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Towards replacing physical testing of granular materials
with a Topology-based Model

Aniketh Venkat, Attila Gyulassy, Graham Kosiba, Amitesh Maiti, Henry Reinstein,
Richard Gee, Peer-Timo Bremer, and Valerio Pascucci
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Fig. 1: We derive a pore network model from topological decomposition and connectivity to estimate the flow properties through a
packed powder bed imaged by micro-CT. From left to right: Regions are selected from the raw micro-CT images, and the pore
network model is computed; The fluid flow is solved by converting it to a resistive network, which allows the analysis of flow paths,
flow through pores, and flow-permeable surface area, all of which correlate to the performance characteristics of porous solids.

Abstract—In the study of packed granular materials, the performance of a sample (e.g., the detonation of a high-energy explosive)
often correlates to measurements of a fluid flowing through it. The “effective surface area,” the surface area accessible to the airflow,
is typically measured using a permeametry apparatus that relates the flow conductance to the permeable surface area via the
Carman-Kozeny equation. This equation allows calculating the flow rate of a fluid flowing through the granules packed in the sample
for a given pressure drop. However, Carman-Kozeny makes inherent assumptions about tunnel shapes and flow paths that may not
accurately hold in situations where the particles possess a wide distribution in shapes, sizes, and aspect ratios, as is true with many
powdered systems of technological and commercial interest. To address this challenge, we replicate these measurements virtually on
micro-CT images of the powdered material, introducing a new Pore Network Model based on the skeleton of the Morse-Smale complex.
Pores are identified as basins of the complex, their incidence encodes adjacency, and the conductivity of the capillary between them is
computed from the cross-section at their interface. We build and solve a resistive network to compute an approximate laminar fluid flow
through the pore structure. We provide two means of estimating flow-permeable surface area: (i) by direct computation of conductivity,
and (ii) by identifying dead-ends in the flow coupled with isosurface extraction and the application of the Carman-Kozeny equation, with
the aim of establishing consistency over a range of particle shapes, sizes, porosity levels, and void distribution patterns.

Index Terms—Physical and Environmental Sciences, Computational Topology-based Techniques, Data Abstractions and Types, Scalar
Field Data, Pore Network Model, Morse-Smale Complex

1 INTRODUCTION

Diverse industries such as pharmaceuticals, cosmetics, paints, textiles,
minerals, packaging, structural and building materials (e.g., cement),
and energetic materials (e.g., initiating powders) involve the need to
quantify the flow-permeable surface area of porous compounds. Com-
mercially available permeametry apparatuses, such as the traditional
one from Fisher Scientific or a more modern version from Micromerit-
ics carry out such measurement by flowing a fluid (air) through the
powdered sample and then directly or indirectly relating the measured
flow conductance (i.e., the ratio of flow rate to pressure-drop across the
sample) to a permeable surface area of the powder through the Carman-
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Kozeny (CK) equation [28], [9], [10]. However, the CK equation at its
core is based on a few inherent assumptions about the tunnel shapes
and flow paths, which real systems could significantly deviate from,
especially in cases where particles are far from spherical shapes, e.g.,
possessing needle-like morphology [46], as is known for PETN and
other energetic initiators. Given that there is no obvious way to “ex-
tend” the Carman-Kozeny analysis in a general case of arbitrary shape
and size distribution of particles packed randomly, it is essential to de-
velop an alternative, direct approach to determining the flow-permeable
surface area.

This work attempts to achieve the above goal by imaging the porous
sample material by micro-CT (i.e., Computed Tomography at micron or
better resolution), followed by segmentation of the resulting micro-CT
image into grains and voids, which can provide direct insight into the
porous structure and the expected flow rate through the sample. Lami-
nar flow of a viscous fluid through a porous material can be described
by the Navier-Stokes equation, which is both computationally expen-
sive, and difficult to extend to the imaged domains. As a result, there
has been significant interest in simplified models, called Pore Network
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Models (PNM) [5], where the void space of a material is decomposed
into distinct pores, connected by throats. By careful calculation of
the conductance of each pore-throat-pore edge and by satisfying the
conservation of mass of the Stokes equation, an approximate flow rate
can be computed for the entire network.

Our new approach for analyzing porous materials extends this class
of solutions by directly utilizing the topology of the distance function
from the material/void interface. Using the Morse-Smale complex, our
approach couples the volumetric decomposition of the pores with a 1-
skeleton connecting them. We then compute the effective conductance
of each connection using Poiseulle’s law [42], measuring the interface
between pores and the 1-skeleton paths. We interpret the resulting
network as an electrical resistor network and use nodal analysis to
find the flow and pressure drop between pores and the sample at large.
This not only enables us to identify dead-ends in the material but also
presents two computational ways of estimating the flow rate, and hence
the flow-permeable surface area, that would be measured in a Fisher
Apparatus. We validate our results on simple examples, and compare
our estimates to experimentally measured values for packed spheres
with varying size distributions, and packed granular materials with
varying grain sizes and shapes.

Our contributions in detail are:

• A topological algorithm to compute the conductance of a pore-
throat-pore connection, find the flow and pressure drop between
pores

• A demonstration that despite irregular particle shapes and sizes,
there exist no significant amount of non-flow-permeable area (due
to dead-ends)

• Two independent virtual measurements of the flow rate through a
granular material; and

• Validation of our technique on analytical examples, calibration
data consisting of packed spheres, and High Explosives materials
of interest to our collaborators.

2 BACKGROUND

A porous material is composed of solid matter, typically formed of
grains, and voids, the space between the solid particles. The Fisher
apparatus, Fig. 2, measures fluid flow properties across a prepared sam-
ple, relating the flow to material attributes. If a porous powder sample
is packed into a cylindrical container of length L and cross-sectional
area A, its volume is given by V = LA. The porosity ε measures the
fraction of V that is composed of voids. When a pressure-drop ∆p is
applied across opposing ends of the cylindrical sample, air flows as
a viscous fluid through the void structure. In one form, the Carman-
Kozeny equation (Equation 1 or Fig. 3) relates the volumetric flow
rate (Q) across the sample to the geometry of the sample container, the
pressure-drop, the porosity of the material, the dynamic viscosity of air,
and the flow-permeable surface area S, as follows:

Q =
∆pL(εA)3

ηkS2 (1)

Equation 1 could be solved for the specific surface area (SSA), i.e.,
SSA = S/M (where M is the sample mass), and one obtains the result:

SSA =
S
M

=

√
ε3A∆p

(1− ε)2LkηQρ2
S

(2)

where ρS is the density of the solid. One often expresses the above
result in terms of an effective spherical diameter (d):

d =
6

ρSSSA
= 6

√
(1− ε)2LkηQ

ε3A∆p
(3)

Fig. 2: A granular material, here polydispersed spheres, is packed into
a cylindrical tube (inset). The packed material is placed in the Fisher
apparatus, which applies a pressure gradient, and measures the volume
flow rate of air moving through the sample.

Fig. 3: The variables involved in the Carman-Kozeny equation are
illustrated for a packed porous material sample in a cylindrical container.
The sides of the cylinder are enclosed in a container, with the induced
pressure difference and flow only in the vertical axis of the cylinder.

According to Equation 1, the volumetric flow rate Q is inversely
proportional to the square of the flow-permeable surface area. There-
fore, at a given level of porosity, the smaller the particle size, the higher
the flow-permeable surface area, which leads to a decrease in the flow
rate across the sample. While Equation 1 has been empirically verified
for several materials, the extent of its applicability is not yet known.
For instance, through many experiments on different powder systems,
the aspect factor k has been empirically determined to be around 5 [1].
However, k is a product of two factors, i.e., k = k0k1, where k0 is a
shape factor, which depends on the shape of the cross-section of flow
tunnels, and k1 the tortuosity factor, which is an enhanced path-length
ratio when fluid particles meander through connected voids, rather than
travel through a straight line parallel to the cylinder’s axis. Given a wide
range of possible shapes and size distributions of particles and flow
tunnels, it would not be surprising to encounter systems for which k is
significantly different from 5. However, it is not possible to determine
k for such systems without an independent method of determining the
specific surface area.

One area of great interest to us is a special class of energetic materi-
als known as High Explosives (HEs). Certain HEs, used as initiators,
are often used in powder form. Common examples include PETN and
HMX. It has been well-established that the higher the flow-permeable
SSA, the higher the efficiency of initiation. With age, such powders
are known to coarsen (i.e., loss in SSA), which lowers initiation effi-
ciency [32]. This strong dependence of performance makes an accurate
determination of flow-permeable SSA an important problem in the HE
community.

3 RELATED WORK

Pore Network Modeling has received a great deal of interest, as it sim-
plifies the estimation of volume flow rate and flow-permeable surface
area, in turn, leading to higher throughput analysis of materials, bet-
ter understanding of the underlying flow physics, and deeper insight
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Fig. 4: An overview of the image processing, topology computation, and pore network construction. Rectangular regions are selected from the
micro-CT (a). The image is partitioned into solid/void with an intensity threshold picked to reproduce the experimentally measured material
porosity (b). A signed distance function from the solid/void interface is computed (c). We use MSCEER [18] to compute the Morse-Smale
complex, encoding the topology of the distance function. The 1-skeleton of the void space is shown in (d): minima (blue spheres), 1-saddles
(green spheres), and the arcs connecting them (teal tubes). The over-segmented MS-complex is simplified up to a persistence threshold (e). Basins
are computed for the minima that remain after simplification, and form pores (f). Each pore is displayed with a random color. The 1-saddles
identify the interfaces between pores, called throats (g). The conductance of a throat between basins is dependent on the cross-section shape and
area. The boundary quadrilaterals between pores are projected onto a plane normal to the path (h). The fluid velocity normal to the plane through
each projected area patch, is computed and summed over the throat (i). The conductivity of a pipe (pore-throat-pore) is derived from the throat
conductivity and the length of the path (j). Each pipe is added to a resistor network, with pores on the inflow attached to a virtual current source,
and pores on the outflow attached to a virtual ground (k). The network is solved to get the material conductance as well as pressure at each pore
and flow through each throat.

into material characteristics. In contrast to solving the elliptic Navier-
Stokes equations on the void space using FEM, immersed boundary
methods, or lattice-Boltzmann methods, solving the PNM can be done
with simple Gauss-Seidel over relaxation [16] and conservation of
mass, or a solution to a system of linear equations with nodal analysis.
Sufian et al. [41] showed that the PNMs accurately predict the drops
in pressure between pores when compared to numerical solutions of
the Navier-Stokes equations. Gackiewicz et al. [15] also showed that
PNMs computed with the maximum-ball and Delaunay method agreed
with FEM solutions to the Navier-Stokes equations for sphere packed
materials.

PNM computation falls mainly into four categories: Delaunay tesse-
lation of grain centers, maximum-inscribed ball transform of the void
space, medial-axis transform, and watershed-based segmentation. In
each case, pores are identified, and the interface of adjacent, incident
pores is the throat, together forming the nodes and pipes of a PNM. For
materials formed of packed spheres, a vertex is placed at each particle
center, and the Delaunay tesselation [30] is computed. Tetrahedra are
merged using various criteria to form the pores [39], and their faces
identify the interfaces, the throats, between the pores. A weighted
Delaunay triangulation can account for variable sphere sizes [45]. Com-
bining the Delaunay tesselation with its dual, the Voronoi tesselation
can be used to merge pores, estimate flow rates through throats [16].
The Delaunay-based methods work well for packed spheres, but do not
generalize to realistic particle/void shapes.

Maximum-inscribed ball methods simulate the morphological open-
ing of a spherical structuring element [31], marking each voxel of
the void space with the maximum radius ball that fits in the void and
covers the voxel [12]. Overlapping balls define an ancestry relation

for merging regions into pores, with common children becoming the
throats. The pores identified can be combined with a medial axis to
divide throats into half-throats for a more localized and accurate com-
putation of conductance [36]. The medial-axis transform of the void
space was used to find the 2D skeleton for fracture networks [26].
Several approaches use watershed, or watershed combined with the
distance transform to identify pores and throats. Gostick [17] computed
the distance transform on the void space, applied a maximum filter
to test for maxima, and computed the marker-controlled watershed to
segment the void space into pores. Extraneous peaks were trimmed to
avoid over-segmentation, and overlap of dilated pores recovered the
connectivity.

Topological analysis Direct study of the topology of scalar func-
tions has led to highly effective approaches for segmentation or en-
coding domain-specific features of interest. Publicly available tools,
based on efficient algorithms [19, 38] for their computation, such as the
Topology Toolkit [43] and MSCEER [18], provide accessibility to the
broader community. The Morse-Smale complex, in particular, encodes
the gradient flow features of a scalar function, including those of interest
in porous media: minima, basins, valley lines, 1-saddles, and the inter-
faces between basins. These same topological features form the basis
for the analysis of: electronic potentials in quantum chemistry [3, 34],
the filamentary and dark matter structure in cosmology [40]; the for-
mation of bubbles in mixing fluids [29]; the core structure of open
cell foams [20, 35]; lithium diffusion pathways [21, 22]; and many
others [6, 7, 37]. For extracting the pore structure for porous materials,
Homberg et al. [24, 25] described computing the pores and throats
of porous materials in terms of the Morse complex of the distance
function. Pores were identified as the descending 3-manifolds from
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maxima, with the connectivity given by ascending 1-manifolds from
2-saddle. We use an equivalent definition in our approach, adapted to
our convention of using negative distance values in the void space and
positive in the solid. Furthermore, they studied the pore and constric-
tion size distribution with different merging criterion, which we extend
beyond in developing models to compute the conductance of each con-
striction, transform the pore graph into an equivalent electrical resistor
network, find the flow and pressure drop between pores, and compute
the effective conductance of the porous material. Ushizima et al. [44]
proposed a topolgoy-based pore network model, using the Reeb graph
of the height function applied to the void space, to study fluid flow for
carbon sequestration. This approach assumes the level set of the height
function to be perpendicular to the fluid flow direction, which will not
accurately model the flow in the case where the orientation of the flow
path is not aligned with the axial direction of the dataset. Furthermore,
the use of the Reeb graph necessitated defining an external function
on the void space (the height function), which is avoided when using
Morse complexes.

A related topological approach, Percolation theory, studies the
connectivity of an infinite network in terms of the size and extent
of the largest connected component, as vertices or edges are in-
cluded/excluded from the network [2,8]. A discontinuity in the resulting
percolation function provides a threshold that describes an intrinsic
porosity property of the material [27]. It has been adapted to finite
domains and large material images [14].

4 APPROACH

Our Pore Network Model is built using the topology of the signed
distance function to the interface between the solid material and the
void. The topological model inherently provides a means of clustering
pores through persistence simplification [13]. It encodes not only
valley-lines as paths but also the spatial decomposition of the voids
into basins, similar to the Watershed transform. Conductance values
are computed for each interface between regions connected by a saddle
and combined into a resistor network, which is then solved to obtain
the effective conductance of the sample and all the internal flows. We
compute material properties such as volumetric flow rate by converting
from electrical flow to fluid flow and flow-permeable surface area by
examining the current flow through the pores.

4.1 Image Processing
Given a 3D micro-CT image, we first select a rectangular region from
the interior of the typically cylindrical scan (Fig. 4 (a)) to avoid po-
tentially confounding effects of the imaged container on the measured
material properties. We then compute a two-phase segmentation into
solid and void, using the measured weight and grain density for each
sample provided by our collaborators (Fig. 4 (b)). An intensity thresh-
old is chosen such that the fraction of foreground to background voxels
is 1−ε , with ε chosen such that the total volume of the foreground ma-
terial multiplied by the known density of the grains equals the measured
weight. A signed distance field (negative in the void space, positive in
the solid) is computed by inserting points from the isosurface at the
chosen intensity threshold into a k-d tree and computing the nearest
interface point for each voxel, (Figure 4 (c)). Note that this approach
discretizes the distance field by sampling it onto the voxels of a grid –
for small throat diameters, the image artifacts created by the stair-case
like sampling distorts both the distance values and the geometry of the
void space. We mitigate these challenges by evaluating the distance
field with respect to a two-fold refined grid in each axis. As discussed
below, this sampling density has been sufficient for all subsequent
processing and analysis steps.

4.2 Topological decomposition
Formally, the Morse-Smale Complex (MSC) is defined as follows.
Given a compact d-manifold M, a scalar function f : M→ R is a Morse
function if its critical points are non-degenerate and have distinct values.
A critical point occurs where the gradient vanishes, ∇ f = 0, and is non-
degenerate if its Hessian is non-singular. For Morse functions, the
neighborhood of a critical point p takes on a quadratic form, and can be

written as fp =±x2
1± x2

2 . . .± x2
d , where the number of minus signs in

this equation defines the index of criticality. For volumetric functions,
minima are index-0, 1-saddles are index-1, 2-saddles are index-2, and
maxima are index-3. Here we are particularly interested in the basins
around the minima and the 1-skeleton connecting neighboring basins
through their 1-saddles. For a more detailed description of the entire
Morse-Smale complex, we refer the reader to Gyulassy et al. [23].

We compute the MSC of the signed distance field using an efficient
approach based on discrete Morse theory [18], using Robins et al.
steepest-descent algorithm [38]. This approach creates a data structure
that can extract: the critical points and arcs connecting them, forming
the 1-skeleton, whose paths follow steepest ascent and descent through
the 6-neighbor connectivity of voxels; and, basins, the collection of
voxels that form the terminus of steepest descending paths for each
local minimum. This data structure [23] can provide the 1-skeleton and
basins for any threshold of persistence, a metric that removes topolog-
ical features ordered by increasing differences in the function value.
The unsimplified 1-skeleton is extracted (Figure 4(d)) and simplified to
an absolute threshold of 1.4 (Figure 4(e)). The 1-skeleton is smoothed
both for visualization and to better estimate distances between pores.
The persistence threshold removes topological features that exist solely
due to sampling the distance function onto a grid and using 6-neighbor
connectivity between voxels. Furthermore, it merges the minima and
hence basins that have less than 1.4 voxel difference in their distance
to the solid-void boundary. Note that in Section 7.2, we refined the
sampling of the distance function – increasing the ability of persis-
tence simplification to remove discretization artifacts without removing
features due to subtle variations in the void structure diameter. In sec-
tion 7.3, we show that ultimately the analysis results are not sensitive
to this threshold, as all imaged material conductivity reacts similarly to
variations in it.

4.3 Pore Network Model
The simplified decomposition into basins and concurrent simplified
arcs of the MS-complex (Figure 4(f)) are converted into pores and
throats of the pore network model. A pore is created for each minimum
and its associated basin, and is assigned the voxels in the basin having
a distance value less than 0 (indicating they are part of the void space).
Each 1-saddle having a distance value less than 0 and connecting
2 distinct minima in the 1-skeleton of the MS-complex becomes a
throat. In the case that distinct 1-saddles connect the same pair of
minima, the lowest-valued one (and consequently, the least restrictive)
is selected to represent the throat. The geometry of the throat is formed
by the quadrilateral faces that separate voxels from different pores
(figure 4(g)). Each quadrilateral is used as an area element to compute
the conductance in a cross-section perpendicular to the flow. The
projected area of each unit quadrilateral face is a(q) = |nq ·np|, where
q is the quadrilateral, nq its normal, and np the normalized direction of
flow, estimated using the arc of the MS complex (figure 4(h)).

Computed conductance of a throat The smoothed path through
the 1-saddle provides a center-line for the virtual “pipe” that connects
two pores. We make simplifying assumptions for computing the con-
ductance of this pipe: (1) that the laminar flow is fully-developed along
the length of the pipe; (2) the velocity profile is quadratic, and (3)
that the plane normal to the pipe and intersecting the 1-saddle is a
representative cross-section. For perfect cylinders, our assumptions are
equivalent to that in Equation 6. The 1-saddle occurs as the point of
greatest absolute distance R on this plane. In viscous fluid flow, the pres-
sure difference at the ends of each pipe is balanced by the shear stress
due to viscosity, where fluid sticks to the pipe’s walls and its velocity,
u = 0. The instantaneous velocity at any point on the cross-section of a
cylindrical pipe is given by

u(r) =
∆p

4ηL
[R2− r2], (4)

depending on the pressure drop ∆p, viscosity η , and the length of the
pipe L, which act as constants over the pipe, as well as the distance
from the center of the pipe, r. In the computation of the volume flow
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rate Qpipe through the pipe, u(r) is integrated over the cross-sectional
area, which we evaluate as the sum over area elements projected onto
the plane,

Qpipe =
∆p

4ηL ∑
q

a(q)(R2− (R−d(q))2), (5)

where d(q) is the absolute value of the distance function evaluated at
the center of the quad (figure 4(i)). Note that for non-circular cross-
sections, the velocity u(r) is slightly over-estimated. The conductivity
of the pipe Cpipe = Qpipe/∆p, factors out the yet-unknown drop in
pressure.

4.4 PNM solved with Resistive Network

Having computed a conductance for each throat between pores by
modeling them as pipes, we build a pore network and convert it to a
resistor network so that the voltage and current can be solved from a
simple linear system of equations. The conservation of mass in Navier-
Stokes equation is mirrored by Kirchhoff’s Current Law, that the sum
of currents coming into a node equals the sum leaving it. Each pore
in the pore network becomes a node ni for nodal analysis. In addition,
we create a virtual node to act as the current source and another to
act as the virtual sink or the ground. Each throat becomes a resistor
ri, j , connecting nodes ni and n j , with resistance 1/Cpipe, and the nodes
on the inflow and outflow surfaces of the sample are connected to the
virtual source and sink respectively (figure 4(k)).

The network is solved by adding each resistor ri, j to an admittance
matrix M, contributing a positive admittance 1/ri, j to the diagonal
elements Mi,i and M j, j, and a negative admittance to off-diagonals
Mi, j and M j,i. The system Mx = b is solved, where x is the vector of
unknown voltages, and the current vector b is initialized with bsource =
−1 and zeroes for the remaining nodes. The system is solved with a
generalized minimal residual method for sparse matrices (GMRES [4]).
After solving, the vector x gives the voltage for each node in the network.
The directional current, and hence volumetric flow rate, for any throat,
is simply the voltage drop divided by the resistance, Qi, j =(xi−x j)/ri, j ,
with the sign of Qi, j determining the direction of flow between ni and
n j. The source-to-sink voltage drop given the input unit current gives
the effective resistance of the block of material, which is converted
back to flow conductance, Ce = 1/(xsource− xsink).

4.5 Computing material properties

The resistive network solution and recasting in terms of fluid flow
provides several insights into the porous materials, from aggregate
properties over the sample to per-pore and per-throat properties. For
each pore, the pressure, total in/out flow, the geometric embedding
of its voxels, and its portion of the total material surface area can be
of interest. For each throat, the pressure drop, volumetric flow rate,
orientation, path, length, radius, and aspect ratio can be of interest.

Aggregate behavior of the material sample, such as volumetric flow
rate, flow-permeable surface, and tortuosity factor, can also be com-
puted from the solution of the resistive network. The volume flow
rate through the sample is calculated for any ∆p by multiplying by
the computed effective conductance Qe =Ce∆p. The sum of triangle
areas of the isosurface at the solid/void interface threshold gives the
total area; sampling the pore id, and thus volume flow rate, at the cen-
ter of each triangle allows discarding triangles whose computed flow
fall below a user-selected epsilon threshold to produce the aggregate
flow-permeable surface area. The tortuosity measure can be computed
by averaging the shortest paths connecting each pore connected to the
network source, to the network sink, and vice versa. An alternate cal-
culation for tortuosity “counts” the distance all electrons traveled by
computing the sum of path lengths weighted by the current they carry.

Finally, the CK equation provides a mechanism for converting vol-
umetric flow rate to the flow-permeable surface area and back again,
meaning our computation of each via resistive network and the material
isosurface give two complementary methods of computing each.
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Fig. 5: The critical points, 1-skeleton of the MS-complex, and pore
interfaces for a cylindrical pipe oriented at θ = 0 (a) and θ = 29.5 (b).
Note: the blue disk in (b) is a single random slice through the volume,
shown here for reference, not to be confused with the pore interface. (c)
Conductance computed using MS-complex PNM, Reeb Graph PNM
and the Hagen-Poiseuille equation as a function of the pipe angle. The
small errors in our PNM with respect to the ground truth are likely
attributable to the underestimation of the pipe radius due to digitization
of the distance function.

4.6 Visual Verification
The complexity of the overall computational pipeline required each
step to be verified visually. Most steps were visualized with an OpenGL
viewer built on top of MSCEER [18], as well as output sent to ImageJ
and ParaView. The custom visualization of flow paths combined with
visualization of the total in/outflow into basins (as in Fig. 1, right) was
instrumental in building credibility that the vast majority of the void
space admits flow, i.e., that dead-ends do not play a significant role.

5 VALIDATION

We validate our PNM using simple configurations where the conduc-
tance of the void space can be calculated using the Hagen-Poiseuille
equation

C =
πr4

8ηL
(6)

where r is the radius of a cylindrical pipe, L its length, and η is the
dynamic viscosity.

Our first simulated dataset models the void space as a single cylin-
drical pipe, of length L = D

cosθ
, that connects an inlet at the top of the

Z plane to an outlet at the bottom of the Z plane (Fig. 5), where D is
the depth of the volume, and θ is the angle between the unit z-direction
and the flow direction. For various orientations of the pipe θ , we calcu-
late the effective conductance for air flow, and verify that our model
computes the correct pores, throats, pipes, and the cross-section areas.
Fig. 5a shows our PNM for two such orientations, θ = 0, and θ = 29.5
degrees. For both the orientations, our PNM correctly identifies the
pore centers (marked as blue spheres), throats (green spheres), the cross-
section area of the interface (plane normal to the flow, intersecting the
1-saddle) and the pipe (pore-throat-pore path). Note that the minimum
on the top and the bottom Z plane is guaranteed by the stratified bound-
ary handling of the discrete gradient, guaranteeing the existence of a
1-saddle, and the minimum-saddle-minimum path in the interior. For
θ = 0, our model computes a single pipe; for θ = 29.5 degrees, our
model computes two pipes due to a local minimum that was not sim-
plified. Notably, this over-segmentation effectively puts two resistors
in series in the flow network model and does not affect the computed
outcome. The set of quads forming each interface are aligned with the
principal directions of the grid – however, our projection of their area
onto a plane normal to the path, when integrating velocities over the
interface, yields the correct value. Neither marker-controlled water-
shed nor Maximum-ball methods can extract this pipe. Medial-axis
methods can identify the pipe, albeit with special boundary handling.
In Fig. 5c, we compare our computed conductance with the calculated
conductance using Equation 6 and the conductance computed using
the topological approach based on the Reeb graph [44]. Even for this
simple configuration, prior work fails to compute the correct PNM and
hence the conductance and the material permeability.
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(a) (b) (c)

Fig. 6: (a) The critical points and the 1-skeleton of the MS complex,
along with cross-section of the interface. (b) Isosurface of the entire
pore/void interface colored using pore ids. After solving the PNM,
isosurface triangles in non-flow-permeable basins are discarded (c).

Our second crafted validation example creates a single cylindrical
void, placed at an angle, with a non-simply connected dead-end, carved
out by a torus tangentially touching the cylinder (Fig. 6). Air/fluid do
not flow through a dead-end, and therefore, it is important for a PNM to
correctly identify and exclude such regions from the counting towards
the virtually measured flow-permeable surface area, which is what the
Fisher apparatus measures experimentally. The flow-permeable surface
area of the material should be independent of the surface area of the
non-simply connected dead-end. Fig. 6a shows the 1-skeleton of the
MS-complex, along with the cross-section of the interface. There are
two cross-sections in this visualization. The first one corresponds to
the minimum-saddle-minimum arc that connects the minimum at the
top and the bottom of the Z plane, and the second one corresponds
to the minimum-saddle-minimum arc that connects the minimum on
the torus to the minimum at the top of the Z plane. The solution to
the resistor network finds no current flow through the dead-end, as
expected. Fig. 6b visualizes the isosurface of the pore space colored
using the labels from MSC segmentation before the resistor network
solve, and Fig. 6c shows the isosurface after pieces intersecting non-
flow-permeable pores are removed, after the solve.

6 RESULTS

We first report the results of our PNM for three different sphere packing
datasets with slightly different porosity levels, namely, Monodisperse-1,
Monodisperse-2 and Polydisperse as described in Sect. 6.1. In Sect. 6.2,
we discuss in detail the results of our PNM on experimental micro-
CT data for two different HEs, i.e., HMX and PETN, which are the
materials of interest to our collaborators.

6.1 Sphere Packing

Sphere packing datasets have been commonly used in the literature as
simple proxies for more complex morphologies and also because they
lend themselves to simpler PNM construction and validation [16], [17],
[25]. Furthermore, the Carman–Kozeny equation has been verified in
this realm, relating surface area and flow properties to the effective
diameter ds of spherical particles [1]. We evaluate the effectiveness of
our PNM by comparison with experimentally measured surface area
and volume flow rate for three different sphere packing distributions
using the Fisher apparatus.

The Monodisperse-1 and 2 datasets have all particles of either a
single diameter or one of the two fixed diameters Fig. 7c, Fig. 7a, and
the Polydisperse dataset has particles following a polydisperse distri-
bution of diameters Fig. 7b. The micron-sized spherical particles with
volume-weighted size distribution measured via laser diffraction were
packed into a Fisher apparatus sample holder, and the flow-permeable
surface area (S f ) and the volume flow rate was experimentally mea-
sured. We convert the volume flow rate into Fisher conductance (C f )
using Equation 1 for comparison. The experimental results are reported
in Table 1(top). The samples were also imaged using micro-CT at
0.05µm resolution, and the flow-permeable surface area and the vol-
ume flow rate for each of the three samples were computed using our
PNM.

Table 1(top) tabulates the results of our PNM, as well as comparing
the experimental and computed results. First, we notice that our PNM
underestimates the flow-permeable surface area for all three datasets by
a factor of 0.98-1.05. While the computed area is close, the variation
seen is not unexpected: the stair-case digitizing of the smooth spherical
boundary adds to the computed isosurface; the image resolution merg-
ing the boundaries of adjacent spheres subtracts from the computed
surface area.

Our computed conductance Cpnm underestimates the Fisher mea-
sured conductance, C f by a factor of 2.43-2.66 and Ciso, conductance
computed using the isosurface area is approximately the same as the
Fisher measured conductance. Although our model underestimates the
conductance (Cpnm), the factors are close to one another for different
porosity and particle size distributions, which is a promising outcome.
In Sect. 7.4 we discuss in detail why this underestimate is consistent
with expectations. We also note that our PNM accurately orders the
materials in terms of conductivity (most to least) for the different sphere
packings vis-a-vis the Fisher apparatus.

6.2 High-Explosive Materials
Material of two explosive molecules, HMX and PETN, were prepared,
and the flow-permeable surface area and the volume flow rate was
experimentally measured using the Fisher apparatus. HMX crystals
tend to be hexagonal and relatively short; thus they appear round
in the HE A dataset [33], [11] Fig. 7d. On the other hand, PETN
has been shown to have a higher aspect ratio (needle-like) crystals
at elevated temperature during crystal growth and rounder crystals
at lower growth temperatures [46]. These two distinct PETN grain
shapes are represented in the experimental datasets HE B (needle-like)
Fig. 7e and HE C (rounder) Fig. 7f. The three materials have similar
porosity and were roughly packed to the sample density for the Fisher
experiment. The experimental results are reported in Table 1(bottom).
The samples were also imaged using micro-CT at 0.57µm resolution,
and the flow-permeable surface area and the volume flow rate for each
of the three samples were computed using our PNM.

Table 1(bottom) tabulates the results of our PNM, as well as com-
paring the experimental and computed results. For the HE materials,
our PNM underestimates the flow-permeable surface area by a factor of
1.49-1.95. The factor is higher than that for the sphere packing dataset,
which is not unexpected; the roughness of the HE material, coupled
with an order of magnitude lower resolution of the micro-CT, amplifies
the smoothing of the solid/void interface. The percentage of total vol-
ume available for flow is 98% for HE A, HE B and 100% for HE C.
This result was surprising for the domain experts, as the high-aspect
shapes were expected to increase the likelihood of dead-end formation.

Our computed conductance Cpnm underestimates the Fisher mea-
sured conductance, C f by a factor of 1.39-3.02, with HE B being the
most underestimated, despite being the highest-flow. The conductance
computed using our flow-permeable isosurface, Ciso is an overestimate
by a factor of 0.26-0.45, which is not surprising given the underestimate
of the surface area. Similar to the sphere packing dataset, although
our model underestimates the flow-permeable surface area (S) and the
conductance (Cpnm), the factors are within the acceptable range for the
different HE materials, which is an encouraging result. We also note
that our PNM accurately orders the materials in terms of conductivity
(most to least) vis-a-vis the Fisher apparatus.

6.3 Empirical Bounds for Conductance
Our conservative model for estimating the conductance detailed in the
Sect. 4 means we expect to underestimate it computationally, which
we also observed with our experiments. So the resistive network con-
ductance can be used as a lower bound on the material’s conductance.
Using this conductance in Equation 1 we can get an upper bound
of the flow-permeable surface area. Similarly, the resolution of the
micro-CT w.r.t the grain/pore size of the materials means we expect to
underreport the isosurface area (and therefore can be a lower bound on
flow-permeable isosurface area). Using our underreported isosurface
area and Equation 1, we, therefore, get an upper bound on the material’s
conductance.
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(a) (b) (c)

(d) (e) (f)

Fig. 7: The materials used in our experiments. For each image, the top-left shows the decomposition into pores, the minima of the distance function
corresponding to the pore basin (blue sphere), the 1-saddle on the interface between pores (green spheres) and the minimum-1-saddle-minimum
paths (teal pipes) that define a throat between pores. The bottom-right of each image is a grayscale rendering of each image, with void space
mostly transparent. The various sphere packings are shown on the top row: (a) Monodisperse-1, packed spheres with diameters from a bimodal
distribution; (b) Polydisperse, with diameters from a lognormal distribution; and (c) Monodisperse-2, with uniform diameters. The materials on
the bottom: (d) HE A, coarsely ground HMX crystals; (e) HE B, needle-like PETN crystals; and (f) HE C, finely-ground PETN crystals.

Exp/Fisher measurement Isosurface Computed Conductance Fisher vs Computed Relative Order
Sample ε S f (m2) ηC f (m3) S(m2) ηCiso(m3) ηCpnm(m3)

S f
S

C f
Ciso

C f
Cpnm

PNM Fisher

Monodisperse-1 0.6 6.95E-07 1.58E-17 7.06E-07 1.53E-17 0.63E-17 0.98 1.03 2.50 1 1
Polydisperse 0.53 6.09E-07 1.42E-17 5.80E-07 1.56E-17 0.53E-17 1.05 0.91 2.66 2 2

Monodisperse-2 0.56 7.72E-07 1.00E-17 7.56E-07 1.04E-17 0.41E-17 1.02 0.96 2.43 3 3

HE A 0.503 1.88E-04 0.58E-17 0.963E-04 2.21E-17 0.42E-17 1.95 0.29 1.39 2 2
HE B 0.480 1.02E-04 1.71E-17 0.686E-04 3.78E-17 0.56E-17 1.49 0.45 3.02 1 1
HE C 0.483 2.03E-04 0.44E-17 0.104E-04 1.68E-17 0.24E-17 1.95 0.26 1.81 3 3

Table 1: Comparison of Fisher measured flow-permeable surface area and conductance vis-a-vis MSC-PNM for three different sphere packing
distributions. The left table contains the experimental measurements of the material: porosity ε is computed from measured density, mass, and
volume of the packed sample; the surface area S f (m2) and the conductance ηC f (m3) are calculated from the volumetric flow rate measured
by the Fisher apparatus, by Equation 1. The middle table lists the flow-permeable surface area computed using clipped isosurface S(m2), the
conductance estimated from this surface area, ηCiso(m3), by applying 1, and the conductance computed with our PNM, ηCpnm(m3). The right
table shows the factors between the experimentally measured and computed surface areas, S f

S , the conductance derived from the surface area, C f
Ciso

,

and the PNM conductance, C f
Cpnm

. The relative order between materials, ordered by conductivity from most to least, matches between the spheres
and between the HE materials.
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Our experimental results for the HE materials show that dead-ends
are not a significant factor in the analysis of the HMX and PETN
crystal materials. Note, a similar analysis could tell if the same holds
true for: elastic grains, lower porosity, fractured materials. Our initial
results from both the sphere packing and the high-explosives data build
confidence that the predicted conductance from the PNM is related to
the experimentally measured flow. With sufficient observed samples, it
may be possible to build a predictive model using the PNM to avoid
the Fisher experiments. Based on the promising preliminary findings
using our approach, our material science collaborators are planning to
produce more measurements varying porosity and flow rates in packed
spheres and other particle shapes (e.g., non-uniform ‘grains’, ‘needle’
like crystallites, etc.), as well as produce an experimental measurement
of additional aged and unaged HE samples that will be used to build a
prediction model to predict material initiation performance.

7 DISCUSSION

We investigate the differences between experimentally measured results
and our virtually measured ones. First, we discuss the factors we
expect to impact the quality of the virtually measured flow-permeable
surface area and computed volume flow rates and evaluate them with
respect to the hyper-parameters of our PNM approach, such as image
processing methodology, resolution, and persistence simplification
threshold. Finally, we explore potential corrections using the computed
tortuosity.

Experimental error Although we take the experimental measure-
ments to be the ground truth for the imaged samples in our study,
our collaborators noted that individual Fisher apparatus measurements
could vary by up to 20% for the same material – due to differences in
packing and sample preparation alone. This is especially true for the
very small sample masses used in the micro-CT measurements, where
full statistical averaging over flow paths may not be attained.

7.1 Limitations of imaging
It should be noted that the mean free path of air, 30-50 nanometers, is
smaller by 1 order of magnitude than the micro-CT imaging resolution,
at 0.5 microns/voxel. Therefore, air can fit through cracks between
grains that the image cannot even represent. An isosurface on such an
image will necessarily under-estimate the total surface area of all grains.
However, due to viscosity and zero fluid velocity at the solid/void
interface, the pore structure that is visible in the micro-CT is expected
to dominate volumetric flow rates and flow-permeable surface area.

The grain roughness similarly is a dominant factor in flow calcu-
lation. For instance, simply smoothing the micro-CT image with a
Gaussian kernel of radius= 1 caused a nearly 20% jump in the com-
puted volume flow rates for HE A, HE B, and HE C. Although we
used a simple threshold to determine solid/void in the imaged volumes,
it is likely that noise in the micro-CT acquisition and reconstruction
(due to beam hardening and other artifacts) causes artifacts that impact
the flow rates. Furthermore, it is expected that the micro-CT resolution
simultaneously hides very small features or roughness. We plan on re-
applying our computational approach on micro-CT acquired at double
the resolution.

7.2 Doubling image resolution
In the original micro-CT images, we measured a median throat radius
of just 1-2 voxel units (vu), which was consistent with the Fisher appa-
ratus’ measured value of 1.996vu. The 6-connectivity of the discrete
gradient of a discrete sampling of a distance function means that a
persistence simplification threshold of at least lvu needs to be applied
to simply remove spurious critical points, and hence pore-throat-pore
connections, introduced by the computation. Empirically, applying a
1vu simplification threshold overly merged adjacent pores. Further-
more, as the conductance of a throat is based on discrete quadrilaterals,
the small radius throats effected a poor sampling of the cross-section
surface area. By doubling the mesh resolution in each dimension (using
trilinear interpolation to re-sample images), the average radius doubles
to 2-4vu – while the persistence threshold needed to remove artifacts
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Fig. 8: As the persistence simplification threshold is increased, neigh-
boring pores are increasingly merged, while throat paths are extended.
The bottom row shows three simplification levels. The green boxes
highlight where increasing the threshold from 0.6 to 1.4 merges over-
segmented regions. Further increasing the threshold to 2.0 begins to
overly merge regions, highlighted by the red boxes. Here, the plot of
computed effective conductance for HE A, HE B, and HE C show a
similar response to increasing the persistence. We take the approach
of setting the threshold to the minimum needed to reliably remove
discretization artifacts at 1.4vu. The similarity of the curves indicates
that the persistence threshold will likely not be a significant factor in
the sensitivity of the outcome.

remains 1vu. Furthermore, each throat is sampled with 4x more sam-
ples, leading to overall more accurate cross-section surface area and
hence conductance. We evaluated a 2x and 4x magnification for each
sample and the estimated measures of volume flow rate and total sur-
face area were only marginally different for 2x and 4x, meaning 2x was
sufficient.

The time to compute the discrete gradient for a 4003 image block
resampled to 8003, on a 6 core, 3.5GHz Intel i7-5930K CPU, 64GB
RAM, was 2.5 minutes for both spheres and HEs. Building the MS-
complex, extracting throats and assigning conductances, and finally
solving the resistor network took an additional 7 minutes for the spheres
and 13 minutes for the HEs. The overall longer execution time for the
HE materials is due to the increased topological complexity.

7.3 Persistence threshold and stability
Increasing the persistence simplification threshold merges pores and
removes narrow throats from the PNM. We measured the effective
conductance of each material as persistence was swept from 0.6 to 2.8,
a range that encompasses known over-segmentation (due to discretiza-
tion artifacts) and empirical under-segmentation, merging pores into
tortuous shapes. Fig. 8 shows that the conductance measured for all
3 materials respond similarly to changes in the persistence threshold –
indicating that persistence was not a significant factor in the sensitivity
of the outcome. We set the persistence threshold to 1.4vu for all 2x
supersampled images, and provide the user with a visualization of the
voids in a range bracketing this threshold, for visual verification.

A significant simplifying assumption we have made in our approach
is that the most restrictive throat between pores coincides with the
ascending manifold of the 1-saddle separating the basins of the minima.
While this empirically holds true for materials with convex grains (e.g.
sphere packings), materials with varied grain morphology can give
rise to longer, more tortuous connections, where slight perturbations
in the image could “move” the 1-saddle, and thus, the representative
throat interface, potentially changing the conductance value. Again, the
flatness of the conductance vs. persistence curves in Fig. 8 provides
evidence that the calculation is stable with respect to perturbation of
throat location. For instance, the PNM for HE A has 9.3x the number
of throats at persistence 0.6 as at persistence 2.8, while the conductance
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Total, Ave. shortest path Corrected Conductance

Sample Le
L

Lsp
L Lcorr ηLcorrCpnm

C f
LcorrCpnm

Monodisperse-1 1.74 1.23 1.41 0.89E-17 1.58
Polydisperse 1.71 1.20 1.42 0.75E-17 1.87

Monodisperse-2 1.77 1.23 1.44 0.59E-17 1.69

HE A 2.55 1.44 1.77 0.74E-17 0.78
HE B 2.56 1.46 1.76 0.99E-17 1.72
HE C 2.72 1.51 1.80 0.44E-17 1.01

Table 2: For the packed spheres (top) and HE materials (bottom), we
compute the average length traveled by an electron, Le, the average
shortest path between inflow and outflow Lsp, both normalized by the
length of the image cube. The factor between these two Lcorr is used to
correct the conductance value and recompute the scale factor between
measured and computed conductance.

was only 1.38x higher, and the conductance reduces monotonically; this
indicates that the computed conductance is not sensitive to the exact
choices for throat interface, and on aggregate, the saddles retained do
correspond to more restrictive interfaces.

7.4 Aspect factor
The Carman-Kozeny equation, Equation 1, has an experimentally, em-
pirically determined factor k that is called the aspect factor, measured
to be∼5 for most porous materials. This factor encompasses two terms,
k = k0k1, an aspect ratio and a tortuosity factor. The literature reports
various tortuosity factors, usually defined as k1 = (Le/L)2, where Le
is the effective length a particle travels through the material, and L
is the length of the sample. The aspect ratio is usually reported as 2
for uniform sphere packings; however, this factor seems to be more
measured rather than based on a model. Furthermore, the contributions
of k1 and k0 are not well understood for non-spherical grains.

The average flow particle path length, Le, is given explicitly for our
pore network model as the sum of the minimum-1-saddle-minimum
path lengths weighted by the current on each path. Table 2 reports these
lengths normalized to the length of the side of the image cube. In the
literature, Le is reported as closer to the shortest path length between
the inflow and outflow. We compute the average shortest path lengths
that connect a pore on the inflow to the outflow, denoted Lsp. We
observe that our computed particle path length Le is a significant factor
larger than Lsp. This is consistent with the expectation that, by defining
the pipe length to be the complete path length between minima, we
overestimate, during construction, the pipe length in the conductance
calculation. Given the ambiguity regarding k, k1, we explore using
our tortuosity overestimation directly as a scaling factor to correct the
overestimation. Table 2 shows that multiplying the conductance for
each material by Lcorr = Le/Lsp reduces the underestimation of the
conductance by our PNM.

Finally, we test the hypothesis that the throats in the different HE
materials vary in the aspect ratio of their cross-sections. In Fig. 9, we
plot a histogram of the area a perfectly circular cross-section would
have given using the measured radius from the distance field to the
measured projected area. Perfectly circular cross-sections would appear
along the line y = x. More elongated shapes have higher aspect ratios.
Surprisingly, the aspect ratios for throats for all three materials followed
the same fit; the throats are similarly shaped despite the different grain
shapes. We also plot the histogram of throat radii, normalized by
the throat count, and observe that HE B has larger radius throats, as
expected due to the larger particle sizes.

8 CONCLUSIONS AND FUTURE WORK

The new approach in constructing a PNM based on topological tech-
niques has demonstrated that it is feasible to construct a virtual Fisher
apparatus which, if adequately calibrated, would represent a significant
breakthrough in the study of porous structures. Nevertheless, while
self-consistent and in line with the expectations of our subject matter
experts, the quantitative results are noticeably different from the current
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Fig. 9: (Top) A 2D histogram of the projected area of each throat to
the area of a circle having the radius of the throat. The (blue) line
y = x would be expected to fit the plot if each throat were circular in
cross-section. Despite differences in grain shapes, a linear fit yields to
y =∼ 3x for each material. (Bottom) Histograms for each HE material
of the maximum absolute radius of a throat. The histograms for the 2
materials of HMX (HE A, and HE C) are nearly identical, despite the
different coarseness of grinding in preparation of the samples.

experimental data. There are two likely causes for this discrepancy
that we will explore in future work. First, the resolution of the current
images is too coarse to allow a fully accurate segmentation of grains
and, more importantly, too coarse to estimate the surface roughness of
the grains. Consequently, we are prone to underestimating the surface
area when using the isosurface-based estimation.However, these issues
can be addressed with higher resolution CT scans, which, based on
our results, are currently being planned. The field of view of these
scans will be necessarily smaller, but the expectation is that changes in
surface roughness and tortuosity can be estimated from smaller sam-
ples and transferred to large systems. Second, our simplified PNM
assumes a quadratic velocity profile and selects a single representative
throat surface for computing the conductivity of a pipe, thereby grossly
underestimating it. We expect to improve the accuracy of the PNM
prediction by adapting this conductance based on the local radius of
the pipe and devising methods to better estimate pipe length. A more
interesting potential source of error is the approximation error inherent
in the Carman-Kozeny equation. It is based on empirical observations
and simple systems amenable to analytic solutions and is expected to
be incorrect for the decidedly non-spherical grains of HE materials. An
adequate correction for the computed surface area and the true tortuos-
ity of these systems would provide crucial insights into the underlying
physics and could lead to either updated parameters for the Carman-
Kozeny equation or even an entirely new formulation. Ultimately, a
major goal of this work is to provide descriptive numbers that can be
used to build a material performance model; in this context, we also
plan to investigate the relationship with percolation thresholds [8].
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