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Figure 1: Our progressive alignment approach working on a 3D dataset comprising a grid of 7×11 tiles, each of dimensions
2048×2048×1000. The total size of the dataset is 616 GB. All the tiles after alignment and stitching. The whole alignment
process took 4.97 minutes (running on 72 parallel threads). The Peak RAM usage on a 144 core CPU machine was 3 GB.

ABSTRACT

Large-scale three-dimensional (3D) microscopy acquisitions fre-
quently create terabytes of image data at high resolution and magni-
fication. Imaging large specimens at high magnifications requires
acquiring 3D overlapping image stacks as tiles arranged on a two-
dimensional (2D) grid that must subsequently be aligned and fused
into a single 3D volume. Due to their sheer size, aligning many
overlapping gigabyte-sized 3D tiles in parallel and at full resolution
is memory intensive and often I/O bound. Current techniques trade
accuracy for scalability, perform alignment on subsampled images,
and require additional postprocess algorithms to refine the align-
ment quality, usually with high computational requirements. One
common solution to the memory problem is to subdivide the overlap
region into smaller chunks (sub-blocks) and align the sub-block
pairs in parallel, choosing the pair with the most reliable alignment
to determine the global transformation. Yet aligning all sub-block
pairs at full resolution remains computationally expensive. The key
to quickly developing a fast, high-quality, low-memory solution is
to identify a single or a small set of sub-blocks that give good align-
ment at full resolution without touching all the overlapping data.
In this paper, we present a new iterative approach that leverages
coarse resolution alignments to progressively refine and align only
the promising candidates at finer resolutions, thereby aligning only
a small user-defined number of sub-blocks at full resolution to deter-
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mine the lowest error transformation between pairwise overlapping
tiles. Our progressive approach is 2.6x faster than the state of the
art, requires less than 450MB of peak RAM (per parallel thread),
and offers a higher quality alignment without the need for additional
postprocessing refinement steps to correct for alignment errors.

Keywords: Alignment, Stitching, Normalized Cross-Correlation,
Progressive Computations, Coarse-to-Fine, Microscopy, Terascale

1 INTRODUCTION

Recent advances in microscopy have enabled researchers to acquire
large amounts of data at high resolution and magnification. Conse-
quently, the samples are often too large to fit into the field of view of
a microscope. Computer-controlled micropositioning stages acquire
a single tile through the depth of the tissue (as a stack of 2D images)
at a given X, Y coordinate, the scan then moves to the next X, Y
coordinate, maintaining a fixed overlap with adjacent tiles, until
the entire region of interest has been imaged. As the microscope
moves from one position to the next, scanning one field of view at a
time, a range of movements often causes the data to be misaligned.
Reconstructing a 3D image of the specimen requires precise align-
ment of many overlapping 3D tiles. We target the use case where
overlapping 3D tiles need a fine-scale alignment, for instance in
multi-photon, lightsheet, or single slab confocal microscopy.

One of the key challenges in efficiently aligning terabyte-sized
datasets is the I/O bottleneck between disk and memory. Existing
alignment approaches often circumvent the problem by computing
coarse alignments using downsampled tiles, and optionally refining
the results using full-resolution tiles. However, a single coarse-
scale alignment, followed by a few full-resolution refinements in
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the neighborhood of the coarse-scale estimate does not always find
the best global transformation. Yet, in reality, very few techniques
have explored a more rigorous approach to align terascale images ef-
ficiently using coarse-scale alignments. The reason is twofold: first,
the coarse alignments can be unreliable if the resolution chosen is
too coarse; if a mistake is made at a coarse scale, it can be impossible
for the fine-scale alignment to succeed. Second, at full resolution,
although the search space is reduced by leveraging coarse align-
ments, there can still be significant amounts of data to be fetched for
fine-scale alignment to succeed. Current state-of-the-art tools thus
often take several hours to days on a moderate desktop and a few
hours on a large server to align and stitch terabyte-sized images at
full resolution. A trade-off between precision and performance is
generally required to improve the compute time.

Our approach is based on the crucial observation that if we di-
vide the overlapping regions into sub-blocks, few sub-blocks are
required at full resolution to obtain accurate alignments, and the
majority of the sub-blocks can safely be pruned after examining
their inexpensive coarse-scale alignments. We address the above
challenges by performing progressive computations, starting with a
coarse resolution, and refining as needed only the sub-blocks that
are likely to provide good alignment at full resolution. Realizing this
approach requires us to solve a number of fundamental problems:
how to choose the starting resolution level, how to reliably elimi-
nate the sub-blocks that likely do not contain enough information
for good alignment, how to efficiently refine a sub-block’s resolu-
tion, and how to efficiently perform low-level pairwise alignment of
sub-blocks.

Contributions. To address these challenges, our specific technical
contributions are:

• A heuristic to determine the minimum resolution required to
make informed decisions on what sub-blocks to keep/discard
based on the percentage of sub-blocks that provide consistent
alignments between successive resolutions and the signal-to-
noise ratio

• A new hybrid method to estimate pairwise alignment using
3D NCC at coarse resolutions and a fast maximum intensity
projection based 2D approximation at finer resolutions

• A probabilistic approach to decide which sub-blocks to use for
alignment at a higher resolution based on a two-stage stratified
weighted random sampling

• The above contributions are made possible through a novel I/O
scheme utilizing efficient progressive refinement of sub-block
resolution without re-fetching data from disk.

Together, our contributions amount to a novel, fast, and an it-
erative approach that leverages coarse-scale computations to pro-
gressively guide fine-scale computations to fetch higher resolution
data where it matters most for alignment refinement, guaranteeing
a high-quality result with low computational requirements. Unlike
previous approaches, our method is progressive and adaptive, since
it utilizes multiple resolution levels as needed, and sub-blocks can
be dropped at different resolution levels depending on whether they
are useful at the next finer level. This method gives users a flexible
choice of Quality vs. Speed: when a fast solution is desired, our
approach seamlessly skips multiple refinements; to maximize quality
it uses all the resolution levels. We demonstrate the efficacy of our
approach through extensive experiments, which show orders of mag-
nitude speed-up over the state-of-the-art methods while requiring
less memory and offering high-quality alignments.

2 BACKGROUND AND RELATED WORK

Large Microscopy Acquisitions. The primate brain contains bil-
lions of neurons connected in specific ways to form complex circuits.

Brain function emerges from the activity of these circuits, and long-
range connections between different brain areas dictate the flow of
information. A major goal of modern neuroscience is to obtain a
wiring diagram of neural circuits across the entire brain at different
scales, a field called connectomics. While initial efforts to create
a connectome have focused on rodent brains [3, 7], mapping the
non-human primate (NHP) brain is rapidly becoming a feasible goal.
To effectively resolve and visualize individual fluorescently labeled
axons (which frequently cross and overlap each other through the
NHP cortex), a minimum resolution of 20-40x magnification in
the x-y plane combined with a z-axis step size of 0.25-1.0 microns
between imaging planes is necessary. At this magnification and
z-resolution, researchers can unambiguously identify continuous
neuronal projections and the axonal and dendritic protrusions along
them, which identify synaptic points of contact with other cells. A
consequence of this high magnification is that the samples are often
too large to fit into the field of view of a microscope. Therefore,
computer-controlled micropositioning stages are used to acquire
images as overlapping tiles arranged according to a 2D grid to image
an entire specimen. One of the first challenges for a neuroscientist is
to automatically align and reconstruct a 3D image of the specimen
for visualization and analysis.

Image Alignment Methods. Image alignment methods are
broadly classified into intensity-based [1, 28, 32, 33] and feature-
correspondence-based algorithms [2, 8, 20, 25, 29, 37, 39]. Intensity-
based approaches derive a cost function using the image intensity val-
ues and solve an optimization problem to align images. In contrast,
feature-based methods extract image features and feature correspon-
dences to fit a parametric model using ordinary least squares. For im-
ages with overlap, intensity-based methods are more suitable due to
their simplicity and effectiveness. An image dissimilarity/similarity
metric is minimized/maximized to find the unknown coordinate
transformation that best matches the overlapping images. In pattern
matching, this problem is extensively studied and is commonly re-
ferred to as template matching [6,15,16,23,36]. A small patch from
the source image (template) is matched to a set of nonoverlapping
candidate patches in the target image by computing a similarity score
for each pair of matches. The pair with the highest score determines
the final transformation. Recent research has extended the class of
solutions to transformations with subpixel accuracy and rigid [26]
and affine transformations [21]. For microscopy images recovering
3D translations is typically sufficient to align the data.

Correlation in 3D Images. To retrieve 3D translation from overlap-
ping images, the sum of squared differences in the intensity values
is minimized or equivalently the cross-correlation is maximized
using PC [12] or NCC [23]. A full exhaustive search subdivides
the overlap region into small 3D blocks, and repeatedly applies the
correlation algorithm to each pair of blocks to determine the best
match, hence the 3D translation. PC is efficiently calculated in the
transform domain as the inverse Fourier transform of the normalized
cross-spectrum between the two images. It is fast, resilient to noise,
and often used at coarse resolutions to find rough estimates for the
translation. However, PC fails when the local image variance is not
constant. NCC overcomes this challenge by normalizing the image
variance in both the source and the target 3D blocks. Nonetheless,
the normalization step is expensive since it is required to compute the
local image variance using spatial domain sliding windows. Precom-
puting image integrals using summed area tables [9] often speeds
up the normalization. Although this algorithm is easy to implement
and fast at coarse resolutions, the main obstacle to directly using it
to align terabyte-sized 3D images at full resolution is the computa-
tional cost to calculate the similarity metric for all pairs of blocks
and the cost of frequently moving large amounts of data from disk
(sometimes stored out of core) to main memory.

Related Alignment Tools. Prior solutions to align large-scale mi-
croscopy data broadly fall into three groups: divide and conquer-
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Figure 2: Overview of the progressive refinement and pruning al-
gorithm. For each tile pair, the overlap region is sub-divided into
sub-blocks, and for each corresponding sub-block pair, we repeat the
alignment, clustering, pruning, and refinement loop, starting from
the coarsest resolution (0), until the full resolution (l).

based solutions, interest point-based methods, and multiresolution
techniques. Divide-and-conquer solutions subdivide the overlap
region into small blocks; and compute the correlation for each
block, potentially using an approximation to speed up the align-
ment. TeraStitcher [5] has extensively studied this class of solution.
TeraStitcher [5] subdivided the overlap region into multiple z-slabs
and computed the alignment using NCC and 2D projections of the
z-slabs. This approach provides fairly accurate results for images
with axis-aligned features and smooth gradients. However, for the
images we tested, we noticed large alignment errors. Additionally,
this approach touches the entire overlap region at full resolution and
computes 2D NCC using sliding windows, both of which signifi-
cantly impact runtime. A recent extension to this framework [4]
addresses some of the limitations and accelerates the alignment
computation using GPUs. Our approach uses 3D NCC at coarse
resolutions, and inspired by this approach, we switch to a fast 2D
approximation as blocks are refined.

Interest-point-based methods identify regions with high informa-
tion density and compute correlations only around a small window
centered on the interest points. XuvTools [10] aligns pairwise images
at full resolution by computing NCC in regions with a high gradient
magnitude. By restricting the combined volume of the regions to a
small portion of the overlap, this approach yields fast high-quality
results. However, this solution does not scale to terabyte-sized
datasets, often running into out-of-memory issues. BigStitcher [19]
circumvents the memory problem by working on downsampled im-
ages using PC with subpixel precision to align large overlapping
tiles. Any initial alignment errors are corrected by utilizing a varia-
tion of the iterative closest point algorithm [31] in the postprocess.
For optimal performance, this approach requires converting the raw
data to HDF5 — a multiresolution, block data format. HDF5 sup-
ports multiresolution using mipmaps, leading to data duplication.
Although this implementation supports full-resolution alignment,
it is significantly slower. We avoid the data duplication problem
by leveraging the IDX data format [22], which rearranges the data
samples according to hierarchical space-filling curves.

Yu et al. [38] proposed iStitch, a two-step multiresolution ap-
proach to speed up the alignment computation. In step one, interest
points are identified using PC and NCC on 125x downsampled im-
ages to determine a rough estimate for the translation. In step two,
the final transformation is found at full resolution by computing PC
and NCC within a small window centered around the best location
estimate from the coarse resolution. Even though this approach
succeeds in improving the runtime, using a single fixed coarse reso-
lution to find rough estimates may produce alignment mistakes from
which recovery is not possible. In contrast, our approach uses all

Figure 3: A partition of the sub-block transformation space into
clusters and subclusters using two-stage stratification. Here, stage
one partitions the transformation space into two clusters (blue and
light green), and eliminates the noisy sub-blocks (light pink). Stage
two further partitions the remaining cluster into four subclusters
(blue, orange, dark pink, and dark green). Note, we only show the
overlapping region between two tiles, rendered using contrasting
color palettes (olive and seaweed green) to highlight the initial
misalignment.

the resolution levels (computed on the fly), progressively reducing
the number of computations at each refinement, concurrently im-
proving the reliability of each estimate, and thereby guaranteeing a
high-quality solution.

Performing progressive computations can significantly reduce
the problem’s complexity and provide a fast, low-cost solution even
when working with terabyte-sized images. We use ideas from coarse-
to-fine template matching [14, 24, 26, 34] to efficiently reduce the
number of computations at full resolution. Coarse-to-fine template
matching is based on efficiently examining a lower bounding func-
tion to rapidly eliminate mismatching candidates at coarse resolu-
tions, thereby minimizing the number of expensive computations at
full resolution. The lower bounding function is usually generated us-
ing a projection kernel [17], and with each refinement in resolution,
the bound gets tighter, eliminating further candidates. This process
is repeated until full resolution, where only a few remaining candi-
dates are matched to find the best transformation. Ouyang et al. [27]
compared state-of-the-art algorithms to compute the lower bounding
functions in a unified framework. Our approach is motivated by this
line of research and is similar in the following aspects: first, we
leverage coarse-resolution alignments to carefully prune candidates
that are unlikely to contribute to the full-resolution alignment, and,
second, with each refinement in resolution, the accuracy of our solu-
tion improves, thereby guaranteeing a high-quality alignment at full
resolution. However, we significantly differ by avoiding computing
the lower bounding function since it requires fetching the entire
overlap region at full resolution to compute the coarse-resolution
template and candidates, which is expensive. Instead, we employ a
probabilistic approach using two-stage stratified weighted random
sampling to find the candidates to refine at the next higher resolution.
Our solution is progressive and does not require fetching the entire
overlap at full resolution to align pairwise volumes.

3 APPROACH

Formally, the alignment problem we aim to solve can be stated
as follows. The input is a set of tiles, T, that overlap in 3D. A
tile is a 3D volume corresponding to the 2D stack of raw image
data. The outputs are a set of 3D translations for each pair of
overlapping tiles in T. When two tiles t1, t2 ∈ T overlap, we define
two sets of sub-blocks in the overlapping region, S1 and S2 (Si ∈ ti).
We denote the total number of sub-blocks using N. The spatial
extent of the sub-blocks does not change throughout the alignment
process, but the number of data samples they contain will change.
Our progressive approach starts from the coarsest resolution level
and computes alignment for each corresponding sub-block pair.
The alignment computation (Sect. 3.1) assigns a 3D translation
and a reliability score that is used to group the sub-blocks into
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Figure 4: Progressive pruning and refinement of the sub-blocks. The volume rendering only shows the overlapping region between two
tiles, rendered using contrasting color palettes (olive and seaweed green) to highlight the initial misalignment. Starting after prune-start
resolution (far left), a two-stage stratification subdivides the sub-block transformation space into clusters and subclusters at each resolution.
The sub-blocks refined at each resolution are colored based on the subcluster-id. At full resolution (far right), only the remaining sub-blocks
are aligned to determine the final transformation.

clusters and subclusters (Sect. 3.2). A probability value is assigned
for each sub-block using the cluster and the sub-cluster size, and
the sub-blocks to refine at the next resolution level are selected
using weighted random sampling (Sect. 3.3). With each refinement,
the number of sub-blocks to align decreases exponentially, and
the alignment, clustering, pruning, and refinement loop is repeated
until full resolution. Fig. 2 illustrates the progressive pruning, and
refinement loop. At the full resolution, only the remaining sub-
blocks after the coarse-to-fine elimination process are aligned to
compute the final transformation for the pair of tiles ( Sect. 3.4).
We leverage the IDX [22] multiresolution format to service region-
at-resolution requests on the fly (Sect. 3.5). Finally, all tile-pair
transformations are combined to construct an aligned image.

3.1 Alignment Computation

Given a pair of sub-blocks, the alignment computation finds the trans-
formation that maximizes the normalized cross-correlation (NCC)
between them. The correlation is computed in the Fourier domain,
using FFTW [13] to compute FFT, and summed area tables are used
to speed up the normalization [23]. Similarly to [5], we use two
reliability measures: NCC peak value (the higher, the more reli-
able), and NCC shape width of the peak to assign a reliability score
for a sub-block pair. The NCC shape width is the radius at which
NCC value drops to 80% of the peak, with smaller values indicating
higher reliability. The reliability score is the product of the NCC
peak value and one minus mean NCC shape width, with the mean
width normalized by a maximum tolerance constant, empirically set
to 30.

We compute precise pairwise transformations using 3D NCC at
coarse-resolution levels and switch to a fast 2D approximation based
on maximum intensity projection (MIP) and 2D NCC at finer reso-
lutions. Although the spatial extent of a sub-block remains the same
throughout the alignment process, the number of samples contained
in a sub-block increases with resolution. Therefore, as resolution
increases, computing NCC in 3D becomes expensive. Replacing
the expensive 3D computation with the 2D approximation results in
significant speed-up, without a major drop in quality. Our implemen-
tation provides users the flexibility to choose the resolution level to
switch from 3D NCC to the 2D approximation, thereby allowing
the use of 3D NCC at all resolution levels when accuracy is critical.
For the 2D approximation, we compute, as in [5], MIP along the
axis directions and 2D NCC for each pair of MIPs, resulting in two
translations per direction. In contrast to [5], we assign the translation
value of the most reliable MIP to the corresponding directions, and
for the remaining direction, the most reliable translation along this
direction is assigned from the other two MIPs. We evaluate the ad-
vantage and the cost in terms of the alignment quality of switching to
the 2D approximation at fine resolutions in Sect. 4. The alignment
computation returns a transformation and a reliability score.

3.2 Clustering

Given the sub-block transformation and reliability score, we partition
the sub-block transformation space into clusters and subclusters us-
ing two-stage stratification. First, we assign each reliable sub-block
to a cluster. The clustering is done in the space of sub-block transla-
tions using DBSCAN [11]. DBSCAN groups high-dimensional vectors
into dense connected regions using two parameters: minimum num-
ber of points to form a cluster (MINPOINTS) and the proximity of
points to be considered as the same cluster (EPSDISTANCE). We use
the Euclidean distance to measure proximity and set MINPOINTS

to two and EPSDISTANCE to one to form the clusters. We denote
the sub-blocks that do not belong to any cluster as non-informative
blocks (noise), and these blocks will not be considered further. Since
DBSCAN forms density-connected clusters, a cluster can span a large
extent of the transformation space. Hence, the first stage of strati-
fication usually results in a small number of clusters. To add more
structure to the partitioning, we use the second stage of stratification.
In the second stage of stratification, we split each cluster into a
subcluster by grouping the sub-blocks with identical transformations
into a subcluster. We set MINPOINTS and EPSDISTANCE to zero to
form the subclusters. Fig. 3 illustrates the two-stage stratification.
The partitioning of the sub-block transformation space into clusters
and subclusters aids the early elimination of sub-blocks that are not
useful at the next finer level.

3.3 Pruning and Local Refinement

We take a probabilistic approach to determine the sub-blocks to
refine at the next resolution level, using weighted random sampling.
For each cluster, we assign a probability value as the ratio of the
number of sub-blocks in the cluster to the total number of sub-blocks
in all the clusters, and for each resulting subcluster (within a cluster),
we assign a probability value as the ratio of the number of sub-blocks
in a subcluster to the total number of sub-blocks within its parent
cluster. We order the sub-blocks (largest to smallest) within each
subcluster based on the reliability score so that when a subcluster is
sampled, the most reliable sub-block is chosen first. By choosing
weighted random sampling to select clusters and subclusters, we
avoid introducing bias into our sampling. We make a determinis-
tic choice only when a cluster and a subcluster are sampled, i.e.,
we choose the most reliable block first to be refined. In contrast,
sampling the clusters/subclusters directly by sorting them by size
and/or reliability introduces bias. We note that at coarse resolutions,
it is not possible to make a deterministic choice as to which clus-
ter will align a higher percentage of the overlap at full resolution
as the clusters are yet to fully develop. With refinement, clusters
can continue, split or merge. Therefore, it not always true that the
largest cluster/subcluster at resolution i continues to be the largest
cluster/subcluster at resolution i+1.

We select the sub-blocks to refine for the next higher resolution
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(r) by sampling one at a time: first, the clusters (using the cluster
probabilities as weights) to select a cluster and then the subclusters of
the selected cluster (using the subcluster probabilities as weights) to
choose a sub-block. The number of sub-blocks that are refined at the
next resolution (r) is found using the expression N.(nfs /N)(p−r)/p,
where N is the total number of sub-blocks, nfs is the number of sub-
blocks to align at full resolution, and p is the minimum resolution
to start the pruning process. The remaining sub-blocks are pruned
at the current resolution and will not be considered further. We
describe the heuristic used to choose the minimum resolution (p)
in Sect. 3.6. Once an entire subcluster (or cluster) is exhausted, we
recompute the weights for random sampling. Fig. 4 illustrates the
pruning process.

3.4 Full Resolution and Final Transformation

At full resolution, given the remaining sub-blocks after coarse-to-
fine pruning, we find the best transformation that aligns the tile pair.
In most cases, aligning the remaining sub-blocks at full resolution
and using the transformation corresponding to the most reliable sub-
block is sufficient to align the tile pair. However, in some cases, we
noticed that more than one translation potentially aligned a portion of
the overlap ( Fig. 12). In order to select the translation that best aligns
the majority of the overlap, we take an alternate approach to assign
the best transformation. We realign the remaining sub-blocks at
full resolution and group the sub-blocks with unique transformation
into clusters. The resulting clusters are sorted (highest to lowest)
based on cluster size, breaking ties using the average reliability
score of all the sub-blocks within a cluster. We discard clusters
with an average reliability score of less than 20% as unreliable,
and from the remaining clusters, we choose the most reliable sub-
block from the largest cluster as the candidate block for the final
transformation. Next, we select additional candidates from the
remaining clusters whose relative transformation distance is less
than or equal to five voxels (empirically chosen) to the candidate
sub-block’s transformation (since the transformation in our case is
a 3D translation, the distance between transformations is measured
using the Euclidean distance metric). The transformation of the
sub-block closest to the centroid of the candidates’ transformation is
chosen as the final transformation between the pair of tiles. When
the cluster size is zero, the transformation of the sub-block with the
largest reliability score is chosen as the final transformation between
the pair of tiles.

Global Tile Placement. Once the pairwise alignment for all tile
pairs is completed, we perform a global optimization step to find the
final tile positions. We take a similar approach to BigStitcher [19],
to build point matches for each overlapping tile pair. For the moving
tile, we transform the 8-point bounding box of its overlap using the
computed pairwise transformation and build a point correspondence
to the bounding box of the fixed tile’s overlap. We use the iterative
minimization scheme of Saalfeld et al. [30], and minimize the square
displacements of the point matches to find the final tile positions.

3.5 Progressive Loading of Sub-Blocks

For efficient loading of low-resolution data from disk, the common
row-major order of storing grid samples is undesirable, since sam-
ples at different resolution levels are stored and fetched together.
Instead, we leverage the multiresolution IDX data format [22], which
decomposes a grid of samples G into a series of nested subgrids
G0 ⊂ G1 ⊂ ·· · ⊂ Gl−1 = G. Starting from G, each subgrid Gn is
formed by collecting all even-indexed samples in Gn+1 in one of
the dimensions (x, y, or z) and discarding the rest of the samples, so
that Gn contains half the number of samples as Gn+1. The indexing
scheme is such that if Gn+1 has 2x ×2y ×2z samples, they will be
given indices (0,0,0) to (2x −1,2y −1,2z −1), inclusively. Gn then
consists of samples in Gn+1 with indices of the form (i, j,k) where
i ∈ [0,2,4, . . . ,2x −2], 0 ≤ j ≤ 2y −1, and 0 ≤ k ≤ 2z −1, assuming

Figure 5: A visual validation of our pruning process. Each point
in the figure represents a sub-block, and the color indicates the
resolution at which the sub-block was discarded during our coarse-
to-fine alignment computation. In addition, it shows the L2 error
between the sub-block’s full resolution transform and the baseline
best transform. The sub-blocks to the left of the vertical line x = 10
are refined at resolutions l − 3 or higher and their L2 error is less
than 10 voxels.

that the split dimension is x. Each subgrid Gn is called a resolution
level: G0 is the coarsest resolution level and Gl−1 is the finest; the
whole domain is thus decomposed into l resolution levels.

On disk, the resolution levels are stored separately in units of
blocks of 2B samples each (the first few resolution levels are grouped
together in the first block if necessary). The blocks form the unit
of disk I/O, i.e., whenever a sample is requested, the entire block
containing that sample is read from the disk. On each level, the
individual samples are sorted using Morton codes [35] prior to
blocking, so that each sample is conceptually a leaf of a k-d tree,
with the root representing the whole domain (potentially padded to
have power-of-two dimensions). This scheme allows for efficient
region-of-interest queries: given two inputs – a resolution level L
and a 3D extent E (an axis-aligned box in 3D) – the k-d tree can
be traversed in logarithmic time to determine blocks that overlap
with E at resolution levels no finer than L. These blocks are then
fetched from disk, and relevant data samples are copied into an
output memory buffer denoted as BL,E , ready to be used for further
processing tasks.

In our case, each extent E is the bounding box of a sub-block; we
keep the same extents but progressively query for more data samples
inside the extents (that is, increasing their resolution). Because
the resolution levels are nested, if finer resolution samples are later
needed for the same extent E, the buffer BL,E can be expanded
to accommodate new samples at level L+ 1 to be fetched from
disk, while retaining the existing samples. This progressive loading
process avoids fetching BL+1,E entirely from disk, which would
be much more expensive. The updated buffer, BL+1,E , is a finer
resolution representation of the 3D field contained in E. In our
implementation, we use the HANA file reader [18], which provides
progressive loading for IDX encoded data.

3.6 Heuristic for Reliable Prune-Start Resolution

The success of a coarse-to-fine alignment approach is contingent on
how the minimum resolution (p) to start pruning the sub-blocks is
chosen. Choosing a fixed starting resolution for each dataset or at
random can lead to large unforeseen alignment errors and slower
execution times. A good starting resolution must be stable; it should
contain a high percentage of blocks with sufficient detail to system-
atically identify the next set of blocks to refine. To identify a stable
resolution with high percentage of informative blocks, we cluster
sub-block transformations using DBSCAN, setting MINPOINTS to
one percent of the total number of sub-blocks (N) and EPSDISTANCE
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Figure 6: An example of how the prune-start resolution is determined. Here we show an overlapping region between two tiles, rendered at
multiple coarse resolution levels. The tiles use contrasting color palettes (blue and red) to highlight the initial misalignment. The bounding
boxes represent sub-blocks, with color that encodes the classification of the sub-block into signal or noise. Most sub-blocks at resolution
levels 0 and 1 are noise (light pink bounding boxes). In contrast, most sub-blocks at resolution 2 are signal (blue bounding boxes). Between
resolution levels 1 and 2, most sub-blocks change their classification from being signal to noise and vice versa; between resolutions 2 and 3,
most sub-blocks retain their membership. At resolution level 3, there are enough self-consistent sub-blocks and a high signal-to-noise ratio to
start eliminating the sub-blocks. This resolution is called the prune-start resolution.

to one, to group sub-blocks into clusters of size ≥ MINPOINTS. Set-
ting MINPOINTS to one percent of the total number of sub-blocks
minimizes the number of false positives. We refer to a sub-block
that is not part of any cluster as noise and a sub-block with nonzero
cluster-id as signal. To determine whether a resolution is stable or
not, we check for self-consistency between successive resolutions.

We define a resolution to be stable when there is minimal change
in sub-block membership between successive resolution levels. A
sub-block can change its membership (i.e., from signal to noise or
vice versa) at coarse resolutions for two reasons: first, it is typical
for random blobs in the sub-blocks to correlate, leading to false
positives (noise as signal), and second, insufficient resolution can
lead to incomplete features that do not correlate, leading to false
negatives (signal as noise). Usually, one refinement in resolution
is sufficient to detect such unexpected correlations. We measure
stability by counting the number of sub-blocks that are identified
as signal or noise in successive resolutions. We label these sub-
blocks as self-consistent. In addition, if the distance between the
sub-block transformation at the two resolutions is less than or equal
to a fixed distance threshold, we consider those sub-blocks to be
self-consistent. The distance threshold accounts for isolated points
in the transformation space that are incorrectly classified as noise.
We typically set the distance threshold (d) to a small value (two
voxels). We start pruning sub-blocks when the percentage of self-
consistent blocks and the signal-to-noise ratio is above a user-defined
threshold. Fig. 6 illustrates our approach in action.

For tiles with sparse tiny structures or a very low signal-to-noise
ratio, we note that the percentage of self-consistent sub-blocks or
signal-to-noise ratio can be below the user-threshold even at fine
resolutions, which leads to aligning the entire overlap at all the
resolutions levels. We avoid this scenario by allowing users to
configure the default prune-start resolution. Once the default start
resolution is reached, we start the pruning process (if it has still not
started). Note, up to the prune-start resolution, all the sub-blocks
are aligned in parallel for each successive resolution. However, the
overhead due to this additional calculation is usually insignificant.
The reason is twofold: first, correlation computation is significantly
faster at coarse resolutions, and second, we cache transformations
and the sub-block samples from the previous resolution and fetch
from disk only the missing samples on refinement. Since the data
samples are stored in Morton order, this operation is very fast.

3.7 Multithreaded Implementation

To hide the disk I/O latency introduced by the sub-block refinement
process, we overlap I/O with computations through multithreading,

so that while some threads are waiting for disk I/O to complete, the
system can schedule other threads that perform alignment of sub-
blocks and other computations. All the sub-block pairs are added
into an alignment queue, from which each of several worker threads
removes one element, loads and aligns the block at the requested
resolution, and pushes the result to a result queue. The worker that
processes the last element from the alignment queue notifies the
result thread. The result thread processes the alignment results, and
furthermore decides whether it is reliable to start discarding the sub-
blocks at the current resolution, as well as to identify reliable sub-
blocks to refine and push only these sub-blocks back to the alignment
queue at a higher resolution level. Our multithreaded implementation
not only hides disk I/O latency but also takes advantage of the
inherent parallelism of the problem, as sub-blocks can be processed
in parallel.

4 EVALUATION

We evaluate whether or not the steps in the algorithm perform as
expected and motivate choices in tunable parameters. First, we test
whether our algorithm discards the correct sub-blocks at each resolu-
tion by measuring the error between the sub-blocks transformation
and the baseline best transformation using the L2 norm. We compute
the sub-blocks transformation for the purpose of this test at the full
resolution to accurately measure the error (although we do not use
the full resolution transformation to make the decision to discard the
sub-block during the coarse-to-fine alignment). For our algorithm
to succeed, we expect to discard the unreliable blocks at coarse
resolutions early and only refine blocks that matter the most to align
the overlap at full resolution. Next, we test how our algorithm per-
forms when only a small percentage of the sub-blocks are refined
at full resolution and whether there is a significant improvement to
the accuracy when a higher percentage of blocks are refined at full
resolution. Finally, we test the usefulness of skipping resolution lev-
els and using the 2D approximation for alignment at full resolution
by measuring the loss in quality and the gain in terms of speed-up.
We perform the evaluation by measuring performance and accuracy
while aligning 77 tiles of labeled axons, arranged on a 7x11 grid
with 15% overlap. The extent of each tile is 2048x2048x1000. We
subdivide the overlap region into sub-blocks of size 128x128x64
(note the sub-blocks on the boundary are usually of smaller size) and
align sub-block pairs in parallel. The choice of sub-block size does
not significantly impact the result (we discuss this in more detail
in Sect. 5.1).
Baseline Best Transformation. In the absence of an actual ground
truth to compare our results against, we refer to the best transforma-
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Figure 7: Alignment quality curves demonstrate that our solution is
robust even when only 1% of the blocks are refined at full resolution.
The vertical and horizontal lines assist in comparing the different
levels of refinement with respect to quality. A significant number of
tile pairs improve in quality going from 1% to 5%, and then we run
into diminishing returns in the rate of improvement. Refining 1% of
the overlap aligned 80% of tile pairs with at most 2 voxel L2 error
with respect to the baseline best transform.

tion — that aligns most of the overlap — from the full resolution
exhaustive search as the ground truth. To compute the ground truth,
we subdivide the overlap region at full resolution into sub-blocks
of size 128×128×64 and align each sub-block pair. We group the
sub-blocks with unique transformation into clusters and order the
resulting clusters (highest to lowest) using cluster size, breaking ties
using the average reliability score of all the sub-blocks within a clus-
ter. We discard clusters with an average reliability score of less than
20% as unreliable. From the remaining clusters, we choose the most
reliable sub-block from the largest cluster as the candidate block for
the final transformation. Next, we select additional candidates from
the remaining clusters whose relative transformation distance is less
than or equal to five voxels (empirically chosen) to the candidate
sub-block’s transformation. We define the centroid of the candidates’
transformation as the best transformation between the pair of tiles.
Additionally, we visually validate the quality of the best transform.

When to Discard Blocks. Fig. 5 illustrates at what stage our
approach discards a sub-block and what is the error between the
sub-block’s transformation (computed at full resolution) and the
baseline best transformation (hereon, we refer to this as the ground
truth). Each point in Fig. 5 represents a sub-block, and the color
encodes the resolution at which the sub-block was discarded. For
all tile pairs, the sub-blocks that are furthest from the ground truth
are discarded early at coarse resolutions, and only the sub-blocks
guaranteed to give a good result are refined.

Accuracy vs. Percentage Refinement. We measure the alignment
quality as the L2 norm between the centroid of the candidate blocks
transformation to the baseline best transform. Computing the align-
ment with 3D NCC by utilizing all the resolution levels to identify
the full resolution blocks progressively provides the most accurate
result. Fig. 7 reports the alignment quality using 3D NCC and all
the resolution levels. Refining 1% of the sub-blocks at full resolution
aligned 42% of the tile pairs with at most 1 voxel error and 94% of
the tile pairs with at most 3 voxel error. Refining 35% of the blocks
at full resolution resulted in 97% of the tile pairs with at most 1
voxel error. Although the quality significantly improved, the runtime
was roughly 6 times slower than refining 1% of the blocks. However,
for most datasets, refining 1-5% of the blocks at full resolution is
sufficient. As resolution increases, computing NCC in 3D becomes
expensive. We evaluate next the use of progression step size and its
impact on the runtime and quality.

Skipping Resolution Levels. We use progression step size to in-
dicate the number of resolution levels skipped during refinement.

Figure 8: Alignment quality curves demonstrate using progression
step size 4 has a very small impact on the quality. However, it
significantly improves the speed (1.65− 1.83x). Refining 1% of
the overlap still aligns 80% of tile pairs with at most 2 voxel L2
error; however, a larger percentage of tile pairs have errors between
2.5 and 4 voxels. The larger the distance to the best transform, the
higher the L2 error and hence the lower the quality.

With progression step size equal to 4, blocks are coarsened/refined
at every 4th resolution. Although progression step size greater than
1 offers a guaranteed speed-up, the percentage of sub-blocks refined
at any particular resolution still depends only on the prune-start res-
olution, total number of sub-blocks, and the number of sub-blocks
to align at full resolution. Therefore, at each refinement, we dis-
card a higher percentage of sub-blocks; consequently, the quality
of the sub-blocks that are refined at higher resolutions may change.
Using progression step size too aggressively can result in reliable
sub-blocks being discarded even before their features are resolved
and instead are replaced by false positives. To ensure reliable qual-
ity, we skip resolution levels only after the prune-start resolution.
Fig. 8 reports the alignment quality with progression step size equal
to 4. Skipping resolutions l −3 and above results in a speed-up of
1.65−1.83, with almost identical alignment quality (as progression
step size equal to 1). We recommend using progression step size
equal to 4 by default and switching to a lower step size only when
noise levels are very high.

Speed vs. Quality. Fig. 9 reports the alignment quality with pro-
gression step size equal to 4, using MIP 2D NCC at full resolution.
Using the 2D approximation resulted in a speed-up of 6 − 16x,
compared to using 3D NCC with progression step size equal to 1.
However, refining 1% of the blocks at full resolution resulted in only
20% of the tile pairs being aligned with at most 1 voxel error (in
comparison to 42% with 3D NCC). In contrast, refining 20% of the
blocks aligned 80% of the tile pairs with at most 1 voxel error (in
comparison to 94% with 3D NCC). We refer to switching to 2D
MIP NCC at full resolution as hybrid mode. When we switch to the
2D approximation at a lower resolution, we specify the resolution
level at which the algorithms are switched. In the hybrid mode,
refining 20% of the blocks is only two times more expensive than
refining 1% of the blocks. Incidentally, refining 5% of blocks with
progression step size equal to four (second curve from the bottom
in Fig. 8), using only 3D NCC, runs at a comparable runtime vis-
à-vis refining 1% of blocks using 3D NCC and all the resolutions
(first curve from the bottom in Fig. 7), although with significantly
higher quality. Refining 20% of blocks with progression step size
equal to four and using the hybrid mode (topmost curve in Fig. 9))
runs three times faster and has better quality. Given a fixed time
budget (under 10 minutes), using the hybrid mode, progression step
size equal to four, and refining at least 20% of the blocks at full
resolution produce the most accurate solution. Given a fixed error
bound (1 micron), the fastest time to solution is roughly 43 minutes.
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Figure 9: Alignment quality curves shows using the hybrid mode
the quality reduces by at most 0.5 voxel. Refining 1% of the overlap
aligns 80% of the tile pairs with at most voxel 2.5 voxel L2 error.
The speed-up however is significant. Refining 1% of overlap is 3.3x
faster in comparison to 3D NCC with progression step size 4, and is
6x faster vs. 3D NCC with progression step size 1.

5 RESULTS

For performance and accuracy evaluation, we used two hardware
configurations: 1) a desktop with Intel(R) Core(TM) i7-5930K CPU
@ 3.50GHz, 3501 Mhz, 6 Core(s), and 2) a server with 144 core In-
tel(R) Xeon(R) CPU E7-8890 v3 @ 2.50GHz with 1TB RAM. First,
we analyze the impacts of tunable parameters, such as sub-block
size and consistency threshold. These results yield configurations
trading quality for accuracy, and we compare their performance
against state-of-the-art approaches, namely BigStitcher [19] and
TeraStitcher [5].

5.1 Effects of Tunable Parameters

We evaluate the effects of tunable parameters by aligning the 77
tile dataset using a single configuration — 20% of the sub-blocks
refined at the full resolution, progression step size equal to 4, and
using hybrid mode.

Choosing a Good Sub-Block size. We discuss the relationship
between sub-block size, alignment quality, and runtime using the
results reported in Table 1 and provide guidelines on how to tune this
parameter. We refer to the different sub-block sizes in Table 1 using
the labels S0, S1, S3, and S4. We chose the sub-blocks sizes based
on the maximum expected translation in our test data, which was 40
voxels in the x-direction, 80 voxels in the y-direction, and 20 voxels
in the z-direction. Choosing a small block size typically results in
fast data access and compute time. However, the number of coarse
resolution samples that overlap the block is considerably small. As
a result, features are often underdeveloped at coarse resolutions,
leading to random correlations. Therefore, a high level of refine-
ment is usually required to find a stable resolution with sufficient
informative sub-blocks to reliably discard them. In contrast, a large
sub-block size often misrepresents the alignment (false positives) at
coarse resolutions due to high variations within the sub-block, which
causes pruning to prematurely start early, thereby leading to large
alignment errors.

We compare S2, the optimal sub-block size for our test data,
against the performance of the other choices. S0 was 2.34x slower,
with slightly lower alignment quality and for most tile pairs, the
pruning of the sub-blocks only started at resolutions 5 and above.
Although per sub-block compute and data fetching time was faster,
the overhead due to additional searches at coarse resolutions resulted
in the slowdown. In contrast, S3 prematurely started pruning most of
its blocks at resolution 1. Even though the overhead due to additional
searches was minimal, the time to compute each correlation and the
time to fetch the data were both more expensive. As a result, it
was 1.62x slower. A nonpower of 2 sub-block size (S1) resulted in

Figure 10: Alignment quality curves show how our various modes
compare with the state of the art. Compared to BigStitcher, our
fastest mode (hybrid 1%) is 2.57x faster and produces a higher
quality result. Our more accurate mode (hybrid 20%) runs at a
similar time to the state of the art, but with a significantly lower error.
Our most accurate mode (3D 20%) runs 5.75x slower. Our memory
footprint is 6.5x smaller than that of BigStitcher.

similar alignment quality and prune-start resolution; however, it was
slower by a factor of 1.24x. Since we compute the correlations in
the transform domain, power of two sub-block sizes is generally
faster. A good rule of thumb to use when choosing a sub-block size
is it should be roughly at least twice the expected translation in each
direction, with some buffer, and rounding up the result to the nearest
power of two. Avoiding a very small and a very large sub-block size
is generally recommended.

Choosing the Consistency-Threshold. Another tunable parameter
in our algorithm is the self-consistency threshold t. We use a default
value of 10% in all our experiments and did not notice a significant
change in quality or runtime when t was reduced to 5%. However,
a large value of t typically results in pruning starting early, leading
to high false positives, and hence poor quality alignment. When we
increased t to 15 and 20%, although the runtime improved by a small
factor, many tile pairs started to prune sub-blocks early, resulting
in an error of up to 2.5 voxels. Hence, we recommended using the
default value or a slightly smaller value for t.

5.2 Performance Comparison

We compare and study the timing, accuracy, and, reliability of the
first step in the alignment process - namely, phase correlation (PC)
or normalized cross correlation (NCC) vs. state-of-the-art stitching
tools — BigSticther and TeraSticher. We first compare the perfor-
mance of our approach, BigStitcher, and Terastitcher on the desktop
environment. Next, we ran our algorithm and BigStitcher, the two
fastest approaches, on the server using 72 parallel threads. The
timing information reported in our results includes only the time to
align the data and not the time to compute any preprocessing steps,
such as data format conversions.

BigStitcher configuration: BigStitcher’s performance heavily relies
on re-saving the data in HDF5 format (with multiple mip-map levels
and user-defined chunk sizes) before starting the alignment computa-
tion. To fit the entire overlap data on the desktop’s memory, we ran
BigStitcher at the recommended 16x downsampled resolution and
computed PC with subpixel accuracy, by checking 5 peaks and with
12 parallel tasks. On the server, we evaluate its performance at full
resolution and with 16x downsampling with the same configuration
as the desktop except using 72 parallel tasks. It took 3 hours and
43 minutes to convert the 77 tile data into HDF5 format with two
mip-map levels (16x downsampling and full resolution).

TeraStitcher configuration: For TeraStitcher, we set the number of
slices per layer to 100, the search region to 128× 128, and used
default values for other parameters.

Fig. 10 compares the alignment quality of our approach run with
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Figure 11: A visual comparison of the alignment quality us-
ing different parameters of our approach vs. the state-of-the-art
BigStitcher [19]. We show the overlapping region between two tiles,
rendered using contrasting color palettes (blue is tile 1 and red is tile
2) to highlight the alignment quality. We show a different tile pair
on each row and report the error (E) as the L2 norm between the
final transformation and the baseline best transform. For our method,
the parameters are R (the percentage of sub-blocks refined at full
resolution), P (the progression step size), and whether the alignment
is done in hybrid or full 3D mode. Our approach in general produces
better alignment results.

various configurations vis-à-vis BigStitcher and TeraStitcher. On
the desktop, our fastest solution (hybrid 1%) was 1.72x faster than
BigStitcher and produced a better result. Our most accurate solution
with hybrid mode (hybrid 20%) was 2x slower than BigStitcher,
but was more accurate. Our peak memory usage on the desktop
running 12 parallel threads was 5.6GB and BigStitcher running at
16x Downsampled was 37GB. In contrast, TeraStitcher was both the
slowest and the least accurate. We discuss detailed comparison num-
bers with BigStitcher, as it was both faster and more accurate than
TeraStitcher. On the server, our fastest solution (hybrid 1%) was 2.6x
faster than BigStitcher (16x downsampling) and it produced a better
result. Our most accurate solution with hybrid mode (hybrid 20%)
not only resulted in significantly higher quality alignment (i.e., 80%
of the tile pairs aligned with at most 1 voxel L2 error, in comparison
to 15.8% using BigStitcher), but also ran faster than BigStitcher
(16x downsampling). Our most accurate solution (3D 20%) aligned
90% of the tile pairs with at most 1 voxel L2 error and was 2.55x
faster compared to BigStitcher (full resolution). Fig. 11 provides a
visual comparison of our approach run with different configurations
and BigStitcher. Our peak memory usage on the server running 72
parallel threads was 7.8GB (refining 1% of the blocks) and 19.9GB
(refining 20% of the blocks). In comparison, BigStitcher running at
16x Downsampled ran with 51.9GB. Additionally, our approach al-
lows users the flexibility to use the various algorithmic modifications
to trade speed for quality and vice versa. By tuning the different
parameters in our algorithm, we can sweep multiple quality curves
between the fastest and the most accurate setting. When working
with large datasets, a small portion of the data can be aligned to
identify the best parameters and the rest of the data can be aligned

Tunable Parameter Effect on Performance

Sub-block Size

(x×y× z)
nFS pmedian

Quality

(%)

Runtime

(mins)

S0 64×128×32 512 5 66.66 25.2

S1 100×100×80 218 3 79 13.4

S2 128×128×64 153 3 79 10.78

S3 256×256×128 25 1 55.5 17.46

Table 1: Comparison of different sub-block sizes shows how the
median prune-start resolution shifts with the sub-block size and
its impact on the runtime. We report quality as the percentage of
tiles pairs with Error ≤ 1 voxel. S2 was the optimal sub-block
size, with S1, the nonpower of 2 sub-block size a very close second.
The smallest sub-block size (S0) was the slowest with a slight drop
in quality. The biggest sub-block size (S3) resulted in the largest
error, and the poorest quality. Note: The table reports the median
prune-start resolution (pmedian) from all the tile pairs.

Figure 12: Small rotations can lead to multiple regions of the over-
lap to be partially aligned by different translations. Although it
is impossible to correct for such alignment errors using a single
3D translation, changing the percentage of blocks to refine affects
whether the bottom (middle) or top (right) of the stack is aligned.

using the optimal parameters.

6 CONCLUSIONS AND FUTURE WORK

We introduced a fast iterative approach to compute coarse-to-fine
alignment, identifying and refining only the sub-blocks that are
likely to give good translations to align overlapping image tiles, and
demonstrated both performance and accuracy improvements over
prior approaches using significantly less memory. However, one of
the key limitations of the current implementation is solving only for
translations. In general, it is sufficient to recover 3D translations
to align large microscopy volumes. However, in imaging real tis-
sue, several problems may occur. For instance, small rotations of
the sample holder, drift of the microscope stage, or even thermal
expansion of the tissue can often result in more complex transforma-
tions. We encounter tile pairs in our dataset, in which such effects
appear. Fig. 12 illustrates a tile pair where no single translation
aligns both the top and bottom of the image stack. In this case, our
approach finds more than one cluster during the two-stage stratifi-
cation; however, the translation we finally chose is sensitive to the
percentage of overlap refined at full resolution. Although the top
cluster aligns a higher percentage of the overlap, as can been seen
in Fig. 12, refining 1% of the sub-blocks at full resolution resulted
in the bottom cluster being chosen, whereas refining 20% of the
sub-blocks resulted in the top cluster being chosen. In future work,
we will investigate affine and nonlinear transformations, replacing
Euclidean distances with the matrix distance metric to use our rapid
sub-block elimination method based on two-stage clustering to drive
generic transformations. Other areas for future investigation are
adapting the strategies to electron-microscopy and digital pathology
images. In both areas, a much higher feature density might support
an even more aggressive down-selection of sub-blocks.
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