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1. Introduction 

 

 The extraction of quantitative information regarding growth and deformation 

from series of image data is of significant importance in many fields of science and 

medicine.  Imaging techniques such as MRI, CT and ultrasound provide a means to 

examine the morphology and in some cases metabolism of tissues.  The registration 

of this image data between different time points after external loading, treatment, 

disease or other pathologies is performed using methods known as deformable image 

registration. 

 The goal of deformable image registration is to find a transformation that best 

aligns the features of a “template” and “target” image (Figure 1).  In the ideal case, 

the quantity and quality of the image texture present in the template and target 
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images, as well as the similarity in underlying anatomical structure, would yield a 

unique “best” transformation.  In real problems, however, this is not the case.  

Deformable image registration is most often ill-posed in the sense of Hadamard [1-

3].  No perfect transformation exists, and the solution depends on the choice of the 

cost function and associate solution methods. 

 Deformable image registration grew primarily out of the pattern recognition field 

where significant effort has been devoted to the representation of image ensembles 

(e.g., [4-13]).  The approaches that are used are usually classified as either model-

based or pixel-based.  Model-based approaches typically require some segmentation 

of a surface in the 3D image dataset.  This surface is then warped into alignment with 

features in the target image.  The pixel-based approaches do not in general require a 

segmentation, but rather deform pixels or some sampling of the pixels.   

 Most methods for deformable registration incorporate a cost function so that the 

overall energy function to be minimized consists of one term based on the image 

data itself and a second term that serves to regularize the problem.  The choice of this 

cost function can have a significant effect on the results of image registration.  The 

dependence is most 

significant in regions of the 

template model where 

image texture is sparse or 

conflicting.  In these 

regions, the registration 

solution is computed based 

on minimizing the 

Deformation, ϕ(X) 

Template, T Target, S 
Figure 1:  The canonical deformable image registration 
problem involves the determination of the deformation 
map that will align a template image with a target 
image.  In this case, the data are MR images of a heart 
at different times during the cardiac cycle. 
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deformation potential (Bayesian prior probability) portion of the particular 

registration cost functional [14].  A common approach is to use an analogy to a 

physical material by treating the original template image as an elastic sheet [12, 13, 

15, 16] or a viscous fluid [17].  In general, these approaches benefit from the fact that 

the mapping from template to target is guaranteed to be one-to-one on the basis of 

the fundamentals of deformations as defined in continuum mechanics.  However, the 

particular kinematic and constitutive assumptions can over-constrain the solution.  

As an example, use of the theory of linearized elasticity results in the over-

penalization of large rotations, thus limiting the ability to achieve a good registration. 

 The objective of this chapter is to describe the theory and application of a method 

termed hyperelastic Warping [16, 18-22] to problems in deformable image 

registration.  The method is based on the principles of nonlinear solid mechanics to 

allow objective tracking of large deformations and rotations and the concomitant 

determination of stresses within the deforming body.  The approach may be applied 

to physical deformations that arise in solid and fluid mechanics as well as to non-

physical deformations such as the inter- and intra-subject registration of image data.  

For the physical deformation case, the goal is to quantify the kinematics and the 

kinetics of the deformations.  In the non-physical case, only the kinematics of the 

deformations are sought. 
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2. Hyperelastic Warping 

 

 The standard notation and symbols of modern continuum mechanics are 

employed in the following presentation [23-25].  In particular, direct notation is used, 

with boldface italics for vector and tensor fields.  The outer product is denoted with 

“⊗”, a matrix inner product is denoted with “:”, and a matrix-vector product is 

denoted with “·”. Index notation is incorporated for quantities that cannot be readily 

written in with direct notation.  The condensed Voigt notation typically employed in 

finite element (FE) analysis is utilized as needed[1]. 

2.1. Finite Deformation Theory 

 A Lagrangian reference frame is assumed in the following presentation, and thus 

the kinematics of material points corresponding to the template image are tracked 

with respect to their original positions.  However, it should be noted that the 

approach could be adapted readily to an Eulerian framework.  The template and 

target images are assumed to have spatially varying scalar intensity fields defined 

with respect to the reference configuration and denoted by T and S, respectively.  

The deformation map is denoted ϕ(X) = x = X + u(X) where x are the current 

(deformed) coordinates corresponding to X and u(X) is the displacement field.  F is 

the deformation gradient [26]: 

( )( )
ϕ∂

=
∂

X
F X

X
.       (1) 
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The local change in density is directly related to the deformation gradient through the 

Jacobian, ( ) 0: detJ ρ ρ= =F , where det(F) is the determinant of the deformation 

gradient, ρ0 is the density in the reference configuration and ρ is the density in the 

deformed configuration.  At this point, it is assumed that T and S have a general 

dependence on position in the reference configuration X and the deformation map 

ϕ(X). 

 The positive definite, symmetric right and left Cauchy-Green deformation tensors 

are, respectively, 

2T= =C F F U  and 2T= =B FF U .    (2) 

The Jacobian J is defined as: 

0: detJ ρ
ρ

= =F .      (3) 

2.2. Variational Framework 

 Most deformable image registration methods can be posed as the minimization of 

an energy functional E that consists of two terms.  This can be defined with respect 

to the reference or current (deformed) configuration as: 

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )
0 0

, , , , ,

, , , ,

= −

= −

∫ ∫

∫ ∫

E W dV U T S dV

dv dvW U T S
J J

β β

β β

X X X X

X X X

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ
.   (4) 

Here, W is an energy term that provides regularization and/or some type of constraint 

on the deformation map (e.g., one-to-one mapping or no negative volumes admitted), 

while U represents an energy that depends on the image data in the template and 
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target images.  β0 and β  represent the volumes of integration in the reference and 

current configurations, respectively. 

 The Euler-Lagrange equations are obtained by taking the first variation of E(X,ϕ) 

with respect to the deformation ϕ.  This can be thought of as a “virtual displacement” 

– a small variation in the current coordinates x, denoted εη .  Here ε is an 

infinitesimal scalar.  The first variation of the first energy term in (4) defines the 

forces per unit volume that arise from the regularization.  The second energy term in 

(4) gives rise to an image-based force term.  The first variation of (4) with respect to 

the deformation ϕ(X) in direction η  is denoted: 

( ) ( ) ( ) ( ) ( )( ): , , , 0dv dvG DE DW DU T S
J J

β β

= ⋅ = ⋅ + ⋅ =∫ ∫X X Xϕ,η ϕ η ϕ η ϕ , ϕ η . (5) 

The variations are calculated by taking the Gateaux derivative [25] of the functional 

U evaluated at ε+ϕ η  with respect to ε  and then letting 0ε → .  For general forms 

of W and U, 

( ) 0W dv U dvG
J J

β β

∂ ∂
= ⋅ + ⋅ =

∂ ∂∫ ∫ϕ,η η η
ϕ ϕ

.    (6) 

2.3. Linearization 

 Equation (6) is highly nonlinear and thus an incremental-iterative solution 

method is necessary to obtain the configuration ϕ  that satisfies the equation [27].  

The most common approach is based on linearization of the equations and an 

iterative solution using Newton’s method or some variant.  Assuming that the 

solution at a configuration *ϕ is known, a solution is sought at some small increment 



7 

* + ∆uϕ .  Here again, ∆u  is a variation in the configuration or a virtual 

displacement.  The linearization of (6) at *ϕ  in the direction ∆u  is: 

( ) ( ) ( )*
W U dv dvL G G DG

J J
β β

 ∂ ∂
= + ⋅ ∆ = ⋅ + + ⋅ + ⋅ ∂ ∂ ∫ ∫u u∗ ∗

ϕ ϕ ,η ϕ ,η η η
ϕ ϕ

D k ∆ , (7) 

where 
2

: U∂
=

∂ ∂ϕ ϕ
k  is the image stiffness and 

2
: W∂
=

∂ ∂ϕ ϕ
D  is the regularization 

stiffness.  These 2nd derivative terms (Hessians) describe how small perturbations of 

the current configuration affect the contributions of W and U to the overall energy of 

the system. 

2.4. Particular Forms for W and U – Hyperelastic Warping  

 In hyperelastic Warping, a physical representation of the template image is 

deformed into alignment with the target image which remains fixed in the reference 

configuration.  The scalar intensity field of the template, T, is not changed directly by 

the deformation, and thus it is represented as T(X).  Since the values of S at material 

points associated with the deforming template change as the template deforms with 

respect to the target, it is written as S(ϕ).  The formulation uses a Gaussian sensor 

model to describe the image energy density functional: 

( ) ( ) ( )( )2,
2

U T Sλ
= −X Xϕ ϕ .     (8) 

λ is a penalty parameter [28] that enforces the alignment of the template model with 

the target image data.  As λ → ∞ ,  ( ) ( )( )2 0T S− →X ϕ , and the image energy 

converges to a finite value. 
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 Hyperelastic Warping assumes that W is the standard strain energy density 

function from continuum mechanics that defines the material constitutive behavior.  

It depends on the right deformation tensor C.  The right deformation tensor is 

independent of rotation and thus hyperelasticity provides an objective (invariant 

under rotation) constitutive framework, in contrast to linearized elasticity (see below, 

[29]).  With these specific assumptions, equation (4) takes the form: 

( ) ( ) ( )( ), ,dv dvE W U T S
J J

= −∫ ∫
β β

X C X ϕ     (9) 

The first variation of the first term in (9) yields the standard weak from of the 

momentum equations for nonlinear solid mechanics (see, e.g., [25]).  The first 

variation of the functional U in (8) with respect to the deformation ϕ(X) in direction 

η  gives rise to the image-based force term: 

( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

2

0

2
DU D T S

T S T S
ε

λ

λ ε ε
ε →

 ⋅ = − ⋅  
∂ = − + − + ∂ 

X

X X

ϕ η ϕ η

ϕ η ϕ η
. (10) 

Noting that 

( ) ( )( ) ( )
( )

( ) ( )
0 0

S S
T S

ε ε

ε ε
ε

ε ε ε→ →

 ∂ + ∂ + ∂∂ − + = − ⋅ = − ⋅  ∂ ∂ + ∂ ∂   
X

ϕ η ϕ η ϕ
ϕ η η

ϕ η ϕ
, (11) 

equations (10) and (11) can be combined to yield: 

( ) ( ) ( )( ) ( )S
DU T Sλ

∂ 
⋅ = − − ⋅ ∂ 

X
ϕ

ϕ η ϕ η
ϕ

.   (12) 

This term drives the deformation of the template based on the pointwise difference in 

the image intensities and the gradient of the target intensity evaluated at material 

points associated with the template. 
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 A similar computation for the mechanical strain energy term W leads to the weak 

form of the momentum equations (see, e.g., [24]): 

( ) ( ) ( ): : 0S dvG DE dv T S
Jβ β

λ  ∂
= ⋅ = ∇ − − ⋅ = ∂ ∫ ∫ϕ,η ϕ η σ η η

ϕ
. (13) 

Here, σ is the 2nd order symmetric Cauchy stress tensor, 

1 TW
J

∂
=

∂
F F

C
σ  .      (14) 

Thus, the forces applied to the physical model of the deforming template due to the 

differences in the image data are opposed by internal forces that arise from the 

deformation of the material through the constitutive model.  The particular form of 

W depends on the material and its symmetry (i.e., isotropic, transversely isotropic, 

etc.) [26, 30-33]. 

 The linearization of equation (13) yields: 

( ) ( )

( ) ( )

* :

: : ∆ : : ∆ ∆s s

S dvL G dv T S
J

dvdv dv
J

β β

β β β

λ
 ∂

= ∇ − − ⋅ ∂ 

+ + + ⋅ ⋅

∫ ∫

∫ ∫ ∫u u u

∗ϕ ϕ,η σ η η
ϕ

η σ η ηc k∇ ∇ ∇ ∇

 . (15) 

Here, c is the 4th order spatial elasticity tensor [1]: 

24
ijkl iI jJ kK lL

IJ KL

WF F F F
J C C

∂
=

∂ ∂
c ,     (16) 

and [ ]s ⋅∇  is the symmetric gradient operator: 

[ ] [ ] [ ]1
2

T
s

 ∂ ⋅ ∂ ⋅ 
 ⋅ = +  ∂ ∂   ϕ ϕ

∇ .     (17) 

In the field of computational mechanics, the first two terms in the second line of 

equation (15) are referred to as the geometric and material stiffnesses, respectively 



10 

[1].  The 2nd order tensor representing the image stiffness for hyperelastic Warping 

is: 

( )
2 2U S S ST S∂ ∂ ∂ ∂λ

∂ ∂ ∂ ∂
     

= = ⊗ − −     ∂ ∂       ϕ ϕ ϕ ϕ ϕ ϕ
k .    (18) 

These three terms form the basis for evaluating the relative influence of the image-

derived forces and the forces due to internal stresses on the converged solution to the 

deformable image registration problem, as illustrated in the following two sections. 

2.5. Finite Element Discretization 

 Hyperelastic Warping is based on an FE discretization of the template image.  

The FE  method uses “shape functions” to describe the element shape and the 

arbitrary variations in configuration over the element domain [34].  In hyperelastic 

Warping, an FE mesh is constructed to correspond to all or part of the template 

image (either a rectilinear mesh, or a mesh that conforms to a particular structure of 

interest in the template image).  The template intensity field T is interpolated to the 

nodes of the FE mesh.  The template intensity field is convected with the FE mesh 

and thus the nodal values do not change.  As the FE mesh deforms, the values of the 

target intensity field S are queried at the current location of the nodes of the template 

FE mesh.  To apply an FE discretization to equation (15), an isoparametric 

conforming FE approximation is introduced for the variations η and u∆ : 

( ) ( )
nodes nodes

1 1

| , |
e e

N N

e j j e j j
j j

N NΩ Ω
= =

≡ = ∆ ≡ ∆ = ∆∑ ∑ξ u u ξ uη η η ,  (19) 

where the subscript e specifies that the variations are restricted to a particular 

element with domain Ωe, and Nnodes is the number of nodes composing each element.  
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Here, ∈ξ , where  ( ) ( ) ( ){ }: 1,1 1,1 1,1= − × − × −  is the bi-unit cube and Nj are the 

isoparametric shape functions (having a value of “1” at their specific node and 

varying to “0” at every other node).  The gradients of the variation η are discretized 

as 

nodes nodes

1 1

,
N N

L NL
s j j j j

j j= =

= =∑ ∑η B η η B η∇ ∇ .    (20) 

Where BL and BNL are the linear and nonlinear strain-displacement matrices, 

respectively, in Voigt notation [1] (see Appendix).  With the use of appropriate Voigt 

notation, the linearized equations (15) can be written, for an assembled FE mesh, as: 

( ) ( )( ) ( ) ( )( )
nodes nodes nodes

* * ext * int *

1 1 1

N N N
R I

j
i j i iij

ϕ ϕ ϕ ϕ
= = =

+ ⋅ ∆ = +∑ ∑ ∑K K u F F  (21) 

 Equation (21) is a system of linear algebraic equations.  The term in parentheses 

on the left-hand side is the (symmetric) tangent stiffness matrix.  ∆u  is the vector of 

unknown incremental nodal displacements – for an FE mesh of 8-noded hexahedral 

elements in three dimensions, ∆u  has length [8x3xNel], where Nel is the number of 

elements in the mesh. extF  is the vector of external forces arising from the 

differences in the image intensities and gradients in equation (12), and intF  is the 

vector of internal forces resulting from the stress divergence.   The material and 

geometric stiffnesses combine to give the mechanics regularization stiffness: 

( ) ( )T TR NL NL L Ldv dv= +∫ ∫
β β

K B σB B Bc .    (22) 

The contribution of the image-based energy to the tangent stiffness is: 
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J
I T dv

β

= −∫K N Nk .      (23) 

Together, the terms in (22) and (23) form the entire tangent stiffness matrix.  In our 

FE implementation, an initial estimate of the unknown incremental nodal 

displacements is obtained by solving equation (21) for ∆u  and this solution is 

improved iteratively using a quasi-Newton method [27]. 

2.6. Solution Procedure and Augmented Lagrangian 

 

 In the combined energy function in Equation (9), the image data may be treated 

as either a soft constraint, with the mechanics providing the “truth”, as a hard 

constraint, with the mechanics providing a regularization, or as a combination.  For 

typical problems in deformable image registration, it is desired to treat the image 

data as a hard constraint.  Indeed, the form for U specified in equation (8) is 

essentially a penalty function stating that the template and target image intensity 

fields must be equal over the domain of interest as λ → ∞ .  The main problem with 

the penalty method is that as the penalty parameter λ is increased, some of the 

diagonal terms in the stiffness matrix KI become very large with respect to others, 

leading to numerical ill-conditioning of the matrix.  This results in inaccurate 

estimates for 1
I
−K , which leads to slowed convergence or divergence of the nonlinear 

iterations. 

 To circumvent this problem, the augmented Lagrangian method is used [33, 

35].  With augmented Lagrangian methods, a solution to the governing equations at a 

particular computational timestep is first obtained with a relatively small penalty 
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parameter λ.  Then the total image-based body forces U ϕ∂ ∂  are incrementally 

increased in a second iterative loop, resulting in progressively better satisfaction of 

the constraint imposed by the image data.  This leads to a stable algorithm that 

allows the constraint to be satisfied to a user-defined tolerance.  Ill conditioning of 

the stiffness matrix is entirely avoided. 

 The Euler-Lagrange equations defined in Equation (13) are modified by the 

addition of a term that represents the additional image-based force γ  due to the 

augmentation: 

( )* 0dvG G
J

ϕ,η γ= + ⋅ =∫ η
β

      (24) 

The solution procedure involves incrementally increasing γ  at each computational 

timestep and then iterating using a quasi-Newton method [27] until the energy is 

minimized.  In the context of the FE method described above, the augmented 

Lagrangian update procedure for timestep n+1 takes the form: 

( )

( )

0
1

1
1 1 1

*
1

1
1 1 1

0

DO for each augmentation  WHILE TOL

     Minimize  with  fixed using the BFGS method

     Update mutipliers using 

END DO

n n

k k k
n n n

k
n

kk k
n n n

k

k

G

U

γ γ

γ γ γ

γ

γ γ ϕ

+

+
+ + +

+

+
+ + +

=
=

− >

= + ∂ ∂

  (25) 

This nested iteration procedure, referred to as the Uzawa algorithm [36, 37], 

converges quickly in general because the multipliers γ  are fixed during the 

minimization of G*.  In practice, the augmentations are not performed until the 

penalty parameter λ has been incremented to the maximum value that can be 

obtained without solution difficulties due to ill conditioning.  At this last timestep, 
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the augmented Lagrangian method is then used to satisfy the constraint to a user-

defined tolerance (usually TOL = 0.05). 

2.7. Sequential Spatial Filtering to Overcome Local Minima  

 The solution approach described above follows the local gradient to search for 

a minimum in the total energy (Equation (4)) and therefore it is susceptible to 

converging to local minima.  This means that the registration process may get 

“stuck” by alignment of local image features that produce forces locking the 

deformation into a particular configuration.  It is often possible to avoid local 

minima and converge to a global minimum by first registering larger image features, 

such as object boundaries and coarse textural detail, followed by registration of fine 

detail.  Sequential low-pass spatial filtering is used to achieve this goal.  By evolving 

the cut-off frequency of the spatial filter over computational time, the influence of 

fine textural features in the image can be initially suppressed until global registration 

is achieved.  Fine structure can be registered subsequently by gradually removing the 

spatial filter. 

 The spatial filter is applied by convolution of the image with a kernel κ(X).  For 

the template  image field T, 

*( ) ( )* ( ) ( ) ( )
B

T T T d= = −∫κ κX X X X X Z Z ,    (26) 

where T(X) and T*(X) are the original image data and the filtered data respectively in 

the spatial domain; X is a vector containing the material coordinates and Z is the 

frequency representation of X.  An efficient way to accomplish this calculation is 

through the use of the discrete Fourier transform.   
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 The convolution of the image data ( )T X  with the filter kernel ( )κ X  in 

equation (26) becomes multiplication of ( )T Z  with ( )Κ Z  in Fourier domain.  

( )T Z is the Fourier transform of ( )T X  and ( )Κ Z  is the Fourier transform of ( )κ X .  

This multiplication is applied and then the transform is inverted to obtain the 

convolved image in the spatial domain as shown below: 

* 1( ) { ( ) ( )}T T−= ℑ ΚX Z Z .      (27) 

Because of the very fast computational algorithms available for applying Fourier 

transforms, this method is much faster than computing the convolution in image 

space.  In our implementation, a 3D Gaussian kernel is used [38]: 

( ) 22Ae
⋅ − 

 =
X X

X σκ .      (28) 

Here, σ2, the spatial variance, is used to control the extent of blurring while A is a 

normalizing constant.  Note that Equation (28) is only valid for a 3D vector X.  The 

user specifies the evolution of the spatial filter over computational time by 

controlling the mask and variance.  In the specific results reported below the 

variance was set to a high value and evolved to remove the filtering as the 

computation completed (Figure 2). 

 The practical application of spatial filtering is complicated by the fact that the 

registration is nonlinear and is computed stepwise during the registration process.  At 

each step in the computational process, the spatial distribution of the template 

intensities changes according to the computed deformation field.  Therefore, all 

image operations done on the template during the registration process (including 

spatial filtering techniques) must be performed on the deformed template image, 

rather than the static template image before deformation.  Since, in most cases, the 
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template finite element mesh nodes are not co-located with the template image 

voxels, the computed deformation field must be interpolated onto the original 

template image in order to apply the image operations accurately. 

 

 

 

2.8. Regular versus Irregular Meshes 

 Hyperelastic Warping accommodates an FE mesh that corresponds to all or part 

of the template image.  A “regular mesh” is a rectilinear structured mesh that 

corresponds to the entire image domain. This mesh may be a subsampling of the 

actual image voxel boundaries.   An 

“irregular” mesh  conforms to a 

particular structure of interest in the 

template image.  The template intensity 

field T is interpolated to the nodes of 

the FE mesh.  As the FE mesh 

deforms, the values of the target 

Figure 2: Sequential spatial filtering.  (A) results of a 10 x 10 pixel mask flat blur 
to suppress the local detail in the original image (D).  (B) 5 x 5 mask, (C) 2 x 2 
pixel mask, and (D) original image. 

A B C D 

Figure 3:  (A) Template and (B)
deformed images of a normal mouse brain
cross-section with a representation of a
regular finite element mesh superimposed
upon the image.   

A B 
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intensity field S are sampled at the current location of the nodes of the template FE 

mesh. 

 Regular meshes are used primarily for non-physical deformable image problems 

(Figure 3).  Regular meshes are simple to construct and can easily span the entire 

image space or a specific region of interest.  However, since the mesh does not 

conform to any structure in the template imaged, these analyses are susceptible to 

element inversion prior to the completion of image registration.  Typically, only a 

single material is generally used for the entire mesh. 

 In contrast to regular meshes, irregular meshes are used primarily for physical 

deformation applications and conform to physical structures of interest in the domain 

of the image data (Figure 4).  Irregular meshes also support the definition of different 

material models and material 

properties for specific regions of the 

mesh.  For example, in Figure 4, the 

irregular mesh represents a cross-

section of a human coronary artery.   

It has two materials, each 

representing separate layers of the 

arterial wall.  Each layer was 

assigned material properties from 

the literature that are appropriate for 

that specific layer [39].  The 

primary drawback of irregular 

meshes is that, depending upon the 

Figure 4:  A - Intravascular ultrasound cross-
sectional image of coronary artery.  B - Finite 
element model of Template image.  C - 
Deformed image of artery after application of 
100 mmHg internal pressure load.  D - Deformed 
finite element model after hyperelastic warping 
analysis.  The grey area of the arterial wall is 
represents the intima while the red region 
represents the adventitia.   

C D 

B A 
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geometry to be modeled, they can be time consuming to construct. 

2.9. Rezoning Regular Finite Element Meshes 

 The large deformations that occur in the context of many deformable image 

registration problems can result in “element inversion” prior to complete registration.  

Element inversion is the generation, via deformation during the solution process, of a 

finite element that has a negative Jacobian.  Physically, for hexahedral elements this 

implies an angle of greater than 180° between two adjacent edges of an element.  

This condition halts the solution process and thus must be remedied in order to 

proceed. 

  To overcome this problem when regular meshes are used, an FE rezoning 

algorithm has been implemented.  The algorithm allows the tracking of large-scale 

deformations using a relatively coarse computational mesh.  When element inversion 

is imminent, the FE mesh geometry is reset to its initial undeformed configuration 

and the deformed template image intensity T and nodal displacements u(X) are 

interpolated from the deformed mesh to the reset mesh.  The analysis then continues 

until the convergence criteria are met or another rezoning is required.  The rezoning 

Figure 5: Example of rezoning a regular mesh for a 2D Warping problem.  (A) 
Template image with a representation of the FE mesh superimposed on the image. 
(B) The registration process causes large deformations in the computational mesh. 
(C) The mesh is reset and the analysis continues.  (D) Rezoning allows for greater 
overall deformation during the registration process.  (E) Deformed template image 
at the end of the analysis. 

A B C D E 
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process is illustrated graphically in Figure 5. 

 The rezoning procedures require interpolation of T and u(X) from the nodes of 

the deformed FE mesh to the nodes of the reset mesh.  For each node N in the 

undeformed mesh, the element in deformed mesh that contained the node is located 

using a direct search.  The local coordinates of the eight nodes of the element 

containing node N are assembled into an 8x3 matrix φ(ξi,ηi,ζi), where ξi, ηi, and ζi 

are the local element coordinates of the nodes composing the element; for instance, 

node 1 has local coordinates (-1,1,1).  The local coordinates are related to the global 

coordinates via the interpolating polynomial coefficients arising from the shape 

functions as follows [40]: 

[ ] [ ][ ]
1 1 1 1 1 1 1 1 1

8 8 8 8 8 8 8 8 8 8

11 1 1

11 1 1

x y z xy yz xz xyz

x y z xy yz xz xyx

φ α= ⇔

−     
     ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅      =
     ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅
    

     

G

α β γ

α β γ

 (29) 

Here, α is an 8x3 matrix containing the polynomial coefficients and (xi, yi, zi) are the 

coordinates of node i in the global coordinate system.  The matrix α is then 

determined for each node N in the reset mesh: 

[ ] [ ] [ ]1Gα φ−= .        (30) 

 The local element coordinates (ξN, ηN, ζN) of node N follow from α and the 

global coordinates (xN, yN, zN): 
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The interpolated value then follows from the local coordinates, the nodal values and 

the trilinear shape functions.  For example, the interpolated template intensity is 

computed using 

( ) ( )
8

N N N N N N
1

, ,  , ,N i i
i

T T hξ η ζ ξ η ζ
=

= ∑ ,    (32) 

where the Ti are nodal intensity values and hi are the shape functions corresponding 

to each node evaluated at ( )N N N, ,ξ η ζ .  The displacements u(X) are interpolated 

using the same procedure.  Note that this interpolation strategy is consistent with the 

shape functions used in the FE solution process. 

 In practice, this rezoning procedure has proved to be highly efficient and 

effective for large three-dimensional Warping problems.  It has allowed for the 

registration of image data sets that otherwise could not be successfully registered 

using hyperelastic Warping.  In the first example found below, rezoning allowed for 

the successful inter-subject registration of mouse brain micro-MRI images.  Analysis 

of these image data sets without rezoning led to incomplete registration of the 

internal structure of the brain as well as incomplete external registration of the 

cerebellum.   
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3. Applications  

 

The following examples illustrate the broad range of problems that have been 

analyzed using hyperelastic Warping.  The first example is an image registration 

problem in which MRI images of two normal mouse brains were registered.  The 

second example illustrates how the results of a registration analysis of micro-CT 

images of the gerbil middle ear may be used to provide the boundary conditions for a 

second, traditional FE analysis of the malleus bone.  The remaining examples 

illustrate application to problems in cardiovascular mechanics. 

 

3.1. Quantification of Changes in Mouse Brain Morphology  

 

 Quantification of time-dependent changes in three-dimensional morphology of 

brain structures and neural pathways is a fundamental challenge in anatomical 

studies of neurodevelopment and in tracking brain remodeling and/or progression of 

certain neurological diseases.  The morphometric problem can be approached using 

in vivo gross-scale (sub-millimeter) magnetic resonance medical imaging (MRI) of 

the brain.  Tracking anatomical changes in vivo has been a major motivation for the 

development of higher resolution CT, MRI and radiographic imaging systems.  

While it is currently routine in clinical MRI of humans to obtain 1x1x2 mm 

resolution, micro-MRI images of small animals have been obtained with isotropic 

resolution on the order of 40 microns – resolution sometimes termed magnetic 

resonance microscopy (MRM). This type of MRI data is sufficient to resolve the 
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neuroanatomical structures of interest but it remains difficult to extract quantitative 

structure-specific morphological measures directly from this type of image data.  

These measures are necessary to accurately 

assess developmental and/or pathological 

changes in gross brain structures and 

pathways.   

  

 In order to test the efficacy of 

hyperelastic Warping in the registration of 

normal mouse brain anatomy, normal T1-

weighted micro-MRI images were obtained 

from two different intact, excised mouse 

brains.  The image datasets were 2563 

voxels, FOV=1.54x1.54x1.54 cm, and had 

60 µm isotropic resolution. A 40x40x49 

rectilinear FE mesh was created for the 3D 

problems (73,008 elements). The deforming 

template was modeled using a neo-Hookean 

hyperelastic material with a shear modulus 

of 450 Pa and a bulk modulus of 400 Pa 

[22]. 

 These 3D results demonstrate the 

efficacy of the current deformable image 

registration algorithm when used on 

Figure 6.  Three dimensional
results for inter-animal registration
of two mouse neuroanatomies. (A)
Surface-rendered template, (B)
deformed template, and (C) target
image. The arrow indicates the

Deformed  Template 

Target 

Template A

B 

C
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Figure 7.  A mid-brain cross-section from a normal 
mouse (A) and a longitudinal section (B) from the 3-
D target image data and the corresponding deformed 
template (C and D).  

C 

A B 

D 

relatively large datasets.  Volume-rendered images (Figures 6) show that excellent 

external registration was achieved between the deformed template and target image 

datasets.  The 3D model was rezoned three times to achieve this registration.  It is 

interesting to note that rezoning allowed a dissection artifact in the target image 

dataset (Figure 6C), that was not present in the template image data (Figure 6A), to 

be extruded from the relatively smooth template to generate the same structure in the 

deformed template (Figure 6B).  Without the use of rezoning, this excellent 

alignment would have been impossible due to extreme mesh distortion resulting in 

element inversion.  Examination of representative transverse and longitudinal image 

planes illustrated that very good internal registration was also achieved, as 

demonstrated by the correspondence of anatomical regions and sulci between the 

deformed template and target (Figure 7, panels A-D).   

 Computational requirements for this problem were determined primarily by the 

size of the finite element 

mesh used to discretize the 

template and, to a lesser 

extent, by the size of the 

image datasets.  The 

analysis required 3.38 GB of 

memory. Because the main 

computational expense in 

the algorithm is the 

inversion of a large system 

of linear equations resulting 
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from the nodal degrees of freedom in the FE mesh, CPU requirements grew as the 

square of the size of the FE mesh.  For this analysis, the mesh resulted in a linear 

system with 165,148 degrees of freedom.  Total wall clock time for the 3D 

neuroanatomical registration analysis was 14 hours, with the three mesh rezones 

accounting for 18% of the analysis time and the sequential spatial filtering 

accounting for 5% of the analysis time.  The vast majority of the remaining analysis 

time is spent in the repeated inversion of the sparse symmetric linear system.  Our 

code accommodates the use of several vendor supplied parallel solvers, which can 

reduce the time for this phase of the solution process drastically.  The analysis time 

can be further reduced by the reduction of the size of the computational mesh, at the 

potential expense of reducing the accuracy of the registration of internal structures.   

 

3.2. Measurement of Gerbil Malleus Kinematics and 

Mechanics 

 

The human auditory system is capable of transforming and distinguishing 

incoming acoustical signals over several orders of magnitude.  The middle ear, in 

particular, acts as an impedance matching transformer, allowing the mechanical 

vibrations of the tympanic membrane to be transformed into liquid-borne traveling 

waves within the cochlea.  These traveling waves are in turn transformed into neural 

signals that the brain interprets as sound.    

Finite element models have been used to study the kinematics of the middle ear 

bones in order to gain a better understanding of the impedance matching function of 
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the middle ear [41-44].  These models consist of 2D and 3D finite element 

representations of the individual bones and muscles of the middle ear as well as the 

tympanic membrane.  The natural frequencies of the eardrum have been measured 

and used to excite finite element representations of the tympanic membrane to study 

the frequency response and kinematics of the middle ear bones [41, 42].  Ladak and 

Funnell [45] modeled the normal and surgically repaired cat middle ear in order to 

study the effects of ossicular prosthetics on the frequency response of the ossicular 

chain.  While direct measurements of the geometry and kinematics of the tympanic 

membrane has been demonstrated, measurements of the kinematics of the middle ear 

bones themselves have proven to be more difficult.  Toward this end, the following 

study was designed to examine the feasibility of using hyperelastic Warping to 

determine the displacements of the ossicular chain using warping analysis of high-

resolution CT images.  These displacements would in turn provide the boundary 

conditions for FE models of the individual bones of the ossicular chain.  This 

secondary analysis would be used to determine the stress distributions within bones 

of the middle ear. High-resolution computed tomography (CT) images (1024 x 

1024 x 1024 isotropic image matrix, 14.1 mm FOV, 10 µm isotropic resolution) 

were taken of the external and middle ear of an anesthetized gerbil.  The images 

were acquired on a Skyscan 1072 80 kV micro-CT tomograph.  An image data set 

was acquired with the tympanic membrane under no external pressure load other 

than atmospheric pressure.  The second image set was acquired while a 3.0 KPa 

pressure load was placed on the external surface of the tympanic membrane.  The 

images were cropped (270x270x172 voxels) to include only the tympanic membrane 

and the malleus bone of the middle ear.  The image obtained under atmospheric 
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loading was defined as the template image while the image under a pressure load of 

3 KPa was defined as the target image.  A 41x41x27 rectilinear finite element mesh 

was constructed that included the entire cropped image domain (11767 elements).  

This deforming template mesh was modeled as a neo-Hookean hyperelastic material 

with a shear modulus of 450 Pa and a bulk modulus of 400 Pa.  A fixed flat spatial 

filter (3x3x3 pixel mask) [38] was used in the warping analysis.  The FE mesh was 

rezoned twice during the analysis to determine the displacements of the malleus. 

 Subsequent to the deformable registration analysis, a finite element model was 

created to represent the malleus bone.  The external boundary of the malleus was 

manually segmented from the template image data set.   B-spline curves were fit to 

the points generated by the segmentation and these curves were used to define the 

exterior surface of the malleus.  A tetrahedral mesh (42,391 elements) was generated 

Figure 8.  (A) Rendered surface definition of the gerbil malleus.  (B) Displacement
magnitude warping results for a plane bisecting the center of the malleus.  The
tetrahedral mesh has been superimposed on the results to indicate the location of the
malleus within the displacement field.  (C) Effective stress and (D) displacement
magnitude results for the surface of the malleus. 
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from this surface definition.  The malleus was modeled as a linear elastic material 

using properties (elastic modulus E = 20.0 GPa, Poisson’s Ratio, ν = 0.3) from the 

literature [41, 45]. 

 The surface of the malleus model was loaded using the displacements 

determined from the deformable image registration analysis.  The displacements for 

each surface node of the malleus model were defined by interpolating nodal 

displacements determined from the warping analysis using the rectilinear (Warping) 

mesh trilinear shape functions.  The NIKE3D non-linear finite element program  [46] 

was used to analyze the malleus model and determine the stress/strain distribution 

within the bone using only the surface displacements as the boundary conditions. 

The results indicate that the manubrium, which is at the center of tympanic 

membrane, undergoes the greatest displacement and is a high stress region of the 

malleus (Figure 8C and 8D).   In contrast, the head of the malleus, which has 

attachments to the head of the incus and the superior ligament, shows the least 

displacement and is a low stress region.  These results suggest that the malleus acts 

to decrease the energy being transferred to the incus.  Further, this analysis 

demonstrates how the deformation map from a deformable image registration 

analysis using hyperelastic Warping can be integrated into a traditional 

computational biomechanics analysis using the FE method. 
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3.3. Strain Measurement of the Coronary Artery using 

Intravascular Ultrasound 

 

Coronary heart disease is currently the leading cause of death in the United 

States [47].  Plaque rupture, the structural failure of the plaque cap, is the primary 

event triggering myocardial infarctions and acute coronary syndromes.   The failure 

of the cap exposes collagen and lipid to the blood stream, which subsequently causes 

thrombus formation [48], often resulting in partial or complete blockage of the 

vessel.  The exact mechanisms responsible for plaque rupture are unknown. 

Finite element analyses of idealized plaque geometries have suggested that, for 

eccentric plaques, maximum stress levels occur at the shoulder area of the cap where 

the fibrous cap meets the healthy intima [49, 50].  Finite element analyses using 

model geometries based on atherosclerotic lesions indicate that the areas of high 

stress in and near the plaque correlate with the locations of plaque rupture.  58% of 

in vivo plaque ruptures have been to found occur in the areas of maximum stress, 

while 83% of failures occurred in high stress areas [51].  FE studies have suggested 

decreased cap thickness causes an increase in the peak shoulder stress when fully 

developed lipid layers are present.  Similarly, increasing the lipid layer size increases 

the shoulder stress. [52-54].   

Reliable predictions of stress and strain in physiologically loaded plaques in 

vivo would provide insight into plaque mechanics.  Direct measurement of stress 

during loading of a coronary artery is currently not possible in vivo or ex vivo.  

However, the measurement of strain within the plaque and the wall of the coronary 

artery can provide insight into the stress distribution. 
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 Intravascular ultrasound  (IVUS) yields detailed images of atherosclerotic 

plaques and the vessel wall.  IVUS uses a catheter-mounted ultrasound transducer to 

acquire cross-sectional images of an artery with a spatial resolution of 80-100 µm 

radially and 150-200 µm circumferentially [55, 56].  Current IVUS catheters are as 

small as 0.9 mm and can interrogate most areas of the coronary tree, including 

coronary arteries in the range of 1.5-5.0 mm in diameter. IVUS provides a high 

resolution means to quantify lesion geometry [55, 56].  Our long-term goal is to use 

hyperelastic Warping to determine the strain distributions within coronary plaque 

both ex vivo and in vitro during physiological loading as well as the loading 

associated with interventional techniques such as angioplasty and stent placement.  

The strain distributions can be correlated with the plaques histology to determine 

which plaque cap components are associated with the largest strain during loading. 

Hyperelastic Warping has been validated for use with IVUS  and the details may be 

found in our previous publication [39]. 

Hyperelastic Warping was used to estimate the strain distributions in two 

unfixed left anterior descending (LAD) human coronary arteries.  These arteries 

were mounted in a position approximating the artery orientation in situ.  The left 

main coronary artery was cannulated, and the side branches were ligated to reduce 

flow until a constant physiological perfusion pressure could be maintained.  IVUS 

images were acquired using a clinical IVUS system, comprising an HP Sonos 100 

ultrasound console and a 30 MHz, 3.5 F Boston Scientific monorail intracoronary 

ultrasound imaging catheter using parameters typical for clinical study. The IVUS 

catheter was inserted into the vessel as halfway down the LAD.  The arterial internal 

pressure monitored using a Millar 4 F pressure transducer introduced through a distal 
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cannula placed approximately adjacent to the IVUS catheter.  The vessel was then 

perfused with 37oC physiological saline until a 16.00 KPa (120 mm Hg) internal 

pressure load was achieved.  The IVUS images acquired under 0 KPa were 

designated the template images (Figure 9A and 10A), while the images acquired with 

the artery under 16.00 KPa (120 mmHg) internal pressure load were designated the 

target images (Figure 9B and 10B). 

The boundaries of the media /lesion were manually segmented in the IVUS 

template image of the diseased vessels.  B-spline curves were fitted to the points 

generated by segmentation. These curves defined the boundaries of the arterial wall.  

A 2D plane strain FE model was constructed for each vessel that included the entire 

image domain Figure 9C and 10C).  The lumen and the tissue surrounding the 

vessels represented by an isotropic hypoelastic constitutive model with relatively soft 

elastic material properties (E=1.0 KPa and ν=0.3) to provide tethering.  The outer 

edges of the image domain were fully constrained to eliminate rigid body motion.  

Transversely isotropic hyperelastic strain energy was utilized to describe nonlinear 

behavior of the arterial wall [57-64] and atherosclerotic lesions [50, 54, 65, 66].  

This strain energy definition describes a material that consists of fibers imbedded in 

an isotropic ground substance.  The strain energy function was defined as:  

2
1 1 2 2( , ) ( ) [ln( )]

2
KW F I I F J= + +λ .     (33) 

F1 represents the behavior of the ground substance while F2 represents the 

behavior of the collagen fibers.  The final term in the expression represents the bulk 

behavior of the material. K is the bulk modulus of the material, F is the deformation 

gradient tensor and J = det(F).  1I  and 2I  are the first and second deviatoric 
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invariants of the right Cauchy 

deformation tensor [30].  The 

scalar λ  is the deviatoric 

stretch ratio along the local 

fiber direction, a, which was 

oriented circumferentially for 

these analyses to correspond 

with the collagen and smooth 

muscle fiber orientations in 

the arterial wall and plaque 

cap. 

 A neo-Hookean form 

was used to represent the 

ground substance matrix: 

1 1 1( ) ( 3).F I I= −µ         (34) 

Where µ is the shear modulus of the ground substance.   The stress-stretch 

behavior for the fiber direction was represented as exponential, with no resistance to 

compressive load: 

( )( )

2

2
3 4

0, 1;

exp 1 1 , 1.
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λ

∂
= = <

∂
∂  = = − − ≥ ∂

   (35) 

Where material coefficients C3 and C4 scale the fiber stress and control its rate 

of rise with increasing stretch, respectively.   The full Cauchy stress tensor is defined 

as. 

A B 

C D 

1.10 

0.98 

Figure 9.  (A) template image of a coronary artery
with a fully formed lipid layer (arrow).  (B)
Corresponding target image of the artery under
16.00 KPa internal pressure load.  (C)  FE mesh
representation of the image space.  (D)
circumferential stretch distribution within the
arterial wall and lesion.   
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12( )W W pλλ= + ⊗ +T B a a 1       (36) 

W1, W2 and Wλ are strain energy derivatives with respect to I1, I2 and λ [26], and B is 

the left deformation tensor. A detailed description of the finite element 

implementation of this constitutive model can be found in Weiss et al.[19]. 

 The material parameters for the arterial wall were determined by a nonlinear 

least squares fit to circumferential stress/strain values presented in the work of Cox 

et al. [58] for the canine coronary artery wall using the constitutive relation described 

above.  The media region of the arterial wall was assigned material properties based 

on the curve fit obtained from the Cox et al. data [57].  The material constants for the 

media were  µ = 3.57 KPa, C3 = 4.99 KPa, and C4 = 5.49.  The bulk modulus was 

defined as 200.00 KPa.  The 

lesion areas were assigned 

identical material properties as 

were used for the media since 

the stress strain behavior of 

the arterial wall falls well 

within the wide range of 

values published for the 

material properties of 

atherosclerotic lesions [67]. 

The warping analyses 

results indicate (Figures 9D 

and 10D) that the presence of 

A B 

C D 

1.10 

0.98 

Figure 10.  (A) Template image of a coronary artery
that does not have a fully developed lipid core. (B)
Corresponding target image of the artery under 16
KPa internal pressure load.  (C)  FE mesh of the
image space.  (D) Circumferential stretch
distribution within the arterial wall and lesion.   
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a fully developed lipid core increases the circumferential stretch of the plaque cap 

adjacent to the lipid core.  These results are consistent with previous studies that 

suggested that the larger lipid layers increase plaque cap stress. [53, 54] 

 

3.4. Cardiac Mechanics 

 

Assessment of regional heart wall motion (wall motion, thickening, strain, etc.) 

can identify impairment of cardiac function due to hypertrophic or dilated 

cardiomyopathies.  It can provide quantitative estimates of the impairment of 

ventricular wall function due to ischemic myocardial disease.  The assessment 

regional heart motion is used in combination measures of perfusion and metabolic 

uptake to diagnose and evaluate stunned/hibernating myocardium following transient 

ischemic events.  Stunned myocardium is characterized by decreased or no 

contractile function but having normal perfusion and glucose utilization [68-70].  

Since stunned myocardium has normal perfusion and normal viability, it can only be 

identified by localizing abnormal wall motion/contraction. Hibernating myocardium 

is characterized by persistent ventricular myocardial dysfunction with preserved 

viability, decreased perfusion and normal metabolic uptake.  Hibernating 

myocardium has been associated with a slower and incomplete restoration of 

contractile function as compared with stunned myocardium [71, 72].  Up to 50% of 

patients with ischemic heart disease and LV dysfunction have significant areas of 

hibernating myocardium [73, 74] and therefore would be predicted to benefit from 

identification and subsequent revascularization.   
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 The assessment of the size and location of infarction, in particular, the extent 

of viable tissue, and the mechanical function of the tissue can be extremely valuable 

for predicting the utility and assessing the success of surgical interventions such as 

revascularization.  Thus the measurement of local myocardial deformation has 

potential to be an important diagnostic and prognostic tool for the evaluation of a 

large number of patients. 

The deformation of the human heart wall has been quantified via the attachment 

of physical markers in a select number of human subjects [75].  This approach 

provided valuable information but is far too invasive to be used in the clinical 

setting.  With the development of magnetic resonance imaging (MRI) tagging 

techniques, non-invasive measurements of myocardial wall dynamics have been 

possible [76].   

The most commonly clinically utilized techniques for the assessment myocardial 

regional wall motion and deformation of the myocardium are echocardiography and 

tagged MRI.  LV wall function is typically assessed using 2-D Doppler 

echocardiography [77-82] through the interrogation of the  LV from various views to 

obtain an estimate of the 3-D segmental wall motion.  However, these measurements 

are not three dimensional in nature.  Furthermore, echocardiography is limited to 

limited to certain acquisition windows  

The most widely used approach for determining ventricular deformation is MR 

tagging [83-88].  MR tagging techniques rely on local perturbation of the 

magnetization of the myocardium with selective radio-frequency (RF) saturation to 

produce multiple, thin tag planes during diastole.  The resulting magnetization 

reference grid persists for up to 400 ms and is convected with the myocardium as it 
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deforms.  The tags provide fiducial points from which strain can be calculated [85, 

89].  The primary strength of tagging is that in vivo, noninvasive strain 

measurements are possible [85, 89].  The primary strength of MRI tagging is that 

noninvasive in vivo strain measurements are possible [85, 89].  It is effective for 

tracking fast, repeated motions in 3D.  There are, however, limitations in the use of 

tagged MRI for cardiac imaging.  The measured displacement at a given tag point 

contains only unidirectional information; in order to track the full 3D motion, these 

data have to be combined with information from other orthogonal tag sets over all 

time frames [76].  The technique’s spatial resolution is coarser than the MRI 

acquisition matrix.   Furthermore, the use of tags increases the acquisition time for 

the patient compared to standard cine-MRI, although improvements in acquisition 

speed have reduced the time necessary for image acquisition.   

Sinusas et al. have developed a method to determine the strain distributions of 

the left ventricle using un-tagged MRI  [90].  The system is a shaped based approach 

for quantifying regional myocardial deformations.  The shape properties of the endo- 

and epicardial surfaces are used to derive 3-D trajectories, which are in turn used to 

deform a finite element mesh of the myocardium.  The approach requires a 

segmentation of the myocardial surfaces in each 3-D image data set to derive the 

surface displacements. 

Our long-term goal is to use hyperelastic Warping to determine the strain 

distribution in the normal left ventricle.  These data will be compared with the left 

ventricular function due to the pathologies described above.  Toward this end, the 

initial validation of the use of hyperelastic Warping with cardiac cine-MRI images is 

described. 
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3.4.1. Validation of Warping for Tracking Left Ventricular 

Deformation using Volumetric MRI  

 To validate the use of Warping for predicting LV strains from sets of 

volumetric cine-MRI images, a pair of 3D cine MRI image datasets representing two 

states of the left ventricle during the cardiac cycle was required. Further, the 

deformation map between the states represented in the images had to be known to 

provide a gold standard for comparisons.  This was achieved by first acquiring a 

gated 3D cine-MRI dataset of a normal volunteer’s heart during early diastole on a 

1.5T Siemens scanner (256x256 image matrix, 378 mm FOV, 10 mm slice thickness, 

10 slices).  This volumetric MRI dataset was designated as the template image 

(Figure 11, left).  The endocardial and epicardial surfaces of the LV were hand 

segmented.  An FE model of the left ventricular (LV) image space was created based 

on these segmentations (Figure 12, left panel).  The myocardium was represented as 

a transversely isotropic material with the fiber angle varying linearly from –90o at the 

epicardial surface, through 0o at the 

mid-wall, to 90o at the endocardial 

surface [91].  The material coefficients 

were determined by least squares fit of 

the transversely isotropic hyperelastic 

constitutive model described in Weiss 

et al. [30] described above in the 

intravascular ultrasound section, to the 

Figure 11.  Mid-ventricular slices of the 
template (left) and the target (right) image 
datasets used in the validation analyses. 
Left image was obtained from direct MR 
volumetric image acquisition while right 
image was created by deforming left image 
using results of forward  FE analysis (see 
text). 
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biaxial stress/strain values presented in the work of Humphrey et al. [31, 32].  

 An internal pressure load representing end-diastole was applied to the lumen and 

a standard “forward” nonlinear FE analysis was performed using the NIKE3D finite 

element program [92] (Figure 12).  Using the deformation map obtained from the 

forward FE analysis, a deformed volumetric image dataset (target) was created by 

applying the deformation map to the original template MRI image (Figure 12, right 

panel). 

 A Warping model was created using the same geometry and material parameters 

that were used in the forward model described above.  The Warping analysis was 

performed using the template image data set and a target image dataset was created 

by applying the forward model’s deformation map to deform the template image.  

This yielded a template and target with a known solution for the deformations 

between them.  The forward FE and Warping predictions of fiber stretch (final 

length/initial length along the local fiber direction) were compared to determine the 

accuracy of the technique.  The validation results indicated good agreement between 

the forward and the warping fiber stretch distributions (Figure 13).  A detailed 

Figure 12:  Left - FE mesh for forward model used to create target image. 
Right - A detailed view of the mesh corresponding to myocardial wall.  Blue 
arrows indicate the pressure load applied to the endocardial surface. 
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analysis of the forward and predicted (Warping) stretch distributions for each image 

plane indicated good agreement (Figure 14).    

  To determine the sensitivity of the Warping analysis to changes in material 

parameters, µ and C3 were increased and decreased by 24% of the baseline values.  

The 24% increase and decrease corresponds to the 95% confidence interval of 

material parameters determined from the least-squares fit of the material model to 

the Humphrey et al. data [31, 32].  Since, the proper material model is often not 

known for biological tissue, the material model was changed from the transversely 

isotropic model described above to an isotropic neo-Hookean material model.  The 

analysis was repeated and the results compared with the forward model results. 
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Figure 13:  Fiber stretch distribution for the forward (left) and
warping (right) analyses.  The locations for the sensitivity analysis
are shown on the forward model as numbers 1-4.  Locations 5-8 are
at the same locations as 1-4 but at the mid-ventricle level. 
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0.90 

Forward Warping 

1 
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4 

Location 1 2 3 4 5 6 7 8 
 Upper Ventricle Mid Ventricle 

Forward 1.09 1.06 1.12 1.07 1.08 1.04 1.02 1.05 

µ+ 24% 1.09 1.09 1.13 1.07 1.07 1.03 1.03 1.05 

µ - 24% 1.09 1.09 1.13 1.07 1.08 1.03 1.03 1.05 

C3 + 24% 1.09 1.08 1.13 1.08 1.08 1.03 1.03 1.05 

C3 - 24% 1.10 1.09 1.13 1.07 1.08 1.03 1.03 1.05 

Neo-Hookean 1.10 1.07 1.13 1.07 1.07 1.02 1.02 1.05 

Table 1:  Effect of changes in material properties and material model on 
predicted fiber stretch.  “Forward” indicates the forward FE solution, the 
“gold standard”.  Columns indicate locations 1-8 of the left ventricle, 
defined in the caption for Figure 3 above.  

Figure 14. Comparison of Warping and forward nodal 
fiber stretch for each image slice.  Y7 corresponds to the 
slice at the base of LV and Y1 is near the apex of the LV.  
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 The forward and Warping sensitivity study results were compared at eight 

locations (Figure 13).  These results show excellent agreement (Table 1) for all cases 

indicating hyperelastic Warping is relatively insensitive to changes to material model 

and material parameters.  These results indicate that accurate predictions can be 

determined even when material model and parameters are not known.  This is 

consistent with our previous results of Warping analyses of intravascular ultrasound 

images [22]. 

3.4.2. Myocardial Infarction 

  

 To study changes in systolic wall function due to myocardial infarction, a 

warping analysis was performed on a 3-D cine-MRI image data set for an individual 

with a lateral wall myocardial infarction (Male, 155 lbs, 51 y/o at time of scan, 

diabetic w/ small infarction.)  The sub-endocardial infarction can be seen as the 

hyperenhancement of the lateral wall shown in the ce-MRI image (Figure 15A).   

  Delayed contrast enhanced MRI (ce-MRI) has been shown to be able to identify 

regions of infraction in the myocardium as hyperenhanced  [93-96]. Furthermore, 

studies have indicated that the transmural extent of the hyperenhancement of ce-MRI 

predicts recovery of function after revascularization [97, 98]  and can predict 

improved contractility post-revascularization [94].    
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To acquire the ce-MRI image data sets, the patients were placed supine in a 1.5T 

clinical scanner (General Electric) and a phased-array receiver coil was placed on the 

chest for imaging.  A commercially available gadolinium-based contrast agent was 

administered intravenously at a dose of 0.2 mmol/kg and gated images were acquired 

10-15 minutes after injection with 10 second breath holds.  The contrast-enhanced 

images were acquired with the use of a commercially available segmented inversion-

recovery sequence from General Electric.  The 3-D cine-MRI image data sets for this 

patient were acquired on a 1.5T GE scanner (256x256 image matrix, 378 mm FOV, 

10 mm slice thickness, 10 slices).  The volumetric MRI dataset corresponding to 

Figure 15:  A - Mid-ventricle contrast-enhanced MRI 
image of the left ventricle. The hyperenhancement 
indicates the location of the infarction (arrow in left panel). 
B - Circumferential stretch distribution for systolic 
contraction filling.  The arrow indicates the infarcted area 
of the lateral wall does not contract during systole.  Mid-
ventricle slices of the 3D cine MRI image data used for the 
systolic function analysis.  C - Mid-systolic image 
(template).  D -  End-systolic image (target). 
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end-systole was designated as the template image (Figure 15C) while the image 

dataset corresponding to end-diastole was designated the target image (Figure 15D).  

A warping model and analysis was made using the methods detailed above. 

The warping analysis reveals that the infarcted area undergoes little deformation 

during systole (circumferential stretch near 1.0).  The analysis further reveals that the 

wall dysfunction extends over the lateral wall of the myocardium outside the area of 

hyperenhancement indicated in the ce-MRI images (Figure 15A).  These results 

indicate that the contractile function of the heart is significantly impaired within and 

adjacent to the infarcted region.  

 

4. Discussion and Conclusions 

  

 The finite element implementation hyperelastic Warping is a highly flexible 

registration method that can be used for the registration of physical and non-physical 

deformations.  It makes use of either easily constructed regular meshes or irregular 

meshes that conform to the geometry of the structure being registered and can be 

used to register a particular region of interest or the entire of the image space.  

Additionally, hyperelasticity provides a physically realistic constraint for the 

registration of soft tissue deformation.  Hyperelasticity based constitutive relations 

have been used to describe the behavior of a wide variety of soft tissues including the 

left ventricle [99-102], arterial tissue [103, 104], skin [105] and ligaments[106-109].   

Hyperelastic Warping can be tailored to the type of soft tissue being registered 
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through the appropriate choice of hyperelastic material model and material 

parameters.   

 Deformable image registration models based other material models have been 

used extensively in the field of anatomical brain registration.   As was described 

above, an energy functional is minimized in order to achieve the registration 

solution.  This functional consists of a measure of image similarity and an internal 

energy term (equation (4)).  Measures of image similarity take the form of 

differences in the square of the image intensities (equation (8)) [15-17, 19, 110, 111] 

or are based on cross-correlation methods of the intensity or intensity gradient values 

[112].  Since the internal energy term of the energy functional is derived from the 

material model through the strain energy W, the registration process takes on the 

characteristics of the underlying material model.  For example, registration methods 

that use a viscous or inviscid fluid constitutive model [15 , 17] have been shown to 

provide excellent registration results.  However, these models have a tendency to 

underpenalize shear deformations and thus producing physically unrealistic 

registration of solids.  In other words, the deformation of the deformable template 

resembles that of a fluid rather than that of a solid. 

 Other continuum based methods use linear elasticity [12, 13, 15, 16]  to 

regularize registration.  The use of linear elasticity is attractive due to the fact that it 

is relatively simple to implement.  However, for the large deformations involved in 

inter- or intra-subject registration, it has a tendency to over-penalize large 

deformations.  This is due to the fact that linear elasticity is not rotationally invariant.   

For an isotropic linear elastic material, the constitutive law is: 

                      ( ) .trλ µ= +T e e  (37) 
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Here, λ and µ are the Lamé material coefficients, and e is the infinitesimal strain 

“tensor” defined in terms of the displacement gradients.  This infinitesimal strain is 

not a true tensor since it does not obey the transformation laws for 2nd order tensors.  

In detail: 

   

                     1 .
2

T ∂ ∂ = +   ∂ ∂  

u ue
X X

   (38) 

           But,      ( ) .
∂ −∂

= = −
∂ ∂

x Xu F 1
X X

 (39) 

For any deformation gradient F, we can use the polar decomposition to write F as 

=F RU , where R is a proper orthogonal rotation and U is the positive definite 

symmetric right stretch tensor.  With this substitution, 

                         ( ) ( )( )1 .
2

T= − + −e RU 1 RU 1  (40) 

As indicated in equation (40), the strain e depends directly on R, which describes the 

local rigid body rotation.  As a result, even the smallest rotation of material axes 

induces stress in a linear elastic solid making the constitutive model non-objective. 

 This work has demonstrated that hyperelastic Warping may be used to analyze a 

wide variety of image registration problems using standard medical image modalities 

such as ultrasound, MRI and CT.  The types of analyses demonstrated range from 

anatomical matching typical of non-physical image registration to the large physical 

deformations present in the deformation of the left ventricle over the cardiac cycle.  

As demonstrated in the presented work, the method allows for the estimation of the 
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stress distribution within the structure(s) being registered, an attribute that has not 

demonstrated by other registration methods. 
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6. Question and Answer Section 

 

Question 1: How are the principles of continuum mechanics used to regularize the 

deformable image registration problem involving the deformation of a template 

image into alignment with a target image?  What are the primary advantages of this 

approach to regularization of the deformable image problem in comparison to ad-hoc 

methods? 
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Question 2:  What is the purpose of the regularization term W in the deformable 

image registration problem? 

 

Question 3: What is meant by treating the image data as a “hard constraint” in the 

deformable image registration problem? 

 

Question 4:  In hyperelastic Warping, in the limit as the penalty parameter λ → ∞ , 

the image-based energy converges to a finite value. Explain.  

 

Question 5: Treating the image data as a hard constraint may cause the stiffness 

matrix to become ill-conditioned.  How does the augmented Lagrangian method 

solve this problem? 

 

Question 6: What is the role of the stiffness quantities in the solution procedure?  

 

Question 7: How is sequential low pass filtering used in hyperelastic Warping to 

keep from converging to local minima in the solution? 

 

Question 8: When using a regular mesh for hyperelastic Warping, why is rezoning 

needed? 

Question 9: How is mechanical stress calculated with hyperelastic Warping?  
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Answers  

 

Answer 1: A continuum mechanics-based approach models the template image as a 

deformable continuum that is analogous to a physical material.  This method 

generates a one-to-one correspondence between template and target images and, with 

the use of appropriate constitutive models, is objective for arbitrarily large 

deformations and rotations. 

 

Answer 2: Deformable image registration presents an ill-posed problem, which is 

solved by minimizing a potential energy cost function.  Without regularization, this 

problem admits multiple solutions.  W is the regularization term of the potential 

energy that constrains the solution space.  This does not necessarily eliminate the 

possibility of multiple solutions, but it constrains the solution to provide solutions 

with some desirable quality (i.e., one-to-one mapping). 

 

Answer 3: For hyperelastic Warping, the energy function 

( ) ( ) ( )( ), ,dv dvE W U T S
J J

ϕ= −∫ ∫
β β

X C X  combines the effect of image data and 

the effect of mechanics.  In order to reach a solution, a hard constraint of the image 

data  is applied with the use of a penalty parameter in the image energy density 

functional.  The mechanics is used to regularize the problem.  By contrast, a solution 

could be reached for the image deformation problem by using the image data as a 

soft constraint and using mechanics to drive the solution. 

 



48 

Answer 4: The image energy density functional is given by 

( ) ( ) ( )( )2,
2

U T Sλ
= −X Xϕ ϕ .  As the penalty parameter λ → ∞ ,  

( ) ( )( )2 0T S− →X ϕ , and the image energy converges to a finite value. 

 

Answer 5: As the penalty parameter λ  is increased, some of the diagonal terms in 

the stiffness matrix KI become very large with respect to others, leading to numerical 

ill-conditioning of the matrix.  Augmented Lagrangian methods use a small penalty 

parameter λ  to generate an initial solution at each computational timestep, then 

incrementally increase the image-based body force in an iterative loop.   

 

Answer 6: The image stiffness is given 2: U ϕ ϕ= ∂ ∂∂k  and the regularization 

stiffness is 2: W ϕ ϕ= ∂ ∂∂D .  These 2nd derivative terms (Hessians) describe how 

small perturbations of the current configuration affect the contributions of W and U 

to the overall energy of the system. 

 

Answer 7: By using sequential low pass filtering, fine textural details are reduced 

and the image is first registered to larger image features.  The cut-off frequency of 

the spatial frequency is then changed over computational time to remove the spatial 

filter and attain registration of fine textural detail after global registration is achieved. 

 

Answer 8: Regular meshes are subject to element inversion during the solution 

process due to the fact that they often cross large intensity gradients in the image 

data and thus are subjected to large distortional forces during the registration process.  
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A rezoning algorithm resets the finite element mesh and interpolates the current 

results on the reset mesh, avoiding element inversion and thus allowing the image 

registration process to continue. 

 

Answer 9: The template image is modeled as a deformable continuum with material 

properties defined via a hyperelastic strain energy function.  Material properties 

combined with strain information from the finite element deformation yield stress 

distributions for the deformed image. 
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