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Abstract
We propose a new framework design for exploiting multi-core architectures in the context of visualization dataflow
systems. Recent hardware advancements have greatly increased the levels of parallelism available with all indica-
tions showing this trend will continue in the future. Existing visualization dataflow systems have attempted to take
advantage of these new resources, though they still have a number of limitations when deployed on shared mem-
ory multi-core architectures. Ideally, visualization systems should be built on top of a parallel dataflow scheme
that can optimally utilize CPUs and assign resources adaptively to pipeline elements. We propose the design of
a flexible dataflow architecture aimed at addressing many of the shortcomings of existing systems including a
unified execution model for both demand-driven and event-driven models; a resource scheduler that can auto-
matically make decisions on how to allocate computing resources; and support for more general streaming data
structures which include unstructured elements. We have implemented our system on top of VTK with backward
compatibility. In this paper, we provide evidence of performance improvements on a number of applications.

Categories and Subject Descriptors (according to ACM CCS): C.1.3 [Processor Architectures]: Other Architecture
Styles—Data-flow architectures

1. Introduction

Dataflow pipeline models are widely-used in visualization
systems, including AVS [Ups89], SCIRun [PJ95], and VTK-
based systems such as Paraview [Kita], VisIt [CBB∗05], Vis-
Trails [BCC∗05] and DeVIDE [BP08]. Despite recent ad-
vancements in parallel architecture, most systems still sup-
port only a single CPU or a small collection of CPUs such
as a SMP workstation. Even the current parallel implemen-
tations fail to take advantage of the available shared-memory
architecture to increase performance. It is expected that this
trend towards higher levels of parallelism is likely to con-
tinue, therefore it is vital that visualization systems exploit
these new architectures. Most current systems also assume,
to a large extent, that the data can be maintained in memory,
or worse, that multiple copies of the data could be stored
across different dataflow modules. These assumptions can
cause scalability problems when dealing with large data.
Streaming data structures are often used in this case, though
most current systems do not include this support. Even the
systems that do so, only support simple data types (e.g., reg-

ular 2-D images or regular 3-D volumes). The support for
unstructured and hierarchical data structures is either non-
existent or fairly naive.

We propose the design of a flexible dataflow scheme aimed
at addressing many of the shortcomings of existing systems.
Our system supports a unified execution model for both
demand-driven and event-driven models. It also includes a
resource scheduler that exploits the shared memory archi-
tecture to dynamically allocate computing resources (i.e. the
number of threads to use with a particular module) for opti-
mal performance. We also demonstrate the flexibility of our
system by integrating support for general streaming data.
This allows our system to scale to massive data. Our imple-
mentation is on top of a popular visualization toolkit (VTK)
and provides backward compatibility. Due to VTK’s wide
acceptance in the scientific community, our system has the
potential to provide an immediate and significant impact to
the field.

Specifically, our contributions are the following:
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Executive Parallelism Scheduler Streaming
Scope Policy Async. Update Data Task Pipeline Memory Resource Mngr. Load Balancing

VTK Dist. Pull X Shared Serial
ParaView Dist. Pull X X Dist. Serial

VisIt Dist. Pull X X Dist. X Serial
DeVIDE Cent. Pull/Push Serial
SCIRun Cent. Push X Shared N/A
VisTrails Cent. Pull N/A

Ours Dist. Pull/Push X X X X Shared X X Parallel

Table 1: Summary of Current Visualization Dataflow Systems

• A new scheme for executing pipelines on multi-core hard-
ware.

• A unified data-flow model integrating pull and push poli-
cies into an API that allows for flexible and dynamic exe-
cution strategies

• An adaptive scheduling strategy for dynamic load balanc-
ing

• A data-flow control strategy that combines the benefits of
both the distributed and centralized execution controls

• A streaming framework built on top of our system that
adds support for both structured and unstructured data

• A complete implementation and seamless integration into
a widely-used visualization system

2. Related Work

Parallel rendering on a variety of architectures has been the
focus of a large body of work [RGM05, SMW∗05, AR05,
MMD08]. Even a cursory review is beyond the scope of
this paper, therefore we point the reader to [CDR02] for
a complete introductory survey. this paper, we focus our
discussion on visualization dataflow systems, and in Ta-
ble 1 we summarize the feature set for the systems that
will be discussed in this section. Following the pioneering
work of Haber and McNabb [HM90], many leading visu-
alization systems mentioned in the previous section (e.g.,
[Kitb, Ups89, AT95, PJ95, CBB∗05, BCC∗05, BP08]) have
been based on the notion of a dataflow network, which is
often called a pipeline. Modules (nodes of the network) are
processing elements while connections between them repre-
sent data dependencies.

Kitware’s Visualization ToolKit (VTK) [Kitb] is considered
to be the de-facto standard visualization API and is used by
thousands of researchers and developers around the world.
The underlying architecture has undergone substantial mod-
ifications over the years to allow for the handling of larger
and more complex datasets (e.g., time-varying, AMR, un-
structured, high-order). However, its execution model has
a number of limitations with respect to parallelism. First,
it only supports concurrency execution at a module level,
which means that no matter how many threads an algo-
rithm is implemented to run in, the whole network has to
be updated serially (that is, one module at a time). More-
over, by default, only a small subset of VTK, such as
those inherited from vtkThreadedImageAlgorithm, can run
multi-threaded. This poses a limitation on the performance
and scalability for many applications. While much effort

[LMST99,BGM∗07] has been put into extending VTK’s ex-
ecution pipeline over the years, it is still challenging and
problematic to build highly-parallel pipelines using the ex-
isting pipeline infrastructure. This is partly due to the fact
that VTK makes use of a demand-driven execution model
while some pipelines, in particular those that need stream-
ing and/or time-dependent computations, fit more naturally
in an event-driven architecture.

Ahrens et al. [ALS∗00, ABM∗01] proposed parallel visual-
ization techniques for large datasets. Their work included
various forms of parallelism including task-parallelism (con-
current execution of independent branches in a network),
pipeline-parallelism (concurrent execution of dependent
modules but with different data) and data parallelism. Their
goals included the support for streaming computations and
support for time-varying datasets. Their pioneering work led
to many improvements to the VTK pipeline execution model
and serve as the basis for ParaView [Kita].

ParaView is designed for data-parallelism only, where
pipeline elements can be instantiated more than once and
executed in parallel with independent pieces of the data.
Specifically, a typical parallel execution in ParaView in-
volves a pipeline instantiating one or multiple processes
based on the data input. ParaView must then rely on MPI
to distribute the processes to cluster nodes to finish the
computation. However, ParaView does not support a hy-
brid MPI/multi-threaded model; for multi-core architectures
MPI is also used for creating multiple processes on the same
node. This may impose substantial overhead due to the ad-
ditional expense of inter-process communication.

A related system is VisIt [CBB∗05]; an interactive parallel
visualization and graphical analysis tool for viewing scien-
tific data. Though the pipeline topology in VisIt is fixed and
relatively simple, it introduced the notion of contracts be-
tween modules, which are data structures that allow modules
to negotiate with other modules on how to transfer data. This
method has proven to be very useful for optimizing many
operations on the dataflow network. Recent versions of the
VTK pipeline incorporate many ideas that were originally
developed for VisIt and ParaView.

DeVIDE [BP08] is a cross-platform software framework
for the rapid prototyping, testing and deployment of visu-
alization and image processing algorithms. It was one of
the first systems to fully support a hybrid execution model
for demand- and event-driven updating policies. However, it
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Figure 1: Executives are classified based on their updating
scope and policy (a) a centralized push model handling (b) a
centralized pull model handling (c) a distributed push model
handling a data request (d) a distributed pull model

does not target the parallel/high performance perspective of
pipeline execution.

The last ten years has seen the development of a large num-
ber of streaming and out-of-core visualization algorithms
(see survey by Silva et al [SCESL02]). These include a
number of cache-oblivious techniques [YLPM05] that pro-
vide a memory-system agnostic way to obtain efficiency
throughout complex memory hierarchies. One key develop-
ment in this area is the introduction of streaming meshes
by Isenburg and Lindstrom [IL05]. Streaming and cache-
oblivious algorithms are used in many areas of visualiza-
tion [ILS05, VCL∗07, PSBM07] due to their ability to work
well with data that is too large to fit in main memory.

Up to now, existing dataflow systems have not fully ex-
ploited streaming data structures and algorithms. In particu-
lar, VTK only supports streaming structured grids (i.e., reg-
ular data). This is partly due to the complications that han-
dling such data structures introduce on the demand-driven
execution model. The system requires the addition of “many
new requests” in order to support streaming; this makes it
problematic, time-consuming, and over complicated for de-
velopers to implement streaming algorithms. They are much
more easily implemented in an event-driven model.

We present a flexible dataflow scheme aimed at resolving
many of the shortcomings of existing systems outlined in
this section. Like DeVIDE, our system supports a unified
execution model for both demand-driven and event-driven
updating policies. However, a major difference, as shown in
Table 1, is that we allow asynchronous updates of a pipeline
or its subset of modules through our API calls, where as
in DeVIDE, and other workflow systems such as VisTrails,
a pipeline must be scheduled to update in sync. Our sys-
tem also provides a resource scheduler to exploit the shared
memory architecture and a dynamic allocation of comput-
ing resources for optimal performance. We also demonstrate
the flexibility of our system by novelly supporting general
streaming data including unstructured elements (e.g. tetrahe-
dral elements). Streaming not only decreases memory over-
head, but also increases performance. Our system has been

integrated with VTK and provides backward compatibility.
This seamless extension to a widely used toolkit in the sci-
entific community allows our system to have immediate and
significant impact to the field.

3. Visualization Dataflow System Design

The input for a module when it executes may or may not be
independent of other modules in the pipeline. Thus, a level
of coordination is required between the modules and their
data dependencies. In the simplest form, this is implemented
statically in the algorithm at the module level. However, as
dataflow systems become more complex, this coordination
is typically assigned to a separate component called the ex-
ecutive. The executive is responsible for all coordination, in-
structing the module when and on which data it should oper-
ate. In this approach, algorithms can be implemented based
purely on the computational task required without consider-
ation for the topology of the pipeline.

Executives can be classified based on their updating scope,
centralized vs. distributed, and policy, pull vs. push (or
demand- vs. event-driven as stated in [SML98]). A central-
ized executive operates globally and is connected to every
module to track all changes to the network, as well as han-
dling all requests and queries in the pipeline. This approach
gives the system the advantage of having control over the
entire execution network, thereby allowing it to be easily
distributed across multiple machines. However, this central-
ized control leads to high overhead in the coordination and
reduces the scalability of such systems especially when op-
erating on complex pipelines. In the distributed executive
scheme, each module contains its own executive, which is
only connected to its immediate upstream and downstream
neighbors. This approach does not suffer the same scalability
issues of the centralized scheme. However, this myopic view
of the network makes distributing resources or coping with
more complicated executing strategies a much more difficult
problem. With respect to an updating policy, in a pull model
a module is executed only when one of its outputs is re-
quested. If a module’s input is not up-to-date, it will demand
or pull the corresponding upstream module for data. There-
fore only modules that are needed for the actual computa-
tion will be executed, avoiding wasteful calculations. How-
ever, since a request is dependent on all upstream modules
to be updated before starting computation, the module that
initiates the request will be locked longer than its computing
time. In contrast, for a push model modules are updated as
soon as an event occurs, e.g. a change in its input. All mod-
ules that are dependent on the requested module’s output
are then computed. This results in a shorter locking period,
which is equivalent to the computation time for each mod-
ule. Nevertheless, this approach has a key disadvantage of
redundancy. Modules compute and generate data even when
they will not be used. Figure 1 illustrates the classifications
for executives outlined in this section.
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4. Parallel Dataflow Architecture

In this section, we discuss the design of a flexible dataflow
architecture that can run efficiently on multi-core machines.
A diagram outlining an overview of our system is shown
in Figure 2. Our system is based on a distributed executive
scheme with a centralized resource-aware scheduler to ef-
ficiently distribute resources. Each local executive can per-
form both the Pull and Push functions . Each module also
contains a resource specification indicating the number of
threads its algorithm can utilize at run-time. This informa-
tion is used by the scheduler.

4.1. Execution Model

In our framework, a pipeline execution starts with an explicit
update request of a module. Depending on a module’s update
policy, i.e. pull or push, its upstream or downstream modules
will then be executed accordingly. This process repeats until
all modules are updated. However, instead of statically as-
signing each module with a fixed update policy like other
systems, we allow the policy to be dynamically set. This can
be done at the module implementation level with the sup-
plied API’s Pull(M, R) and Push(M, R) functions. M
and R are optional arguments where M indicates the list of
target modules to be updated and R is any additional infor-
mation that needs to be passed. By default, M is set to all im-
mediate upstream and downstream modules for Pull and
Push respectively.

For example, consider the simple pipeline in Figure 3. Data
is read through the DataAccess module and passed to
the DataProcess module before being rendered by the
Viewer module. Although simple, this pipeline is com-
mon in a progressive rendering system, where changes to the
viewport caused by user interaction require a series of data
requests ranging from the coarsest to finest level-of-detail
(LOD). These new requests would be made to the DataAc-
cessmodule and can be implemented using a pull policy as
follows:

renderRequested()

LOD = C // the lowest resolution of LOD

while (LOD>0)

Pull(<Viewer>, LOD)

LOD = LOD - 1

Often certain applications would like to refresh a display
whenever new data is available (e.g. viewing data as it is
downloaded from an external device). In this case, a push
policy can be easily introduced to the pipeline to trigger a
new data event:
newDataArrived()

Push(<DataAccess>)

In the case of streaming data, Push offers higher efficiency
due to its support for both task and pipeline parallelism.
When Pull is called, the function only returns after all
the upstream modules are updated. This, in effect, locks the
modules in a dataflow to a selected piece of the stream data.

SCHEDULER RESOURCES

Trigger,
Execute &
Feedback

Distribute

RE
SO

U
RC

ES

INPUT

PERFORM
COMPUTATION

OUTPUT

Demand-Driven Requests
Pulling Data

Event-Driven Requests
Pushing Data

Module

Message

Data
Dependency

Executive

Our Uni�ed Model

New Event

E

E

E

E E

E

Data Request

E

E

Figure 2: An overview of our system architecture

ViewerDataAccess DataProcess

Figure 3: A simple rendering pipeline.

On the other hand, Push will return as soon as the scheduler
determines that there are idling threads from the available re-
sources. This allows a module to load new data after it sends
its data downstream. Therefore multiple Push calls made
sequentially can operate independently on separate stream-
data-blocks.

Data duplication is avoided whenever possible since copy-
ing and allocating memory could substantially degrade the
whole pipeline performance. This can be especially detri-
mental in a shared-memory system, where multiple cores
have the ability to access memory simultaneously. In order
to prevent write-before-read issues, modules are locked for
scheduling upon entering its execution loop and stay locked
until all output data has been flagged for release by down-
stream modules. By default, at the end of each compute()
method, a module releases its input automatically. However,
we allow API users to override this default by manually re-
leasing the data earlier or delaying release by using the Re-
leaseInputs() method. When computing heavy mod-
ules, it would be advantageous to copy data locally and re-
lease the input to allow upstream modules to process new
data. For instance, in the same example on Figure 3, if both
reading the data in DataAccess and processing the data in
DataProcess are time-consuming, DataProcess can
copy its input locally and release, allowing DataAccess
free to read the next data block.
DataProcess::compute()

// copy input data to local memory

...

this->ReleaseInputs();

// process the copied data in local memory

...

4.2. Scheduler

The scheduler is responsible for both scheduling and dis-
tributing computing resources (threads) to modules in a
pipeline. When a module executive is asked to execute its al-
gorithm, instead of performing the computation right away,
it submits the execution to the scheduler’s queue. The sched-
uler, depending on the number of available threads, will ex-
ecute the algorithm at an appropriate time with the appropri-
ate resources.

When executing modules of a network concurrently, a sched-
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Figure 4: Streaming priority assignments by our scheduler

uler with a simple FIFO queue will not guarantee the order
and data dependencies of the pipeline. For our scheduler, we
use a priority queue partially keyed by the module’s topo-
logical order. This also ensures that there is only one update
for a single request in a push model. For example, in the
pipeline in Figure 4, a regular FIFO queue would push mod-
ules (1), (2), (3), (5), (4) and then (5) again, but with the
priority queue the execution of (5) would be postponed until
after (4) completes.

However, topological order alone still has problems in re-
gards to streaming. If multiple threads are available, relying
primarily on topological order may run the risk of all threads
being allocated to the modules loading the data, counteract-
ing the benefits of streaming. For example, if (1) is a stream-
ing data reader, after it processes the first data piece, it passes
the data down to the contour filters (2) and (3) which are now
in the scheduling queue. Then, the reader will move to the
second piece of data, putting itself again on the queue. Be-
cause (1) has lower order than (2) and (3) it will be executed
again. Our solution is to use not only the topological order as
priority key but also use the data block number, e.g. stream-
ing piece. Internally, if modules don’t specify the data block
number as they submit an execution to the queue, a global
counter is used. With this approach, the scheduler will at-
tempt to move a single data-block as far down the network
as possible before processing the next piece.

Scheduling strategy Our flexible scheme handles any
scheduling strategy. For testing, we have implemented a
heuristic strategy based on time statistics. At the time of
rescheduling, the scheduler transverses the whole pipeline
starting at the sink modules and distributes resources among
the branches. Since a module can only be executed if its
inputs are up-to-date, the scheduler minimizes the differ-
ence in input computation time for each module. At run-
time, modules are scheduled and allocated with resources
proportional to the accumulated computation time from its
source modules in the pipeline. If a module has more than
one source, the scheduler distributes resources proportion-
ally to the arrival time of the previous request. In a single
branch, sub-pipelines that can be executed concurrently with
resources distributed evenly. The scheduling can be summa-
rized as:

Module.Time: the accumulated time from a source

function ScheduleResource(Module A, Resources Total):

UpstreamModules = FindUpstreamModulesFrom(A);

if UpstreamModules is empty:

A.AssignResource(Total)

return

TotalLastUpdateTime = 0

for module in UpstreamModules:

TotalLastUpdateTime += module.Time

for module in UpstreamModules:

ScheduleResource(module, Resource *
module.Time / TotalLastUpdateTime)

The above scheduler can address both task-parallelism and
pipeline-parallelism. Data-parallelism can be added by man-
ually duplicating pipeline elements.

4.3. Streaming Computation

Streaming algorithms are inherently useful in visualization
pipelines, though they are still under-represented in cur-
rent dataflow systems due to the lack of a general stream-
ing framework. Our system intrinsically supports streaming.
Since both Pull() and Push() only return when target
modules are able process more data, streaming algorithms
can simply be expressed as a sequential program. Below are
two scenario usages of streaming:

With Pull():
for (i=0; i<numPieces; i++)

R = i // Set the piece number

this->Pull(<Upstream Modules>, R)

With Push():
while (!this->EndOfStream())

this->ReadData()

this->Push()

There are two basic differences between the push and pull
models for streaming: (1) a push is triggered at source mod-
ules while a pull is triggered from sinks and (2) only the
push model can take advantage of pipeline-parallelism since
the pull model requires that all upstream modules be locked
during an update. Therefore, even though both models are
easy to use with streaming, push is encouraged since it can
achieve higher performance at the cost of more memory us-
age.

Our system also extends streamable data structures beyond
the standard structured grids by generalizing the streaming
mesh format. The streaming mesh format was originally de-
signed for triangular meshes by interleaving its geometry
with connectivity. It introduced the notion of finalized and
unfinalized vertices. A vertex is finalized if it will not be
used by any other element later in the stream, thus, it is safe
to remove it from the buffer. Our generalized streamable data
structure is considered as a single stream that can be seg-
mented with overlapping regions. The dimension of over-
lapping regions are defined by the finalization of the stream
elements itself, i.e. unfinalized elements cannot be processed
and will remain in the buffer. However, we have also ex-
tended the definition of finalization. Instead of just allowing
the data structures to decide which elements are finalized,
the algorithm is also allowed to flag elements as unfinalized.
For example, an image filter may set a neighborhood outside
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the portion being processed as unfinalized. The interface for
this class of streamable data structure consists of two main
methods that can be subclass-ed into other needs:
class StreamableData:

void setData(POINTER *data)

POINTER *getData(pos)

void next(pos);

void finalizeData(pos)

where pos is the relative position of the data to the cur-
rent position of the stream, e.g. pos=0 is the current posi-
tion. setData() and getData() are used to set and re-
trieve the data associated with a position. next() shifts the
current stream position, which can be treated as moving the
current sliding window of the stream. finalizeData()
flags a certain piece of data as finalized and that it can be
discarded to free memory.

4.4. Framework Implementation

We have implemented our framework on top of VTK, in-
heriting a robust software infrastructure along with existing
algorithms for testing. We have also added three new classes
into VTK’s Filtering package without any other modifica-
tions to the existing source code: vtkComputingResources,
vtkExecutionScheduler, and vtkThreadedStreamingPipeline.

vtkComputingResources holds information on computing
resources, i.e. the minimum, maximum and the preferable
number of threads. Each instance of vtkAlgorithm may in-
clude a vtkComputingResources object if it can run with
more than one thread.

vtkExecutionScheduler is responsible for scheduling exe-
cutions as well as distributing threads to pipeline modules.
There is a static global scheduler for the whole system,
however, our framework permits the existence of multiple
instances of vtkExecutionScheduler. Each instance
can work separately using its own specification of vtk-
ComputingResources indicating how many threads it
is managing.

These classes are not designed to be used directly by module
developers, though they are the building blocks for the im-
plementation of vtkThreadedStreamingPipeline.

vtkExecutionScheduler::Schedule() takes a
collection of executives as input and schedules their exe-
cution. This method first creates a dependency graph from
the input modules, then assigns a topological order to them.
Since functions can be called while modules are currently
being executed, the newly created dependency graph could
be merged with the current running dataflow network if it
exists. The combined graph is then placed in the priority
queue. However, no module execution will be explicitly trig-
gered by this function. Instead, the scheduler’s secondary
thread checks the queue and decides which, if any, modules
need to be executed. Before a module becomes active for
execution, this secondary thread would also assign the num-

ber of threads allocated for the module based on the default
scheduling strategy.

vtkThreadedStreamingPipeline inherits from the vtk-
CompositeDataPipeline class and is therefore fully
backwards-compatible with original VTK pipelines. For our
framework, we reimplemented the ForwardUpstream
method and added Pull() and Push() functions to inter-
face with our execution model. Note that all of our systems
multi-threaded features can be turned on/off through a global
flag set by the method SetMultiThreadedEnabled()
of this class.

As previously discussed, both Pull() and Push() can
accept optional arguments M and R. In VTK, these are set be
a subclass of vtkCollection and vtkInformation
respectively.

When Pull() is called on a module, it performs a search
on the dataflow network to collect all of the upstream mod-
ules on which the module depends. It then passes them to
the Schedule method of the global scheduler. A call to
WaitUntilDone() is also made to guarantee that the
control only returns when all the scheduled upstream mod-
ules have been executed.

On the other hand, Push() does not need to look beyond
its immediate downstream modules to pass to the scheduler.
After the modules are passed, a call to WaitUntilRe-
lease() is then made. This will block the control until
the scheduler allocates the resources to get more data.

5. Applications

VTK has been the subject of a large body of streaming re-
search and therefore is an apt system for both implemen-
tation and comparison to our framework. We have selected
imaging as the primary focus for testing since VTK only
fully supports multi-threaded processing and streaming in its
imaging framework. While our initial implementation and
testing uses VTK, our framework by is general by design
and can be easily extended to other systems. All tests were
performed on a machine consisting of 2 Intel Nehalem Xeon
w5580 processors with a total of 8 cores and 24GB of DDR3
RAM. This is the maximum number of cores that we can get
for a shared-memory system using the fast DDR3 memory.

5.1. Multi-core Image Processing

The VTK image processing pipeline is capable of multi-
threaded processing, but only at the module level. We com-
pare this existing functionality to the full pipeline paral-
lelism of our framework. Using VTK’s default multithreaded
pipeline enables the system to maximize performance by uti-
lizing all available cores on a per module basis. For the pro-
cessing of massive imagery, this performance gain is out-
weighed by the necessary high memory footprint and poor
data locality in each thread. For such images, VTK pro-
vides the ability to perform out-of-core streaming of image
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Figure 5: The Gaussian smooth pipeline and its perfor-
mance analysis (a) VTK pipeline without streaming; (b) the
same pipeline with streaming (c) our streaming pipeline; (d)
CPU usage 1-8 threads; (e) Strong scaling (f) Efficiency

data (using the vtkImageDataStreamer class), which allevi-
ates the problems outlined above for the standard system.
Specifically, it requires a smaller memory footprint and re-
tains high cache coherency. This functionality is unfortu-
nately demand-driven, which can block pipeline-parallelism,
and is only applicable for subclasses of vtkThreaded-
ImageAlgorithm. Our pipeline does not suffer from the
problems inherent in VTK’s default or streaming pipeline,

1 thread 2 threads 4 threads 8 threads
Time Eff. Time Eff. Time Eff. Time Eff.

VTK 76s 100% 53s 80.0% 39s 59.4% 33s 41.8%
Ours 77s 100% 39s 85.9% 24s 87.6% 17s 77.7%

Table 2: Running time and efficiency ratio of CPU usage
between VTK and our system for a simple Gaussian pipeline.

exploits parallelism, has low memory requirements and high
locality. To test the performance of the system on imaging
pipelines, we have constructed three simple, yet computa-
tionally expensive, examples.

Gaussian Smooth Pipeline VTK’s imaging modules, such
as Gaussian smooth and blender, can be configured to
run multi-threaded using all available cores on a machine.
Thus, it is possible to achieve maximum performance with
pipelines that only contain these types of modules. Unfortu-
nately, in practice these modules will only be a small por-
tion of a typical pipeline. For testing, we construct a sim-
ple smoothing pipeline that consists of both threadable and
unthreadable modules. The pipeline takes two images, then
smoothes and blends them together. See Figure 5(a,b,c) for a
diagram of the pipeline. Here, SingleThreadedSmooth
cannot utilize more than one thread to increase performance.
Using the default VTK model of serial execution of mod-
ules, the performance would not be optimal in a multi-
threaded environment since there would be idling threads
when SingleThreadedSmooth is running. In this case,
the more threads available to the system, the worse its effi-
ciency is. On the other hand, our framework can handle this
situation by promoting task parallelism, i.e. having Sin-
gleThreadedSmooth run concurrently with the others.
This difference is shown in the CPU usage graph in Fig-
ure 5d. VTK first runs all multi-threaded image filters, then
executes the single threaded smoothing module only when
the multi-threaded modules have finished. In contrast, our
framework after a time-collecting phase load balances and
keeps all cores busy. The strong scaling test in Figure 5(e and
f) clearly shows our execution model is superior to VTK’s
default threaded model. Table 2 provides the actual running
details including the efficiency ratio of CPU usage. The tests
were used with two synthetic images of 200 megapixels in
size.

12 Month Average Pipeline For this example, we show the
per-pixel average of 12 months of satellite imagery (1 im-
age per month) from NASA’s Blue Marble Project [NASin].
Each image from this data set is 3.7-gigapixel, therefore we
must employ out-of-core data access. For this implementa-
tion, we use the ViSUS library which is based on the hierar-
chical z-order scheme as outlined in [PLF∗03]. In practice,
we have found this method inherently provides a hierarchical
structure and exhibits good data locality in both dimensions.
This allows our system to have fast data access and intelli-
gent partitioning of the image for processing.

We demonstrate the performance of our system versus
VTK’s streaming system by processing the per-pixel aver-
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1 thread 2 threads 4 threads 8 threads
12-Month Avg. 20.5s 10.3s 5.4s 2.7s

Multi-View 88.1s 40.7s 18.9s 18.7s

Table 3: Timing for ViSUS

age of the 12 months of data. See Figure 6 top for a diagram
of the pipeline. This average is view dependent, therefore
the system only needs to process the pixels visible on the
screen. Each module operates on a hierarchical resolution
from our data access and data is displayed progressively as it
is available. Even with this simple operation and reduction to
visible pixels, our fully parallel system significantly outper-
forms VTK’s current framework achieving a near-optimal
scalability with an 8 times speedup when moving from 1 to
8 cores. The strong scalability graph and the numbers can be
found in Figure 6 bottom and Table 3.

Multi-visualization Pipeline For this example, we have
deepened the 12 month average pipeline to incorporate more
image processing modules, increase the data dependency be-
tween them, and increase the asymmetry of the pipeline.
Like the previous example, we are accessing 12 images, one
for each month from NASA’s Blue Marble Project [NASin].
Also, we have employed the same data access scheme from
the previous example and all operations are purely view de-
pendent on a per-pixel basis.

The first stage of the pipeline involves the conversion of our
data sources from 8-bit RGB to their grayscale floating-point
representation. After the image is converted, a per-pixel av-
erage is computed for all images. This average is streamed
to a module that computes the standard deviation. The av-
erage is also streamed to another module, which computes
the image that is closest in terms of the L2 norm of the
difference between the original data and the average. This
will give the user the best representative month for the given
viewing window. The standard deviation is fed to an edge de-
tection module. This will give the user the areas of greatest
change in deviation from the average. Finally, the standard
deviation, the edges of the standard deviation, the average,
and the pixel data from the best representative month are
streamed to the progressive renderer for visualization. The
standard deviation, standard deviation edge map, and aver-
age are also down-sampled in this process for display. The
average is rendered as a height field quad mesh with the stan-
dard deviation and edge map as a texture on the mesh. Each
module operates on a resolution at a time of the image hi-
erarchy given by our data access from coarse to fine. Data
is rendered in a progressive manner as it is completed. See
Figure 6 middle for a diagram of the pipeline. Since there are
only 4 parallel independent execution paths in this pipeline,
our system was able to scale in performance to only 4-core.
After that, the performance stays at that optimal peak. Ta-
ble 3 illustrates these results with timing numbers. In the
scalability plot in Figure 6 bottom, we observe a slight super
linear speedup probably due to a coherent disk cache when
multiple threads access data simultaneously.
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Figure 6: Two ViSUS pipelines performing: (a) the 12-
Month Average, (b) Multi-View selective rendering and (c)
the scalability plot of their performances.

5.2. Streaming Tetrahedral Mesh Simplification

To test and demonstration the flexibility in extending our
framework to include unstructured streaming capabilities,
we implemented the streaming tetrahedral mesh simplifi-
cation technique of Vo et al. [VCL∗07]. Given the current
infrastructure of VTK without our scheme, this would not
be possible. There is no streamable data structure for un-
structured grids in VTK. In order to implement streaming
simplification in VTK, a mapping of a portion of the out-
put to the portion of the input meshes is necessary. This can
only be done after the actual computation. Finally, VTK’s
streaming pipeline only supports streamable data with a pre-
determined number of sections, while the algorithm only de-
fines the end of a stream on the fly.

In our system with the generalized streaming scheme exten-
sion, we are able to construct and execute the corresponding
pipeline as shown in Figure 7. The streaming algorithm con-
sists of 3 main processing units: UpdateQuadrics builds the
quadric metrics for vertices of the meshes, Simplification-
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Figure 7: Streaming simplification of tetrahedral meshes un-
der our system (a) stream with no concurrency (b) data-
parallelism and (c) complete parallelism

Buf combines new streams of data into the current buffer
and readies the data to be processed by Decimate, which per-
forms an edge collapse operation. The system also exploits
several locations of data-parallelism in the pipeline.

Figure 7a shows a pipeline with no added concurrency ex-
ecution except for the pipeline-parallelism from our sched-
uler. The original version of the application is highly opti-
mized for a single module. One would assume a degradation
in performance if the single module is executed in sections
without any changes to the code. Due to the increase in per-
formance inherent to our system, it can negate this degrada-
tion and achieve a similar benchmark.

To exploit data-parallelism, we can change the pipeline to
allow our streaming source to send data to multiple mod-
ules. This type of data-parallelism is possible due to the fact
that TetStreamingMesh utilizes the finalization property of
streaming meshes to protect boundary cells across pieces.
Figure 7b shows a manual tweak to the pipeline to create a
data-parallel pipeline with three UpdateQuadrics. The three
modules are working on different portions of the meshes.
However, as we see in Table 4 the building of quadrics is not
the main bottle neck of this application. Therefore we still
do not gain much in performance. Nonetheless, there is still
a slight improvement.

In Figure 7c, we have converted the pipeline to have com-
plete parallelism; duplicating all three processes into three
concurrent executions. As we can see in Table 4 there is a
significant improvement over the original pipeline due to the
parallelism. Unfortunately such an extremely parallel imple-
mentation of this algorithm can reduce the quality of the sim-
plified mesh since there are too many boundary constraints.

Even though an optimal streaming pipeline for this particular
algorithm was not found in testing, we feel that this provides
an example of our system’s ability to facilitate experimenta-
tion with streaming and parallelism with little effort.

6. Conclusion and Future Work

In this paper, we propose new techniques for exploit-
ing multi-core architectures in the context of visualization
dataflow systems. Specifically, we offer a robust, flexible and
lightweight unified data-flow control scheme for visualiza-
tion pipelines. This unified scheme allows the use of pull

Streaming Simplication of Tetrahedral Meshes
Models (Tets) Original Streaming Quadric Pipeline

Duplicates Duplicates
Torso 1.0M 5.8s 5.8s 5.1s 1.3s

Fighter 1.4M 7.5s 6.7s 5.4s 1.6s
Rbl 3.8M 29.7s 26.1s 22.3s 6.2s
Mito 5.5M 36.4s 28.8s 27.6s 7.1s

Table 4: Simplifiation time for achieving 10% resolution

(demand-driven) and push (event-driven) policies in a sin-
gle pipeline while also combining the positive attributes of
both centralized and distributed executive strategies. More-
over, we offer a system that is flexible enough to support a
general streaming data structure. As our results in the previ-
ous section show, along with the companion video, our new
parallel execution strategy offers significant benefits over
a both multi-core, serially-executed visualization pipelines
and pipelines that are computed in streaming modes.

Although we have shown significant improvements on a
state-of-the-art 8-core machine, we feel that this is only a
lower bound on the performance increase possible. We have
designed this scheme with scalability as a primary consider-
ation. In the long run, we feel this can be expanded to use
all available processing resources, including GPUs running
in distributed mode. In existing dataflow systems, GPUs are
relegated to back-end rendering tasks (based on OpenGL).
Despite their proven superiority in terms of raw perfor-
mance, it is not possible to use available GPUs to perform
any of the computations in existing dataflow architectures.
In fact, using GPUs to perform dataflow computations is not
trivial since a modern GPU requires on the order of 1000 to
10,000 threads to achieve peak performance and the design
of the existing supported data structures makes this very dif-
ficult. Once the system is expanded to use both CPUs and
GPUs on a single machine, the flexible design of intercon-
nects across modules would allow us to proceed to execute
pipelines on a cluster with minimum efforts. However, a new
scheduling strategy must be implemented in order to take
full advantages of both shared and distributed architecture,
i.e., minimizing data transfers. Obviously, exploiting mul-
tiple GPUs either in a single machine or in the cluster of
machines is not feasible with current architectures. To de-
sign a dataflow architecture that treats all the processing ele-
ments in a system as first rate processing elements, including
CPUs, GPUs, and potentially other types of processing ele-
ments is a challenging and noteworthy goal.
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