et al. / State of the Art in Ray Tracing Animated Scenes 1713

Table 4: Build times and relative render performance (in parenthe-
ses, relative to the sweep build) for a baseline SAH sweep build, a
BIH-style spatial median build, a binned SAH build, and a paral-
lelized binned build (8 threads).

Single-threaded
8 threads

Scene #Tris Sweep BIH Binned Binned

fairy forest 174k 860 ms 36 ms 83 ms 21 ms
(100%) (77%) (93%) (93%)

conference 282k 1.32 s 65 ms 139 ms 26 ms
(100%) (82%) (91%) (86%)

UNC expl. dragon 252k 1.16 s 44 ms 109 ms 20 ms
(100%) (80%) (98%) (98%)

thai statue 10 M 82 s 3.3 s 7.4 s 1.1 s
(100%) (87%) (99%) (99%)

Relative render performance corresponds to the DynBVH system
with packets of 8 × 8 rays, and may vary for other traversal
algorithms; absolute build times are measured on a dual-2.6 GHz
Xeon 5355 (Clovertown) PC (8 cores total).

[GPSS07, Wal07]. From a high-level view, these techniques
work almost exactly as proposed by Popov et al. [PGSS06],
except for two modifications: Instead of binning the actual
primitive extents as required by a kd-tree, we again use only
the centroids for the build; we start with a bounding box for
the centroids, and subdivide that into N equally-sized bins
Bi along the bounding box’ axis of major extent. We then
project each primitive’s centroid into its respective bin, and
compute, for each bin, the number of primitives projecting
to it, as well as the actual geometry bounds of all primitives
associated with that bin. We then evaluate the SAH for the
N − 1 possible partitions into B0..Bi−1 and Bi..BN−1, and take
the partition with lowest cost.

As can be seen from Table 4, for a reasonable number of
bins (∼8–16) this build is about 10× faster than a sweep
build, while providing nearly the same BVH quality. Com-
pared to a spatial median build, the produced BVH quality is
higher, but building is roughly 2.5× slower.

As discussed in [WBS07], it is also possible to parallelize
this technique. Though we encountered rather bad scalability
(arguably due to bandwidth limitations), the parallel version
reduces build times for moderate-sized models (∼250k tri-
angles) to a range of 20–26 ms to or 40–50 rebuilds per sec-
ond. When combined with the DynBVH traversal described
above, this rebuild performance allows for rendering a wide
range of animated scenes at interactive rates, and without any
restrictions on the kind of motion (see Figure 7).

In general, it seems that like for traversal, most of the tech-
niques developed for kd-trees work just as well for BVHs.
In this case, the build is even simpler for BVHs, as trees
are generally shallower (i.e. less splits to be determined),

Figure 7: Combined DynBVH performance including (per-
frame) smooth vertex interpolation, parallel BVH build-
ing, computation of triangle acceleration data, ray tracing,
Phong shading, shadows (1 point light) and texturing (where
applicable). On a dual 2.66 GHz Clovertown PC, DynBVH
renders the ‘Exploding Dragon’ (top row, 252k triangles) at
13–21 frames per second, and the respective views of the
UNC balls’ (148k triangles), ‘Fairy Forest’ (174 k) and ‘2 ×
2 Bart’ (262k) models at 20, 11.5 and 7.1 frames per second,
respectively (from [Wal07]).

multiple references are not allowed, and each partitioning
can be done strictly ‘in place’ in a quicksort-like algo-
rithm (also see [GPSS07, Hav07, Wal07]). One particularly
promising technique that has originally been developed for
kd-trees and which has not yet been applied to BVHs is Hunt
et al.’s ‘build-from-hierarchy’ technique (see Section 5.2).
Though we believe this to work for BVH just as well it does
for kd-trees, no data has been reported for that approach
yet.

6.5. BVH-based approaches – Summary

Though long neglected, BVHs have recently regained favour.
While this was mostly due to their capabilities for refitting,
it now appears that BVHs in general perform well once the
same effort is made to optimize them as was invested in kd-
tree traversal. On comparable hardware, BVH performance
still lags somewhat behind the fastest published performance
for kd-trees (Reshetov’s MLRT system [RSH05]), but not
conclusively so. With respect to dynamic scenes, kd-trees
seem have received more attention than BVHs (Razor, ap-
proximate SAH-builds, . . .), but most of these techniques
generalize to BVHs, which are arguably somewhat more
flexible with respect to updating and building. In most other
respects (memory consumption, traversal algorithms, suit-
ability for packets, frusta, complex scenes, . . .), BVHs and
kd-trees are very competitive.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

1714 I. Wald et al. / State of the Art in Ray Tracing Animated Scenes

7. Grid-Based Approaches

In this section, we present techniques for traversing and build-
ing grid acceleration structures.

We will begin by contrasting the grid acceleration struc-
tures with kd-trees and BVHs. While both kd-trees and BVHs
are hierarchical, adaptive data structures, grids fall into the
category of uniform spatial subdivision. The tradeoff be-
tween uniform and adaptive subdivision has been discussed
in Section 3.1.3: adaptive subdivision often works better for
complex scenes with uneven geometry distributions, but are
generally harder to build. As evident from the previous two
sections, several techniques for fast building of adaptive data
structures have been developed, and at least for special cases
like deformable motion, refitting and incremental updates can
be really fast. Nevertheless, building hierarchical data struc-
tures is still significantly more costly than simply ‘rasteriz-
ing’ the triangles into a regular grid, which is conceptually
similar to a radix sort [Knu98]. Building a regular grid can
be done in a single pass, in parallel [IWRP06], and is roughly
as fast for complete rebuilds as simple refitting is for BVHs.
Being able to rebuild from scratch every frame, the grid does
not need to make any assumptions on the kind of motion.
Despite these advantages, grids until recently received little
attention.

7.1. Parallel grid rebuilds

Rebuilding a grid acceleration structure consists of three
main steps: clearing the previous grid cells and macro cells of
previous triangle references; inserting the triangles into the
grid cells that they intersect; and building the macro cells.
As frequent memory allocations/de-allocations are extremely
costly, care has to be taken to minimize these operations even
for something as mundane as clearing the previous frame’s
grid.6

Ize et al. [IWRP06] parallelized the triangle insertion by
recognizing it is equivalent to triangle rasterization onto a
regular structure of 3D cells, and then showing that a sort-
middle approach works better than sort-first and sort-last
approaches [MCEF94]. In their sort-middle approach, each
thread performs a coarse parallel bucket sort of the triangles
by their cell location. Then, each thread takes a set of buck-
ets and writes the triangles in those buckets to the grid cells.
Since each thread handles writing into different parts of the
grid, as specified by the buckets, there is no chance of mul-
tiple threads writing to the same grid cells; thus, expensive
mutexes are not required.

This sort-middle method is relatively straightforward to
load balance, each triangle is read only once, and there are
no write conflicts. There is no scatter read nor scatter write,

6 A detailed discussion on this issue can, for example, be found
in Ize et al. [IWRP06].

A B C

D E F

G

Figure 8: Five coherent rays traversing a grid. The rays are
initially together in cells A and B, but then diverge at B where
they disagree on whether to first traverse C or D in the next
step. Even though they have diverged, they still visit common
cells (E and F) afterwards.

which is good for broadband/streaming architectures. The
disadvantage is that it requires buffering of fragments be-
tween the two stages; however, in practice the buffering can
be implemented efficiently, and was shown to produce almost
no overhead.

7.2. Coherent grid traversal

Implementing ray packets for a grid is not as straight for-
ward as for the tree-based acceleration structures. The pri-
mary concern with packetizing a grid is that with a 3DDDA,
different rays may demand different traversal orders. Wald et
al. [WIK∗06] solve this by abandoning 3DDDA altogether,
and propose an algorithm that traverses the grid slice by slice
rather than cell by cell. For example, the rays in Figure 8 can
be traversed by traversing through vertical slices; from cell
A in the first slice, the rays are traversed to cells B and D
in the second slice, then to C and E in the third, and so on.
In each slice, all rays would intersect all of the slice’s cells
that are overlapped by any ray. This may traverse some rays
through cells they would not have intersected themselves,
but will keep the packet together at all times. In practice, ray
coherence easily compensates for this overhead.

The rays are first transformed into the canonical grid co-
ordinate system, in which a grid of Nx × Ny × Nz cells maps
to the 3D region of [0..Nx) × [0..Ny) × [0..Nz). In that co-
ordinate system, the cell coordinates of any 3D point p can
be computed simply by truncating it. Then, the dominant
component (the ±X, ±Y, ±Z axis) of the direction of the first
ray is picked. This will be the major traversal axis that we
call �K; all rays are then traversed along this same axis; the
remaining dimensions are denoted �U and �V .

Now, consider a slice k along the major traversal axis, �K .
For each ray ri in the packet, there is a point pin

i where it
enters this slice, and a point pout

i where it exits. The axis

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

I. Wald et al. / State of the Art in Ray Tracing Animated Scenes 1715

Figure 9: Given a set of coherent rays, the coherent grid
traversal first computes the packet’s bounding frustum (a)
that is then traversed through the grid one slice at a time
(b). For each slice (blue), the frustum’s overlap with the slice
(yellow) is incrementally computed, which determines the
actual cells (red) overlapped by the frustum. (c) Indepen-
dent of packet size, each frustum traversal step requires only
one four-float SIMD addition to incrementally compute the
min and max coordinates of the frustum slice overlap, plus
one SIMD float-to-int truncation to compute the overlapped
grid cells. (d) Viewed down the major traversal axis, each
frustum will have a 2D overlap box whose coordinates (con-
servatively) define the cells overlapped by the ray packet.

aligned box pout
i β that encloses these points will also enclose

all the 3D points – and thus, the cells – visited by at least
one of the rays. Once β is known, truncating its min/max
coordinates yields the u, v extents of all the cells on slice k
that are overlapped by any of the rays (Figure 9d).

Extension to frustum traversal. Instead of determining the
overlap β based on the entry and exit points of all rays, one
can compute the four planes bounding the packet on the top,
bottom and sides. This forms a bounding frustum that has
the same overlap box β as that computed from the individual
rays. Since the rays are already transformed to grid-space,
the bounding planes are based on the minima and maxima of
all the rays’ u and v slopes along �K . For a packet of N × N
primary rays sharing a common origin, these extremal planes
are computed using the four corner rays; however, for more
general (secondary) packets all rays must be considered.

Traversal Setup. Once the plane equations are known, the
frustum is intersected with the bounding box of the grid; the
minimum and maximum coordinates of the overlap deter-
mine the first and last slice that should be traversed. If this
interval is empty, the frustum misses the grid, and one can
terminate without traversing.

Otherwise, one computes the minimum and maximum u
and v coordinates of the entry and exit points with the first
slice to be computed. Essentially, these describe the lower
left and upper right corner of an axis-aligned box bounding
the frustum’s overlap with the initial slice, β (0). Note that
one only needs the u and v coordinates of each β (i), as the k
coordinates are equal to the slice number.

Incremental traversal. Since the overlap box β (i) for each
slice is determined by the planes of the frustum, the coordi-
nates of two successive boxes β (i) and β (i+1) will differ by a
constant vector �β. With each slice being 1 unit wide, this
�β is simply �β = (dumin, dumax, dvmin, dvmax), where the
dumin/max and dvmin/max are the slopes of the bounding planes
in the grid coordinate space.

Given an overlap box B(i), the next slice’s overlap box
B(i+1) is incrementally computed via B(i+1) = B(i) + �B. This
requires only four floating point additions, and can be per-
formed with a single SIMD addition. Once a slice’s overlap
box B is known, the range [i0..i1] × [j0..j1] of overlapped
cells can be determined by truncating β’s coordinates and
converting them to integer values. This operation can also
be performed with a single SIMD float-to-int conversion in-
struction. Thus, for arbitrarily sized packets of N × N rays,
the whole process of computing the next slice’s overlapped
cell coordinates costs only two instructions: one SIMD ad-
dition and one SIMD float-to-int conversion. The complete
algorithm is sketched in Figure 9.

7.3. Efficient slice and triangle intersection

Once the cells overlapped by the frustum have been deter-
mined, all the rays in a packet are intersected with the trian-
gles in each cell. Triangles may appear in more than one cell,
and some rays will traverse cells that would not have been
traversed without packets. Consequently, redundant triangle
intersection tests are performed. The overhead of these addi-
tional tests can be avoided using two well-known techniques:
SIMD frustum culling and mailboxing.

SIMD frustum culling. A grid does not conform as tightly
to the geometry as a kd-tree, and thus requires some triangle
intersections that a kd-tree would avoid (see Figure 10). To
allow for interactive grid builds, cells are filled if they con-
tain the bounding boxes of triangles rather than the triangles
themselves, further exacerbating this problem. However, as
one can see in Figure 10, many of these triangles will lie com-
pletely outside the frustum; had they intersected the frustum,
the kd-tree would have had to perform an intersection test on
them as well.

For a packet tracer, triangles outside the bounding frustum
can be rejected quite cheaply using Dmitriev et al.’s ‘SIMD
shaft culling’ [DHS04]. If the four bounding rays of the
frustum miss the triangle on the same edge of the triangle,

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

1716 I. Wald et al. / State of the Art in Ray Tracing Animated Scenes

Figure 10: Since a grid (b) does not adapt as well to the
scene geometry as a kd-tree (a), a grid will often intersect
triangles (red) that a kd-tree would have avoided. These
triangles however usually lie far outside the view frustum,
and can be inexpensively discarded by inverse frustum culling
during frustum-triangle intersection.

then all the rays must miss that triangle. Using the SIMD
triangle intersection method outlined in [Wal04], intersecting
the four corner rays costs roughly as much as a single SIMD
4-ray-triangle intersection test. As such, for an N-ray packet,
triangles outside the frustum can be intersected at 4

N
the cost

of those inside the frustum.

Mailboxing. In a grid, large triangles may overlap many
cells. In addition, since a single-level grid cannot adapt to
the position of a triangle, even small triangles often straddle
cell boundaries. Thus, most triangles will be referenced in
multiple cells. Since these references will be in neighbouring
cells, there is a high probability that the frustum will intersect
the same triangle multiple times. In fact, as shown in Figure
11, this is much more likely for frustum traversal than for a
single-ray traversal: while a single ray would visit the same
triangle only along one dimension, the frustum can also visit
it multiple times inside the same slice.

Repeatedly intersecting the same triangle can be avoided
by mailboxing [KA91]. Each packet is assigned a unique
ID, and a triangle is tagged with that ID before the intersec-
tion test. Thus, if a packet visits a triangle already tagged
with its ID, it can skip intersection. Mailboxing typically
produces minimal performance improvements for single ray
grids and other acceleration structures, when used for in-
expensive primitive such as triangles [Hav02]. As explained
above, however, the frustum grid traversal yields far more re-
dundant intersection tests than other acceleration structures
and thus profits better from mailboxing. Additionally, the
overhead of mailboxing for a packet traverser becomes in-
significant; the mailbox test is performed per packet instead
of per ray, thus amortizing the cost as we have seen before.

Mailboxing and frustum culling are both very useful in
reducing the number of redundant intersection tests, and
together they remedy the deficiencies of frustum traversal
on uniform grids. Ultimately, these two tests will often re-
duce the number of redundant intersection tests for a frustum
grid traversal by an order of magnitude, so that the resulting

Figure 11: While one ray (a) can revisit a triangle in mul-
tiple cells only along one dimension, a frustum (b) visits the
same triangle much more often (even worse in 3D). These
redundant intersection tests would be costly, but can easily
be avoided by mailboxing.

number of actual ray-triangle intersections tests performed
roughly matches that of a kd-tree [WIK∗06]. Ultimately, this
allows to not only trivially rebuild grids from scratch every
frame [IWRP06], but to also ray trace them at frame rates
that are competitive with BVH- and kd-tree based systems
(see Figure 12).

7.4. Extension to hierarchical grids

Wald et al. [WIK∗06] show that it is simple to extend the frus-
tum grid traversal to use a multi-level hierarchical grid based
on macro cells, and that this noticeably improves perfor-
mance. Macro cells are a simple hierarchical optimization to
a base uniform grid, often used to apply grids to scalar volume
fields [PPL∗99]. Macro cells superimpose a second, coarser
grid over the original fine grid, such that each macro cell
corresponds to an M × M × M block of original grid cells.
Each macro cell stores a Boolean flag specifying whether
any of its corresponding grid cells are occupied. Frustum
grid traversal with macro cells is simple: the macro-cell grid
in essence is just an M × M × M downscaled version of
the original grid, and many of the values computed in the
frustum setup can be reused, or computed by dividing by M.
During traversal, one first considers a slice of macro cells,
and determines all the macro cells overlapped by the frustum
(usually but one in practice). If the macro cells in the slice
are all empty, M traversal steps are skipped on the original
fine grid. Otherwise, these steps are performed as usual.

Using macro cells was found to improve performance by
around 30% [WIK∗06], which is consistent with improve-
ments seen for single ray grids. Additional levels of macro
cells could further improve performance for more complex
models with larger grids, or for zoomed in camera views.
More robust varieties of hierarchical grids could speed up
large scenes with varying geometric density, at the cost of
higher build time.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

I. Wald et al. / State of the Art in Ray Tracing Animated Scenes 1717

Figure 12: Examples of dynamic scenes (full rebuilds occur
every frame) that benefit from coherent grid traversal: the
running character model (78k triangles) and the animated
wind-up toys (11k triangles) that walk and jump incoherently
around each other, respectively, achieve 7.8 and 10.2 frames
per second on a dual 3.2 GHz Xeon with shading and hard
shadows. The next two images show 213k sphere and 815k
sphere scientific visualizations of particle data sets [GIK∗07]
and achieve 8.8 and 6.9 frames per second with area lights
sampled 16 times per hitpoint when run on a 16 core shared
memory 2.4 GHz Opteron system.

8. Summary and Conclusion

Inthis STAR, we first discussed the basic design decisions
that have to be addressed in the context of real-time ray
tracing of dynamic scenes. We concluded that the conflicting
goals of real-time traversal performance and per-frame data
structure update/rebuild add a new dimension to the problem
that further complicates the different trade-offs to be taken in
any real-time ray tracing system. These trade-offs eventually
force us to reinvestigate the merits of various data structures,
as well as the algorithms used to build them.

We also discussed the most popular acceleration structures
– grids, kd-trees and BVHs – and their respective proper-
ties and trade-offs with respect to these design issues, and
have covered the various different systems and algorithms
proposed for either particular sub-problems (like, e.g. how
to quickly build a kd-tree), or for complete systems (like
Razor, or the respective systems by researchers at Utah, In-
tel, Saarbrücken or UNC).

Based on these approaches, we briefly revisit some of the
design questions posed in Section 3. Overall, we still cannot

give definitive, conclusive answers to any of these questions.
One reason for this is that even though a large number of
approaches have been proposed, it is very challenging to
compare them to each other because they use different code
bases, hardware, optimization levels, traversal algorithms,
kinds of motion, test scenes and ray distributions. Second,
with so many factors influencing the relative pros and cons
of the individual approaches, the ‘best’ approach will always
depend on the actual problem, with some approaches best in
some situations, and others in other situations.

Nevertheless, we would at least like to comment on a few
issues on which there is a broad consensus at least among
the authors of this STAR (which after all represent widely
varying schools of thought within the ray tracing commu-
nity). Because different systems have hard-to-compare per-
formance, it is hard to know which acceleration structure
is the fastest, and to what extent performance is likely to
change as hardware evolves. Grids are very useful for cer-
tain types of scenes and are very fast to build. In particular,
for certain dominantly non-axis-aligned scenes if the grid
is built with a triangle-in-box test [AM01], it will normally
outperform kd-trees and BVHs built using axis aligned splits
and bounding boxes. In fact, for certain scenes even a sin-
gle ray grid will outperform other axis-aligned structures.
However, for geometrically wide ray packets grids do not
perform as well. Kd-trees have the fastest reported times for
viewing and shadow rays, but they are not easy to update, and
it is not clear how well they perform for wide ray packets.
Traversal for BVHs is almost as fast as kd-trees, and they
can be updated rapidly, but BVHs are about as expensive
as kd-trees to rebuild from scratch. Overall, the community
should continue to investigate all three approaches, as well as
looking onto other possibilities such as oriented structures.
The difficulty in actually implementing these different traver-
sal methods is also important to consider. The coherent grid
traversal algorithm is likely the most difficult to efficiently
implement, while the BVH is the easiest of the three accel-
eration structures to implement, and would be efficient even
without using SIMD instructions. A BIH style BVH is faster
to build than a SAH-style BVH, not significantly slower to
traverse, and much easier to implement, and therefore is rec-
ommended as the first type of build method to implement in
an interactive ray tracer.

Concerning whether to rebuild from scratch or rely on
updating, the authors agree that future systems will likely
use a combination of both, where rebuilding from scratch
every frame is used some of the time and/or for some
parts of the hierarchy, and refitting or incremental updates
are used for the deformable parts of the scene when it
does not introduce too much degradation. Lazy or par-
tial builds are likely to receive more attention, but re-
quire active support from the application. This argues for
some co-existence of both approaches depending on whether
the application provides such information, or whether it
only produces a ‘direct rendering mode’ triangle soup; the

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

1718 I. Wald et al. / State of the Art in Ray Tracing Animated Scenes

same is true for hierarchical techniques and multi-resolution
approaches.

These statements reflect the authors’ personal opinions,
and future research may change some of these conclusions.

In general, adding animated scenes to real-time ray tracing
has made ray tracing research considerably more varied; and
more interesting, too, by having opened new questions, and
by having reopened old ones that had already been consid-
ered solved. Though the field has recently seen tremendous
progress, there is no clear winner, yet, and arguably, with so
many different variations of the problems no single technique
can ever be best in all cases.

Despite the flurry of recently published systems, the space
of as yet unexplored combinations is still huge. In particu-
lar, future work is likely to focus on better evaluating the
relative strengths and weaknesses of kd-trees and BVH: for
example, fast, approximate and scalable parallel builds are
known for kd-trees, and should apply similarly to BVHs, but
have not been fully investigated yet; the same is true for the
various BVH-based, and kd-tree-based traversal algorithms,
respectively. How these approaches compare with respect
to different hardware architectures like GPUs or upcoming
multi-core architectures is also interesting, as is the question
how to handle wider than four SIMD widths, or more gen-
eral secondary ray packets. Multi-resolution geometry and
lazy/partial builds require more attention, but ultimately ray
tracers have to be integrated into real-world graphics work-
loads to see how these approaches behave (the same is true
for triangle soup approaches). Finally, all of the systems dis-
cussed above depend on packets and frustum techniques to
achieve high performance, but apart from the obvious ques-
tion on how different ray distributions work for the various
data structures (that we partially addressed above), the more
general question of how to use these techniques in a ‘real’
rendering system (i.e. where these packets come from in the
first place) is an open question for future research.

Acknowledgements

We are grateful to a large number of people that have provided
feedback and/or insight into their respective papers and sys-
tems. In particular, Sung-Eui Yoon and Christian Lauterbach
have provided feedback on their BVH-based systems, and,
in particular, on selective restructuring. Vlastimil Havran has
provided invaluable feedback on skd-tree like data structures
and on the relation of the different data structures in gen-
eral. Virtually all of the images and performance numbers
have been selected from other people’s systems and papers;
though all of these are cited, these papers contain additional
acknowledgments that we have omitted.

With few exceptions, this work surveys existing results,
and draws from existing publications that others have signif-
icantly contributed to: For Razor, we explicitly acknowledge
Gordon Stoll, Peter Djeu, Don Fussell, Ikrima Elhassan, Rui

Wang and Denis Zorin; for the Grid section, Aaron Knoll
and Andrew Kensler; and for BVHs and kd-trees, Heiko
Friedrich, Carsten Benthin and Philipp Slusallek.

The writing of this survey has been supported by the Na-
tional Science Foundation (awards #0541009, #0306151 and
CAREER award #0546236), by the U.S. Department of En-
ergy through the Center for the Simulation of Accidental
Fires and Explosions (grant W-7405-ENG-48LA>-13111-
PR>), and by research grants from Intel Corporation. The
authors would particularly like to thank Jim Hurley at Intel,
who has strongly supported academic ray tracing research
over the past several years.

References

[AGM06] ABERT O., GEIMER M., MÜLLER S.: Direct and
fast ray tracing of NURBS surfaces. In Proceedings of the
2006 IEEE Symposium on Interactive Ray Tracing (2006),
pp. 161–168.

[AIÖ94] AYKANAT C., ISLER V., ÖZGÜC B.: Efficient parallel
spatial subdivision algorithm for object-based parallel ray
tracing. Computer-Aided Design 26, 12 (1994), 883–890.

[AM01] AKENINE-MÜLLER T.: Fast 3D triangle-box over-
lap testing. Journal of Graphics Tools 6, 1 (2001), 29–33.

[BEL∗07] BOULOS S., EDWARDS D., LACEWELL J. D., KNISS

J., KAUTZ J., SHIRLEY P., WALD I.: Packet-based whitted
and distribution ray tracing. In Proceedings of Graphics
Interface 2007 (2007), pp. 177–184.

[Ben06] BENTHIN C.: Realtime Ray Tracing on current
CPU Architectures. PhD thesis, Saarland University, 2006.

[BGES98] BARTZ D., GROSSO R., ERTL T., STRASSER W.:
Parallel construction and isosurface extraction of recursive
tree structures. In Proceedings of WSCG’98 (1998), Vol.
3.

[BWS04] BENTHIN C., WALD I., SLUSALLEK P.: Interactive
ray tracing of free-form surfaces. In Proceedings of Afri-
graph (November 2004), pp. 99–106.

[BWS06] BOULOS S., WALD I., SHIRLEY P.: Geometric and
Arithmetic Culling Methods for Entire Ray Packets. Tech.
Rep. UUCS-06-010, SCI Institute, University of Utah,
2006.

[BWSF06] BENTHIN C., WALD I., SCHERBAUM M.,
FRIEDRICH H.: Ray tracing on the CELL processor. In Pro-
ceedings of the 2006 IEEE Symposium on Interactive Ray
Tracing (2006), pp. 15–23.

[CFLB06] CHRISTENSEN P. H., FONG J., LAUR D. M., BATALI

D.: Ray tracing for the movie ‘cars’. In Proceedings of the
2006 IEEE Symposium on Interactive Ray Tracing (2006),
pp. 1–6.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

I. Wald et al. / State of the Art in Ray Tracing Animated Scenes 1719

[CHCH06] CARR N., HOBEROCK J., CRANE K., HART: Fast
GPU ray tracing of dynamic meshes using geometry
images. In Proceedings of Graphics Interface (2006),
pp. 203–209.

[CLF
∗
03] CHRISTENSEN P. H., LAUR D. M., FONG J.,

WOOTEN W. L., BATALI D.: Ray differentials and mul-
tiresolution geometry caching for distribution ray trac-
ing in complex scenes. In Computer Graphics Forum
(Eurographics 2003 Conference Proceedings) (Septem-
ber 2003), Blackwell Publishers, pp. 543–552.

[CPC84] COOK R., PORTER T., CARPENTER L.: Distributed
ray tracing. Computer Graphics (Proceeding of SIG-
GRAPH 84) 18, 3 (1984), 137–144.

[DFG99] DU Q., FABER V., GUNZBURGER M.: Cen-troidal
voronoi tessellations: Applications and algorithms. SIAM
Review 41, 4 (1999), 637–676.

[DHS04] DMITRIEV K., HAVRAN V., SEIDEL H.-P.: Faster
ray tracing with SIMD shaft culling. Research Report
MPI-I-2004-4-006, Max-Planck-Institut fürü Infor-matik,
Saarbrücken, Germany, 2004.

[DHW
∗
07] DJEU P., HUNT W., WANG R., ELHASSAN I.,

STOLL G., MARK W. R.: Razor: An architecture for dy-
namic multiresolution ray tracing. ACM Transactions on
Graphics (2007).

[Ebe05] EBERLY D. H.: 3D Game Engine Architecture: En-
gineering Real-Time Applications with Wild Magic. Mor-
gan Kaufmann, 2005.

[EGMM06] EISEMANN M., GROSCH T., MAGNOR M.,
MUELLER S.: Automatic Creation of Object Hierarchies
for Ray Tracing of Dynamic Scenes. Tech. Rep. 2006-6-1,
TU Braunschweig, 2006.

[FGD
∗
06] FRIEDRICH H., GÜNTHER J., DIETRICH A.,

SCHERBAUM M., SEIDEL H.-P., SLUSALLEK P.: Exploring the
use of ray tracing for future games. In Sandbox ‘06: Pro-
ceedings of the 2006 ACM SIGGRAPH Symposium on
Videogames (2006), New York, NY, USA, ACM Press,
pp. 41–50.

[GFSS06] GÜNTHER J., FRIEDRICH H., SEIDEL H.-P.,
SLUSALLEK P.: Interactive ray tracing of skinned ani-
mations. The Visual Computer (Proceedings of Pacific
Graphics) 22, 9 (2006), 785–792.

[GFW
∗
06] GÜNTHER J., FRIEDRICH H., WALD I., SEI-DEL

H.-P., SLUSALLEK P.: Ray tracing animated scenes using
motion decomposition. Computer Graphics Forum (Pro-
ceedings of Eurographics) 25, 3 (2006), 517–525.

[GG98] GAEDE V., GÜNTHER O.: Multidimensional access
methods. ACM Computing Surveys 30, 2 (1998), 170–231.

[GIK
∗
07] GRIBBLE C. P., IZE T., KENSLER A., WALD I.,

PARKER S. G.: A coherent grid traversal approach to visu-
alizing particle-based simulation data. IEEE Transactions
on Visualization and Computer Graphics 13, 4 (2007),
758–768.

[GLM96] GOTTSCHALK S., LIN M., MANOCHA D.: OBB-
Tree: A hierarchical structure for rapid interference de-
tection. In Proceedings of SIGGRAPH 96 (August 1996),
Computer Graphics Proceedings, Annual Conference Se-
ries, pp. 171–180.

[GPSS07] GÜNTHER J., POPOV S., SEIDEL H.-P., SLUSALLEK

P.: Realtime ray tracing on GPU with BVH-based packet
traversal. In Proceedings of the 2007 IEEE/EG Symposium
on Interactive Ray Tracing (September 2007), pp. 113–
118.

[GS87] GOLDSMITH J., SALMON J.: Automatic creation of
object hierarchies for ray Tracing. IEEE Computer Graph-
ics and Applications 7, 5 (1987), 14–20.

[Hai91] HAINES E.: Efficiency improvements for hierarchy
traversal in ray tracing. In Graphics Gems II, Arvo J.,
(Ed.). Academic Press, 1991, pp. 267–272.

[Hav97] HAVRAN V.: Cache sensitive representation for
the BSP tree. In Compugraphics’97 (December 1997),
GRASP – Graphics Science Promotions & Publications,
pp. 369–376.

[Hav01] HAVRAN V.: Heuristic Ray Shooting Algorithms.
PhD thesis, Faculty of Electrical Engineering, Czech
Technical University in Prague, 2001.

[Hav02] HAVRAN V.: Mailboxing, yea or nay? Ray Trac-
ing News 15, 1 (2002). http://tog.acm.org/resources/
RTNews/html/rtnv15n1.html.

[Hav07] HAVRAN V.: About the relation between spatial
subdivision and object hierarchies used in ray tracing.
In Proceedings of the Spring Conference on Computer
Graphics (SCCG) (2007).

[HB00] HAVRAN V., BITTNER J.: LCTS: Ray shooting using
longest common traversal sequences. Computer Graphics
Forum (Proceedings of EUROGRAPHICS) 19, 3 (2000),
59–70.

[HEV
∗
04] HADAP S., EBERLE D., VOLINO P., LIN M.

C., REDON S., ERICSON C.: Collision detection and
proximity queries. In SIGGRAPH ‘04: ACM SIG-
GRAPH 2004 Course Notes (2004), ACM Press,
p. 15.

[HH84] HECKBERT P. S., HANRAHAN P.: Beam tracing
polygonal objects. In Proceedings of SIGGRAPH (1984),
pp. 119–127.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

1720 I. Wald et al. / State of the Art in Ray Tracing Animated Scenes

[HHS06] HAVRAN V., HERZOG R., SEIDEL H.-P.: On fast
construction of spatial hierarchies for ray tracing. In
Proceedings of the 2006 IEEE Symposium on Interactive
Ray Tracing (2006), pp. 71–80.

[HMF07] HUNT W., MARK W. R., FUSSELL D. S.: Fast
and lazy build of acceleration structures from scene hi-
erarchies. In Proceedings of the 2007 IEEE/Eurographics
Symposium on Interactive Ray Tracing (2007), pp. 47–54.

[HPP00] HAVRAN V., PRIKRYL J., PURGATHOFER W.: Sta-
tistical Comparison of Ray-Shooting Efficiency Schemes.
Tech. Rep. TR-186-2-00-14, Institute of Computer Graph-
ics, Vienna University of Technology, 2000.

[HSM06] HUNT W., STOLL G., MARK W.: Fast kd-tree con-
struction with an adaptive error-bounded heuristic. In Pro-
ceedings of the 2006 IEEE Symposium on Interactive Ray
Tracing (2006), pp. 81–88.

[Ige99] IGEHY H.: Tracing ray differentials. In Proceed-
ings of SIGGRAPH 99 (August 1999), Computer Graph-
ics Proceedings, Annual Conference Series, pp. 179–186.

[IWP07] IZE T., WALD I., PARKER S. G.: Asynchronous
BVH construction for ray tracing dynamic scenes on par-
allel multi-core architectures. In Proceedings of the 2007
Eurographics Symposium on Parallel Graphics and Visu-
alization (2007).

[IWRP06] IZE T., WALD I., ROBERTSON C., PARKER S. G.:
An evaluation of parallel grid construction for ray tracing
dynamic scenes. In Proceedings of the 2006 IEEE Sym-
posium on Interactive Ray Tracing (2006), pp. 47–55.

[JP04] JAMES D. L., PAI D. K.: BD-tree: Output-sensitive
collision detection for reduced deformable models. ACM
Transactions on Graphics (SIGGRAPH 2004) 23, 3
(2004), pp. 393–398.

[KA91] KIRK D., ARVO J.: Improved ray tagging for voxel-
based ray tracing. In Graphics Gems II, Arvo J., (Ed.).
Academic Press, 1991, pp. 264–266.

[KH95] KEATES M. J., HUBBOLD R. J.: Interactive ray trac-
ing on a virtual shared-memory parallel computer. Com-
puter Graphics Forum 14, 4 (1995), 189–202.

[KK86] KAY T., KAJIYA J.: Ray tracing complex scenes. In
Proceedings of SIGGRAPH (1986), pp. 269–278.

[KM07] KAMMAJE R. P., MORA B.: A study of restricted
BSP trees for ray tracing. In Proceedings of the 2007
IEEE/Eurographics Symposium on Interactive Ray Trac-
ing (2007), pp. 55–62.

[Knu98] KNUTH D. E.: The Art of Computer Program-
ming, Volume 3: Sorting and Searching (2nd edition).
Addison-Wesley, 1998.

[LAM01] LEXT J., AKENINE-MÖLLER T.: Towards rapid re-
construction for animated ray tracing. In Eurograph-ics
Short Presentations (2001), pp. 311–318.

[LAM05] LARSSON T., AKENINE-MÖLLER T.: A dynamic
bounding volume hierarchy for generalized collision de-
tection. In Workshop On Virtual Reality Interaction and
Physical Simulation (2005), pp. 91–100.

[LCF05] LUQUE R. G., COMBA J. L. D., FREITAS C. M. D. S.:
Broad-phase collision detection using semi-adjusting bsp-
trees. In I3D ‘05: Proceedings of the 2005 Symposium on
Interactive 3D Graphics and Games (2005), ACM Press,
pp. 179–186.

[Llo82] LLOYD S. P.: Least squares quantization in PCM.
IEEE Transactions on Information Theory 28, 2 (1982),
129–137.

[LM04] LIN M. C., MANOCHA D.: Collision and proxim-
ity queries. In Handbook of Discrete and Computational
Geometry (2nd Edition). CRC Press, 2004, pp. 787–807.

[LYM07] LAUTERBACH C., YOON S.-E., MANOCHA D.: Ray-
Strips: A compact mesh representation for interactive ray
tracing. In Proceedings of the 2007 IEEE/Eurographics
Symposium on Interactive Ray Tracing (2007), pp. 19–
26.

[LYTM06] LAUTERBACH C., YOON S.-E., TUFT D.,
MANOCHA D.: RT-deform: Interactive ray tracing of dy-
namic scenes using BVHs. In Proceedings of the 2006
IEEE Symposium on Interactive Ray Tracing (2006),
pp. 39–45.

[Mah05] MAHOVSKY J.: Ray Tracing with Reduced-
Precision Bounding Volume Hierarchies. PhD thesis, Uni-
versity of Calgary, 2005.

[MB89] MACDONALD J. D., BOOTH K. S.: Heuristics for
ray tracing using space subdivision. In Proceedings of
Graphics Interface (1989), pp. 152–163.

[MB90] MACDONALD J. D., BOOTH K. S.: Heuristics for
ray tracing using space subdivision. Visual Computer 6, 6
(1990), 153–165.

[MCEF94] MOLNAR S., COX M., ELLSWORTH D., FUCHS H.:
A sorting classification of parallel rendering. IEEE Com-
puter Graphics Application 14, 4 (1994), 23–32.

[MF99] MÜLLER G., FELLNER D.: Hybrid scene structur-
ing with application to ray tracing. In Proceedings of In-
ternational Conference on Visual Computing (1999), pp.
19–26.

[MF05] MARK W., FUSSELL D.: Real-Time Rendering Sys-
tems in 2010. Tech. Rep. 05-18, Computer Science, Uni-
versity of Texas, May 2005.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

I. Wald et al. / State of the Art in Ray Tracing Animated Scenes 1721

[ML03] MASSO J. P. M., LOPEZ P. G.: Automatic hybrid hi-
erarchy creation: A cost-model based approach. Computer
Graphics Forum 22, 11 (2003), 513.

[Muu95] MUUSS M.: Towards real-time ray-tracing of
combinatorial solid geometric models. In Proceedings of
BRL-CAD Symposium (1995).

[MW04] MAHOVSKY J., WYVILL B.: Fast ray-axis aligned
bounding box overlap tests with Plücker coordinates. Jour-
nal of Graphics Tools 9, 1 (2004), 35–46.

[MW06] MAHOVSKY J., WYVILL B.: Memory-conserving
bounding volume hierarchies with coherent raytracing.
Computer Graphics Forum 25, 2 (2006), pp. 173–182.

[ORM07] OVERBECK R., RAMAMOORTHI R., MARK W. R.:
A real-time beam tracer with application to exact soft
shadows. In Proceedings of the Eurographics Symposium
on Rendering (2007).

[OSDM87] OOI B. C., SACKS-DAVIS R., MCDONNELL K.
J.: Spatial k-d-tree: An indexing mechanism for spatial
databases. In IEEE International Computer Software and
Applications Conference (COMPSAC) (1987).

[PGSS06] POPOV S., GÜNTHER J., SEIDEL H.-P., SLUSALLEK

P.: Experiences with streaming construction of SAH KD-
Trees. In Proceedings of the 2006 IEEE Symposium on
Interactive Ray Tracing (2006).

[PH04] PHARR M., HUMPHREYS G.: Physically Based Ren-
dering : From Theory to Implementation. Morgan Kauf-
man, 2004.

[PMS
∗
99] PARKER S. G., MARTIN W., SLOAN P.-P. J.,

SHIRLEY P., SMITS B. E., HANSEN C. D.: Interactive ray
tracing. In Proceedings of Interactive 3D Graphics (1999),
pp. 119–126.

[PPL
∗
99] PARKER S., PARKER M., LIVNAT Y., SLOAN P.-P.,

HANSEN C., SHIRLEY P.: Interactive ray tracing for volume
visualization. IEEE Transactions on Computer Graphics
and Visualization 5, 3 (1999), 238–250.

[PSL
∗
98] PARKER S., SHIRLEY P., LIVNAT Y., HANSEN C.,

SLOAN P.-P.: Interactive ray tracing for isosurface render-
ing. In IEEE Visualization ‘98 (October 1998), pp. 233–
238.

[Res06] RESHETOV A.: Omnidirectional ray tracing traver-
sal algorithm for kd-trees. In Proceedings of the 2006
IEEE Symposium on Interactive Ray Tracing (2006),
pp. 57–60.

[Res07] RESHETOV A.: Faster ray packets-triangle inter-
section through vertex culling. In Proceedings of the 2007
IEEE/Eurographics Symposium on Interactive Ray Trac-
ing (2007), pp. 105–112.

[RSH00] REINHARD E., SMITS B., HANSEN C.: Dynamic ac-
celeration structures for interactive ray tracing. In Pro-
ceedings of the Eurographics Workshop on Rendering
(June 2000), Brno, Czech Republic, pp. 299–306.

[RSH05] RESHETOV A., SOUPIKOV A., HURLEY J.: Multi-
level ray tracing algorithm. ACM Transaction on Graphics
(Proceedings of ACM SIGGRAPH 2005) 24, 3 (2005),
1176–1185.

[RW80] RUBIN S., WHITTED T.: A 3D representation for
fast rendering of complex scenes. In Proceedings of SIG-
GRAPH (1980), pp. 110–116.

[Sam89a] SAMET H.: Applications of Spatial Data Struc-
tures: Computer Graphics, Image Processing and GIS.
Addison-Wesley, 1989.

[Sam89b] SAMET H.: The Design and Analysis of Spatial
Data Structures. Addison-Wesley, 1989.

[Sam06] SAMET H.: Foundations of Multidimensional and
Metric Data Structures. Morgan Kaufmann, 2006.

[San02] SANTALO L.: Integral Geometry and Geometric
Probability. Cambridge University Press, 2002.

[SDP
∗
04] SCHMITTLER J., DAHMEN T., POHL D.,

VO-GELGESANG C., SLUSALLEK P.: Ray tracing for current
and future games. In Proceedings of 34. Jahrestagung der
Gesellschaft fü Informatik (2004).

[Sed98] SEDGEWICK R.: Algorithms in C++, Parts 1–4:
Fundamentals, Data Structure, Sorting, Searching (3rd
edition). Addi-son Wesley, 1998.

[SF90] SUBRAMANIAN K. R., FUSSELL D. S.: Factors Affect-
ing Performace of Ray Tracing Hierarchies, University
of Texas at Austin Computer Sciences, Technical Report
Number TR 90-21, 1990.

[SGS95] SEKHARAN C., GOEL V., SRIDHAR R.: Load bal-
ancing methods for ray tracing and binary tree computing
using PVM. Parallel Computing 21, 12 (1995), 1963–
1978.

[Smi98] SMITS B.: Efficiency issues for ray tracing. Jour-
nal of Graphics Tools 3, 2 (1998), 1–14.

[SSK07] SHEVTSOV M., SOUPIKOV A., KAPUSTIN A.: Fast
and scalable kd-tree construction for interactively ray trac-
ing dynamic scenes. Computer Graphics Forum (Proceed-
ings of Eurographics) 26, 3 (2007).

[Sto05] STOLL G.: Part II: Achieving real
time/optimization techniques. Slides from the Siggraph
2005 Course on Interactive Ray Tracing, 2005. Slides
available online at http://www.openrt.de/Siggraph05/-
UpdatedCourseNotes/course.php.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

1722 I. Wald et al. / State of the Art in Ray Tracing Animated Scenes

[Sub90] SUBRAMANIAN K. R.: A Search Structure based
on K-d Trees for Efficient Ray Tracing. PhD thesis, The
University of Texas at Austin, December 1990.

[SW01] SUYKENS F., WILLEMS Y.: Path differentials and
applications. In Rendering Techniques 2001: 12th Euro-
graphics Workshop on Rendering (June 2001), pp. 257–
268.

[SWS02] SCHMITTLER J., WALD I., SLUSALLEK P.: SaarCOR
– A hardware architecture for ray tracing. In Proceed-
ings of the ACM SIGGRAPH/Eurographics Conference
on Graphics Hardware (2002), pp. 27–36.

[TKH
∗
05] TESCHNER M., KIMMERLE S., HEIDEL-BERGER B.,

ZACHMANN G., RAGHUPATHI L., FUHRMANN A., CANI M.,
FAURE F., MAGNENAT-THALMANN N., STRASSER W., VOLINO

P.: Collision detection for deformable objects. Computer
Graphics Forum 24, 1 (2005), 61–82.

[TL04] TABELLION E., LAMORLETTE A.: An approxi-
mate global illumination system for computer generated
films. In Proceedings of SIGGRAPH (2004), pp. 469–
476.

[vdB97] VAN DEN BERGEN G.: Efficient collision detection
of complex deformable models using AABB trees. Jour-
nal of Graphics Tools 2, 4 (1997), 1–14.

[vdZRJ95] VAN DER ZWAAN M., REINHARD E., JANSEN F.:
Pyramid clipping for efficient ray traversal. In Rendering
Techniques ‘95, Proceedings of the Eurographics Work-
shop on Rendering (1995), pp. 1–10.

[Wal04] WALD I.: Realtime Ray Tracing and Interac-
tive Global Illumination. PhD thesis, Saarland University,
2004.

[Wal07] WALD I.: On fast construction of SAH based
bounding volume hierarchies. In Proceedings of the 2007
IEEE/Eurographics Symposium on Interactive Ray Trac-
ing (2007), pp. 33–40.

[WBMS05] WILLIAMS A., BARRUS S., MORLEY R. K.,
SHIRLEY P.: An efficient and robust ray-box intersection
algorithm. Journal of Graphics Tools 10, 1 (2005), 49–54.

[WBS02] WALD I., BENTHIN C., SLUSALLEK P.: OpenRT –
A Flexible and Scalable Rendering Engine for Interac-
tive 3D Graphics. Tech. rep., Saarland University, 2002.
Available at http://graphics.cs.uni-sb.de/Publications.

[WBS03] WALD I., BENTHIN C., SLUSALLEK P.: Distributed
interactive ray tracing of dynamic scenes. In Proceedings
of the IEEE Symposium on Parallel and Large-Data Visu-
alization and Graphics (2003), pp. 11–20.

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray tracing
deformable scenes using dynamic bounding volume hi-

erarchies. ACM Transactions on Graphics 26, 1 (2007),
1–18.

[WFKH07] WALD I., FRIEDRICH H., KNOLL A., HANSEN

C. D.: Interactive isosurface ray tracing of time-varying
tetrahedral volumes. IEEE Transactions on Visualiza-
tion and Computer Graphics (Proc. IEEE Visualiza-
tion/InfoVis 2007) 15, 6 (2007).

[WH06] WALD I., HAVRAN V.: On building fast kd-trees
for ray tracing, and on doing that in O(N log N). In Pro-
ceedings of the 2006 IEEE Symposium on Interactive Ray
Tracing (2006), pp. 61–70.

[Whi80] WHITTED T.: An improved illumination model for
shaded display. Communications of the ACM 23, 6 (1980),
343–349.

[WIK
∗
06] WALD I., IZE T., KENSLER A., KNOLL A., PARKER

S. G.: Ray tracing animated scenes using coherent grid
traversal. ACM Transactions on Graphics (Proceedings of
ACM SIGGRAPH) 25, 3 (2006), 485–493.

[WK06] WÄCHTER C., KELLER A.: Instant ray tracing:
The bounding interval hierarchy. In Rendering Techniques
2006 – Proceedings of the 17th Eurographics Symposium
on Rendering (2006), pp. 139–149.

[WMS06] WOOP S., MARMITT G., SLUSALLEK P.: B-
KD trees for hardware accelerated ray tracing of dy-
namic scenes. In Proceedings of Graphics Hardware
(2006), pp. 67–77.

[WSBW01] WALD I., SLUSALLEK P., BENTHIN C., WAGNER

M.: Interactive rendering with coherent ray tracing. Com-
puter Graphics Forum (Proceedings of Eurographics) 20,
3 (2001), 153–164.

[WSS05] WOOP S., SCHMITTLER J., SLUSALLEK P.: RPU: A
programmable ray processing unit for realtime ray trac-
ing. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH) 24, 3 (2005), 434–444.

[YCM07] YOON S.-E., CURTIS S., MANOCHA D.: Ray trac-
ing dynamic scenes using selective restructuring. In Eu-
rographics Symposium on Rendering (2007).

[YM06] YOON S., MANOCHA D.: Cache-efficient layouts of
bounding volume hierarchies. Computer Graphics Forum
(Eurographics) (2006), pp. 507–516.

[ZU06] ZUNIGA M. R., UHLMANN J. K.: Ray queries with
wide object isolation and the de-tree. Journal of Graphics
Tools 11, 3 (2006), 27–45.

[Zun] ZUNIGA M. R.: Method and apparatus for ray and
range queries using wide object isolation techniques. US
Patent Application No 10/904,211. Submitted Oct 2004;
Published May 2006.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

