CONCURRENCY: PRACTICE AND EXPERIENCE, VOL. 7(1), 17-28 (FEBRUARY 1995)

Dynamic load-balancing for PDE solvers on
adaptive unstructured meshes

CHRIS WALSHAW* AND MARTIN BERZINS

School of Computer Studies
University of Leeds
Leeds, UK

SUMMARY

Modern PDE solvers written for time-dependent problems increasingly employ adaptive un-
structured meshes (Flaherty ef al., 1989) in order to both increase efficiency and control the
numerical error. If a distributed memory parallel computer is to be used, there arises the
significant problem of dividing the domain equally amongst the processors whilst minimising
the inter-subdomain dependencies. A number of graph-based algorithms have recently been
proposed for steady-state calculations. The paper considers an extension to such methods which
renders them more suitable for time-dependent problems in which the mesh may be changed
frequently.

1. INTRODUCTION

Modern PDE solvers for time-dependent applications are currently being written to solve
real-life problems on complex spatial domains to an accuracy specified by the user[1].
The desire to compute a solution to a certain accuracy over a complex domain has led to
many codes using unstructured meshes with mesh adaptivity controlled by the spatial error
estimate.

This desire to control the spatial error means that the position and density of the spatial
mesh points may vary dramatically over the course of an integration, This refinement and
coarsening is undertaken automatically[1,2]. As an example, taken from the wedge shock
problem discussed in Section 5.3, Figure 3 shows the solution domain after the first and
final remeshes.

Parallel versions of such codes face the problem of distributing the mesh. For optimal
performance the load should be evenly balanced and the communication cost reduced
as much as possible by minimising inter-processor dependencies. It is well known that
this mapping problem is NP-complete[3], and so heuristics must be employed to obtain a
usable algorithm. In addition, for time-dependent problems, the unstructured mesh may be
modified every few time-steps and so the load-balancing must have a low cost relative to
that of the solution algorithm in between remeshing.

*Present address: School of Maths, Stats and Computing, The University of Greenwich, 6 Wellington
Street, London, SE18 6PF.

CCC 1040-3108/95/010017-12 Received 17 February 1993
©1995 by John Wiley & Sons, Ltd. Accepted 14 March 1994

18 CHRIS WALSHAW AND MARTIN BERZINS

A number of good load-balancing algorithms (see, for example, References 4 and 5) are
based on partitioning a graph that corresponds to the communication requirements of the
unstructured mesh. Until now, such algorithms have not addressed the incremental update
partitioning problem posed when a mesh with an existing partition is being refined and/or
coarsened. The aim of this paper is to propose a new method for this update problem which
may be used in conjunction with existing graph-based partitioning techniques.

Of the existing partitioning techniques recursive spectral bisection is generally highly
regarded[4,5], and an improved version allowing for quadrisection and even octasection has
been devised[3]. The spectral algorithm forms a natural starting point for the work presented
here and is described in full in Section 2. The limitations of the algorithm for time-dependent
adaptive mesh codes are considered in Section 3. In Section 4 a pre-processing step for the
algorithm is introduced which addresses these limitations and appears to provide faster,
more efficient dynamic load-balancing. In Section 5 a comparison is made between the
algorithms and illustrated by some results from two PDE problems. Finally a few future
directions for research are offered.

Note that the adaptive code used to motivate the work here employs h-refinement[1],
which in the context of time-dependent problems means that both the number and the
distribution of the mesh points change as time progresses. Other adaptive mesh codes
may use r-refinement in which a fixed number of mesh points move around the solution
domain. However, provided that the points do not overtake each other this does not affect
the connectivity of the communication graph and hence the optimal partitioning of the
mesh.

2. RECURSIVE SPECTRAL BISECTION

The recursive spectral bisection algorithm (henceforth RSB) is one of a family of recursive
bisection methods used for partitioning a graph. Common to these methods is the idea that
bisecting a domain is a much easier task than subdividing into p subdomains. The bisection
is obtained by a given strategy and then the same strategy is applied to the subdomains
recursively. In this manner a partition into p=2¢ subdomains can be obtained in g recursive
steps. Two other examples are recursive co-ordinate bisection (RCB; see Section 5.2) and
recursive graph bisection (RGB). In his paper[4], Horst Simon describes all three algorithms
and demonstrates the superiority of RSB over the other two.

2.1. Recursive spectral bisection—motivation

The spectral bisection algorithm is one of a number of methods which partition a graph
derived from the mesh. The fundamental idea is to associate the nodes of an undirected
graph with variables in the solution vector. The spatial discretisation defines dependencies
between solution variables which can then be represented by edges, hence giving rise to a
dual communication graph. Thus for triangular cell-centred 2D finite volume calculations,
for example, each node of the graph represents a triangle and has three edges connecting it
to the nodes of the three adjacent triangles.

Consider, then, an undirected graph G=G,(V,E), where V is the set of n nodes or vertices,
E the set of edges and G represents the connectivity of elements in the discretisation of the
domain. A partition P of the domain is given by separating V into p mutually exclusive
subsets.

DYNAMIC LOAD-BALANCING FOR PDE SOLVERS ON ADAPTIVE UNSTRUCTURED MESHES 19

Subsets of V can be defined by labelling each vertex. At each recursive stage a subgraph
is to be bisected and so a variable x, will be associated with each vertex veV and given the
value +1 or —1 according to which subset it is in. Thus define x by

def | +1 ifve ‘left’ partition
: —1 if ve ‘right’ partition

The communication cost or number of edges between these two subsets (a cost that should
be minimised) can now be defined with the quadratic form

c? 3 (- x)

(v,w)eE

where the sum is over vertices which are connected by an edge of the graph.
The minimisation of C is not an easy problem to solve in its current formulation. Consider,
however, the Laplacian of the graph L(G)=[l;], for i,j=1,. .. n, given by

-1 if (vi,vj)eE
d
2 tdegv) ifis
0 otherwise

or alternatively L(G)=D—A, where D is the diagonal matrix of vertex degrees and A is the
adjacency matrix of the graph. It can now be seen that

Cx) = Z (% — x> =x'L x

(vw)eE

and so L(G) is the matrix associated with the quadratic form C(x). This equivalence holds
for any vector x (not just x,= + 1 or —1).

Note that the Laplacian has some interesting properties which are detailed more fully
in Reference 6. It is easily verified that zero is an eigenvalue, A; say, of L with associated
eigenvector e, where ¢;=1 for i=1,...,n. Thus L(G) is positive semi-definite and hence
A1=0 is the smallest eigenvalue. If G is connected, then Ay, the second smallest eigenvalue,
is strictly positive (again see Reference 6).

An important heuristic is now employed. If the x, are now allowed to be continuousrather
than discrete variables, then C is minimised by the eigenvector corresponding to the smallest
eigenvalue of L. From above, the eigenvector x;=e (i.e. x,=1 for v=1,. . . ,n) corresponding
to A;=0 certainly minimises C (because C=x’Lx=0) but locates all the vertices in the same
subset (and hence trivially requires no communication). There is, however, the additional
restriction of load-balancing, i.e.

Z x,=0

veV

This is equivalent to (x,e) = 0, where (.,.) refers to the inner product, and hence it is necessary
to find the smallest eigenvalue with eigenvector orthogonal to e. Since L is symmetric its
eigenvectors form an orthogonal set and hence C is non-trivially minimised by the eigenpair
(A2,x2) where A; is the smallest positive eigenvalue.

20 CHRIS WALSHAW AND MARTIN BERZINS

repeat recursively {
create Laplacian {input graph, output Laplacian)
find 2nd eigenvector (input Laplacian, output Fiedler vector)
sort and bisect (input Fiedler vector, output partition)

Figure 1. The recursive spectral bisection algorithm

This vector x5, now renders a weighting, x,, for each vertex of the graph v. Because of
the continuous approximation, in general the weightings will not be the +1 or —1 initially
required. However, this heuristic is not restrictive. Eigenvectors of the adjacency matrix have
been previously studied for the information they give on the graph and used for partitioning
purposes[7,8]. The special properties of x, have been investigated by Fiedler[9], who gives
atheoretical justification for bisecting the graph based on the elements of this vector. Hence
X, often referred to as the Fiedler vector, is used to bisect the graph by sorting the vertices
v according to the weighting given in x,.

2.2. The method of spectral bisection

The three steps of the algorithm are summarised in Figure 1 and described below.

Working either from the dual communication graph or directly from the mesh, the
Laplacian is created. The entries of this matrix L do not need to be stored at all, only the
row (or column) indices of off-diagonal non-zeros (all of value —1) are required. These can
be stored as a vector of packed sparse vectors together with an indexing vector indicating
the start of each new row (column). The diagonal entries are then given by the number of
entries in each row (column). The fact that L is symmetric may also be used to further
reduce the number of entries, but at the risk of significantly complicating the matrix—vector
multiplication routine.

Following Simon, Pothen and Liou[4,7], the Lanczos algorithm is used to calculate the
Fiedler vector. This is a well known Krylov subspace iterative technique, ideal for finding
extremal eigenvalues of symmetric matrices (see, for example, Reference 10). Unfortunately
the algorithm requires many steps to avoid misconvergence to non-extremal eigenvalues,
but the cost of estimating the current smallest can be reduced by bounding it inside an
interval of decreasing size[11]. The bulk of the work per iterative step is one matrix—vector
multiplication, together with some vector operations. It can be implemented for the most
part with the level 1 BLAS plus a tailor-made matrix—vector multiplication subroutine.
Because of the load-balancing constraint, each Lanczos vector is explicitly orthogonalised
against e as described in Section 2.1.

Finally, the Fiedler vector is sorted and the graph bisected. Note that it is not necessary
to employ a full sorting procedure, just a partitioning into two equal-sized subsets. Un-
fortunately there is no theoretical guarantee that the partitions will be connected[8], but
experience shows that it is rare that they are not.

3. APPLICATIONS TO TIME-DEPENDENT PROBLEMS

Whilst the RSB algorithm usually gives good results for a static problem, there are a number
of areas in which improvements may be made for dynamic partitioning of adaptive meshes.

DYNAMIC LOAD-BALANCING FOR PDE SOLVERS ON ADAPTIVE UNSTRUCTURED MESHES 21

Most notably the full method is expensive as the cost of the Lanczos method, for a problem
size n, is O(n+/n)[7]. While this may not be a problem on a static mesh where the cost
can be hidden as a start-up overhead, it may be significant when a time-stepping code is
remeshing frequently.

The RSB method may also be sensitive to small perturbations in the mesh. For instance,
Williams[5, p. 477] states that ‘a small change in mesh refinement may lead to a large
change in the second eigenvector.” Combined with the fact that the RSB algorithm has
no mechanism for using existing information about the previous partition, heavy node
migration may result.

In the following Section a technique is presented that enables a graph-based algorithm to
use existing information about the partition of a previous mesh. Again it is described with
particular reference to the recursive spectral bisection algorithm but the concept could be
applied to any graph-based method.

4. A DYNAMIC PARTITIONING APPROACH

If a partitioned mesh is modified by the addition of new elements or the removal of existing
ones, an immediate load imbalance (and hence a new partitioning problem) is created.
Provided that the new mesh is based on coarsening or refining of the existing one, as in
Reference 1, it is possible to interpolate the existing partition onto the new mesh and to use
this partition as a starting point in a repartitioning algorithm.

4.1. The concept

The repartitioning algorithm used here assumes that, ‘small’ changes in the mesh will
in all probability lead to ‘small’ changes in the partitions and, if not, then the method
described here will eventually revert to the standard RSB algorithm. Ideally most mesh
elements will remain in the same subdomain whilst the boundaries are ‘juggled’. Of
course it is not clear that such ‘juggling’ will produce optimal communication costs
(see, however, Section 5), but certainly if mesh elements ‘close to’ the interprocessor
boundaries (or bisection boundaries for a recursive bisection algorithm) are the only
ones involved, then the issues discussed in Section 3 are all addressed. The informa-
tion from the preceding partition is utilised and, as a result, both the cost and the amount
of node migration should certainly be reduced (the factors being largely dependent on the
granularity). :

To effect this idea, mesh elements which are far enough away from an interprocessor
(or bisection) boundary to be ignored for the processes of repartitioning are chosen (by
some heuristic-see Section 4.2). If the subdomains are compact enough this should result
in clusters of mesh elements separated by a strip of elements alongside the boundaries.
Moving to the dual graph these clusters are now treated as a single vertex. The partitioning
algorithm then proceeds as before on this reduced size graph (a considerable cost saving)
and for the redistribution it is expected that the clustered nodes will remain in the same
partition (a node migration saving). In this way the adaptive techniques used to coarsen
the mesh are mirrored to derive an adaptive technique to decrease the size of graph used in
partitioning.

22 CHRIS WALSHAW AND MARTIN BERZINS

4.2. Implementation for recursive spectral bisection

4.2.1. Clustering and iteration

A method of selecting those graph vertices which are ‘close to’ the preceding bisection
boundary and those that are ‘far enough away’ from it must be found. At present this
part of the code has been implemented as follows. Firstly, vertices with an edge crossing
the boundary are chosen. This defines the first level set of working vertices, L;. Next all
vertices sharing an edge with a vertex in L; are sought, giving a second level set, L,. A third
level set, L, is defined by selecting vertices with edges into L, and so on. Assuming the
graph is connected, this gives an iterative technique which converges to (or more properly,
terminates with) the full graph. Note that at each stage a level set L, is determined by the
previous level set L,_; alone, eliminating the need for full graph scarches.

After each successive level set is chosen the clusters can be defined by connected groups
of vertices which do not lie in one of the existing level sets. To create the reduced size
graph, edges between cluster verlices are collapsed until each cluster is represented by a
single vertex. Edges from cluster vertices into the last level set remain. This reduced-size
graph is the one which is input into the spectral bisection algorithm.

Note that in determining the Laplacian of the reduced graph the number of vertices in
each cluster has no effect. However, each vertex cluster is likely to have more edges than
an ordinary graph vertex and hence the corresponding rows and columns of the Laplacian
will be less sparse. In addition it is possible for an ordinary graph vertex to have more than
one edge in common with a vertex cluster. These multiple edges can be represented in the
Laplacian by redefining /;j= — [{eeE:e=(v;,v;)}|. Note that it is still only necessary to store
row and/or column indices of the Laplacian (see Section 2.2).

4.2.2. Bisection

Because of clustering some of the entries in the resultant Fiedler vector represent more
than one vertex. Thus in order to find the median of the vector an entry associated with
a cluster is counted with a multiplicity of the number of vertices in that cluster. In itself
this is easy to implement but a problem arises if a cluster lies across the median point. Of
course it is not possible to bisect a cluster and so in this case the bisection has failed. Early
experience suggests that this does not happen too often, but when itdoes it is either because
the reduced graph is not ‘wide enough’ or because the mesh has changed significantly from
the previous partition. Thus either the reduced graph is expanded by one more level set or
possibly the full graph is reinstated and spectral bisection applied again.

4.2.3. Recursion

The recursive part of the method proceeds much as before. The only slight problem occurs
in data migration. This is most easily demonstrated with an example. Suppose, then, there
is an existing partition of four subdomains labelled ‘A0’ ‘A1’, ‘B0’ and ‘B1” and the initial
bisection is between the A and B domains. Thus two clusters are formed, one containing
elements lying in either ‘A0’ or ‘A1’ and away from the previous bisection boundary, the
other similarly of elements in ‘B0’ and ‘B1’. The Fiedler vector is found and the domain
rebisected.

At this stage the data lying in the ‘wrong’ partition are moved and it is here that care
must be taken. For example, it may be found that some elements in both ‘A0’ and ‘A1’ have

DYNAMIC LOAD-BALANCING FOR PDE SOLVERS ON ADAPTIVE UNSTRUCTURED MESHES 23

to migrate to the other side of the bisection. Clearly the easiest method is for ‘A0’ elements
to be mapped to ‘B0’ and ‘A1’ elements to ‘B1’. However, this does not guarantee that
the new ‘B0’ and ‘B1’ subdomains are connected. This can cause problems in defining the
clusters at the next recursive level, and code must be included to ensure either that migrating
elements go to the right place, or that disconnected groups of vertices are not used to form
a cluster. This is most easily accomplished by always using data which migrated at the
previous recursive level in the reduced graph, although this is not the most efficient method
in terms of either work or data migration.

4.3. The dynamic recursive spectral bisection algorithm

The iterative preprocessing technique to be added to the recursive spectral bisection (or
other) algorithm can now be presented in full, and is summarised in Figure 2. The spectral
bisect subroutine is just the three operations inside the loop in Figure 1. Henceforth this
combined algorithm will be referred to as DRSB.

repeat recursively ({
/* create initial reduced-size graph */
until (reduced-size graph large enough) (
expand reduced-size graph (by next level set)
cluster (remaining vertices)
}
while (reduced-size graph < full graph) {
/* bisection stage */
spectral bisect (input reduced-size graph, output partition)
if (successful)
escape to next subdomain
else if (too many iterations)
reduced-size graph = full graph
else
expand reduced-size graph (by next level set)
cluster (remaining vertices)

Figure 2. The Dynamic RSB Algorithm

Initially enough level sets are taken to:

(a) balance the domain (i.e. if one cluster contains more than half of the vertices bisection
is not possible)

(b) have a meaningful graph to use spectral bisection (i.e. just using one level set does
not give enough information).

The spectral bisection algorithm is now applied and the Fiedler vector calculated. If the
bisection fails because of a cluster close to the median of the vector the reduced graph is

24 CHRIS WALSHAW AND MARTIN BERZINS

expanded by one more level set and spectral bisection reapplied. This may be repeated until
the level sets have recovered the full graph (when the bisection cannot fail), but this will
have increased the costs to well above that of using full spectral bisection in the first place.
Repeated failures suggest that the existing partition is not close to a new optimal partition
and so the iterations are terminated early. However, based on the testing carried out so far,
this does not appear to happen very often (see Section 5).

There are two important heuristics inherent in this algorithm, namely the number of
level sets to make the initial reduced-size graph large enough and the maximum number of
iterations. While neither heuristic is crucial (o the eventual success of the algorithm, both
have important efficiency implications. Early results suggest that three level sets make a
good reduced graph to start from (although this may depend on the density of edges in the
graph). Subsequently, if the method fails after two or three iterations it may be better to then
revert to the full graph. For coarse-grained problems (including the initial recursive levels)
the potential saving is considerably greater and a few more iterations may be worthwhile.

5. NUMERICAL TESTING

In order to evaluate the performance of the new algorithm fully, comparisons are made
between DRSB and RSB on adaptive mesh solutions of time-dependent PDEs. The aim
of the experiments is to assess the dynamic technique by measuring both the possible cost
savings and the quality of the resulting separator sets. In addition, results are given for the
RCB algorithm (see below, Section 5.2), a computationally inexpensive algorithm, although
shown by Simon[4], to give inferior partitions to RSB on steady-state problems.

The test meshes are derived from the integration of two time-dependent PDEs described
below (Sections 5.3 and 5.4). In both cases a PDE solver generates an unstructured mesh
and integrates the solution in parallel with a variable-step explicit time-marching algorithm.,
The integration continues while the error estimate in each triangle remains below a predeter-
mined tolerance. Once the tolerance is exceeded sequential code on the host automatically
refines or coarsens the mesh in order to yield an approximately uniform numerical error
estimate across the domain. At this stage load-balancing becomes necessary and this is also
carried out sequentially on the host.

The code currently runs in parallel on a Meiko CS-1 equipped with 32 T800 transputers
and a SPARC 2 host.

5.1. Metrics

Three metrics are used to compare the algorithms:

|E;|, the number of interprocessor edges. E; is defined to be the subset of edges
which cross interprocessor boundaries after repartitioning. The size of this set gives an
indication of the sizes of separator sets that might be expected for linear algebra using
domain decomposition or substructuring. Since this is related to the parallel overhead
for such techniques it is a meaningful figure. It also gives an indication of the volume of
communication traffic required for flushing the halos of the subdomains around the memory
and the amount of work replicated on their boundaries.

T}, load-balancing time. The time, in SPARC-2 CPU seconds, to carry out the load-
balancing sequentially.

DYNAMIC LOAD-BALANCING FOR PDE SOLVERS ON ADAPTIVE UNSTRUCTURED MESHES 25

T,, solution time. The time, in T80O transputer CPU seconds, to carry out the time-
integration in parallel. This figure gives a measure of how much the size of |E;| affects the
overall solution time. It is, of course, very problem-dependent, but the sum of T+ T, is the
most important figure to minimise and, as can be seen from the results, simply minimising
E; is not necessarily the most successful strategy.

5.2. Recursive co-ordinate bisection

To give a comparison with a cheap non-graph-based technique, results for the RCB algo-
rithm are also given. Described in Reference 4, this method sorts the mesh elements (in this
case triangles) by either x or y co-ordinates and bisects on this basis. In this implementation
the sorting was executed alternately on x co-ordinates at one recursive level and then on
y co-ordinates at the next. It is a simple, intuitive and, above all, cheap technique, but
one which provides somewhat poor separator sets as a result of excluding any graphical
information. This is particularly noticeable on very irregular meshes where the subdomains
are likely to be disconnected.

5.3. Euler wedge shock problem

This problem is driven by the Euler equations in two space dimensions (see Reference 2 for
a full description) which simulate air at Mach 2.5 as it hits a 10 degree wedge and forms a
shock front[12]. In its original form this is a steady-state problem, but in the time-dependent
form used here the shock starts off along the wedge and rises to its steady state position as
time proceeds. The unstructured mesh becomes heavily refined around the front as it forms
but remains coarse away from the wedge and shock. Figure 3 shows the solution domains
after the first and final remeshes.

Figure 3. The wedge shock solution domain after the first and final remeshes

Some sample results and the totals for each load-balancing algorithm using 16 processors
are given in Table 1. For these experiments there were 4618 residual evaluations and 31
remeshes for each run.

The first result to notice is |E;|, the number of interprocessor edges cut. The figures for
DRSB are of the same order as RSB throughout the experiment and the total is actually

26 CHRIS WALSHAW AND MARTIN BERZINS

Table 1. Sample load-balancing results on 16 processors for the wedge shock problem

DRSB RSB RCB
n K T, T; E; Ty T; E; Ty T,
1400 147 9.0 127.4 143 26.5 1243 273 1.0 146.1
1320 129 8.0 13.8 136 24.5 13.8 268 1.0 16.0
1415 134 8.2 152.3 156 26.5 152.3 273 1.1 176.6
1469 144 21.2 208.9 156 28.2 212.1 285 1.0 248.3
860 119 10.4 9.6 137 12.5 9.8 212 0.6 11.6
1589 156 26.9 123.8 163 294 121.4 319 1.2 139.0

1572 152 6.4 1.1

261.7 160 28.8 257.8 318 302.8

28727 3599 2274 20744 3748 4558 20749 6512 199 24155

slightly lower. The execution time for DRSB is half that of RSB in total and sometimes
as little as a quarter (e.g. n=1572). The high T}, figures for DRSB arise when the reduced
graph is expanded back to its original size as described in Section 4.2.2.

When compared with RCB, it is clear that both DRSB and RSB are much more successful
in terms of | E;| but consequently far more time-consuming, and for this reason the T, figures
have been included. Now if the sum T}, + Ty is considered the most efficient technique,
for this experiment at least, is DRSB (2302 s) followed by RCB (2435s) and finally RSB
(2531s). Of course it is not completely fair to directly add T}, and T as the SPARC CPU
is about four times faster than that of the transputer. Ideally, however, the load-balancing
should run in parallel, as scalability problems arise if this is not the case. The cost of both
the DRSB and RSB algorithms is dominated by the Lanczos calculations (implemented
with level 1 BLAS and 1 sparse matrix—vector multiply per step) which can be parallelised
with good efficiency[13]. Then, even if a parallel efficiency of just 50% is assumed for
each algorithm, DRSB will still have the fastest overall solution time with RSB coming in
second.

Table 2 gives the totals for the same experiment on varying numbers of processors. If the
same thumbnail calculation as before is carried out (i.e. Ty +4 x 0.5 x T/P) DRSB comes
out as the fastest algorithm in each case, although with a decreasing lead as P increases and
hence the granularity falls.

5.4. Burger’s equation example

This is a well known non-linear convection dominated time-dependent PDE and is described
more fully in Reference 1. The solution consists of a pair of L-shaped waves which gradually
steepen as they move from bottom left to top right of a square domain and with the rearmost
wave eventually overtaking the front wave.

For this example the temporal and local spatial relative error tolerances are varied to give
a number of solutions of different accuracy. The smaller of the tolerances result in frequent
remeshing of a moderately large number of triangles. The solver commences its run with
a uniformly coarse mesh. As this mesh is unsuitable for the solution, large spatial errors
occur and the initial time-step fails. The mesh is then refined based on the error estimate
to give a new initial mesh. This step-refine sequence is iterated until the mesh reflects the
initial conditions of the solution and subsequently the time-steps begin to succeed although
with frequent remeshing as the waves propagate.

DYNAMIC LOAD-BALANCING FOR PDE SOLVERS ON ADAPTIVE UNSTRUCTURED MESHES 27

Table 2. Load-balancing totals for the wedge shock problem

DRSB RSB RCB
P E; Ty T, E; Ty T, E; T, T;
4 944 102 7331 919 298 7328 2161 9 7641

8§ 1941 159 3824 1934 384 3814 2988 14 4051
16 3599 227 2074 3748 456 2075 6512 20 2415
32 5971 308 1200 6212 520 1210 8151 29 1340

Table 3. Load-balancing totals for Burger’s equation on 16 processors

DRSB RSB RCB
TOL E,' Tb T_r E i T[; Tr E, i Tb T.\'

0.05 34038 1928 31796 33851 5931 32100 69675 279 45178
0.01 45833 3603 4123 47195 10714 4107 73904 414 4417
0.005 27748 4313 2579 28842 12587 2549 50518 372 2711

Unfortunately the large mesh sizes needed for the higher accuracy solutions are too big
for even the combined memory of the processors and, for tolerances less than 0.05, the
solver crashes at meshes of over about 4000 triangles. However, in Table 3 the totals of
|E;], Tp and T are given for each algorithm and for three values of TOL.

The first set of figures for TOL=0.05 show much the same as for the wedge shock
problem. The DRSB algorithm achieves the same order of |E;| as RSB but much more
quickly. RCB is an order of magnitude faster again but pays for it in the increased work
and communications that the solver must use.

For TOL=0.01 and 0.005, however, the story is very different. The remeshing is much
more frequent initially on much larger meshes and the solver does not run to completion.
As a result the proportion of time spent on the load-balancing is much larger than on a
complete run, and the sophisticated methods lose out to RCB.

6. CONCLUSIONS AND FUTURE DIRECTIONS

The results show that the dynamic technique may be used to improve the performance of
RSB, both by substantially cutting the calculation time and by decreasing the number of
cut edges (though in not all cases). However, RSB is sometimes very inefficient (when the
amount of time spent in the solver is relatively low) and in these cases it may not make sense
to use DRSB either. It should be remarked, however, that the figures obtained here come
from an explicit time-integration solver. If the solver uses implicit integration then linear
algebra must be employed and the quality of the separator set is much more important. For
example, in a Schur complement method (e.g. see Reference 14), where n (= |E;|) is the
size of the separator, then the cost of the dense solve for the Schur complement is O(n*/P).

The method looks very promising and further testing on a range of time-dependent PDEs
is under way. The extension of the method to 3-dimensional meshes is algorithmically
straightforward, but further work is necessary for an efficient parallel implementation.

A few further possibilities for the technique can be summarised as follows:

e other applications. As the DRSB algorithm is graph-based it is not restricted to un-
structured mesh problems and could be applied to, for example, matrix
partitioning

28

CHRIS WALSHAW AND MARTIN BERZINS

e other load-balancing methods. The technique of clustering could be applied to other
algorithms to improve efficiency. Simulated annealing (see Reference 5) is an obvious
example

o accelerated recursive spectral bisection. For non-adaptive meshes it would be nice
to have a fast effective partitioning technique. Possibly this could be achieved by
generating a coarse partition (using recursive co-ordinate bisection, for example; see
Reference 4) and then refining it with the DRSB algorithm.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the financial support of Shell Research Limited.
Peter Jimack and David Hodgson are also thanked for their helpful discussions and Justin
Ware for providing the example meshes.

REFERENCES

(1]

(2]

(3]
(4]
(5]
(6]
(71

(8]
(9]

[10]
(11}
f12]

[13]

[14]
[15]

M. Berzins, J. Lawson and J. Ware, ‘Spatial and temporal etror control in the adaptive solution
of systems of conversation laws, in R. Vichnevetsky, D. Knight and G. Richter (Eds.), Advances
in Computer Methods for Partial Differential Equations VII, IMACS, 1992, pp. 60-66.

J. Ware and M. Berzins, ‘Finite volume technigues for time-dependent fluid-flow problems’, in
R. Vichnevetsky, D. Knight and G. Richter (Eds.), Advances in Computer Methods for Partial
Differential Equations VII, IMACS, 1992, pp. 794-798.

B. Hendrickson and R. Leland, ‘Multidimensional spectral load balancing’, Tech. Rep. SAND
93-0074, Sandia National Labs, Albuquerque, NM, 1992.

H. D. Simon, ‘Partitioning of unstructured problems for parallel processing’, Comput. Syst.
Eng., 2, 135-148 (1991).

R. D. Williams, ‘Performance of dynamic load balancing algorithms for unstructured mesh
calculations’, Concurrency, 3, 457-481 (1991).

B. Mohar, The Laplacian spectrum of graphs, Tech. Rep., Department of Mathematics, Uni-
versity of Ljubljana, Yugoslavia, 1988.

A. Pothen, H. D. Simon and K.-P. Liou, ‘Partitioning sparse matrices with eigenvectors of
graphs’, SIAM J. Matrix Anal. Appl., 11, 430-452 (1990).

D. Powers, ‘Graph partitioning by eigenvectors’, Lin. Alg. Appl, 101, 121-133 (1988).

M. Fiedler, ‘A property of eigenvectors of nonnegative symmetric matrices and its applications
to graph theory’, Czech. Math. J., 25, 619-633 (1975).

G. H. Golub and C. F. van Loan. Matrix Computations, (2 edn.), Johns Hopkins, Baltimore,
1989.

B. N. Parlett, H. Simon and L. M. Stringer, ‘On estimating the largest eigenvalue with the
Lanczos algorithm’, Math. Comput., 38, 153-165 (1982).

L. Demkowicz,J. T. Oden, W. Rachowicz and O. Hardy, ‘An h-p Taylor-Galerkin finite element
method for compressible Euler equations’, Comput. Methods. Appl. Mech. Eng., 88, 363-396
(1991).

Z. Johan, K. K. Mathur, S. Lennart Johnsson and T. J. R. Hughes, ‘An efficient communication
strategy for finite element methods on the connection machine CM-5 system’, Tech. Rep. No.
256, Thinking Machines Corp., Cambridge, MA, 1993 (submitted for publication).

James M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems, Plenum Press,
New York, 1988.

J. E. Flaherty, P. J. Paslow, M. S. Shepherd and J. D. Vasilakis, ‘Adaptive methods for partial
differential equations’, in Proc. of Workshop on Adaptive Computational Methods for Partial
Differential Equations, Rensseleer Poly. Inst., 1988, SIAM, Philadelphia, 1989.

