
Eurographics Conference on Visualization (EuroVis) 2019
M. Gleicher, H. Leitte, and I. Viola
(Guest Editors)

Volume 38 (2019), Number 3

Scalable Ray Tracing Using the Distributed FrameBuffer

Will Usher†1,2, Ingo Wald2,3, Jefferson Amstutz2, Johannes Günther2, Carson Brownlee2, and Valerio Pascucci1

1SCI Institute, University of Utah 2Intel Corporation 3NVIDIA

Figure 1: Large-scale interactive visualization using the Distributed FrameBuffer. Top left: Image-parallel rendering of two transparent

isosurfaces from the Richtmyer-Meshkov [CDD∗02] (516M triangles), 8FPS with a 20482 framebuffer using 16 Stampede2 Intel® Xeon®

Platinum 8160 SKX nodes. Top right: Data-parallel rendering of the Cosmic Web [ISM∗08] (29B transparent spheres), 2FPS at 20482 using

128 Theta Intel® Xeon Phi™ Knight’s Landing (KNL) nodes. Bottom: Data-parallel rendering of the 951GB DNS volume [LM15] combined

with a transparent isosurface (4.35B triangles), 5FPS at 4096×1024 using 64 Stampede2 Intel® Xeon Phi™ KNL nodes.

Abstract

Image- and data-parallel rendering across multiple nodes on high-performance computing systems is widely used in visualization

to provide higher frame rates, support large data sets, and render data in situ. Specifically for in situ visualization, reducing

bottlenecks incurred by the visualization and compositing is of key concern to reduce the overall simulation runtime. Moreover,

prior algorithms have been designed to support either image- or data-parallel rendering and impose restrictions on the data

distribution, requiring different implementations for each configuration. In this paper, we introduce the Distributed FrameBuffer,

an asynchronous image-processing framework for multi-node rendering. We demonstrate that our approach achieves performance

superior to the state of the art for common use cases, while providing the flexibility to support a wide range of parallel rendering

algorithms and data distributions. By building on this framework, we extend the open-source ray tracing library OSPRay with a

data-distributed API, enabling its use in data-distributed and in situ visualization applications.

CCS Concepts

• Computing methodologies → Ray tracing;

1. Introduction

The need for high-performance distributed parallel rendering is
growing, spurred by trends in increasing data set sizes, the desire
for higher fidelity and interactivity, and the need for in situ visual-
ization. Meeting these demands poses new challenges to existing
rendering methods, requiring scalability across a spectrum of mem-
ory and compute capacities on high-performance computing (HPC)
resources. Whereas the growth in data set sizes demands a large
amount of aggregate memory, the desire for more complex shading

† will@sci.utah.edu

and interactivity demands additional compute power. A large num-
ber of application needs fall somewhere in between these extremes,
requiring a combination of additional memory and compute. Finally,
in situ visualization requires the renderer to scale with the simula-
tion, while incurring little overhead. Rendering techniques that scale
well for either compute power or aggregate memory capacity are
well known, but applications falling between these extremes have
not been well addressed.

In large-scale rendering workloads on distributed-memory clus-
ters, the data is typically partitioned into subregions and distributed
across multiple nodes to utilize the aggregate memory available.
Each node is then responsible for rendering its assigned subregion

© 2019 The Author(s)
Intel, Intel Core, Xeon, and Xeon Phi are trademarks of the Intel Corporation in the U.S.and other
countries. Other product names and brands may be claimed as property of others. Computer Graphics
Forum © 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



Usher et al. / Scalable Ray Tracing Using the Distributed FrameBuffer

of data. The partial images rendered by each node are then com-
bined using a sort-last compositing algorithm, e.g., Parallel Direct
Send [Hsu93], Binary Swap [MPHK94], Radix-k [PGR∗09], or
TOD-tree [GPC∗17]. The IceT library [MKPH11] provides imple-
mentations of a number of sort-last compositing algorithms and is
widely used in practice. However, such data-parallel renderers im-
pose restrictions on how the data can be distributed, are susceptible
to load imbalance, and are limited to local illumination effects.

At the other end of the spectrum, the master-worker architecture
has been widely used to scale up compute capacity and provide
interactivity for high-fidelity visualization of moderately sized data
sets. Master-worker renderers distribute work image-parallel by
assigning subregions of the image to be rendered by different nodes.
This architecture has been used effectively in a number of ray tracers,
e.g., Manta [BSP06], OpenRT [WBS02], and OSPRay [WJA∗17].
While typically used for data which can be stored in memory on each
node, this architecture can be used for large data sets by streaming
data needed for the portion of the image from disk [WSB01] or over
the network [DGBP05, IBH11]; however, these systems can suffer
from cache thrashing and are tied to specific data types or formats.

Applications falling somewhere in between the extrema of only
compute or memory scaling, or those seeking to go beyond common
use cases, can quickly run into issues with existing approaches. For
example, whereas a master-worker setup is well suited to image-
parallel ray tracing, if the renderer wants to perform additional
post-processing operations (e.g., tone-mapping, progressive refine-
ment), or handle multiple display destinations (e.g., display walls),
the master rank quickly becomes a bottleneck. Similarly, whereas
existing sort-last compositing algorithms are well suited to stati-
cally partitioned data-parallel rendering, extending them to support
partially replicated or more dynamic data distributions for better
load balancing is challenging. Standard sort-last compositing meth-
ods operate bulk-synchronously on the entire frame, and are less
suited to tile-based ray tracers in which small tiles are rendered
independently in parallel.

In this paper, we describe the algorithms and software
architecture—the “Distributed FrameBuffer”—that we developed
to support distributed parallel rendering, with the goal of address-
ing the above issues to provide an efficient and highly adaptable
framework suitable for a range of applications. The Distributed
FrameBuffer (DFB) is built on a tile-based work distribution of the
image processing tasks required to produce the final image from a
distributed renderer. These tasks are constructed per-tile at runtime
by the renderer and are not necessarily tied to the host application’s
work or data distribution, providing the flexibility to implement a
wide range of rendering algorithms and distribute compute-intensive
image processing tasks. The DFB performs all communication and
computation in parallel with the renderer using multiple threads to
reduce compositing overhead. Although the DFB is flexible enough
to support renderers across the spectrum of memory and compute
scaling, it does not make a performance trade-off to do so. Our key
contributions are:

• A flexible and scalable parallel framework to execute compositing
and image processing tasks for distributed rendering;

• A set of parallel rendering algorithms built on this approach, cov-
ering both standard use cases and more complex configurations;

• An extension of OSPRay to implement a data-distributed API,
allowing end users to leverage the above algorithms in practice
on a wide range of different data types.

2. Previous Work

A large body of previous work has studied parallel rendering tech-
niques for distributed-memory systems. These works can generally
be classified as one of three techniques, first discussed in the context
of rasterization by Molnar et al. [MCEF94]: sort-first, sort-middle,
and sort-last. Sort-middle is tied to rasterization, thus we focus our
discussion on sort-first and sort-last strategies. Sort-first is an image-
parallel technique, where the workload is distributed across multiple
ranks by subdividing the image. Sort-last is a data-parallel tech-
nique, where the workload is distributed by subdividing the 3D data,
regardless of where it lies in the image. Hybrid approaches have also
been proposed, which combine sort-first and sort-last techniques.

2.1. Data-Parallel Rendering

In sort-last, or data-parallel, rendering the geometric primitives and
volumetric data are partitioned in 3D space, with each node assigned
a subregion of the overall data to render. In early implementations,
this subdivision was at the level of a single primitive [RK79]. Each
node then renders its subregion of data to produce a partial image,
which must then be combined with other nodes’ images to create the
final image. Combining these partial images typically requires depth
compositing the overlapping partial images to produce a correct final
image. It is this second step that becomes the bottleneck at large
core counts and high-resolutions, and therefore has been the focus
of a large body of work (e.g., [Hsu93, MPHK94, FdR07, YWM08,
KPH∗10, MKPH11, GKH16, GPC∗17]).

Most similar to our work in the context of data-parallel rendering
is Grosset et al.’s [GKH16] Dynamically Scheduled Region-Based
compositing (DSRB). DSRB divides the image into strips and con-
structs a per-strip blending order, referred to as a chain, based on
which node’s data projects to each strip. Partial compositing for a
chain can be done after receiving strips from successive nodes in
the chain, overlapping compositing with rendering on other nodes.
However, DSRB is restricted in the amount of rendering it can over-
lap with compositing, as each node renders its entire image before
starting compositing; is only applicable to data-parallel rendering;
and relies on a central scheduler to construct the chains.

The IceT library [MKPH11] encompasses several different com-
positing strategies for sort-last rendering and has been widely de-
ployed across popular parallel scientific visualization tools. Thus,
we use IceT as a primary point of comparison when evaluating our
method’s performance. Although IceT was initially designed for
rasterization, Brownlee et al. [BPL∗12] used IceT’s depth composit-
ing with a ray tracer inside of multiple visualization tools, though
were hindered by the data distribution chosen by the tools. Wu et
al. [WUP∗18] employed a similar approach to integrate OSPRay
into VisIt, using OSPRay to render locally on each rank and IceT to
composite the image, and encountered similar difficulties.

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.



Usher et al. / Scalable Ray Tracing Using the Distributed FrameBuffer

}
TileOperation

Finished Tile

PixelOp

Final Tile

Send to display

Tile Task Dependencies

Rank 1

Rank 0

Gen: 1
Children: 0

Gen: 1
Children: 0

Gen: 0
Children: 2

Local Function Call Optional OperationSent over MPI

Legend:

Figure 2: An example of the Distributed FrameBuffer’s tile processing pipeline in a data-parallel renderer. Dependencies are specified on the

fly per-tile and can be extended by child tiles. To compute the highlighted tile owned by rank 0, the owner sends a background color tile for

generation 0, which specifies that two additional tiles will arrive in generation 1, potentially from different ranks. After receiving the full

dependency tree, the tile operation produces the finished tile, which is tone-mapped by a pixel operation and sent to the display rank.

2.2. Image-Parallel Rendering

Image-parallel renderers assign subregions of the image to different
ranks for rendering. To render large datasets, this approach is typi-
cally coupled with some form of data streaming or movement into
a local cache, and is designed to exploit frame-to-frame coherence.
The data movement work is amortized over multiple frames as the
data rendered for a region of the image in one frame will likely be
similar to that rendered in the next frame. Early rasterization-based
techniques used a sort-middle algorithm, where the image was parti-
tioned between nodes, and geometry sent to the node rendering the
portion of the image it projected to [EGT90].

Image-parallel rendering lends itself well to ray tracing, as ray
tracers already use acceleration structures for ray traversal which
can be readily adapted to streaming and caching portions of the
scene as they are traversed. Wald et al. [WSB01] used a commodity
cluster for interactive ray tracing of large models, where a top-level
k-d tree is replicated across the nodes and lower sub-trees fetched
on demand from disk. DeMarle et al. [DGBP05] used an octree
acceleration structure for rendering large volume data, where miss-
ing voxels would be fetched from other nodes using a distributed
shared memory system. Ize et al. [IBH11] extended this approach
to geometric data using a distributed BVH. When rendering fully
replicated data, their approach avoids data movement and composit-
ing, and can achieve 100FPS for primary visibility ray casting on 60
nodes. Biedert et al. [BMFG18] proposed an image-parallel remote
streaming framework able to achieve over 80FPS from a distributed
cluster to a remote client, using hardware acceleration and adaptive
tile-based streaming.

2.3. Hybrid-Parallel Rendering

While image- and data-parallel rendering methods distribute work
solely by partitioning the image or data, hybrid-parallel renderers
combine both strategies, aiming to pick the best for the task at hand.
Reinhard et al. [RCJ99] first proposed a hybrid scheduling algorithm
for ray tracing distributed data, where the rays would be sent or the
required data fetched depending on the coherence of the rays.

Samanta et al. [SFLS00] proposed to combine sort-first and sort-
last rendering in the context of a rasterizer, by partitioning both the
image and data among the nodes. Each node then renders its local
data and sends rendered pixels to other nodes that own the tiles its

data touches. The tiles are then composited on each node and sent
to the display node. This approach bears some resemblance to the
Distributed FrameBuffer, although lacks its extensibility and support
for ray tracing specific rendering effects.

Navrátil et al. [NFLC12] proposed a scheduler that combines
static image and data decompositions for ray tracing, roughly simi-
lar to sort-first and sort-last, respectively. However, a key difference
of their approach when compared to a sort-last rasterizer is that
rays will be sent between nodes, similar to Reinhard et al. [RCJ99],
to compute reflections and shadows. The static image decomposi-
tion scheduler works similar to the image-parallel algorithms dis-
cussed previously. Abram et al. [ANG∗18] extended the domain
decomposition model to an asynchronous, frameless renderer us-
ing a subtractive lighting model for progressive refinement. Park et
al. [PFN18] extended both the image and domain decompositions,
by introducing ray speculation to improve system utilization and
overall performance. By moving both rays or data as needed, these
approaches are able to compute global illumination effects on the
distributed data, providing high-quality images at additional cost.

Biedert et al. [BWHG17] employed a task-based model of dis-
tributed rendering which is able to combine sort-first and sort-last
rendering, by leveraging an existing runtime system to balance
between these strategies. Although their work uses OSPRay for
rendering, it is restricted to a single thread per-process and is non-
interactive.

2.4. OSPRay, Embree and ISPC

Although the Distributed FrameBuffer is applicable to any tile-based
rendering algorithm, we evaluate it within the context of the OSPRay
ray tracing framework [WJA∗17]. OSPRay provides a range of built
in volume and geometric primitives used in scientific visualization,
advanced shading effects, and achieves interactive rendering on typ-
ical workstations and laptops. To achieve interactive ray tracing per-
formance on CPUs, OSPRay builds on top of Embree [WWB∗14],
the Intel SPMD Program Compiler (ISPC) [PM12], and Intel’s
Threading Building Blocks (TBB).

Embree is a high-performance kernel framework for CPU ray
tracing, and provides a set of low-level kernels for building and
traversing ray tracing data structures which are highly optimized for
modern CPU architectures. ISPC is a single program multiple data

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.



Usher et al. / Scalable Ray Tracing Using the Distributed FrameBuffer

(SPMD) compiler, which vectorizes a scalar program by mapping
different instances of the program to the CPU’s vector lanes, thereby
executing them in parallel. TBB provides a set of parallel program-
ming primitives for writing high-performance multi-threaded code,
similar to OpenMP.

3. The Distributed FrameBuffer

At its core, the Distributed FrameBuffer (DFB) is not a specific com-
positing algorithm per se, but a general framework for distributed
rendering applications. A renderer using the DFB specifies a set
of tasks to be executed on the rendered image and per-tile depen-
dency trees for the tasks. The tasks are parallelized over the image
by subdividing it into tiles, where each tile is owned by a unique
rank—the tile owner—responsible for executing tasks for that tile.
If task dependencies are produced on ranks other than the tile owner
the DFB will route them over the network to the owner. The tile
dependency trees are specified per-tile and per-frame, allowing for
view- and frame-dependent behavior.

The tile processing pipeline involves three stages (Figure 2). First,
the dependency tree is constructed by the tile operation as task de-
pendencies are received from other ranks. Once the entire tree has
been received the finished tile is computed by the tile operation
and passed on to any pixel operations. The final output tile is then
converted to the display image format and sent to the display rank,
if needed. The processing pipeline and messaging system run asyn-
chronously on multiple threads, allowing users to overlap additional
computation with that performed by the DFB. Although the focus
of this paper is on using the DFB for rendering, the task input tiles
are not required to be produced by a renderer.

3.1. Tile Processing Pipeline

The DFB begins and ends processing synchronously, allowing ap-
plications processing multiple frames, i.e., a renderer, to ensure that
tiles for different frames are processed in the right order. Before
beginning a frame, the renderer specifies the tile operation to pro-
cess the tiles it will produce. Each rank then renders some set of
tiles based on the work distribution chosen by the renderer. As tiles
are finished, they are handed to the DFB for processing by calling
setTile. During the frame, the DFB will compute tile operations
for the tiles owned by each rank in the background and send other
tiles over the network to their owner. The frame is completed on
each rank when the tiles it owns are finalized, and rendering is fin-
ished when all processes have completed the frame. As each tile is
processed independently in parallel it is possible for some tiles to
be finalized while others have yet to receive their first inputs.

To track the distributed tile ownership, the DFB instance on each
rank stores a tile descriptor (Listing 1) for each tile in the image.
When setTile is called the DFB looks up the descriptor for the
tile and sends it to the owner using an asynchronous messaging layer
(Section 3.2). If the owner is the calling rank itself, the tile is instead
scheduled for processing locally.

For each tile owned by the rank, the DFB stores a concrete tile
operation instance in the array of descriptors. The base structure for
tile operations (Listing 1) stores a pointer to the local DFB instance

struct Tile {

int generation;

int children;

region2i screenRegion;

int accumulationID; // Sample pass for progressive refinement

float color[4*TILE_SIZE*TILE_SIZE];

float depth[TILE_SIZE*TILE_SIZE];

float normal[3*TILE_SIZE*TILE_SIZE]; // Optional

float albedo[3*TILE_SIZE*TILE_SIZE]; // Optional

};

struct TileDescriptor {

virtual bool mine() { return false; }

vec2i coords;

size_t tileID, ownerRank;

};

struct TileOperation : TileDescriptor {

bool mine() { return true; }

virtual void newFrame() = 0;

virtual void process(const Tile &tile) = 0;

DistributedFrameBuffer *dfb;

vec4f finalPixels[TILE_SIZE*TILE_SIZE];

Tile finished, accumulation, variance;

};

Listing 1: The base structures for tiles and tile operations.

and a Tile buffer to write the finished tile data to, along with optional
accumulation and variance buffer tiles. The finalPixels buffer
is used as scratch space to write the final tile to, before sending it to
the display rank.

To implement the corresponding tile operation for a rendering
algorithm (e.g., sort-last compositing) users extend the TileOp-
eration, and specify their struct to be used by the DFB. Each
time a tile is received by the DFB instance on the tile owner, the
process function is called on the tile operation to execute the
task. The newFrame function is called when a new frame begins,
to reset any per-frame state.

When all a tile’s dependencies have been received the tile oper-
ation combines the inputs to produce a finished tile, which is then
passed to the DFB. The local DFB instance runs any additional
pixel operations on the finished tile and converts the final pixels to
the display color format, outputting them to the finalPixels
buffer. This buffer is then compressed and sent to the display rank.
In addition to the RGBA8 and RGBAF32 display formats, the DFB
also offers a NONE format, which is unique in that it indicates that
the display rank should not receive or store the final pixels at all. We
will discuss a useful application of the NONE format in Section 4.4.

3.1.1. Per-Tile Task Dependency Trees

The Tile structure passed to setTile and routed over the net-
work is shown in Listing 1. To construct the dependency tree, each
rendered tile specifies itself as a member of some generation (a level
in the tree), and as having some number of children in the following
generation. The total number of tiles to expect in the next generation
is the sum of all children specified in the previous one. Different
ranks can contribute tiles with varying numbers of children for each
generation, and can send child tiles for parents rendered by other
ranks. There is no requirement that tiles are sent in order by genera-
tion, nor is a tile operation guaranteed to receive tiles in a fixed order.
Tile operations with dependencies beyond a trivial single tile can be
implemented by buffering received tiles in process to collect the
complete dependency tree.

The interpretation and processing order of the dependency tree
is left entirely to the tile operation. For example, the dependency
tree could be used to represent a compositing tree, input to some

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.



Usher et al. / Scalable Ray Tracing Using the Distributed FrameBuffer

filtering, or simply a set of pixels to average together. The creation
of the dependency trees by the renderer and their processing by the
tile operation are tightly coupled, and thus the two are seen together
as a single distributed rendering algorithm. The flexibility of the tile
operation and dependency trees allows the DFB to be used in a wide
range of rendering applications (Section 4).

3.1.2. Pixel Operations

Additional post-processing, such as tone-mapping, can be performed
by implementing a pixel operation (PixelOp). The pixel operation
takes the single finished tile from the tile operation as input, and
thus is not tied to the tile operation or renderer. The DFB runs the
pixel operation on the tile owner after the tile operation is completed
to distribute the work. In addition to image post-processing, pixel
operations can be used, for example, to re-route tiles to a display
wall (Section 4.4).

3.2. Asynchronous Messaging Layer

To overlap communication between nodes with computation, we
use an asynchronous point-to-point messaging layer built on top of
MPI (Message Passing Interface). Objects that will send and receive
messages register themselves with the messaging layer and specify
a unique global identifier. Each registered object is seen as a global
“distributed object”, with an instance of the object on each rank
which can be looked up by its global identifier. A message can be
sent to the instance of an object on some rank by sending a message
to the rank with the receiver set as the object’s identifier.

The messaging layer runs on two threads: a thread which man-
ages sending and receiving messages with MPI, and an inbox thread
which takes received messages and passes them to the receiving
object. Messages are sent by pushing them on to an outbox, which
is consumed by the MPI thread. To avoid deadlock between ranks,
we use non-blocking MPI calls to send, receive, probe, and test for
message completion. Received messages are pushed on to an inbox,
which is consumed by the inbox thread. To hand a received mes-
sage to the receiving object, the inbox thread looks up the receiver
by its global ID in a hash table. Messages are compressed using
Google’s Snappy library [Goo] before enqueuing them to the outbox
and decompressed on the inbox thread before being passed to the
receiver.

In our initial implementation we also used the messaging layer
to gather the final tiles to the display rank. However, unless the
rendering workload is highly imbalanced, this approach generates a
large burst of messages to the display, with little remaining rendering
work to overlap with. This burst of messages also appeared to trigger
an MPI performance issue on some implementations. As an opti-
mization, the final tiles are instead written to a buffer, which is com-
pressed and gathered to the display with a single MPI_Gatherv
at the end of the frame.

4. Rendering with the Distributed FrameBuffer

A distributed rendering algorithm using the DFB consists of a ren-
derer, responsible for rendering tiles of the image, coupled with a

struct ImageParallel : TileOperation {

void process(const Tile &tile) {

// Omitted: copy data from the tile

dfb->tileIsCompleted(this);

}

};

void renderFrame(DFB *dfb) {

dfb->begin();

parallel_for (Tile &t : assignedTiles()) {

renderTile(t);

dfb->setTile(t);

}

dfb->end();

}

Listing 2: The tile operation and rendering loop for an image-

parallel renderer using the DFB.

tile operation, which will combine the results of each ranks’ ren-
derer. In the following sections we discuss a few distributed render-
ing algorithms built on the DFB, covering standard image-parallel
(Section 4.1) and data-parallel (Section 4.2) rendering, along with
extensions to these methods enabled by the DFB, specifically, dy-
namic load balancing (Section 4.1.1) and mixed-parallel rendering
(Section 4.3). Finally, we discuss how pixel operations can be used
to implement a high-performance display wall system (Section 4.4).

4.1. Image-Parallel Rendering

An image-parallel renderer distributes the tile rendering work in
some manner between the ranks such that each tile is rendered once.
This distribution can be a simple linear assignment, round-robin,
or based on some runtime load balancing. The corresponding tile
operation expects a single rendered tile as input. The DFB allows
for a straightforward and elegant implementation of this renderer
(Listing 2).

4.1.1. Tile Ownership vs. Work Distribution

The work distribution chosen by the renderer is not tied to the DFB
tile ownership, allowing the renderer to distribute work as desired.
Though it is preferable that the tile owners render the tiles they own
to reduce network traffic, this is not a requirement.

This flexibility in work distribution can be used, for example, to
implement dynamic load balancing. We extend the ImageParal-
lel tile operation to support receiving a varying number of tiles,
and the renderer to assign each tile to multiple ranks. Each redun-
dantly assigned tile uses a different random seed to generate camera
rays, thereby computing a distinct set of samples. The rendered
tiles are then averaged together by the tile operation, producing a
finished tile equivalent to a higher sampling rate. This approach is
especially useful for path tracing, as a high number of samples are
required to produce a noise-free image. Tiles with higher variance
can be assigned to additional ranks, adjusting the sampling rate
dynamically.

4.2. Data-Parallel Rendering

A standard sort-last data-parallel renderer decomposes the scene into
a set of bricks, and assigns one brick per-rank for rendering. Each
rank renders its local data to produce a partial image, which are com-
bined using a sort-last compositing algorithm to produce an image
of the entire dataset. To implement a data-parallel renderer using the
DFB, we express sort-last compositing as a tile operation, and take

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.



Usher et al. / Scalable Ray Tracing Using the Distributed FrameBuffer

Gen: 0

Children: 3

}

Gen: 0

Children: 2

Rank 1

}

Gen: 0

Children: 4

Rank 2

} Gen: 0

Children: 2

Rank 3

}

Rank 0

Figure 3: Tile ownership and dependency trees for a data-parallel

renderer using the DFB. Each rank owns its highlighted tile, and

receives input tiles from ranks whose data projects to the tile. Com-

positing runs in parallel to local rendering, reducing overhead.

1 void renderFrame(Brick local, box3f allBounds[], DFB *dfb) {

2 dfb->begin();

3 /* We touch the tiles we own and those touched by the

4 screen-space projection of our brick */

5 Tile tiles[] = {dfb->ownedTiles(), dfb->touchedTiles(local)};

6 parallel_for (Tile &t : tiles) {

7 bool intersected[] = intersectBounds(allBounds, t);

8 if (dfb->tileOwner(t)) {

9 fillBackground(t);

10 t.generation = 0;

11 t.children = numIntersected(intersected).

12 dfb->setTile(t);

13 }

14 if (intersected[local]) {

15 renderBrickForTile(t, local);

16 t.generation = 1;

17 t.children = 0;

18 dfb->setTile(t);

19 }

20 }

21 dfb->end();

22 }

Listing 3: The rendering loop for a standard data-parallel renderer.

advantage of the DFB’s asynchronous tile routing and processing
to execute the compositing in parallel with local rendering. The
benefits of this approach are two-fold: the per-tile task dependencies
allow to minimize compositing and communication work per-tile,
and overlapping compositing and rendering reduces the additional
time spent compositing after rendering is finished.

To compute a per-tile compositing dependency tree, each rank
collects the bounds of the other ranks’ data and projects them to the
image (Figure 3). Only those ranks whose data projects to some tile
will render inputs for it. Each rank is responsible for specifying the
dependency information for the tiles it owns (highlighted in yellow,
Figure 3). The tile owner will compute an additional “background”
tile and set it as the sole member of generation 0. The background
tile is filled with the background color or texture, and sets the number
of ranks whose data project to the tile as the number of children.

The renderer (Listing 3) begins by determining the set of can-
didate tiles that it must either send a background tile for or render
data to. The candidate tiles that the rank’s local data may project to
are found using a conservative screen-space AABB test, which is
subsequently refined. For each candidate tile, the renderer computes
an exact list of the ranks whose data touches the tile by ray tracing

struct AlphaBlend : TileOperation {

Tile bufferedTiles[];

int currentGen, missing, nextChildren;

void newFrame() {

currentGen = 0;

missing = 1; // Expect a generation 0 tile to start

nextChildren = 0;

}

void process(const Tile &tile) {

bufferedTiles.append(tile);

if (tile.generation == currentGen) {

--missing;

nextChildren += tile.children;

checkTreeComplete();

}

if (!missing) {

sortAndBlend(bufferedTiles);

dfb->tileIsCompleted(this);

bufferedTiles = {}

}

}

// Check receipt of all children from all generations,

// advancing currentGen as we complete generations.

void checkTreeComplete() { /* omitted for brevity */ }

}

Listing 4: The sort-last compositing tile operation used by the data-

and mixed-parallel renderers. It first collects the dependency tree,

then sorts and blends the pixels to produce the composited tile.

the bounding boxes. The number of intersected boxes is the number
of generation 1 tiles to expect as input to the tree. If the rank’s local
data was intersected, it renders its data and sends a generation 1 tile.
To allow for ghost zones and voxels, camera rays are clipped to the
local bounds of the rank’s data. As with the outer candidate tile loop,
the inner rendering loop is parallelized over the pixels in a tile.

After receiving the entire dependency tree, the AlphaBlend
tile operation (Listing 4) sorts the pixels by depth and blends them
together to composite the tile. The tile fragment sorting is done per-
pixel, in contrast to the per-rank sort used in standard approaches.
Sorting per-pixel allows for rendering effects like depth of field,
side-by-side stereo, and dome projections. As the tile processing is
done in parallel, we do not find the sorting to be a bottleneck. In
the case that a rank-order sort would produce a correct image, the
dependency tree can be constructed as a list instead of a single-level
tree with tiles ordered back-to-front by generation. Finally, although
we have discussed the data-parallel renderer with a single brick of
data per-rank, it trivially supports multiple bricks per-rank, allowing
for finer-grained work distributions.

4.3. Rendering Hybrid Data Distributions

A data-parallel renderer that statically assigns each brick of data to
a single rank is susceptible to load imbalance, coming from factors
such as the data distribution, transfer function, or camera position.
To better distribute the workload, we can assign the same brick of
data to multiple ranks, with each rank potentially assigned multiple
bricks. Each rank is responsible for rendering a subset of the tiles
the bricks it has projects to, thereby dividing the rendering workload
for each brick among the ranks. Although this increases the memory
requirements of the renderer, additional memory is often available
given the number of compute nodes used to achieve an interactive
frame rate.

Rendering such a configuration with a standard compositing ap-
proach is either difficult or not possible, as the compositing tree
and blending order is set for the entire framebuffer by sorting the
ranks [MKPH11]. However, the DFB’s per-tile dependency trees

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.



Usher et al. / Scalable Ray Tracing Using the Distributed FrameBuffer

void renderFrame(Brick local[], box3f allBounds[], DFB *dfb) {

dfb->begin();

Tile tiles[] = {dfb->ownedTiles(), dfb->touchedTiles(local)};

parallel_for (Tile &t : tiles) {

bool intersected[] = intersectBounds(allBounds, t);

if (dfb->tileOwner(t)) {

// Listing 3, lines 9-12

}

parallel_for (Brick &b : local) {

if (tileBrickOwner(b, t) && intersected[b]) {

// Listing 3, lines 15-18

}

}

}

dfb->end();

}

Listing 5: The rendering loop of the mixed-parallel renderer. The

DFB allows for an elegant extension of the data-parallel renderer

to support partially replicated data for better load-balancing.

allow renderers to change which ranks contribute tiles for each im-
age tile. This enables a direct extension of the data-parallel renderer
discussed previously into a mixed-parallel renderer, which balances
image and data parallelism to achieve better load balance.

To develop the mixed-parallel extension, we introduce the con-
cept of a “tile-brick owner”. Given a dataset partitioned into a set
of bricks and distributed among the ranks with some level of repli-
cation, the renderer must select a unique rank among those sharing
a brick to render it for each image tile. The rank chosen to render
the brick for the tile is referred to as the “tile-brick owner”. Thus
we can take our data-parallel renderer and modify it so that a rank
will render a brick for a tile if the brick projects to the tile and the
rank is the tile-brick owner (Listing 5). The task dependency tree
and tile operation are the same as the data-parallel renderer; the only
difference is which rank renders the generation 1 tile for a given
brick and image tile.

Our current renderer uses a round-robin assignment to select tile-
brick ownership, however this is not a requirement of the DFB. A
more advanced renderer could assign tile-brick ownership based
on some load-balancing strategy (e.g., [FE11]), or adapt the brick
assignment based on load imbalance measured in the previous frame.
The strategies discussed for image-parallel load balancing and work
subdivision in Section 4.1.1 are also applicable to the mixed-parallel
renderer. For example, two ranks sharing a brick could each compute
half of the camera rays per-pixel, and average them together in the
tile operation to produce a higher quality image.

The mixed-parallel renderer supports the entire spectrum of
image- and data-parallel rendering: given a single brick per-rank it
is equivalent to the data-parallel renderer; given the same data on all
ranks it is equivalent to the image-parallel renderer; given a partially
replicated set of data, or a mix of fully replicated and distributed
data, it falls in between.

4.4. Display Walls

The DFB can also be used to implement a high-performance dis-
play wall rendering system by using a pixel operation to send tiles
directly to the displays (Figure 4). Tiles will be sent in parallel as
they are finished on the tile owner directly to the displays, achiev-
ing good utilization of a fully interconnected network. Moreover,
when rendering with the NONE image format, the image will not
be gathered to the master rank, avoiding a large amount of network

Figure 4: A prototype display wall system using DFB pixel opera-

tions to send tiles in parallel from an image-parallel path tracer.

communication and a common bottleneck. As pixel operations are
not tied to the rendering algorithm or tile operation, this method can
be used to drive a display wall with any of the presented renderers.

4.5. Implementation

We implement the Distributed FrameBuffer and the presented render-
ing algorithms in OSPRay’s MPI module, using Intel TBB for multi-
threading and ISPC [PM12] for vectorization. The underlying im-
plementation of the MPIDevice provided by OSPRay [WJA∗17]
for image-parallel rendering has been significantly improved by
this work, although it is exposed to users in the same manner as
before. Users can continue to run existing OSPRay applications
with mpirun and pass the --osp:mpi argument to the applica-
tion, and OSPRay will replicate the scene data across a cluster and
render it image-parallel using the rendering algorithms described in
Sections 4.1 and 4.1.1.

5. A Data-Distributed API for OSPRay

The OSPRay API was originally designed for a single application
process passing its data to OSPRay. Although OSPRay may of-
fload the data in some way to other ranks, this is done without
the application’s awareness. This API works well for applications
that do not need to specify the data distribution; however, it is not
applicable to those that do, e.g., ParaView and VisIt. Maintain-
ing an API that is familiar to users while extending it to a data-
distributed scenario poses some challenges. Furthermore, we would
like to seamlessly support existing OSPRay modules, which have
added new geometries [WKJ∗15, VSW∗17, WWW∗19] and vol-
umes [RWCB15, WBUK17], in a data-distributed setting.

We implement the data-distributed API through the addition of a
new OSPRay API backend, the MPIDistributedDevice. As
in single process rendering, each rank sets up its local geometries
and volumes independently and places them into one or more OSP-
Model objects. However, instead of a single model per-scene, the
application must create one model for each disjoint brick of data on
the rank. Each brick may contain any combination of geometries
and volumes, including ones provided by user modules. To allow
applications to pass OSPRay information about the data distribution,
the distributed device extends the OSPModel with two additional
parameters: a required integer ID, and an optional bounding box.

The ID is used to determine if two ranks have the same brick
of data and can share the rendering work using the mixed-parallel

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.



Usher et al. / Scalable Ray Tracing Using the Distributed FrameBuffer

(a) R-M transparent isosurfaces. (b) DNS with transparent isosurfaces. (c) 53 Cosmic Web subset. (d) Synthetic benchmark volume.

Figure 5: The data sets used in our benchmarks. (a) Two transparent isosurfaces on the Richtmyer-Meshkov [CDD∗02], 516M triangles

total. (b) A combined visualization of the 451GB single-precision DNS [LM15] with two transparent isosurfaces, 5.43B triangles total. (c) A

53 subset of the 83 Cosmic Web [ISM∗08], 7.08B particles rendered as transparent spheres. (d) The generated volume data set used in the

compositing benchmarks, shown for 64 nodes. Each node has a single 643 brick of data.

renderer. A typical data-parallel application with a single model per-
rank could simply use the MPI rank as the ID, while an application
with a hybrid data distribution would have a list of models and
assign a unique ID for each shared brick of data. An MPI-parallel
application can even use the distributed API for image-parallel
rendering by specifying the same data and ID on each rank.

The bounding box parameter can be used to override the model’s
computed bounds, if the model contains additional ghost geometries
or voxels that should be hidden from camera rays. An additional
set of ghost models can also be passed to the renderer, containing
data visible only to secondary rays. The bounding box parameter
and ghost models allow applications to support local shading effects
such as ambient occlusion, or compute shadows and reflections on
the replicated data in the scene.

6. Results

We evaluate the performance of the Distributed FrameBuffer on the
rendering algorithms described in Section 4, using our implementa-
tions within OSPRay. The benchmarks are run on two HPC systems,
the Texas Advanced Computing Center’s Stampede2, and Argonne
National Laboratory’s Theta, on a range of typical image- and data-
parallel rendering use cases (Figure 5). We also perform a direct
comparison of our sort-last compositing implementation using the
DFB against IceT for a typical data-parallel use case. To measure
performance as the rendering workload varies, the benchmarks are
taken while rendering a rotation around the data set. Unless other-
wise stated, we plot the median performance for the benchmarks,
with the median absolute deviation shown as error bars. These mea-
sures are more robust to outliers, giving some robustness against
influence from other jobs on the system. All benchmarks are run
with one MPI rank per-node, as OSPRay uses threads on a node for
parallelism.

Stampede2 and Theta consist of 4200 and 4392 Intel® Xeon
Phi™ KNL processors respectively. Stampede2 uses the 7250 model,
with 68 cores, while Theta uses the 7230 model with 64 cores.
Stampede2 contains an additional partition of 1736 dual-socket
Intel® Xeon Phi™ Platinum 8160 SKX nodes. Although the KNL
nodes of both machines are similar, the network interconnects differ
significantly, which can effect the performance of communication

2 4 8 16 32 64

Nodes

1

4

16

64

F
ra

m
es

p
er

-s
ec

o
n

d
(F

P
S

) 2048x2048

4096x4096

Figure 6: Image-parallel strong-scaling on the R-M transparent

isosurfaces data set on Stampede2 SKX nodes. The image-parallel

renderer using the DFB scales to provide interactive rendering of

expensive, high-resolution scenes.

in the DFB. Stampede2 employs an Intel Omni-Path network in a
fat-tree topology, while Theta uses a Cray Aries network with a
three-level Dragonfly topology.

6.1. Image-Parallel Rendering Performance

To study the scalability of the DFB and the image-parallel rendering
algorithm described in Section 4.1, we perform a strong scaling
benchmark using OSPRay’s scientific visualization renderer. We
use VTK to extract two isosurfaces from the Richtmyer-Meshkov
volume, which are rendered with transparency and ambient occlu-
sion (Figure 5a). We measure strong-scaling on Stampede2 SKX
nodes at two image resolutions (Figure 6). Although the renderer
begins to drop off from the ideal scaling trend as the local work
per-node decreases, this could potentially be addressed by employ-
ing the work-subdivision and load-balancing strategies discussed in
Section 4.1.1.

6.2. Data-Parallel Rendering Performance

To study the scalability of the DFB when applied to the standard data-
parallel rendering algorithm in Section 4.2, we run strong scaling
benchmarks with two large-scale data sets on Stampede2 and Theta.
On Stampede2 we render a combined visualization of the DNS with
transparent isosurfaces (Figure 5b), and on Theta we render the
53 Cosmic Web subset (Figure 5c). We find that our data-parallel
renderer using the DFB is able to provide interactive frame rates

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.



Usher et al. / Scalable Ray Tracing Using the Distributed FrameBuffer

32 64 128 256

Nodes

1

2

4

8

16

F
ra

m
es

p
er

-s
ec

o
n

d
(F

P
S

) 2048x2048

4096x4096

Figure 7: Data-parallel strong-scaling on the Cosmic Web data set

on Theta. We find close to ideal scaling at moderate image sizes and

node counts, with somewhat poorer scaling at very high resolutions.

16 32 64 128

Nodes

2

4

8

16

32

F
ra

m
es

p
er

-s
ec

o
n

d
(F

P
S

) 2048x2048

4096x4096

(a) Overall rendering performance.

16 32 64 128

Nodes

0

200

400

600

T
im

e
(m

s)

Local 2048x2048

Compositing 2048x2048

Local 4096x4096

Compositing 4096x4096

(b) Timing breakdown of local rendering and compositing overhead.

Figure 8: Data-parallel strong-scaling on the DNS with isosurfaces

on Stampede2 KNLs. The lack of scaling from 32 to 64 nodes is

attributable to a poor local work distribution (b), which can be

partially addressed by using our mixed-parallel renderer.

for these challenging scenes, and scale up performance with more
compute.

On the Cosmic Web we observe good scaling from 32 to 64
nodes (Figure 7). Although performance begins to trail off the ideal
trend beyond 128 nodes, absolute rendering performance remains
interactive.

On the DNS we find near ideal scaling from 16 to 32 nodes (Fig-
ure 8a); however, we observe little change from 32 to 64 nodes,
although we see improvement again at 64 to 128 nodes. To find
the cause of the bottleneck at 64 nodes, we look at a breakdown of
the time spent rendering the rank’s local data and the compositing
overhead incurred by the DFB (Figure 8b). Compositing overhead
refers to the additional time the compositor takes to complete the im-
age, after the slowest local rendering task has completed [GKH16].
In this case we find that the bottleneck is caused by the local ren-
dering task not scaling, which could be addressed by employing a
hybrid data distribution or the work-splitting techniques discussed
previously.

6.2.1. Compositing Performance Comparison with IceT

To perform a direct comparison with IceT for data-parallel rendering,
we use a synthetic data set (Figure 5d), and modify our data-parallel
renderer to support using IceT for compositing. The IceT renderer
follows the same code-path as our data-parallel renderer to render
its assigned brick of data, then hands the framebuffer off to IceT
for compositing. We found IceT’s automatic compositing algorithm
selection to give the best performance, and use this mode throughout
the benchmarks.

In terms of overall scalability and performance, our approach
scales better then, or at least similar to, IceT, while achieving better
absolute rendering performance (Figures 9a to 9c). When comparing
timing breakdowns (Figures 9d to 9f) we find that, as expected,
local rendering times are similar, and the performance difference is
due to the differing compositing overhead. It is important to note
that some of the absolute difference in overhead is due to IceT’s
synchronous design, which makes it unable to overlap compositing
with rendering. We can consider a hypothetical IceT implementation
which does overlap compositing and rendering by subtracting the
local rendering time from the compositing overhead, and find that
the DFB still achieves similar or superior compositing performance.
Furthermore, we observe that when comparing the scaling trends of
the two approaches, the DFB scales similar to, or better than, IceT.
Although a rigorous comparison is difficult due to the different HPC
systems used, the DFB follows similar scaling trends as Grosset et
al.’s DSRB [GKH16], while providing greater flexibility.

Finally, we evaluate the portability of our approach by compar-
ing the KNL runs on Stampede2 (Figures 9b and 9e) and Theta

(Figures 9a and 9d). The slightly different KNLs on each system
will have a minor effect on performance; however any significant
differences are attributable to the differing network architectures
and job placement strategies. On Stampede2 we observe a rather
bumpy scaling trend where, depending on the image size, we see a
temporary decrease in the compositing performance at certain node
counts. On Theta we observe a smoother trend, with better absolute
compositing performance. We found that disabling message com-
pression on Theta gave better performance, while on Stampede2 we
encountered MPI messaging performance issues at 16 nodes and
up without it. Thus, we leave compression as an option to users
which is enabled by default at 16 nodes. In our benchmarks we
disable compression on Theta, and enable it at 16 nodes and up on
Stampede2. IceT uses a custom image compression method, which
is not easily disabled.

6.3. Hybrid Data Distribution Rendering Performance

To measure the impact of partial data replication on load balance,
we look at the per-frame overall time on the DNS with isosurfaces
data set on Stampede2 (Figure 10). The volume is partitioned into as
many bricks as there are ranks, with bricks redundantly assigned to
ranks based on the available memory capacity. When using 64 KNLs
there is enough memory to store two bricks per-rank, with 128 KNLs
we can store up to four. The rendering work for each brick will be
distributed among two or four ranks, respectively. The redundant
bricks are distributed using a simple round-robin assignment. A
brick distribution based on, e.g., some space filling curve or runtime
tuning, could provide additional improvement.

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.



Usher et al. / Scalable Ray Tracing Using the Distributed FrameBuffer

4 8 16 32 64 128 256

Nodes

0

50

100

150

200

250

300

350

T
im

e
(m

s)

OSPRay 2kx2k
IceT 2kx2k

OSPRay 4kx4k
IceT 4kx4k

(a) Theta total time.

4 8 16 32 64 128 256

Nodes

0

50

100

150

200

250

300

350

T
im

e
(m

s)

(b) Stampede2 KNL total time.

4 8 16 32 64 128 256

Nodes

0

10

20

30

40

50

60

70

80

90

T
im

e
(m

s)

(c) Stampede2 SKX total time.

4 8 16 32 64 128 256

Nodes

0

50

100

150

200

250

300

T
im

e
(m

s)

OSPRay Local 2kx2k
OSPRay Overhead 2kx2k
IceT Local 2kx2k
IceT Overhead 2kx2k

OSPRay Local 4kx4k
OSPRay Overhead 4kx4k
IceT Local 4kx4k
IceT Overhead 4kx4k

(d) Theta timing breakdown.

4 8 16 32 64 128 256

Nodes

0

50

100

150

200

250

300

T
im

e
(m

s)

(e) Stampede2 KNL timing breakdown.

4 8 16 32 64 128 256

Nodes

0

10

20

30

40

T
im

e
(m

s)

(f) Stampede2 SKX timing breakdown.

Figure 9: Compositing benchmark performance comparison of the DFB and IceT on the synthetic data set. We find that our approach achieves

better, or at least similar, scaling as IceT, while providing faster absolute rendering times. In the timing breakdowns (d-f), we observe this

difference is due to the DFB achieving a significant reduction in compositing overhead.

In both the 64 and 128 node runs the two brick per-node con-
figuration provides a consistent improvement over no replication.
This improvement is more pronounced for camera positions with
greater load imbalance. With four bricks per-node, there are larger
fluctuations in rendering performance, though at times we do find
improvement over the two brick configuration. These larger fluctua-
tions could be due to increased memory traffic, which is alleviated
as data is cached in the KNL MCDRAM. This theory is further
supported by the sharp spikes in performance, when new data must
be fetched from RAM.

7. Conclusion

We have presented the Distributed FrameBuffer, an asynchronous,
distributed image processing and compositing framework primarily
targeted at rendering applications. By breaking the image processing
operations into a set of per-tile tasks with independent dependency
trees, the DFB simplifies the implementation of complex distributed
rendering algorithms. Moreover, the DFB does not trade perfor-
mance for this flexibility and we report performance competitive
with specialized state-of-the-art algorithms. Our data-distributed
API extension to OSPRay has already been used successfully in
practice for in situ visualization [URW∗18].

We have merged our implementation of the DFB, the rendering
algorithms presented, and the data-distributed API into OSPRay, and
released them in version 1.8. While prior work integrated OSPRay
into VisIt [WUP∗18] by using OSPRay’s single-node rendering
API and IceT for compositing, this can now be done using the dis-
tributed API directly. Compared to results reported on prior versions
of OSPRay [ANG∗18] our work provides significant performance
improvements.

However, the DFB and rendering algorithms presented are not

0 50 100 150 200 250 300

Frame

100

200

300

400

T
im

e
(m

s)

1 Brick

2 Bricks

(a) Per-frame render time on 64 Stampede2 KNLs, at 4096×4096

0 50 100 150 200 250 300

Frame

100

150

200

250

T
im

e
(m

s)

1 Brick

2 Bricks

4 Bricks

(b) Per-frame render time on 128 Stampede2 KNLs, at 4096×4096

Figure 10: Improving load-balancing on the DNS with isosurfaces

with partial data-replication in the mixed-parallel renderer. Sharing

rendering between two nodes (two bricks per-node) gives a consis-

tent improvement, between four tends to give further improvement.

without limitations. The rendering algorithms presented support
only local lighting effects computed with the data available on
a rank. Although approaches to compute global illumination on
distributed data by sending rays between nodes [ANG∗18, PFN18]
could be implemented in the DFB, it is unclear how well a naive
implementation would perform, or if extensions to the DFB would

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.



Usher et al. / Scalable Ray Tracing Using the Distributed FrameBuffer

be required. We leave this exciting avenue of research as future
work.

In our evaluation we observed large differences in MPI perfor-
mance and network behavior between Stampede2 and Theta. Al-
though we expose the use of compression as an option for users to
tune as needed, it would be worthwhile to investigate self-tuning
strategies for the DFB to automatically adapt to such architectural
differences.

Acknowledgments

We would like to thank Damon McDougall and Paul Navrátil of
the Texas Advanced Computing Center for assistance investigating
MPI performance at TACC, and Mengjiao Han for help with the dis-
play wall example. The Cosmic Web and DNS datasets were made
available by Paul Navrátil, the Richtmyer-Meshkov is courtesy of
Lawrence Livermore National Laboratory. This work is supported
in part by the Intel Parallel Computing Centers Program, NSF:
CGV Award: 1314896, NSF:IIP Award: 1602127, NSF:ACI Award:
1649923, DOE/SciDAC DESC0007446, CCMSC DE-NA0002375
and NSF:OAC Award: 1842042. This work used resources of the Ar-
gonne Leadership Computing Facility, which is a U.S. Department
of Energy Office of Science User Facility supported under Con-
tract DE-AC02-06CH11357. The authors acknowledge the Texas
Advanced Computing Center (TACC) at The University of Texas
at Austin for providing HPC resources that have contributed to the
research results reported in this paper.

References

[ANG∗18] ABRAM G., NAVRÁTIL P., GROSSET A. V. P., ROGERS D.,
AHRENS J.: Galaxy: Asynchronous Ray Tracing for Large High-Fidelity
Visualization. In 2018 IEEE Symposium on Large Data Analysis and

Visualization (2018). 3, 10

[BMFG18] BIEDERT T., MESSMER P., FOGAL T., GARTH C.: Hardware-
Accelerated Multi-Tile Streaming for Realtime Remote Visualization. In
Eurographics Symposium on Parallel Graphics and Visualization (2018).
3

[BPL∗12] BROWNLEE C., PATCHETT J., LO L.-T., DEMARLE D.,
MITCHELL C., AHRENS J., HANSEN C.: A Study of Ray Tracing
Large-Scale Scientific Data in Parallel Visualization Applications. In
Eurographics Symposium on Parallel Graphics and Visualization (2012).
2

[BSP06] BIGLER J., STEPHENS A., PARKER S. G.: Design for Parallel
Interactive Ray Tracing Systems. In 2006 IEEE Symposium on Interactive

Ray Tracing (2006). 2

[BWHG17] BIEDERT T., WERNER K., HENTSCHEL B., GARTH C.: A
Task-Based Parallel Rendering Component For Large-Scale Visualization
Applications. In Eurographics Symposium on Parallel Graphics and

Visualization (2017). 3

[CDD∗02] COHEN R. H., DANNEVIK W. P., DIMITS A. M., ELIASON

D. E., MIRIN A. A., ZHOU Y., PORTER D. H., WOODWARD P. R.:
Three-dimensional simulation of a Richtmyer-Meshkov instability with a
two-scale initial perturbation. Physics of Fluids (2002). 1, 8

[DGBP05] DEMARLE D. E., GRIBBLE C. P., BOULOS S., PARKER

S. G.: Memory sharing for interactive ray tracing on clusters. Parallel

Computing, 2 (2005). 2, 3

[EGT90] ELLSWORTH D., GOOD H., TEBBS B.: Distributing display
lists on a multicomputer. SIGGRAPH Comput. Graph. (1990). 3

[FdR07] FAVRE J. M., DOS SANTOS L. P., REINERS D.: Direct Send
Compositing for Parallel Sort-Last Rendering. In Eurographics Sympo-

sium on Parallel Graphics and Visualization (2007). 2

[FE11] FREY S., ERTL T.: Load balancing utilizing data redundancy in
distributed volume rendering. In Eurographics Symposium on Parallel

Graphics and Visualization (2011). 7

[GKH16] GROSSET A. P., KNOLL A., HANSEN C.: Dynamically sched-
uled region-based image compositing. In Eurographics Symposium on

Parallel Graphics and Visualization (2016). 2, 9

[Goo] GOOGLE: Snappy. https://github.com/google/

snappy. 5

[GPC∗17] GROSSET A. V. P., PRASAD M., CHRISTENSEN C., KNOLL

A., HANSEN C.: TOD-Tree: Task-Overlapped Direct Send Tree Image
Compositing for Hybrid MPI Parallelism and GPUs. IEEE Transactions

on Visualization and Computer Graphics (2017). 2

[Hsu93] HSU W. M.: Segmented ray casting for data parallel volume
rendering. In Proceedings of the 1993 Symposium on Parallel Rendering

(1993). 2

[IBH11] IZE T., BROWNLEE C., HANSEN C. D.: Real-Time Ray Tracer
for Visualizing Massive Models on a Cluster. In Eurographics Symposium

on Parallel Graphics and Visualization (2011). 2, 3

[ISM∗08] ILIEV I. T., SHAPIRO P. R., MELLEMA G., MERZ H., PEN

U.-L.: Simulating Cosmic Reionization. arXiv:0806.2887 [astro-ph]

(2008). arXiv:0806.2887. 1, 8

[KPH∗10] KENDALL W., PETERKA T., HUANG J., SHEN H.-W., ROSS

R. B.: Accelerating and Benchmarking Radix-k Image Compositing
at Large Scale. Eurographics Symposium on Parallel Graphics and

Visualization (2010). 2

[LM15] LEE M., MOSER R. D.: Direct numerical simulation of turbulent
channel flow up to Reτ=5200. Journal of Fluid Mechanics (2015). 1, 8

[MCEF94] MOLNAR S., COX M., ELLSWORTH D., FUCHS H.: A Sort-
ing Classification of Parallel Rendering. IEEE Computer Graphics and

Applications (1994). 2

[MKPH11] MORELAND K., KENDALL W., PETERKA T., HUANG J.: An
Image Compositing Solution at Scale. In Proceedings of 2011 Interna-

tional Conference for High Performance Computing, Networking, Storage

and Analysis (2011). 2, 6

[MPHK94] MA K.-L., PAINTER J. S., HANSEN C. D., KROGH M. F.:
Parallel volume rendering using binary-swap compositing. IEEE Com-

puter Graphics and Applications (1994). 2

[NFLC12] NAVRÁTIL P. A., FUSSELL D., LIN C., CHILDS H.: Dynamic
scheduling for large-scale distributed-memory ray tracing. In Eurograph-

ics Symposium on Parallel Graphics and Visualization (2012). 3

[PFN18] PARK H., FUSSELL D., NAVRÁTIL P.: SpRay: Speculative Ray
Scheduling for Large Data Visualization. In 2018 IEEE Symposium on

Large Data Analysis and Visualization (2018). 3, 10

[PGR∗09] PETERKA T., GOODELL D., ROSS R., SHEN H.-W., THAKUR

R.: A configurable algorithm for parallel image-compositing applica-
tions. In Proceedings of the Conference on High Performance Computing

Networking, Storage and Analysis (2009). 2

[PM12] PHARR M., MARK W. R.: ispc: A SPMD compiler for high-
performance CPU programming. In Innovative Parallel Computing (In-

Par), 2012 (2012). 3, 7

[RCJ99] REINHARD E., CHALMERS A., JANSEN F. W.: Hybrid schedul-
ing for parallel rendering using coherent ray tasks. In Proceedings of the

1999 IEEE Symposium on Parallel Visualization and Graphics (1999). 3

[RK79] ROMAN G.-C., KIMURA T.: A VLSI Architecture for Real-Time
Color Display of Three-Dimensional Objects. Proceedings of IEEE

Micro-Delcon (1979). 2

[RWCB15] RATHKE B., WALD I., CHIU K., BROWNLEE C.: SIMD
Parallel Ray Tracing of Homogeneous Polyhedral Grids. In Eurographics

Symposium on Parallel Graphics and Visualization (2015). 7

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.



Usher et al. / Scalable Ray Tracing Using the Distributed FrameBuffer

[SFLS00] SAMANTA R., FUNKHOUSER T., LI K., SINGH J. P.: Hybrid
sort-first and sort-last parallel rendering with a cluster of PCs. In Proceed-

ings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics

Hardware (2000). 3

[URW∗18] USHER W., RIZZI S., WALD I., AMSTUTZ J., INSLEY J.,
VISHWANATH V., FERRIER N., PAPKA M. E., PASCUCCI V.: libIS: A
Lightweight Library for Flexible In Transit Visualization. In ISAV: In Situ

Infrastructures for Enabling Extreme-Scale Analysis and Visualization

(2018). 10

[VSW∗17] VIERJAHN T., SCHNORR A., WEYERS B., DENKER D.,
WALD I., GARTH C., KUHLEN T. W., HENTSCHEL B.: Interactive
Exploration of Dissipation Element Geometry. In Eurographics Sympo-

sium on Parallel Graphics and Visualization (2017). 7

[WBS02] WALD I., BENTHIN C., SLUSALLEK P.: A Flexible and Scal-

able Rendering Engine for Interactive 3D Graphics. Tech. rep., Saarland
University, 2002. 2

[WBUK17] WALD I., BROWNLEE C., USHER W., KNOLL A.: CPU
Volume Rendering of Adaptive Mesh Refinement Data. In SIGGRAPH

Asia 2017 Symposium on Visualization (2017). 7

[WJA∗17] WALD I., JOHNSON G. P., AMSTUTZ J., BROWNLEE C.,
KNOLL A., JEFFERS J., GÜNTHER J., NAVRÁTIL P.: OSPRay – A CPU
Ray Tracing Framework for Scientific Visualization. IEEE Transactions

on Visualization and Computer Graphics (2017). 2, 3, 7

[WKJ∗15] WALD I., KNOLL A., JOHNSON G. P., USHER W., PASCUCCI

V., PAPKA M. E.: CPU Ray Tracing Large Particle Data with Balanced
P-k-d Trees. In 2015 IEEE Scientific Visualization Conference (SciVis)

(2015). 7

[WSB01] WALD I., SLUSALLEK P., BENTHIN C.: Interactive distributed
ray tracing of highly complex models. In Rendering Techniques 2001.
2001. 2, 3

[WUP∗18] WU Q., USHER W., PETRUZZA S., KUMAR S., WANG F.,
WALD I., PASCUCCI V., HANSEN C. D.: VisIt-OSPRay: Toward an
Exascale Volume Visualization System. In Eurographics Symposium on

Parallel Graphics and Visualization (2018). 2, 10

[WWB∗14] WALD I., WOOP S., BENTHIN C., JOHNSON G. S., ERNST

M.: Embree: A Kernel Framework for Efficient CPU Ray Tracing. ACM

Transactions on Graphics (2014). 3

[WWW∗19] WANG F., WALD I., WU Q., USHER W., JOHNSON C. R.:
CPU Isosurface Ray Tracing of Adaptive Mesh Refinement Data. IEEE

Transactions on Visualization and Computer Graphics (2019). 7

[YWM08] YU H., WANG C., MA K.-L.: Massively parallel volume ren-
dering using 2–3 swap image compositing. In SC-International Confer-

ence for High Performance Computing, Networking, Storage and Analysis

(2008). 2

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.


