
A Virtual Reality Visualization Tool for Neuron Tracing
Will Usher†, Pavol Klacansky†, Frederick Federer, Peer-Timo Bremer, Aaron Knoll,

Jeff Yarch, Alessandra Angelucci, and Valerio Pascucci

Fig. 1: A screenshot of our VR neuron tracing tool using the isosurface rendering mode. The dark gray floor represents the extent of
the tracked space. Users can orient themselves in the dataset via the minimap (right), which shows the world extent in blue, the current
focus region in orange, and the previously traced neuronal structures. The focus region is displayed in the center of the space. The 3D
interaction and visualization provides an intuitive environment for exploring the data and a natural interface for neuron tracing, resulting
in faster, high-quality traces with less fatigue reported by users compared to existing 2D tools.

Abstract—Tracing neurons in large-scale microscopy data is crucial to establishing a wiring diagram of the brain, which is needed to
understand how neural circuits in the brain process information and generate behavior. Automatic techniques often fail for large and
complex datasets, and connectomics researchers may spend weeks or months manually tracing neurons using 2D image stacks. We
present a design study of a new virtual reality (VR) system, developed in collaboration with trained neuroanatomists, to trace neurons in
microscope scans of the visual cortex of primates. We hypothesize that using consumer-grade VR technology to interact with neurons
directly in 3D will help neuroscientists better resolve complex cases and enable them to trace neurons faster and with less physical
and mental strain. We discuss both the design process and technical challenges in developing an interactive system to navigate and
manipulate terabyte-sized image volumes in VR. Using a number of different datasets, we demonstrate that, compared to widely used
commercial software, consumer-grade VR presents a promising alternative for scientists.

Index Terms—Virtual reality, interaction design, design studies

1 INTRODUCTION

Brain function emerges from the coordinated activity of billions of
interconnected neurons that form dense neural circuits. A central goal
of neuroscience is to understand how these circuits’ computations relate
to behavior. The field of connectomics is founded on the principle that
understanding the precise wiring of these circuits, i.e., the location
of neurons and the connections between them, is crucial to compre-
hending brain function at a mechanistic level. More insight into the

• Usher, Klacansky, Knoll, and Pascucci are with the SCI Institute at the
University of Utah, USA. E-mail: {will, klacansky, knolla,
pascucci}@sci.utah.edu

• Federer, Yarch and Angelucci are with the Moran Eye Institute at the
University of Utah, USA. E-mail: {freddieneuron, jtyarch}@gmail.com,
alessandra.angelucci@hsc.utah.edu

• Bremer is with Lawrence Livermore National Laboratory, USA. E-mail:
bremer5@llnl.gov

†Usher and Klacansky are both first authors

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

fundamental connectivity within the brain also has the potential to lead
to breakthroughs in the understanding of brain diseases and open new
avenues for treatment.

However, obtaining a comprehensive wiring diagram of even rela-
tively small and simple mammalian brains, such as that of a mouse, is
a massive undertaking. Similar projects in species with larger brains
that are evolutionarily closer to humans, such as non-human primates
(NHPs), take more time and are more complex. To date, the only
species whose nervous system has been completely mapped is the ne-
matode Caenorhabditis elegans [45], which is comprised of only 302
neurons. Currently, the majority of connectome efforts are focused
on mapping the mouse brain [8, 10]. However, with recent advances
in high-resolution tissue labeling [27], optical tissue clearing [11, 46],
and deep tissue imaging [13], mapping the NHP brain at mesoscopic
scale is becoming feasible. One major impediment to mapping the
NHP brain is the time-consuming, laborious effort of manually tracing
labeled neuronal connections through the brain.

For most of the 20th century, reconstructing, annotating, and an-
alyzing neurons has been done by creating hand-drawn images of
labeled neurons, traced using an instrument known as camera lucida
directly from thin brain sections viewed through a microscope. The first
computer-aided system for tracing neurons [16] synced the movement
of the microscope stage with a plotting board. The user would adjust



the stage to select points along the neuron to be plotted, and press a
foot pedal to record each point on the board and then measure distances
between them. This system ultimately evolved into NeuroLucida [29],
the current industry standard for neuron tracing. NeuroLucida allows
scientists to draw lines along neuronal axons and dendrites using either
tissue sections mounted on a glass slide or image stacks of scanned
tissue. The software moves the microscope (or image) to keep the
viewpoint and tracing aligned while the user navigates the data. Trac-
ing labeled neurons manually is tedious and time-consuming, and may
require months to reconstruct even small portions of the brain [5]. Part
of the difficulty in this process is tracing 3D structures such as neurons
through a 2D interface, i.e., a computer screen. Neurons often touch
or run in parallel, and finding a viewpoint to properly distinguish them
may require several non-obvious rotations of the volume. When work-
ing with image slices, this process is made more challenging by the
fixed viewpoint. Automatic techniques for neuron reconstruction fail
on complex and noisy data, and often the results must be corrected man-
ually. In fact, Peng et al. [35] report that the clean-up process may take
longer than manual tracing. In practice, most neuron reconstruction is
still done manually [31].

Beyond the mechanics of tracing, another challenge is that mi-
croscopy technology is rapidly outpacing the supporting tools in terms
of raw data size. State-of-the-art microscopes regularly produce ter-
abytes worth of images, yet few existing tools are capable of handling
data at this scale. Notably, the TeraFly [9] plugin for Vaa3D [36]
supports paging in hierarchical volume data to explore large datasets.
Other tools are often limited by the RAM capacity of the system. In
this paper, we present a design study on how off-the-shelf virtual real-
ity (VR) systems coupled with state-of-the-art data management and
visualization solutions can improve the workflow of connectomics re-
searchers. Working with trained neuroanatomists, we explore different
rendering, interaction, and navigation methods, as well as the use of
force feedback to improve the quality and speed of neuron tracing.
We demonstrate that given a high enough frame rate and appropriate
rendering techniques, a 3D interface substantially improves the overall
user experience by allowing neuroscientists to directly interact with
their data. Our contributions in detail are:

• A design study on using consumer-grade VR technology for
neuron tracing;

• A flexible and scalable backend framework that allows neuron
tracing in datasets that are orders of magnitude larger than cur-
rently feasible with existing approaches; and

• A comparison of the reconstruction accuracy and speed of our
tool compared to the industry standard.

2 BACKGROUND AND RELATED WORK

To provide context for the task of neuron tracing, we first discuss recent
work in neuron tracing and the current state of the art in the connec-
tomics tracing workflow. We then discuss related work in immersive
environments and direct 3D interaction.

2.1 Neuron Tracing
Automated methods for neuron reconstruction continue to improve;
however, neuroscientists often find the results of these algorithms un-
satisfactory [26]. Thus, tracing neurons remains primarily a manual
task. Meijering [31] noted that data quality was the primary reason
these algorithms fail in practice, as the current state-of-the-art methods
provide error-free results only in highly optimal conditions. For a full
review and comparison of recent methods, we refer readers to a recent
paper by Acciai et al. [4].

Tools such as Vaa3D [36] and NeuroLucida 360 [30] provide meth-
ods for semi-automatic reconstruction, in which the user guides the
system along a neuron and the system extracts the 3D structure. The
Virtual Finger [37], available in Vaa3D, casts rays into the volume to
determine the potentially selected objects, e.g., neural structures, as the
user draws a line with the mouse. To create a 3D curve from the line,

the method searches locally in the data to connect the selected objects,
resolving cases in which a ray intersects multiple features. The Virtual
Finger is inherently view and visibility dependent and may require
moving the viewpoint to make the desired selection or correct errors.

NeuroLucida 360 combines manual neuron tracing with automatic
algorithms to provide semi-automatic extraction. The user places seed
points for the algorithm by clicking or dragging along the neuron, and
thereby guides the algorithm in selecting which data to process. This
guided extraction improves the speed at which neuron morphology can
be traced, but sections with many labeled neuronal processes still need
to be manually resolved or corrected. Similar to Virtual Finger, this
method is also viewpoint and visibility dependent. These methods work
well in many cases; however, as the data size increases, the amount of
time spent on the challenging subset of cases grows correspondingly.

Independent of VR, volume rendering systems have been employed
for visualization, segmentation, stitching, and tracing of neural mi-
croscopy data. Jeong et al. [21] combine segmentation and stitching
analysis with an out-of-core GPU volume renderer for large datasets.
This system was further improved by Beyer et al. [7] to handle larger
and more diverse microscopy data. Wan et al. [44] address the problem
of classification of multi-channel microscopy data in volume rendering.

2.2 Neuron Tracing Workflow
A typical neuron imaging and tracing workflow proceeds as follows.
First, neurons and their processes are labeled using neuroanatomical
tracing methods. Modern approaches to labeling neurons in large brains
involve the use of viral vectors carrying the genes for fluorescent pro-
teins [27]. These vectors are injected into the brain to induce expression
of these genes within neurons, labeling them at high resolution. Current
approaches in connectomics then render the brain optically transpar-
ent using clearing techniques such as CLARITY [11], PACT [46], or
SWITCH [32]. Imaging labeled neurons through brain tissue, either in
brain slices or through whole brains or blocks, produces multiple stacks
of images ranging in size from gigabytes to terabytes. Finally, neurons
are traced on these 2D image stacks to extract the desired neuronal
structures. Depending on the analysis being performed, these structures
can be used in simulations or overlaid onto functional maps of the brain,
in order to understand the connectivity between brain regions or cells
within these regions.

Due to noise in the data, the neuron reconstruction process is often
entirely manual. In many instances, several trained undergraduate
students are responsible for the bulk of the tracing work. Tracing is
done on a desktop computer using NeuroLucida [29]. When working on
image stacks using this software, the user scrolls through the stack and
clicks to mark points along the neuron or to create branches. However,
some branches change depth rapidly, cross in complex ways, or have
gaps due to imperfections in the labeling or imaging process, making
the structure difficult to resolve.

2.3 Immersive Environments
Virtual reality environments such as CAVEs [12] are effective for en-
hancing visualization tasks related to understanding 3D data. Prabhat et
al. [38] performed a comparative study on confocal microscopy data ex-
ploration in desktop, fishtank VR, and CAVE VR environments. They
evaluated tasks focused on navigation and observation, e.g., locating
and counting features or describing some structure. Users tended to per-
form better on these tasks in the CAVE environment. Laha et al. [24,25]
examined how VR system fidelity affects the performance of common
visualization tasks by varying field of view, head tracking, and stereo.
The tasks studied were similar to those studied by Prabhat et al. [38]
involving search and examination. They found that more immersive
VR environments improved users’ understanding of complex structures
in volumes [25] and isosurfaces [24].

The original CAVE used a three-button tracked wand device to
manipulate objects [12]. CAVE2 [14] employs a similar wand con-
troller, using a modified PS3 Move controller. CAVE2 also supports
a prototype-tracked sphere controller, the CAVESphere, for moving
and interacting with the data, along with a tablet controller showing
a webview. Although the CAVE is able to provide high-quality VR,



it is a large and expensive system, both to purchase and to maintain,
making its incorporation into the routine workflow of scientists in small
laboratories unlikely. Direct 3D interaction with the data can also
be challenging in a CAVE, since users’ hands block the display as
they work, occluding their selection. Although well-suited for virtual
tours of complex datasets with application-centric software (see, for
example, [39]), using CAVEs for day-to-day tasks involving frequent
manipulation of data would be costly and challenging.

Due to the difficulty of providing input feedback when working with
free-form 3D controllers, many studies have evaluated the use of haptics
to provide better feedback to the user. Ikits and Brederson designed
the Visual Haptic Workbench [20], which combines a stereo display
table with a probe arm. The arm is used to interact with the data and
provide haptic feedback. For example, when tracing a streamline, the
probe will be constrained to follow it. Palmerius et al. [33] described a
system of primitives for computing haptics on volumetric data, e.g., for
directional or vibration feedback, which can provide a greater sense of
touching structures in the environment.

3 DESIGN PROCESS

Independent of the current effort, we developed a technology probe
(Section 3.1) with the goal of investigating consumer-grade VR tech-
nology for scientific visualization. One of the datasets we used during
testing was a large microscopy scan acquired in the laboratory of one of
the authors (A.A.), which we down-sampled to fit on the GPU. Positive
feedback from an incidental demonstration of this probe prompted us to
explore the use of this technology for neuron tracing. Subsequently, we
designed our tool in close collaboration with expert neuroanatomists in
an open-ended, iterative process, influenced by the nine-stage frame-
work of Sedlmair et al. [42]. Through several iterations, we distilled
the fundamental user requirements and added the necessary features to
arrive at the tool discussed in Sections 4 and 5.

3.1 Technology Probe
The initial application was designed to explore the potential of using
VR systems for generic scientific visualization tasks, and supported
volume rendering, isosurfaces, and particle rendering (Fig. 2a). A
user sits or stands at a desk and is able to move his or her head to
look at the volume, or translate and rotate it using a gamepad. An
initial demonstration of this system with microscope scans of labeled
neurons encouraged us to further pursue this as a neuron tracing tool.
In particular, the neuroscientists on our team noted that, compared to
standard 2D interfaces, the VR system allowed better perception of the
spatial relations between neurons, one of the key challenges in neuron
tracing. However, in our initial investigation, the ability to interact with
the data was limited by the restriction of the Oculus DK2 head-mounted
display (HMD) [2] and the use of a gamepad as the input device. The
Oculus DK2 can track small head movements while the user is facing
a webcam style tracker, but does not support walking around a room.
Although the gamepad can be configured as a 6 DOF controller, it is
not tracked and thus cannot be used to reach out and “touch” the data
directly.

The desire for direct 3D manipulation led us to pursue a differ-
ent interaction paradigm. To this end, we moved to the HTC Vive
platform [3], which supports room-scale VR and includes tracked,
wand-style controllers. The room-scale tracking allows users to walk
around, as well as into the data, and interact with it naturally using
their hands. Tilt Brush [17], which uses the same wands to paint in
3D, inspired the first prototype of our tool, which extended the painting
metaphor to neuron tracing.

3.2 The Prototype
We designed the first prototype dedicated to neuron tracing to evaluate
what different types of interactions would be useful, and explore how
they could be mapped to the HTC Vive’s control scheme. Based on the
available space and hardware setup, we created a medium-sized tracked
area, about 2.5m×2m, and placed the data in a 1.53m box in the center
of the room at about 1m above the ground. The prototype used both
wands, one to interact with the data and the other to navigate the space.

(a) Initial Technology Probe (b) Prototype

Fig. 2: The technology probe and prototype were used to explore differ-
ent interaction and rendering possibilities for scientific visualization and
neuron tracing in VR.

Using the first wand, the user could hold a button and draw a line
coming from the tip of a tetrahedron shown in the middle of the wand’s
loop (Fig. 2b). As only a subregion of the data could be rendered at
a sufficient frame rate for VR (see Section 4.2), we rendered a 2563

subregion of the volume – the focus region – in the 1.53m box. The
second wand could then be used to grab and move the data within this
region. To orient users within the dataset, we displayed a minimap of
the dataset bounds and the focus region location within it. One notable
observation was that given the opportunity to pan, users often preferred
to drag neurons closer as opposed to walking toward them.

As our target users are not familiar with transfer function design,
even in a desktop setting, we chose a preset for the datasets, allowing
us to focus on just the task of tracing. Selecting from chosen presets
has been found effective in medical visualization and museum instal-
lations [47], where users are also unfamiliar with designing transfer
functions. Moreover, designing an effective interface for specifying
transfer functions in VR is an open and challenging problem.

To evaluate the initial design of the tracing interaction, we asked
expert neuroanatomists to trace neurons in some datasets acquired in
A.A.’s laboratory. After a short introduction to the control scheme
(about 10 minutes), they were free to use the tool as desired. These
users noted that the painting metaphor was intuitive. Compared to
existing 2D tools, they found the prototype easier to use for exploring
the data, allowing them to better resolve complex crossings and spatial
relations of neurons in the data.

The prototype, despite being limited to line drawing and simple
exploration, provided an initial validation of both the navigation and
interaction design. To extend this prototype to a minimally viable tool,
we added additional features that are typically used by neuroanatomists
in the neuron reconstruction and analysis process in NeuroLucida. For
example, color is used to distinguish axons and dendrites, and glyphs to
mark areas of interest. NeuroLucida also allows for undoing operations
and editing previous traces, which permits review and correction of
previously traced neurons. Therefore, we extended our initial prototype
by improving the tree drawing system and rendering quality, and added
support for undoing and editing, placing markers, selecting line colors,
and streaming large volumes from disk. Furthermore, we continued to
expand the interaction paradigm by integrating haptic feedback. These
improvements are incorporated into the current tool we describe in the
following section.

4 VIRTUAL REALITY TRACING TOOL

The design of the final tool focuses on two key aspects: the process
of tracing and navigating (Section 4.1), and meeting the VR rendering
performance requirements to provide a high-quality experience and
prevent motion sickness (Section 4.2). To analyze how scientists use
our system and allow for its use as a training device, we also provide
a recording and playback system (Section 4.3) that tracks the user’s
actions rather than a video stream. Finally, our tool must fit into a larger
data processing pipeline, which starts at the acquisition of volume data



(a) Tracing wand (b) Navigation wand

Fig. 3: The wand model shown in VR can be changed from the physical
model. On the tracing wand (a), we removed the top loop seen in (b) to
avoid occlusion while tracing. The button sticking out underneath (a) is
the trigger, and the large circular button is the trackpad. The icosphere
brush in (a) is colored to match the selected line color.

from a microscope and ends with the simulation and analysis of the
reconstructions in the context of other brain maps. To fit well into
the pipeline, our tool loads the IDX [34] volume format used by our
collaborators. Once the neurons of interest have been reconstructed,
the data is exported in a standard XML format used by NeuroLucida.
Furthermore, previously traced neurons in this format can be opened in
our tool, allowing for inspection and editing of earlier work.

4.1 Tracing and Navigation
Tracing neurons and navigating the data are the key tasks when re-
constructing neurons. Both interactions require the 3D motion to be
intuitive, and therefore we map these interactions to the motion of each
wand. One is used for tracing and the other for navigation (Fig. 3).
Tracing and navigation actions are initiated by holding the trigger but-
ton on the corresponding wand. In the VR environment, the tracing
wand is displayed with an icosphere at the top, indicating from where
the line will be drawn, similar to a paint brush (Fig. 3a). The navigation
wand is rendered to match the wand’s physical model (Fig. 3b).

A neuron forms a tree that consists of a starting point, branch points,
and termination points. Traces created by the user are stored in a graph
structure that we update with the user’s edits and additions. To trace
a neuron (Fig. 4), the user presses and holds the trigger button on the
tracing wand, placing a starting point. The user then holds the trigger as
he or she follows the neuron through the data, drawing a line from the
brush. Releasing the trigger ends the line and creates the termination
point. The user is then free to continue the line from the termination
point, or trace branches as needed.

Tracing the branches of a neuron correctly is critical to properly
recover its connections and structure. Moreover, this task is performed
often, and therefore it must be easy to do. To create a branch, the
user can start a new line along the current tracing and follow the
neuron branch out (Fig. 5a), or start a new line on the neuron branch
and reconnect to the parent tree (Fig. 5b). To call attention to the re-
connection, we highlight the selected node and send a small vibration
to the wand to give a “click” feeling of selecting it. When connecting
back to a line, the candidate node that would be created when the
trigger is released is displayed as a small cube to indicate where the
branching point will be placed (Fig. 5b). The visual and physical
feedback provides a clear signal to the user that the connection has
been selected as desired.

During the tracing process, mistakes may be made that need to

Fig. 4: From left to right: the neuron tracing process begins by finding a
neuron. A starting point is placed by moving the brush inside the neuron
and pressing the trigger. While holding the trigger, the user follows the
neuron with the brush, tracing it. To end the line, the trigger is released.

(a) Branching from an existing line

(b) Connecting a branch back to the parent tree

Fig. 5: A branch can be created by placing the brush close to an existing
line, where a candidate branch point will be shown (a), or an existing
node, and tracing from it. The branch can also be started as a new line
and re-connected to the parent tree (b), in which case the candidate
branch point created by the connection is shown.

be corrected. For example, the user may have an incorrect initial
understanding of a complex crossing, the user’s hand could slip, or
the system could drop a frame or momentarily lose tracking due to
occlusion. Depending on the type of mistake, the user may make an
immediate correction or revisit the error later. To correct mistakes, the
tool provides two methods of undoing and editing: a quick fine-grained
undo operation and the ability to remove entire lines and nodes at any
time.

To immediately correct mistakes, the user can undo lines in the
reverse order in which they were created by pressing the trackpad
(Fig. 3). This undo is useful for quickly repainting segments where the
user is not satisfied with how well the trace follows the neuron. The
scope of the undo operation is controlled by placing undo breakpoints
along the line every 40 voxels, with each undo operation reverting to a
previous breakpoint. Furthermore, any part of the line can be repainted
by drawing a new line over the problematic section and reconnecting it
after the section. The new line forms a loop in the trace, and the old
section will be removed to reduce the graph to a tree. Since a neuron is
physically a tree, any loop represents an invalid structure and can be
assumed to be an edit.

Scientists may notice errors when revisiting a previously traced
section. The undo and line redrawing operations may not be applicable
in such instances. Instead, the user can delete specific lines or nodes
with the tracing wand. Editing operations are initiated by selecting
a line or node with the wand, noted by highlighting the feature and
a “click” vibration, and pressing the undo button. The user can then
reconnect the disconnected trees as desired. For example, in Fig. 5a
the selected line (left) or the highlighted node and attached edge (right)
could be deleted by pressing undo.

Navigation around the dataset is accomplished by walking or by
translating the volume. Within the focus region, the user is able to
walk around the space to navigate. To explore data outside the focus
region or pull the regions closer, a panning action is mapped to the
navigation wand. By holding the trigger button and moving the wand,
the user grabs the focus region and translates it through the volume.
Via this interaction, arbitrary-sized volumes can be explored in our
system. Furthermore, as volume sizes are often larger than available
GPU memory, the data is paged on and off as the user pans, described



commit and copysubmit uploadCPU

GPU geom volume streaming

VSync VSync

WaitGetPosesWaitGetPoses

Fig. 6: The anatomy of a single frame. WaitGetPoses blocks until ≈ 2ms
before VSync and returns the latest head tracking data. This allows the
renderer to start submitting work before VSync to fully utilize the GPU.
We first submit draw calls for the geometry and volume, and then page
in asynchronously uploaded volume data into the sparse texture.

in detail in the following section. To help the user track the location of
the focus region relative to the dataset and previously traced neurons,
we display a minimap in the corner (Fig. 1). When navigating large
datasets, the minimap is useful to keep the user oriented as he or she
pans through the space. Traced neurons are also displayed in the
minimap to help the user track their progress through the dataset.

4.2 Rendering
The HTC Vive uses a display panel with a resolution of 2160×1200,
providing 1080× 1200 pixels per eye at a 90Hz refresh rate. Fur-
thermore, due to lens distortion, it is recommended to supersample
the image, effectively doubling the number of rendered pixels. Addi-
tionally, the VR environment imposes stringent lower bounds on the
acceptable frame rate to avoid motion sickness. The combination of
high-resolution and frame-rate requirements presents a significant chal-
lenge compared to traditional desktop visualization, where low frame
rates and intermittent pauses for computations or data loading are more
tolerable. To meet these requirements, we take cues from best practices
for VR game development [43]. In order to communicate with the HTC
Vive HMD, we use the OpenVR SDK, which provides methods for
sending images to the eyes and tracking the head and wand positions.

At 90 FPS we have a tight budget of about 11ms to render each
frame, from which 1ms is potentially consumed by the operating system.
Furthermore, as GPUs are pipelined architectures, submitted work is not
executed immediately, but enqueued into a command buffer. To account
for this, Vlachos [43] recommends submitting draw calls ≈ 2ms before
VSync. Submitting early allows the GPU to start rendering immediately
after presenting the previous frame, increasing utilization.

Streamlining rendering performance requires pushing all non-
rendering or non-critical work onto background threads and strictly
budgeting work on the render thread. A single frame is divided as
shown in Fig. 6. First, we wait until ≈ 2ms before VSync by calling
WaitGetPoses from the OpenVR SDK (left side of CPU in Fig. 6),
which obtains the most recent head position. After returning from this
function, we submit all rendering work to the GPU. Opaque geometry,
e.g., the wands and tracings, is rendered first (1ms). Next, the volume
is rendered with raymarching to display a volumetric or implicit isosur-
face representation (4ms). After submitting the rendering work, we start
the asynchronous volume data upload based upon the user’s focus re-
gion, and once the rendering finishes, we copy it into the sparse texture
(2ms). This time budget leaves a buffer of 3ms to prevent unpredictable
interferences that could cause dropped frames. Nevertheless, some-
times a system event or an expensive draw call can consume this buffer,
causing a frame to be skipped. When this occurs, the OpenVR SDK
will automatically render at half frame rate, 45 FPS, while reprojecting
the last frame using the latest head tracking information to display at
90 FPS, until the frame rate improves. Unfortunately, the reprojection
cannot account for the wands’ motion, as the image transform is based
only on the head motion. When the system is reprojecting, the wands
appear to stutter, making the interaction feel sluggish.

4.2.1 Data Streaming

Typical microscopy volumes exceed the VRAM of current GPUs (4-
24GB) and in most cases the RAM of typical workstations (64-128GB);
datasets can range from hundreds of gigabytes to terabytes. Exploring
such datasets inherently requires a data streaming solution. Moreover,

as only 2ms is budgeted for data streaming on the render thread, we
must amortize the work of updating the volume data over multiple
frames, and perform as much work as possible asynchronously. We use
a two-level caching system: the first level loads and caches pages from
disk into RAM, and the second level takes these pages and uploads
them to the GPU. The caching system lets the tool keep the current
focus region and a small neighborhood resident on the GPU, while a
substantial history is cached in RAM. The cache drastically reduces
disk access frequency and latency to display pages as users navigate.

The first-level cache takes page requests and immediately returns
a future [6], which can be used to retrieve the page data. In case the
page is not available in the cache, a worker thread will be responsible
for loading the data from disk while the requester can asynchronously
check for completion and retrieve the page. The second-level cache
pushes page queries to a set of worker threads, which request the page
from the first-level cache and copy the data into persistently mapped
pixel buffer objects (PBOs). By uploading via persistently mapped
PBOs, we take advantage of asynchronous data transfers via the GPU’s
copy engines, thereby overlapping rendering work with data transfers.

We store the volume data on the GPU in a sparse 3D texture, a
form of virtual memory where individual pages can be committed or
decommitted. This texture allows for transparent handling of volume
data larger than VRAM. The rendering work for a frame takes long
enough for the asynchronous data upload to complete, after which the
page is copied into a newly committed page in the sparse 3D texture
(commit and copy, streaming segments of Fig. 6). The system uploads
only a limited number of pages per frame to stay within its time budget
and decommits pages no longer needed.

To minimize visible popping of pages into view, we load a box
slightly larger than the focus region and prioritize pages closer to the
user’s view. To avoid overwhelming the paging system by requesting
many unneeded pages, e.g., in the case of quickly panning through
the space, for each frame we enqueue only the four highest priority
pages that are not already being uploaded. Additionally, if a page is
no longer needed by the time the PBO is filled, we do not commit the
page or copy it to the texture, as it would be immediately decommitted.
We find this scheme of limiting the enqueueing rate simpler compared
to updating priorities for already scheduled pages in a non-blocking
thread-safe manner.

4.2.2 Volume Rendering

We use a GPU volume renderer written in GLSL [18]. Although the
volume data is stored in a sparse 3D texture, this texture type requires
no additional consideration in the GLSL code. Sampling missing pages
is defined to return 0. In the raymarching step, we use the depth buffer
produced by rendering the opaque geometry to terminate rays early in
order to correctly composite with the geometry, wands, and tracings.

In a VR application, it is common to step inside the dataset. When
walking through the volume we observed it appeared to vibrate, or the
isosurface to move subtly. As the camera moves through the volume,
the voxels sampled by rays leaving the eye will be offset differently
in the data, causing them to sample slightly different locations. This
artifact can be mitigated by increasing the sampling rate, but this is
prohibitively expensive for VR. At its core, the issue is similar to
ensuring correct ray sampling across subvolumes in distributed volume
rendering [28]. To ensure consistent sampling of the data when inside
the volume, we begin sampling at the sample point nearest to the
clipping plane, based on starting the ray from its entry point into the
volume bounds. This approach corrects only for translation, but we
found it sufficient in practice.

Even when using gradient shading, depth perception can be challeng-
ing in volume rendering, particularly when using transparent transfer
functions and subtle lighting cues. This lack of depth cues can make
it difficult to tell the exact position of the wands when placed inside
neuronal structures, due to the faint occlusion effect provided by the
volume. In fact, we had one user report experiencing eye strain while
viewing the volume representation, potentially due to the limited depth
cues. More advanced rendering techniques such as shadows or global
illumination [22] can improve depth perception, and potentially user



performance, but come at significant frame-rate or memory cost, mak-
ing them challenging to apply in a VR setting. To maintain a sufficient
frame rate for VR, the volume rendering quality in our tool is relatively
simple, providing just gradient shading.

To enhance depth cues, we added the ability to switch to an implicit
isosurface mode, with Phong shading and ambient occlusion [19]. In
this mode, the user can scroll on either of the two wands’ trackpads to
change the isovalue, which is necessary to resolve crossings or neurons
with low intensity values. The front faces of the isosurface are rendered
to be semi-transparent, allowing the user to see when the brush and
traces are placed well inside the neuron. The back faces, however,
are rendered to be fully opaque, as it is difficult to perceive depth
relations when they are semi-transparent. When dealing with noisy
data such as microscopy images, isosurfaces are often not ideal, as the
noise manifests as small objects in the volume. Especially in a VR
environment, these objects result in distracting aliasing artifacts. To
counter this effect, we de-noise the data by filtering out objects less
than 11 voxels in size before uploading the page to the GPU by finding
small connected components.

The performance of volume raycasting is directly tied to the num-
ber of rays rendered, i.e., the number of shaded pixels. The render-
ing resolution recommended by the HMD is very high; fortunately,
this resolution is needed only at the center of each eye. In the pe-
riphery, due to lens distortion and the properties of the human vision
system, it is possible to render at much lower resolutions (e.g., using
the NV clip space w scaling extension) with little to no perceived
difference.

4.3 Recording and Replaying
Evaluation and iteration of any tool requires understanding how it
is used. Moreover, a recording of an expert’s session can serve as
training material for novices. In desktop applications, user sessions
can be recorded using screen recording software. However, in VR
recording the “screen” restricts the playback to a single viewpoint,
potentially removing relevant context in the space. For example, a
mistake made when tracing may depend on the user’s viewpoint, but to
properly observe the situation, it must be possible to watch the user’s
session from a viewpoint different from the recorded one. Even more
concerning is that viewing the recording in VR typically induces nausea
due to the mismatch in the recorded head motion and the viewer’s head
motion. To this end, we have developed a recording and playback
system for tracking user sessions that is based on the actions performed
by the users, instead of video recording.

Such action-based recording can be performed at multiple levels.
The low-level wand and HMD state and poses could be saved each
frame, the tracing could be played back by stepping through snapshots,
or the user’s logical operations (e.g., tracing, toggled isosurface, or
panning) could be saved. The last option provides the most flexibility
for both playback and later analysis. This option also supports playback
of the recording on different VR systems or later iterations of the tool
with different control schemes, without needing to re-map low-level
button presses or HMD information. Moreover, session analysis is
easier with such a representation, as queries can be made at a higher
level, e.g., “how far does the user trace in a single motion?” or “how
long did they use each rendering mode?”.

Replaying a saved session recreates the entire tracing by moving
the wands and HMD as they were during the session. By viewing the
hand and head motions during the replay, we can observe differences
in how users work. During this time, the user viewing the replay can
walk around the space independently. To better demonstrate the replay
capability and the tool itself, we include a video taken while replaying
an expert’s session in the supplementary material.

5 EVALUATION

To evaluate our design choices and compare our tool to the state of
the art, we conducted a pilot study with neuroanatomists who are fa-
miliar with neuron tracing and the existing software (NeuroLucida).
Specifically, we present two case studies with seven users tracing neu-
rons in two different datasets. In practice, the two primary metrics of

(a) Reference (b) Branch missing (c) Subtree missing

Fig. 7: Examples of different mistakes and their effect on the DIADEM
score. Trees (b) and (c) are compared against the reference (a) with
scores 0.875 and 0.5, respectively. The error in (c) misses a large subtree,
impacting later analysis more significantly than that in (b).

concern are accuracy and speed. In terms of accuracy, the goal is to
determine the connectivity of neurons as well as possible, including
geometric location and tree topology. Misinterpreting a crossing as a
branch point or missing branches entirely will cause substantial errors
in the subsequent analysis. Nevertheless, as usual in expert-driven
systems, the final result is subjective, and experts sometimes disagree
on specific choices. Furthermore, some mistakes are more critical than
others. Slightly elongating a trace by crossing a small gap may be
acceptable, but erroneously attaching a branching structure is not. In
terms of speed, the field of connectomics is moving to acquisition of
ever increasing amounts of data; therefore, the time necessary to trace
neurons is of significant concern.

DIADEM Scores. In order to automatically compare traces, we used
the DIADEM scoring method [15], which takes into account both the
length and the connectivity of a trace. The computed score correlates
well with expert judgment, and informal comparisons suggest it is
a reasonable proxy for accuracy. The score measures the similarity
between traces with values ranging from 0 (dissimilar) to 1 (identical).
For example, missing a small branch in a large tree (Fig. 7b) has a
smaller impact on the score than missing a large subtree (Fig. 7c).

Case Studies. The first dataset consists of six aligned subvolumes
containing 34 mostly planar axons, each with a reference tracing (Sec-
tion 5.1). The second dataset is a single large volume containing several
noisy cell bodies (Section 5.2). In both cases, we provided a predeter-
mined set of points from which users start tracing a neuron in each tool.
To avoid bias, we split all starting points into sets traced on alternate
days in different tools, such that no set was traced on consecutive days.
In most cases, there were multiple days between sessions, due to users’
work schedules. For the first case study, we report scores with respect
to the reference traces, whereas for the second case study, we compute
scores by comparison with traces performed by domain experts. We
also collected qualitative feedback from the users during the sessions,
and had each participant complete a questionnaire at the end of every
tracing session.

We report results for seven users, including two senior neu-
roanatomists (users 4 and 6), two expert undergraduate students with
2-3 years of experience reconstructing neurons with NeuroLucida in
A.A.’s laboratory (users 5 and 7), and three undergraduate students with
no background in neuroanatomy (users 1-3). In a typical lab, the bulk
of tracing work is performed by trained undergraduates (e.g., users 5
and 7), who start with little background (e.g., users 1-3) and are trained
by senior members of the lab (e.g., users 4 and 6). By evaluating with
a cross-section of the experience levels found in a typical lab, we can
determine how well our tool fits into existing workflows. Specifically,
the tool must be usable by senior members and expert students for trac-
ing, and be easy to learn for new hires such as users 1-3. Based on the
range of experience with tracing in NeuroLucida, we binned the users
into two groups, an experts group, consisting of the neuroanatomists
and the expert undergraduates, and a novices group, with the three
inexperienced undergraduates. During our evaluation, the VR tool ran
on a workstation with a dual socket Intel Xeon E5-2680 CPU, 64 GB
RAM, an NVIDIA GTX 1080 GPU, and an SSD.



≤ −0.7 (−0.7,−0.5] (−0.5,−0.3] (−0.3,−0.1] (−0.1, 0.1] (0.1, 0.3] (0.3, 0.5] (0.5, 0.7] > 0.7

Score difference (VR - NeuroLucida)

0

10

20

30

40

50

Tracings

Fig. 8: Differences between scores of expert traces in VR vs. Neu-
roLucida. For each neuron traced, we compute the difference in score
achieved compared to the reference between the two tools. We find that
overall experts performed within the acceptable error range (±0.1, dark
blue) and sometimes better in VR (light blue) when compared to their
work in NeuroLucida.

≤ 0.2 (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] > 0.8

Score

0

5

10

15

20

25

30

35

40

45

Tracings

(a) NeuroLucida

≤ 0.2 (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] > 0.8

Score

0

5

10

15

20

25

30

35

40

45

Tracings

(b) VR

Fig. 9: Distribution of scores (higher is better) for experts. In (a) median
score: 0.7, mean score: 0.57± 0.38. In (b) median score: 0.6, mean
score 0.49±0.39. A score of ≥ 0.8 is a tracing acceptably similar to the
reference.

5.1 Planar Axons Reference Dataset

Although all tracings can contain some subjectivity, it is important
to establish a baseline of performance with respect to a given refer-
ence. Here we use the Neocortical Layer 1 Axons dataset [1] from
the DIADEM challenge [15] and the corresponding reference traces.
The dataset consists of six volumes of neurons in a mouse brain that
can be stitched to form a 1464×1033×76 volume with the provided
alignment information. The resolution of the data is ≈ 0.08µm/pixel
in X and Y and 1µm/pixel along Z.

The dataset includes 34 reference tracings, of which we used the
first two for training and the rest for evaluation. For each neuron,
users started from the first point of the reference tracing and traced
the corresponding neuron to its perceived termination points. Once all
sessions had been completed, we compared the results from each tool
with the provided reference tracings. In general, our experts rated the
reference tracings as acceptable reconstructions, with the exception of a
few neurons where branchings were judged to be crossings, or a crossed
gap was considered too wide. Table 1 shows, for each user, the mean
score, reconstruction time, and speed-up across all 32 evalution traces.
Speed-up is defined as the average time per tracing in NeuroLucida
divided by the average time per tracing in VR.

When comparing the scores for traces done by the experts in Neu-
roLucida vs. those done in VR (Fig. 8), we found that in most cases
the traces performed were acceptably equivalent in both tools (dark
blue bar, Fig. 8), with some neurons traced better in each tool (green
and light blue bars, Fig. 8). Overall, there was no statistically signifi-
cant difference between the scores achieved in VR vs. NeuroLucida
(Mann-Whitney U = 6426.5, n1 = 122, n2 = 120, p = 0.097). The dis-

(a) NeuroLucida (b) VR

Fig. 10: Distribution of scores (higher is better) for novices, excluding user
1. In (a) median score: 0.5, mean score: 0.42±0.37. In (b) median score:
0.49, mean score 0.5± 0.37. A score of ≥ 0.8 is a tracing acceptably
similar to the reference.

User NeuroLucida VR Speedup
Score Time Score Time

1∗ 0.27 ± 0.35 324 0.49 ± 0.35 172 1.9
2 0.34 ± 0.34 188 0.54 ± 0.37 161 1.2
3 0.48 ± 0.38 277 0.45 ± 0.36 149 1.9

4 0.57 ± 0.38 412 0.57 ± 0.36 271 1.5
5 0.56 ± 0.37 237 0.41 ± 0.38 151 1.6
6 0.65 ± 0.35 464 0.50 ± 0.40 229 2.0
7 0.51 ± 0.38 262 0.47 ± 0.41 302 0.9

Table 1: Average scores (with standard deviation), and times in seconds
for each tool across the 32 DIADEM traces used for evaluation. We also
computed average speed-up over all traces for each user. Users 1-3
are novices and 4-7 are experts. Both novices and experts performed
similarly in VR, and tended to be faster on average. ∗User 1 miscalibrated
the Z level in their NeuroLucida sessions, resulting in much lower scores
for the majority of traces.

(a) (b) (c)

Fig. 11: A stitching issue clearly visible in NeuroLucida (a-b), but difficult
to perceive with volume rendering or isosurfacing (c). What appears
as two neurons (c) is in fact a single neuron, slightly misaligned due
to stitching issues at the border of two acquisitions. When scrolling
through the image slices in NeuroLucida, the stitching issue can be
seen by flipping between the slices (a-b) and those above and below. In
NeuroLucida, all experts traced the neuron correctly, whereas in VR only
one expert traced it correctly. We note that this issue is not specific to
VR, but to the volume visualization method chosen.

tributions of scores for experts (Fig. 9) indicate that experts can achieve
similar, and sometimes better, tracing quality in our VR tool when
compared to their current workflow. In cases where experts produced
equivalent quality traces in both tools, we find a statistically significant
speed-up, with experts being on average 1.7× faster tracing in VR
(Mann-Whitney U = 1004.5, n1 = 54, n2 = 54, p = 0.005). Moreover,
expert users were similarly consistent in VR and NeuroLucida, as indi-
cated by the mean of standard deviations on each trace, 0.23 and 0.24,
respectively.

In fewer cases (37%, green bars in Fig. 8), the experts performed
better in NeuroLucida than in VR, beyond the acceptable error bounds.
When investigating these cases, we found that they involved the same
neuron for all experts, with each expert making the same mistake. One
such neuron is the eighth neuron from the dataset, where a stitching
issue was misinterpreted as two neurons passing each other in VR
(Fig. 11). The VR tool performed better in other cases (19%, light blue
bars Fig. 8) where neurons traveled along the Z axis down through
image slices, as this is much harder to follow in NeuroLucida, requiring
scrolling through the image stack (Figs. 12 and 13).

Novice users performed similarly, with 72% of their traces falling
within acceptable error or being better than those performed in Neu-
roLucida (Fig. 10). On average, novices were 2.1× faster in VR on
traces where they achieved similar scores in VR and NeuroLucida. We
do not report more significant results for novices due to the limited data
collected. We discarded user 1’s results from the summary statistics
entirely, as the user made a mistake in the NeuroLucida sessions and
miscalibrated the Z level of the traces.

5.2 Cell Bodies Dataset
To compare usability on a dataset with neuronal structures of interest,
we also evaluated our experts’ performance on a dataset acquired in



Fig. 12: A neuron branching along the Z plane is not visible on the image
plane used to trace the main structure (left). The branch can be seen
only after scrolling down the stack (right). Only two experts traced this
branch correctly in NeuroLucida, but in VR all users traced it correctly.

User VR Score Time (s)

1 0.54 ± 0.23 537
2 0.58 ± 0.17 252
3 0.70 ± 0.23 207

5 0.66 ± 0.19 360
6 – 469
7 0.59 ± 0.34 542

Table 2: Average scores (with standard deviation) and times for traces
on the Cell Bodies dataset. User 6 is used as the reference.

A.A.’s laboratory. The dataset, shown in Fig. 1, consists of neurons in
the visual cortex of a marmoset monkey labeled with green fluorescent
protein, and was acquired in 2012 using a 2-photon microscope. The
volume is 1024×1024×314 with a resolution of 0.331µm/pixel in X
and Y and 1.5µm/pixel in Z. The neuronal structures in this dataset
branch significantly more often than those in the dataset described
in Section 5.1. Moreover, this dataset has a higher level of noise
and frequency of ambiguous cases, and is therefore more challenging
to trace. In this evaluation, we were concerned with scaling in the
sense of cognitive load of the user, not necessarily data size. We
selected five starting points in the data, to be traced by the experts
in VR. Furthermore, as there is no reference available, we measured
performance by selecting user 6’s tracings as the reference (Table 2).

We compared the proportion of time spent on tracing or panning dur-
ing each trace. Since this dataset is more complex, we were interested
in whether users would use the tool differently with respect to the more
planar dataset in Section 5.1. On average, users spent 15% of their
time tracing and 48% panning, which is only slightly different from the
21% and 58%, respectively, in the Neocortical Layer 1 Axons dataset.
Users toggled between the volume and isosurface rendering modes
more frequently in this dataset. Although this result is interesting, it
requires further evaluation on multiple datasets and a more rigorous
measure of data complexity to provide meaningful evaluation.

We replayed several of user 6’s sessions and noted that he was chang-
ing viewpoints frequently to check potential branchings and obtain a
better understanding of the data. Such frequent viewpoint manipulation
in NeuroLucida requires moving back and forth through hundreds of
images. Furthermore, during these sessions several experts remarked
that they would prefer to trace this data in VR, as scrolling through
image stacks in NeuroLucida becomes more difficult as the dataset
thickness increases.

5.3 Discussion
Our design study consisted of open-ended feedback sessions with neu-
roanatomists and quality evaluation of the tracings produced by users
of our VR system compared to state-of-the-art desktop software, Neu-
roLucida. Additional feedback was collected during the evaluation
through a survey filled out at the end of each tracing session, and by
soliciting feedback with regard to the usability and comfort of each
tool. This section describes our users’ qualitative responses to our

Fig. 13: From left to right: a neuron travels vertically through consecutive
slices, appearing as a dot (middle) in these images. In NeuroLucida, only
two experts traced this correctly, but in VR all users except one expert
traced it correctly.

system regarding neuron tracing, navigation, and rendering. Moreover,
it discusses the overall strengths and limitations of our current tool.
Tracing. The experts reported that tracing neurons, creating branch
points, and correcting mistakes were more intuitive in the VR tool
than in NeuroLucida. The combination of tracing in free space with
a single button press and the flexible graph editing system allowed
users to focus on the data, instead of having to continuously flip back
to a toolbar to mark branches and termination points, or frequently
scroll through the image stack. We recorded similar responses in the
survey, with users rating the VR tool easier to use for these tasks.
However, experts expressed the need for fine manipulation of lines
and nodes to edit previous tracings, without going through a delete
and re-trace interaction. When analyzing user sessions, we found that
users employed the quick undo command more often than explicitly
deleting lines or nodes. We hypothesize that the delete and re-trace
feature is less intuitive, or that it may be more applicable to post-trace
editing sessions. Designing an intuitive system for editing previous
tracings in VR poses an interesting challenge. Introducing additional
button commands or menus could make the system non-intuitive, and
manually switching between tracing and editing modes could break the
“flow” of a user during the task.

When replaying the tracing sessions, we noticed that some errors
in traces produced in VR were due to users forgetting to return to a
branch point. In NeuroLucida, branches and termination points are
explicitly marked; when a branch is ended at a termination point, the
system scrolls the user back to the branch point to trace the rest of the
branches. With our graph-based editing system, creating branches and
termination points is implicit, and the user must remember to return
to the branch point after completing the current branch. In the VR
sessions, some users placed markers at complex crossings or branch
points, as reminders to revisit the location later. Users also requested the
ability to hide the dataset entirely, allowing them to observe the traced
tree structure independently. Our prototype included the ability to
hide the rendering by panning the focus region outside the volume and
observing the tree from a distance, or viewing the minimap. However,
providing an explicit option would be desirable in future iterations.
Navigation. The users easily adapted to navigating by grabbing the
focus region and moving it. During the tracing sessions, some users
chose to sit, and the panning system allowed them to easily bring the
data closer. One user commented that he felt as productive sitting as he
did standing. The current version of our tool does not support rotating
the volume, due to the inherent ability in VR to simply walk around
the dataset instead. However, this feature would be useful when tracing
while seated. Instead, when seated, users moved the volume behind
them and spun the chair around to view the data from the opposite side.
In one case, an expert did not perform this less intuitive action, and
misinterpreted a crossing as a branch point. When asked to re-trace
this neuron while standing, the expert correctly resolved the crossing
by observing it from a different angle. We include a video of these two
sessions in the supplementary material.

Users found the minimap to be somewhat useful, especially for dis-
playing the tracings; however, users reported rarely looking at it during
active tracing, as it is small and tucked away in a corner. Users did
report finding it useful for navigating to the starting point and reviewing
the trace. We suspect the minimap might be more useful for larger



datasets, where orienting oneself becomes more challenging. Addition-
ally, in some cases users misinterpreted a neuron as terminating, when
it was in fact just at the focus region boundary. Based on this feedback,
we now display the volume bounds in the world space to clearly convey
the dataset bounds.
Rendering. Neuroanatomists are often not familiar with typical sci-
entific visualization representations such as volume rendering and iso-
surfaces. For example, when viewing the volume representation, users
often misinterpreted stitching artifacts between acquisitions (Fig. 11).
After a second VR session, one of the experts mentioned preferring
the volume representation after gaining more understanding of what
is shown. In his first session, he primarily used isosurfaces, but found
them to be potentially deceiving, as neurons may manifest at some
isovalues but not at others, and can appear to change thickness as the
isovalue is adjusted.

Users also raised concerns that the volume and isosurface represen-
tations could hide or filter out faint or fine-detail features in the data,
such as spines or boutons (small important structures present on den-
drites and axons, respectively). Expert users also suggested introducing
the option of viewing the original microscope image slices within the
volume data, in order to supplement the new representation with some-
thing more familiar to the neuroanatomist. It would also be valuable to
add support for clipping planes to cull out noisy or dense regions of the
data. During the evaluation sessions, we observed users employing the
focus region bounds as a form of clipping plane, by panning the data in
and out of view, indicating a need for this feature.

When reviewing traces in the reference datasets where users per-
formed poorly in VR, we found that some of these cases involved
crossing a gap in the data, where the labeling of the neuron was faint
or incomplete. In NeuroLucida, users correctly perceived this gap as
caused by non-uniformity in the signal. However, no scale bar was
displayed in our VR tool, which could lead users to misinterpret the
size of gaps or structures they are seeing in physical units.

Novice users found the 3D representation helpful in understanding
the 3D nature of the neuronal structures. One novice mentioned that
after using the VR tool, she was better able to construct the 3D structure
mentally when working on 2D image slices in NeuroLucida.

6 FUTURE WORK

The results of our evaluation are promising, but several additions to our
tool could improve users’ performance. One useful modification would
be to provide additional guidance during the tracing process, by high-
lighting potential errors and reminding users to return to branch points.
For example, trifurcating branch points occur rarely in neurons and,
if created by the user, could be automatically highlighted as potential
errors. Unsupervised machine learning techniques, such as clustering,
could be used to automatically compute the likelihood of sections of a
trace by comparing cluster size, and utilize more complex features of
the data.

Editing and reviewing traces could be improved by supporting mov-
ing nodes and lines. However, developing a natural interaction for
editing in VR presents a challenge. As discussed in Section 5.3, adding
more complex button combinations or system menus can increase the
cognitive load for users and reduce productivity. It is also unclear how
to best manipulate the graph. In NeuroLucida, one works on a coarse
set of points with straight lines between them, but the VR tool provides
smooth lines. To this end, a spline-based manipulation system could
work well, but may be unintuitive for novices.

Supporting multiple users in the same virtual environment, either
locally or over a network, would be useful for facilitating collaborative
work and training sessions. For example, it was difficult for two users
to discuss complex crossings or stitching issues, with one wearing the
HMD and the other looking at a mirrored view on a desktop monitor.
The separation of the users hampered discussions between the two, as
the user viewing the desktop could not point to features viewed by the
other in VR.

A combined rendering mode [23], potentially with shadows and
ambient occlusion built in, could help users by presenting both modes

simultaneously, along with stronger depth cues. Providing more famil-
iar representations to the experts could also encourage neuroanatomists
to adopt the tool, such as adding the option to view the original images
of individual sections. However, in principle, a single well-interpretable
rendering modality would be preferable to repeatedly bringing up 2D
images.

Although our paging system can handle terabyte-sized data pro-
duced by high-resolution microscopes, the small, highly zoomed-in
focus region hinders a global view of the data, thereby potentially ham-
pering understanding of the data and productivity. Improving rendering
performance would enable us to increase the resolution of the focus
region, and adding a zoom option or coarse resolution view would
allow users to obtain an overview of the data. Finally, the addition of
semi-automated methods for extracting neuron structure would greatly
accelerate reconstructions, especially in large datasets, by allowing
users to quickly resolve easier cases. We are actively working on
integrating a semi-automatic guided method, e.g., using Voxel Scoop-
ing [41] and Rayburst sampling [40], to extract neuronal structures and
their radii.

The small scope of our pilot study was appropriate due to the domain-
specific nature of our system and the familiarity of our collaborators
with the problem of manual neuron tracing. However, it would be
useful to broaden our study and examine the impact of VR on other
problems in neural imaging, such as multi-channel data [44] or data
employing automatic or semi-automatic registration and segmentation
techniques [21]. To this end, we have released our software open-source
and are working to expand deployment to other labs.

7 CONCLUSION

We have presented a design study to develop a virtual reality tool
for neuron tracing, conducted through a close collaboration between
computer scientists and neuroscientists. We have established that the
resulting tool is effective for neuron tracing. On average, users are as
accurate and faster at neuron tracing using our VR tool as they are using
the current industry standard tool, and can trace orders of magnitude
larger datasets via the integrated paging system. Moreover, users find
the VR tool easier to interact with, and less fatiguing. Although we
did not rigorously explore this aspect, use of our tool does not require
tiring actions such as standing or keeping one’s arms raised. In fact,
users reported feeling equally productive while seated as when stand-
ing. Overall, recent consumer-grade VR systems like the HTC Vive are
affordable and provide a sufficiently high-quality VR experience to be
used as a standard tool in scientific data analysis and visualization. Al-
though not all analysis tasks may be well suited to VR, those involving
understanding complex 3D structures or interacting directly with 3D
data, like neuron tracing, can be aided by VR-based tools.

The features we added to the tool proved useful to experts. For ex-
ample, one such added feature, the replaying system, specifically aided
users in joint discussions, as well as in identifying and understanding
the causes of tracing mistakes. Through our evaluation and discussions
with users, we have identified several potential improvements to the
tool that could facilitate identification of common mistakes and aid in
understanding of the data, as well as further reducing tracing time.

ACKNOWLEDGMENTS

We would like to thank Anders Ynnerman, Yarden Livnat, Amy Gooch,
the anonymous evaluation users, and the reviewers. This work is
supported in part by NSF:CGV Award: 1314896, NSF:IIP Award:
1602127, NSF:ACI Award: 1649923, DoE/SciDAC DESC0007446,
CCMSC DE-NA0002375, PIPER: ER26142 DE-SC0010498, the NIH
(NEI R01 EY019743 and R01 EY026812, NINDS BRAIN grant U01
NS099702), the NSF (IOS 1355075 and EAGER 1649923), the U.
of Utah Research Foundation (seed grant 10040877), the U. of Utah
Neuroscience Initiative, and a grant from Research to Prevent Blindness
to the Dept. of Ophthalmology. This material is based upon work
supported by the DoE, NNSA, under Award Number DE-NA0002375.



REFERENCES

[1] Cell type-specific structural plasticity of axonal branches and boutons in
the adult neocortex. Neuron, 49(6):861–875.

[2] Oculus Rift Development Kit 2. www.oculus.com/en-us/dk2/, July 2014.
[3] HTC Vive. www.vive.com/us/product/, April 2016.
[4] L. Acciai, P. Soda, and G. Iannello. Automated Neuron Tracing Methods:

An Updated Account. Neuroinformatics, 14(4):353–367, Oct. 2016. doi:
10.1007/s12021-016-9310-0

[5] G. A. Ascoli. Neuroinformatics Grand Challenges. Neuroinformatics,
6(1):1–3, Mar. 2008. doi: 10.1007/s12021-008-9010-5

[6] H. C. Baker, Jr. and C. Hewitt. The incremental garbage collection of
processes. In Proceedings of the 1977 Symposium on Artificial Intelligence
and Programming Languages, pp. 55–59. ACM, New York, NY, USA,
1977. doi: 10.1145/800228.806932

[7] J. Beyer, M. Hadwiger, A. Al-Awami, W.-K. Jeong, N. Kasthuri, J. W.
Lichtman, and H. Pfister. Exploring the connectome: Petascale volume
visualization of microscopy data streams. IEEE Computer Graphics and
Applications, 33(4):50–61, 2013.

[8] D. D. Bock, W.-C. A. Lee, A. M. Kerlin, M. L. Andermann, G. Hood,
A. W. Wetzel, S. Yurgenson, E. R. Soucy, H. S. Kim, and R. C. Reid. Net-
work anatomy and in vivo physiology of visual cortical neurons. Nature,
471(7337):177–182, 2011.

[9] A. Bria, G. Iannello, and H. Peng. An open-source Vaa3D plugin for real-
time 3D visualization of terabyte-sized volumetric images. In Biomedical
Imaging (ISBI), 2015 IEEE 12th International Symposium on, pp. 520–523.
IEEE, 2015.

[10] K. L. Briggman, M. Helmstaedter, and W. Denk. Wiring specificity in
the direction-selectivity circuit of the retina. Nature, 471(7337):183–188,
2011.

[11] K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A. S. Andalman,
T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin,
et al. Structural and molecular interrogation of intact biological systems.
Nature, 497(7449):332–337, 2013.

[12] C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon, and J. C.
Hart. The CAVE: audio visual experience automatic virtual environment.
Communications of the ACM, 35(6):64–73, 1992.

[13] W. Denk, J. Strickler, and W. Webb. Two-photon laser scanning fluores-
cence microscopy. Science, 248(4951):73–76, 1990. doi: 10.1126/science.
2321027

[14] A. Febretti, A. Nishimoto, T. Thigpen, J. Talandis, L. Long, J. D. Pirtle,
T. Peterka, A. Verlo, M. Brown, D. Plepys, D. Sandin, L. Renambot,
A. Johnson, and J. Leigh. CAVE2: a hybrid reality environment for
immersive simulation and information analysis. vol. 8649, pp. 864903–
864903–12, 2013. doi: 10.1117/12.2005484

[15] T. A. Gillette, K. M. Brown, and G. A. Ascoli. The DIADEM Metric:
Comparing Multiple Reconstructions of the Same Neuron.

[16] E. M. Glaser and H. Van der Loos. A semi-automatic computer-microscope
for the analysis of neuronal morphology. IEEE Transactions on Biomedical
Engineering, (1):22–31, 1965.

[17] Google. Tilt Brush, 2016.
[18] M. Hadwiger, P. Ljung, C. R. Salama, and T. Ropinski. Advanced illu-

mination techniques for GPU volume raycasting. In ACM Siggraph Asia
2008 Courses, p. 1. ACM, 2008.

[19] F. Hernell, P. Ljung, and A. Ynnerman. Local ambient occlusion in direct
volume rendering. IEEE Transactions on Visualization and Computer
Graphics, 16:548–559, 2009. doi: 10.1109/TVCG.2009.45

[20] M. Ikits and D. Brederson. The Visual Haptic Workbench. The Visualiza-
tion Handbook, pp. 431–449, 2005.

[21] W.-K. Jeong, J. Beyer, M. Hadwiger, R. Blue, C. Law, A. Vázquez-Reina,
R. C. Reid, J. Lichtman, and H. Pfister. SSECRETT and NeuroTrace:
Interactive visualization and analysis tools for large-scale neuroscience
data sets. IEEE Computer Graphics and Applications, 30(3):58–70, 2010.

[22] D. Jönsson, E. Sundén, A. Ynnerman, and T. Ropinski. A Survey of
Volumetric Illumination Techniques for Interactive Volume Rendering.
Computer Graphics Forum, 33(1):27–51, 2014. doi: 10.1111/cgf.12252

[23] A. Knoll, Y. Hijazi, R. Westerteiger, M. Schott, C. Hansen, and H. Hagen.
Volume ray casting with peak finding and differential sampling. IEEE
Transactions on Visualization and Computer Graphics, 15(6):1571–1578,
Nov 2009. doi: 10.1109/TVCG.2009.204

[24] B. Laha, D. A. Bowman, and J. J. Socha. Effects of VR system fidelity on
analyzing isosurface visualization of volume datasets. IEEE Transactions
on Visualization and Computer Graphics, 20(4):513–522, 2014.

[25] B. Laha, K. Sensharma, J. D. Schiffbauer, and D. A. Bowman. Effects
of immersion on visual analysis of volume data. IEEE Transactions on
Visualization and Computer Graphics, 18(4):597–606, 2012.

[26] Y. Liu. The DIADEM and Beyond. Neuroinformatics, 9(2-3):99–102,
Sept. 2011. doi: 10.1007/s12021-011-9102-5

[27] L. Luo, E. M. Callaway, and K. Svoboda. Genetic dissection of neural
circuits. Neuron, 57(5):634 – 660, 2008. doi: 10.1016/j.neuron.2008.01.
002

[28] K.-L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh. Parallel volume
rendering using binary-swap compositing. IEEE Comput. Graph. Appl.,
14(4):59–68, July 1994. doi: 10.1109/38.291532

[29] MBF Bioscience. NeuroLucida 11.08.
[30] MBF Bioscience. NeuroLucida 360.
[31] E. Meijering. Neuron tracing in perspective. Cytometry Part A,

77A(7):693–704, Mar. 2010. doi: 10.1002/cyto.a.20895
[32] E. Murray, J. Cho, D. Goodwin, T. Ku, J. Swaney, S.-Y. Kim, H. Choi, Y.-G.

Park, J.-Y. Park, A. Hubbert, M. McCue, S. Vassallo, N. Bakh, M. Frosch,
V. Wedeen, H. Seung, and K. Chung. Simple, scalable proteomic imaging
for high-dimensional profiling of intact systems. Cell, 163(6):1500 – 1514,
2015. doi: 10.1016/j.cell.2015.11.025

[33] K. Palmerius, M. Cooper, and A. Ynnerman. Haptic Rendering of Dy-
namic Volumetric Data. IEEE Transactions on Visualization and Computer
Graphics, 14(2):263–276, Mar. 2008. doi: 10.1109/TVCG.2007.70409

[34] V. Pascucci and R. J. Frank. Global static indexing for real-time explo-
ration of very large regular grids. In Proceedings of the 2001 ACM/IEEE
Conference on Supercomputing, SC ’01. ACM, 2001. doi: 10.1145/582034
.582036

[35] H. Peng, F. Long, T. Zhao, and E. Myers. Proof-editing is the Bottleneck of
3D Neuron Reconstruction: The Problem and Solutions. Neuroinformatics,
9(2-3):103–105, Sept. 2011. doi: 10.1007/s12021-010-9090-x

[36] H. Peng, Z. Ruan, F. Long, J. H. Simpson, and E. W. Myers. V3D
enables real-time 3D visualization and quantitative analysis of large-scale
biological image data sets. Nature Biotechnology, 28(4):348–353, 2010.

[37] H. Peng, J. Tang, H. Xiao, A. Bria, J. Zhou, V. Butler, Z. Zhou, P. T.
Gonzalez-Bellido, S. W. Oh, J. Chen, A. Mitra, R. W. Tsien, H. Zeng, G. A.
Ascoli, G. Iannello, M. Hawrylycz, E. Myers, and F. Long. Virtual finger
boosts three-dimensional imaging and microsurgery as well as terabyte
volume image visualization and analysis. Nature Communications, 5, July
2014. doi: 10.1038/ncomms5342

[38] Prabhat, A. Forsberg, M. Katzourin, K. Wharton, and M. Slater. A Com-
parative Study of Desktop, Fishtank, and Cave Systems for the Exploration
of Volume Rendered Confocal Data Sets. IEEE Transactions on Visu-
alization and Computer Graphics, 14(3):551–563, May 2008. doi: 10.
1109/TVCG.2007.70433

[39] K. Reda, A. Knoll, K.-i. Nomura, M. E. Papka, A. E. Johnson, and J. Leigh.
Visualizing large-scale atomistic simulations in ultra-resolution immersive
environments. In LDAV, pp. 59–65, 2013.

[40] A. Rodriguez, D. Ehlenberger, P. Hof, and S. Wearne. Rayburst sampling,
an algorithm for automated three-dimensional shape analysis from laser
scanning microscopy images. Nature Protocols, 2006.

[41] A. Rodriguez, D. Ehlenberger, P. Hof, and S. Wearne. Three-Dimensional
Neuron Tracing by Voxel Scooping. Journal of Neuroscience Methods,
2009.

[42] M. Sedlmair, M. Meyer, and T. Munzner. Design Study Methodology:
Reflections from the Trenches and the Stacks. IEEE Transactions on
Visualization and Computer Graphics, 18(12):2431–2440, 2012.

[43] A. Vlachos. Advanced VR Rendering. GDC, 2015.
[44] Y. Wan, H. Otsuna, C.-B. Chien, and C. Hansen. FluoRender: an applica-

tion of 2D image space methods for 3D and 4D confocal microscopy data
visualization in neurobiology research. In Pacific Visualization Symposium,
pp. 201–208. IEEE, 2012.

[45] J. G. White, E. Southgate, J. N. Thomson, and S. Brenner. The Structure of
the Nervous System of the Nematode Caenorhabditis elegans. Philosophi-
cal Transactions of the Royal Society of London B: Biological Sciences,
314(1165):1–340, 1986. doi: 10.1098/rstb.1986.0056

[46] B. Yang, J. B. Treweek, R. P. Kulkarni, B. E. Deverman, C.-K. Chen,
E. Lubeck, S. Shah, L. Cai, and V. Gradinaru. Single-cell phenotyp-
ing within transparent intact tissue through whole-body clearing. Cell,
158(4):945–958, 2014.

[47] A. Ynnerman, T. Rydell, A. Persson, A. Ernvik, C. Forsell, P. Ljung,
and C. Lundstrm. Multi-Touch Table System for Medical Visualization.
In H.-C. Hege and T. Ropinski, eds., EG 2015 - Dirk Bartz Prize. The
Eurographics Association, 2015. doi: 10.2312/egm.20151030


	Introduction
	Background and Related Work
	Neuron Tracing
	Neuron Tracing Workflow
	Immersive Environments

	Design Process
	Technology Probe
	The Prototype

	Virtual Reality Tracing Tool
	Tracing and Navigation
	Rendering
	Data Streaming
	Volume Rendering

	Recording and Replaying

	Evaluation
	Planar Axons Reference Dataset
	Cell Bodies Dataset
	Discussion

	Future Work
	Conclusion

