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Abstract. Early brain maturational processes such as myelination manifest as
changes in the relative appearance of white-gray matter tissue classes in MR im-
ages. Imaging modalities such as T1W (T1-Weighted) and T2W (T2-Weighted)
MRI each display specific patterns of appearance change associated with dis-
tinct neurobiological components of these maturational processes. In this paper
we present a framework to jointly model multimodal appearance changes across
time for a longitudinal imaging dataset, resulting in quantitative assessment of
the patterns of early brain maturation not yet available to clinicians. We measure
appearance by quantifying contrast between white and gray matter in terms of
the distance between their intensity distributions, a method demonstrated to be
relatively stable to interscan variability. A multivariate nonlinear mixed effects
(NLME) model is used for joint statistical modeling of this contrast measure
across multiple imaging modalities. The multivariate NLME procedure consid-
ers correlations between modalities in addition to intra-modal variability. The
parameters of the logistic growth function used in NLME modeling provide use-
ful quantitative information about the timing and progression of contrast change
in multimodal datasets. Inverted patterns of relative white-gray matter intensity
gradient that are observable in T1W scans with respect to T2W scans are char-
acterized by the SIR (Signal Intensity Ratio). The CONTDIR (Contrast Direc-
tion) which measures the direction of the gradient at each time point relative
to that in the adult-like scan adds a directional attribute to contrast. The major
contribution of this paper is a framework for joint multimodal temporal model-
ing of white-gray matter MRI contrast change and estimation of subject-specific
and population growth trajectories. Results confirm qualitative descriptions of
growth patterns in pediatric radiology studies and our new quantitative modeling
scheme has the potential to advance understanding of variability of brain tissue
maturation and to eventually differentiate normal from abnormal growth for early
diagnosis of pathology.
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1 Introduction

Early brain development involves a complex sequence of biophysical and chemical
changes occurring in systematic progression. These changes including cortical fold-
ing, premyelination changes in white matter, and myelination, can be clearly seen in
brain MR (Magnetic Resonance) images [1]. Several qualitative studies have attributed
significant changes in MR image appearance seen in the first two years of life to myeli-
nation [2, 3]. Myelination manifests as changing relative contrast between white matter
and gray matter tissues in T1W (T1-Weighted) and T2W (T2-Weighted) MR images.
MR studies of neurodevelopment confirm that these appearance changes are highly
modality-specific. Each modality captures different phases of myelination resulting in
differential timing of contrast change trajectories [2, 3, 1].

Most quantitative studies of the early brain have focused on volumetric and morpho-
metric indicators, as well as microstructural parameters such as diffusion [4, 5]. The us-
age of image appearance as a complementary indicator of brain maturation is relatively
much less explored although a key feature in pediatric radiological exams. A few recent
studies have modeled spatiotemporal changes in signal intensity (SI) to better under-
stand neurodevelopmental processes [6, 7]. However, using SI for appearance analysis
increases dependence on effective normalization schemes to account for variability in
intensity range between scans. The primary goal of this work is to jointly model appear-
ance changes in MR images of the developing brain across multiple modalities using
relative white-gray matter contrast. The usage of the distance between white matter
and gray matter intensity distributions to quantify white-gray contrast provides greater
stability to inter-scan variations compared with signal intensity analysis [8]. We apply
this method to imaging studies of early brain development that are longitudinal and
multimodal by design.

Fig. 1. Infant MRI: (from left
to right) scans at 6, 12, and 24
months of age. The modalities
of scans are T1W (top row) and
T2W (bottom row).

Most imaging studies use a combination of different modalities of MRI such as
T1W and T2W to study the early developing brain. Patterns of appearance change seen
in commonly used MPRAGE (Magnetization Prepared Rapid Acquisition GRE) T1W
and FSE (Fast Spin Echo) T2W scans of the early developing brain are shown in Fig. 1.
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The T1W scans show increasing brightness of white matter relative to gray matter with
progression of age while the T2W scans show the reversed pattern (decreasing bright-
ness of white matter). The signal intensities and tissue properties captured by T1W and
T2W scans depend on T1 and T2 relaxation times. The shortening of T1 relaxation time
occurs in relation to an increase in cholesterol and glycolipids during the early phase
of myelin formation, while the shortening of T2 relaxation time is associated with later
stages of myelination involving processes including tightening of spiral myelin around
the axon [1]. This knowledge that each modality captures a distinct maturational phase
highlights the need for joint multimodal analysis.

SI values in MR images also depend on the pulse sequences used for imaging, along
with factors such as scanner type, scanning conditions, and strength of the main mag-
netic field. The framework presented here is generic since the method for joint multi-
modal analysis of appearance that the authors propose is not limited to the pulse se-
quences and modalities discussed in this paper.

This paper applies multivariate nonlinear mixed effects modeling (NLME) to the
problem of joint modeling of white-gray matter contrast in multimodal scan sets. The
NLME modeling uses a nonlinear growth function to estimate population and subject-
specific trajectories of contrast change [9]. The growth function parameters are jointly
estimated for all modalities by taking into account correlations between them, and pro-
vide timing and progression information related to contrast change in different modal-
ities [6, 10], and have future potential as clinical descriptors of population trends. The
study of appearance change in multimodal image sets also requires quantification of di-
rection of relative white-gray matter contrast. This is especially true for T1W and T2W
images since the signal intensity gradient of white matter with respect to gray matter
in these modalities is inverted. We characterize the direction of relative white-gray in-
tensity gradient using SIR (Signal Intensity Ratio). The gradient direction at each time
point is compared with the gradient direction in the adult-like image of the same modal-
ity to capture contrast reversal using a measure named CONTDIR (Contrast Direction).
The CONTDIR measure is used to assign a directional attribute or sign to the con-
trast measure. Overall, this paper proposes a method to longitudinally model white-gray
matter contrast change jointly across multimodal image sets, in terms of both magni-
tude and direction. The multivariate NLME procedure and the resulting parametrized
growth functions enable characterization of differences between contrast change tra-
jectories of multiple modalities and have the potential to deepen our understanding of
neurodevelopmental processes.

2 Methodology

The proposed framework for joint multimodal modeling of appearance change in MRI
is outlined in Fig. 2. The framework consists of four major components : (i) Spatio-
temporal image processing pipeline consisting of co-registration of entire image data
to a common coordinate space, segmentation of images into tissue classes (gray, white
matter, etc.) and parcellation of the brain into major cortical regions; (ii) generation of
white matter and gray matter intensity distributions and quantification of regional con-
trast in terms of the Hellinger Distance (HD) between these distributions; (iii) charac-
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terizing contrast direction using SIR and adding a directional attribute to contrast using
CONTDIR; and (iv) multivariate NLME for joint modeling of multimodal appearance
change.

Fig. 2. Complete framework for image-processing (left) and statistical analysis of contrast (right).

2.1 Spatio-Temporal Image Processing Pipeline

A joint registration-segmentation pipeline which removes variability due to factors
such as shape, structure, and volume is implemented such that appearance changes
alone remain to be studied. This pipeline consists of intra subject registration using
non-rigid free form deformations [11] followed by inter subject registration using LD-
DMM (Large Deformation Diffeophomorphic Metric Mapping) based algorithms [12]
for unbiased atlas building. The result of these registrations is that all images in the
dataset share the common coordinate space of the atlas. Mapping of a parcellation atlas
onto the constructed atlas enables extraction of major cortical regions. An expectation-
maximization (EM) based procedure for segmenting the brain into major tissue classes
is implemented [13]. Improved segmentation of early time point scans is obtained using
subject-specific priors in the EM procedure. These priors are obtained from probabilis-
tic tissue segmentation maps of the latest time-point scan of each subject [14].

2.2 Quantification of contrast

Contrast between two tissue classes with intensities represented by probability density
distributions requires a measure of similarity. Statistics suggest the use of the Hellinger
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distance (HD) which knows solutions for discrete and parametric distributions and sat-
isfies the properties of a metric. TheHD can be expressed in terms of the Bhattacharyya
coefficient (BC) given any two intensity distributions P1 and P2 as :

BC(P1, P2) =

∫
y

√
P1(y)P2(y)dy. (1)

HD(P1, P2) =
√
2(1−BC(P1, P2)). (2)
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Fig. 3. Intensity Distributions of gray matter (blue), white matter (red), and cerebrospinal fluid or
csf (black) in the left frontal lobe for T1W (a-c) and T2W (d-f) images of a single subject scanned
at approximately 6 months (a and d), 12 months (b and e) and 24 months (c and f) of age.

Kernel Density Estimation (KDE) with a Gaussian kernelG is used to obtain smooth
and continuous distributions for the intensities of each tissue class ck. For an image Ii,m
belonging to subject i and of modality m, the intensity distribution over the entire in-
tensity range Int is denoted by Pi,m(Int|ck). Intensity distributions for the multimodal
image set of a single subject are shown in Fig. 3.

In the following, contrast measured in terms of HD between white and gray matter
intensity distributions is named CONT , and defined according to the notation given
above becomes :

CONTi,m = HD(Pi,m(Int|c =WM), Pi,m(Int|c = GM)). (3)

Contrast computed in our analysis is region-specific and time point-specific in addi-
tion to being modality-specific. The tissue intensity distributions and contrast measures
are independently generated and studied for each major cortical region of the brain to
better capture spatial variability. Subject i’s contrast in the region R, for the jth scan
obtained at time point ti,j of modality m, is denoted as CONTR

i,m(ti,j).

2.3 Direction of Relative Intensity Gradient of White-Gray Matter Tissue

The relative white-gray matter intensity gradients in T1W and T2W scans have opposite
directions. Generally, the intensity of white matter is greater than gray matter in adult-
like T1W scans, while the reverse applies to adult-like T2W scans. In this paper, we
use the Signal Intensity Ratio (SIR) of white matter to gray matter to characterize this
gradient direction and hence distinguish between reversed appearance patterns seen in
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Fig. 4. a) Examples of two
histograms with the same
contrast value, but inverted
white-gray intensity gradi-
ent directions. The SIR val-
ues capture gradient direc-
tion. b) Contrast change tra-
jectory with directional infor-
mation of intensity gradient
relative to the adult-like scan
provided by CONTDIR.

different modalities, as shown in Fig. 4. Regional SIR is the ratio of the mean intensity
of WM voxels to the mean intensity of GM voxels in a region. Consider the SIR for the
modality m scan of the ith subject taken at time ti,j , such that the intensity of a voxel
x in this scan is given by Inti,m(x, ti,j). If the SIR in a region R is greater than 1, it
implies that the mean intensity of WM is greater than the mean intensity of GM in that
region.

SIRR
i,m(ti,j) =

∑
xεWM,R Inti,m(x,ti,j)

NR(WM)∑
xεGM,R Inti,m(x,ti,j)

NR(GM)

(4)

The terms NR(WM) and NR(GM) in the above equation denote the total number of
voxels in a region R belonging to WM and GM tissue classes respectively.

It has also been observed that the direction of white-gray intensity gradient under-
goes a reversal during early development. A quantity CONTDIR characterizes this
reversal by comparing direction of intensity gradient at each time instant to gradient
direction in the adult-like scan. Consider the regional SIR value for the image scanned
at a time point t′ when image appearance is adult-like. If SIR of the adult-like image
satisfies the inequality SIRR

i,m(t′)−1 > 0, then contrast values at all time points which
satisfy the same inequality SIRR

i,m(t)−1 > 0 are assigned a positive sign. The contrast
values which do not satisfy the same inequality as the adult-like image are assigned a
negative sign. The same rule is applicable if the SIR of the adult-like image satisfies the
inequality SIRR

i,m(t′) − 1 < 0. The direction of contrast for region R, for a modal-
ity m scan belonging to subject i, taken at time instant t, relative to adult-like contrast
observed at time t′ is denoted by CONTDIR and defined using the signum function:

CONTDIRR
i,m(t) = signum

(
SIRR

i,m(t)− 1

SIRR
i,m(t′)− 1

)
. (5)

To summarize, the SIR encodes the actual direction of relative white-gray matter
intensity gradient, while the CONTDIR helps determine if reversal in gradient di-
rection takes place. For multimodal mixed effect analysis, the SIR-based directional
attributes are modeled independently from contrast. The CONTDIR value, however,
is used to provide a sign to the contrast measure defined in the earlier section in all
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subsequent analysis. Therefore only reversals in contrast are characterized in the HD-
based contrast analysis by adding a sign using CONTDIR. The actual direction of the
intensity gradient is independently modeled using the SIR with LME (Linear Mixed
Effects) analysis. If the SIR-based directional attributes were used to add a sign to the
contrast measure, contrast values of images belonging to different modalities would
have opposite signs and their ranges would not be comparable.

2.4 Nonlinear Mixed Effects Modeling of Contrast

Our study data is longitudinal, i.e. repeated images of each subject are obtained over
time. Taking into account correlations of repeated measures, different time spacing and
varying number of timepoints per subject, as well as resistance to noise, statistics is of-
fering the methodology of mixed-effect modeling. Unlike regression of the set of mea-
sures assuming independence, mixed effect modeling correctly includes intra-subject
correlations and estimates temporal trajectories of the whole group (fixed effect) and
of each individual (random effects). Accounting for nonlinear temporal changes of
contrast, we apply a nonlinear mixed-effects modeling technique (NLME) [9, 15]. The
NLME framework we use is well established and has several advantages including ro-
bustness to noise and outliers, and the ability to work with datasets that include missing
and unevenly spaced data. The NLME model uses mixed effects parameters consisting
of a linear combination of population-based fixed effects and subject-specific random
effects to estimate growth trajectories. The observation of the ith individual at the jth
time point ti,j is hence modeled using NLME as :

yij = f(φi, tij) + eij . (6)

Here i = 1, ..., Nind refers to subject indices and j = 1, ..., Tind are indices of time
points of scan. The function f is the nonlinear growth function of choice that is used
to model the contrast change trajectory. This function is dependent on the covariate
vector tij as well as the mixed effect parameter vector φi. The error term eij refers
to the residual i.i.d error which follows the normal distribution eij ∼ N(0, σ2). The
parameter vector φi which has fixed and random effect components can be written as :

φi = Aiβ +Bibi , where bi ∼ N(0,ψ). (7)

The vector of fixed effects is given by β and the vector of random effects by bi. The
design matrices associated with fixed effects and random effects vectors are given byAi

andBi respectively. The random effects which contribute to parameter φi are assumed
to be normally distributed with variance-covariance matrix ψ over all subjects.

Since we want to model the highly nonlinear trends seen in contrast change a para-
metric growth function is adopted for NLME modeling [5]. Parametric growth models
provide concise description of the data and show greater flexibility compared with lin-
ear models. After testing various choices for parametric functions with low number of
parameters based on the Akaike Information Criterion (AIC), we decided on using the
logistic growth model. We use the four parameter logistic growth model defined by the
parameters (φ1, φ2, φ3, φ4) as :

f(φ, t) = φ1 +
φ2

1 + exp
φ3−t
φ4

. (8)
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The parameters of the logistic model can be interpreted as follows : (i) φ1 is the left
horizontal asymptotic parameter which is the value taken by the model for very small
values of input t, (ii) φ2 is the right horizontal asymptotic parameter at which the model
saturates for large values of input t, (iii) φ3 is the inflection point parameter which
indicates the time taken to reach half the difference between left and right asymptotic
values, and (iv) φ4 is a rate parameter denoting a scaling function on the time axis which
indicates the curvature of the model at the inflection point.

To generate an individual i’s trajectory using NLME modeling with the logistic
function, mixed effects parameters φi consisting of the sum of fixed effect β and
subject-specific random effect bi are used (by setting values of design matrices A and
B appropriately). The response yRij for a region R and subject i at the jth time instant
tij can be written as :

yRij = φ
R
i1+

φR
i2

1 + exp
φRi3−tij

φRi4

+eij = βR
1+b

R
i1+

βR
2 + bRi2

1 + exp
βR3+bRi3−tij
βR4+bRi4

+eij . (9)

Since we lack information about contrast at the time of birth, the first parameter φRi1

is set to 0 in our analysis. Based on study of variability across subjects and information
criteria, we assume that the right-asymptotic parameter φ2 and inflection point param-
eter φ3 have non-zero random effects, while the remaining parameters don’t have a
random effects component.

Extension of statistical analysis to multimodal data We now extend the univariate
model to the multivariate case of multimodal data. Here, the response yRij defined above
is now considered for a particular modality m to be:

yRij,m = f(φR
i,m, tij) = βR

1,m + bRi1,m +
βR

2,m + bRi2,m

1 + exp
βR3,m+bRi3,m−tij
βR4,m+bRi4,m

+ eij (10)

The responses for the entire set of multimodal images can be modeled as :
yRij,m
.
.
.

 =


f(φR

i,m, tij)
.
.
.

+ eij . (11)

In order to jointly study both variability within a modality (between individuals), and
across modalities, the random effects belonging to all modalities are assumed to follow
a multivariate normal distribution [10, 6]. The parameters of this multivariate normal
distribution are estimated by taking into account inter-modality covariance. In this man-
ner, the growth patterns of scans from different modalities are associated and estimated
jointly rather than separately. For a set of modalities [m = 1, 2, ...,M ], the joint random
effects parameters bi2,m and bi3,m (corresponding to mixed effects parameters φ2 and
φ3, i.e. right horizontal asymptote and inflection point) are jointly modeled across all
M modalities as:

bi =
[
bi2,1 bi3,1 . . bi2,M bi3,M

]T ∼ N(0,ψ). (12)
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Inferences relating to appearance change trends in multiple modalities can be made by
(i) studying the estimated mixed effects parameters and resulting growth trajectories,
and (ii) hypothesis testing to find significant differences in parameters belonging to dif-
ferent modalities. The details about computation of estimated parameters (β,φ,ψ,σ2)
as well as hypothesis testing can be found in [6] and [10].

3 Results

NLME Modeling of Synthetic Data

Longitudinal changes in bivariate data were simulated with synthetic data generated
using the logistic growth model to better understand multivariate NLME analysis. The
random effects parameters (right horizontal asymptote and inflection point) underlying
the logistic growth function were generated from a multivariate Gaussian distribution.
The left horizontal asymptote was set to zero as explained in the section above and the
rate parameter was assumed to only have a fixed effect component. In two independent
experiments, the random effects parameters of the two variables were designed to be
(i) strongly correlated, and (ii) uncorrelated. The fixed effects were the same for both
experiments. The individual and subject specific trends were estimated using NLME
based mixed effects analysis. A univariate NLME model fit was first done separately
for each variable, followed by a joint modeling for both variables using multivariate
NLME. We first consider (i), the case where the variable parameters are strongly corre-
lated. Here, the multivariate NLME fit for all variables resulted in a significantly lower
AIC (Akaike Information Criterion) value compared with the sum of AIC values of uni-
variate fits for each variable. This indicates that multivariate NLME provides a better fit
for the data in case (i). In case (ii) where the parameters are uncorrelated, the usage of
multivariate NLME had no major effect on the AIC as seen in Table 1. This synthetic
data experiment reinforces the necessity of the multivariate fit for modeling multimodal
data, particularly when correlation exists between modalities.

Relation between growth parameters of variables AIC(Var.1) + AIC(Var.2) AIC(Var.1 + Var.2)
Strong Correlation -869.751 -1015.242

No Correlation -866.006 -864.939
Table 1. AIC comparisons for separate and joint fits of multivariate synthetic data

3.1 Multimodal Contrast Modeling and Analysis on Infant Clinical Data

The framework outlined in Section 2 is applied to 22 healthy controls scanned at ap-
proximately 6 months, 12 months, and 24 months of age. Registration removes all volu-
metric and morphometric differences and segmentation classifies each voxel into one of
the major tissue classes. Intensity distributions for white and gray matter tissue classes
are computed. Four major cortical regions in left and right hemispheres (eight brain
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Fig. 5. (Leftmost column) Trajectories of change plotted with respect to the covariate for two
synthetically generated variables. These variables (1 and 2) have strongly correlated (top row) and
uncorrelated (bottom row) random effects parameters for the underlying logistic growth function.
(Middle and right columns) Experimentally designed values of mixed effects parameters (fixed
+ random effects) for variable 2 vs. variable 1 are shown in 2D scatter plots : (middle column)
right horizontal asymptote φ2 and (right column) inflection point φ3. The parameters in the top
row show strong correlation between the two variables while the parameters in the bottom row
show no correlation. The inflection point assumes same unit as the covariate while the asymptote
assumes the unit of the variable modeled.
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Fig. 6. (Top row) Mean contrast change Trajectories in the major cortical lobes of the left hemi-
sphere for T1W (top row, left column) and T2W (top row, right column) modalities. (Middle
row, left column) Mean contrast change trajectories for both modalities in the left frontal lobe
modeled using NLME. (Middle row, right column) Mean linear trend for left-frontal lobe SIR
ratios changing with time modeled using LME. (Bottom row, left column) Mean (fixed effect)
inflection point parameter in months, which measures the time at which half the right horizontal
asymptotic value is reached. (Bottom row, right column) Mean (fixed effect) rate parameter in
months which is a scaling factor on the time axis and is representative of the curvature at the time
point at which half the right asymptotic value is reached.
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regions in total) are chosen to explore spatially dependent brain maturation patterns.
Contrast in T1W and T2W modalities are jointly modeled for each lobe using multi-
variate NLME. The contrast value modeled also has a direction attribute (relative to
adult-like image) given by CONTDIR. Results shown are for left hemispheric cortical
lobes, although similar patterns are replicated in the right hemisphere as well.

As seen in Fig. 6, we infer that contrast change in T1W scans takes place more
rapidly as compared with T2W scans. From visual analysis of the growth trajectories
it is observed that the white-gray contrast in T1W scans becomes close to adult-like at
around 10 months of age. In comparison, contrast in T2W scans continues increasing
until two years of age. Since myelination is known to be one of the key processes con-
tributing to contrast in T1W and T2W images, this pattern is in conformity with the
well-established knowledge that in general, changes associated with myelination are
apparent earlier and proceed faster on T1W images than on T2W images [1]. The con-
trast change trajectories of different cortical regions are also known to follow the trend
of contrast first appearing in parietal/occipital lobes, followed by temporal and frontal
lobes. Quantitative results from the applied framework are consistent with qualitative
radiological observations : the contrast value is seen to reach early saturation in occip-
ital and parietal lobes while temporal and frontal lobes undergo contrast change over a
longer time period.

Analysis of logistic growth function parameters describing contrast change Sta-
tistical inferences based on the non-zero parameters (right-asymptote, inflection point,
and rate) of the logistic function of the form defined earlier, quantify the established
qualitative knowledge that regional contrast change takes place with varying rates in
different modalities. Statistical hypothesis testing using the Student’s t-test confirms
significant differences in both the inflection point and rate parameters between T1W
and T2W modalities for all lobes (results not shown). These timing parameters plot-
ted in Fig. 6 numerically exemplify differences seen in the appearance of white-gray
matter contrast between T1W and T2W modalities. Although absolute values of these
parameters might vary depending on the type of pulse sequence used, they can still be
compared to assess delay in appearance of adult-like white-gray contrast for certain
modalities. The inflection point is particularly crucial to this finding since it indicates
the time taken to reach half the right asymptotic value (assuming that the left asymptote
is zero). While the inflection point lies in the range from 4 to 6 months for T1W im-
ages, it takes on a much higher value of over 9 months for T2W images. Analysis of the
inflection point parameter also numerically confirms the visual finding that temporal
and frontal lobes follow delayed maturation trajectories compared with occipital and
parietal lobes. The rate parameter is a numerical scale parameter on the input time axis.
This parameter approximates to the time taken in months for change from 50 percent
to 73 percent of the maximum value [16]. The rate parameter ranges between half and
1 month for T1W images and between 2 and 3 months for T2W images, indicating that
the rate of change after the inflection point in T1W images is much higher than the rate
of change in T2W images. The SIR (Signal Intensity Ratio) of major brain regions is
used in addition to NLME modeling of contrast magnitude to characterize directional-
ity of relative intensity gradient between white and gray matter tissue classes. A linear
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mixed effects model is used to estimate the general population trend observed in SIR as
seen in Fig. 6. This LME model is similar to the NLME model described above except
that the nonlinear growth function is replaced by a linear function. It can be observed
that for T1W images the SIR is predominantly greater than 1, indicating that white mat-
ter is of higher intensity compared with gray matter on average. The SIR is less than 1
for most T2W images, indicating the inverted nature of white-gray matter contrast. The
slope of the SIR trends for T1W and T2W scans further illustrates the knowledge that
contrast changes in these two modalities take place in opposite directions. The CONT-
DIR value which measures gradient relative to intensity gradient in the adult-like image
is also computed at each time point and adds the sign for the contrast value.

4 Discussion and Conclusions

The multivariate NLME modeling of multimodal contrast change demonstrates that
T1W and T2W modalities show distinctly different patterns of contrast change. The
average growth function parameters estimated using NLME serve as numerical indi-
cators of these differential patterns and conform to existing studies of the developing
brain [1]. Statistical hypothesis testing further substantiates the claim that the timing
parameters of contrast change are significantly different for the two modalities studied.
Our choice of the logistic function to model contrast change is based on comparison of
AIC values with a few other commonly used biological growth functions. Prior knowl-
edge that maturation takes place in a highly asymptotic manner and reaches a saturation
value around 2 years of age further strengthens our choice. Our method faces limitations
since contrast as a measure of appearance could be adversely affected by intensity in-
homogeneities. In this study contrast is analyzed in a regional manner but a voxel-level
appearance measure could give rise to new interesting insights at a finer anatomical
scale, particularly since large variability can exist even within a lobar region as applied
here.

This work presents a complete framework for the joint modeling of multimodal
MR image appearance change in longitudinal datasets using multivariate NLME. The
usage of multivariate NLME for contrast modeling enables joint estimation of appear-
ance change parameters in T1W and T2W modalities, hence accounting for correlations
between multimodal scans. The timing parameters extracted from this model and statis-
tical inferences from the same quantify lag in appearance of white-gray matter contrast
observed in T2W scans compared with T1W, confirming the utility of the method in
early brain developmental studies. Modeling of SIR enables the inclusion of informa-
tion about the direction of white-gray intensity gradient. CONTDIR assigns a direc-
tional value to contrast and captures contrast reversals by finding the relative direction
of the white-gray intensity gradients compared to the adult-like image. Future studies
would involve multimodal estimation of time of contrast reversal using neonate scans,
extending the current analysis to several other modalities, and exploring applications
of this work in detecting developmental abnormalities. The effect that switching from
univariate to multivariate modeling has on prediction of abnormal trajectories of ap-
pearance change also holds interest.
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