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Abstract. Statistical Shape Models (SSMs) excel at identifying popu-
lation level anatomical variations, which is at the core of various clini-
cal and biomedical applications, including morphology-based diagnostics
and surgical planning. However, the effectiveness of SSM is often con-
strained by the necessity for expert-driven manual segmentation, a pro-
cess that is both time-intensive and expensive, thereby restricting their
broader application and utility. Recent deep learning approaches enable
the direct estimation of Statistical Shape Models (SSMs) from unseg-
mented images. While these models can predict SSMs without segmen-
tation during deployment, they do not address the challenge of acquiring
the manual annotations needed for training, particularly in resource-
limited settings. Semi-supervised and foundation models for anatomy
segmentation can mitigate the annotation burden. Yet, despite the abun-
dance of available approaches, there are no established guidelines to in-
form end-users on their effectiveness for the downstream task of con-
structing SSMs. In this study, we systematically evaluate the potential
of weakly supervised methods as viable alternatives to manual segmen-
tation’s for building SSMs. We establish a new performance benchmark
by employing various semi-supervised and foundational model methods
for anatomy segmentation under low annotation settings, utilizing the
predicted segmentation’s for the task of SSM. We compare the modes
of shape variation and use quantitative metrics to compare against a
shape model derived from a manually annotated dataset. Our results
indicate that some methods produce noisy segmentation, which is very
unfavorable for SSM tasks, while others can capture the correct modes
of variations in the population cohort with 60-80% reduction in required
manual annotation.

Keywords: Statistical Shape Modeling · Semi Supervised Segmentation

1 Introduction

Statistical shape models (SSMs) provide a quantitative means for analyzing
anatomical variations across populations, enabling the identification of norma-
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tive trends and deviations and facilitating the development of diagnostic tools
and surgical planning systems [10]. Constructing SSMs is contingent upon the ac-
curate segmentation of the target anatomy. This process is both time-consuming
and resource-intensive, often hindered by the scarcity of medical expertise neces-
sary for precise segmentation. Recent advances in deep learning have facilitated
the direct estimation of SSMs from unsegmented images, thus bypassing the need
for segmentation during inference [7,2,3,21,19,28,20,13,6,23,24,6,29,12,11,4]. How-
ever, these deep learning methods still necessitate anatomy segmentation to con-
struct SSMs for training.

Automated or deep learning based anatomy segmentation can mitigate the
segmentation burden for constructing SSMs; however, networks designed for seg-
mentation task still require significant manual annotations for their training.
To alleviate such burden, a variety of semi-supervised approaches have been
developed, each demonstrating different levels of performance. Semi-supervised
methods (e.g., [30,15,5,31,22,32,25,27,18]), typically leverage a subset of fully an-
notated volumes alongside all unannotated volumes for model training. These
methods use a combination of clever data augmentations [5], pseudo labelling[5,22,31],
consistency regularization[22,27], and entropy minimization[25] to obtain high
quality segmentation’s. A few weakly supervised methods (e.g., [15]) exploit the
inherent 3D structure of the input image, allowing for the reduction of annota-
tion requirements from entire volumes to individual slices.

As deep learning models scale up to billions of parameters trained on mil-
lions of data samples annually, foundational models emerge for optimal gener-
alization across unseen datasets. SAM [14], for instance, accepts bounding box
or point prompts to predict anatomy segmentation and has been fine-tuned on
medical data, effectively reducing annotation requirements.Currently, numerous
annotation-efficient methods exist for anatomy segmentation. However, there are
no established guidelines to evaluate their suitability as alternatives to manual
segmentation for constructing Statistical Shape Models (SSMs). Accurate delin-
eation of the target anatomy is crucial for revealing population-level statistics
in SSM construction.

Fig. 1: Can manual annotation in constructing SSM be replaced by
weakly supervised segmentation methods? Traditional SSM pipelines ne-
cessitate manual annotations by medical professionals on the entire dataset. We
propose leveraging partially annotated and unannotated volumes to train weakly
supervised segmentation models, subsequently use these models to produce 3D
anatomy segmentations to construct the shape models.
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In this paper, we introduce a comprehensive performance benchmark for
constructing SSMs using annotations predicted using weakly/semi-supervised
segmentation methods. By adopting weak supervision techniques such as semi-
supervised methods we aim to alleviate the annotation requirements for con-
structing SSMs, thus increasing the applicability and usability of SSM tools.
Our analysis seeks to identify which weakly supervised approaches are viable for
deployment in population-level analysis tasks. Our benchmark evaluates a vari-
ety of techniques, including semi-supervised methods and foundational models,
against Statistical Shape Models (SSMs) constructed from manual segmenta-
tions. This assessment aims to gauge their effectiveness and feasibility in sce-
narios with limited annotations. Our analysis reveals that certain methods yield
poor segmentations due to sensitivity to hyperparameter settings and biases for
image modality. Conversely, other approaches closely approximate SSM models
trained on complete annotated datasets, successfully capturing the population
cohort’s modes of variation, albeit with a degree of noise. The main contributions
of this paper are:

– We establish a new benchmark for Semi-supervised SSM by comparing SSMs
trained with manual segmentations against those derived from semi-supervised
methods across two datasets.

– We evaluate SSM models trained with varying quantities and types of man-
ual segmentations 20% or 40% of manual full-volume annotations for semi-
supervised models.

– We assess and identify which methods can reliably replace manual annota-
tions in scenarios with limited resources.

2 Weak Supervision Methods

To investigate whether weakly supervised methods can be safely substituted
instead of manual annotations for SSM, we address the following questions :-

– Do SSM models created using weak supervision predictions capture the same
modes of variation compared to an SSM model using all manual segmenta-
tions ? Are some weakly supervised methods more reliable than others ?

– Does increasing the amount of annotated data for weakly supervised models
improve SSM for the population cohort?

– Do quantitative metrics dice correlate better with better accuracy on down-
steam task of SSM ?

This section gives a brief summary of semi-supervised methods used in the study.

2.1 Semi-Supervised Methods

Semi-supervised medical image segmentation involves utilization of partially la-
beled and unlabeled data in the training process. Majority of semi-supervised
methods are based on student-teacher paradigm. These methods employ self-
training by pseudo labelling or consistency regularization/co-training by entropy
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minimization of predictions using multiple views of the input images. We picked
seven unique methods that use labeled and unlabelled data in different ways.

Mean Teacher (MT)[22]. Mean Teacher uses consistency regularization
between student-teacher training paradigm. The student model in trained using
the supervised loss on the labelled set, where as the teacher ’s parameters are
updated as an exponential moving average of the student model. Consistency
loss on unlabelled data aligns the prediction between the two models.

Uncertainity Mean Teacher (MT-UC)[31]. An extension of MT where
the teacher model also estimates the uncertainty of each target prediction with
Monte Carlo sampling. The uncertainty is used to preserve only the reliable
predictions when calculating the consistency loss.

Bidirectional Copy-Paste (BCP)[5]. BCP integrates a bidirectional copy-
paste framework into the Mean Teacher architecture. The student network re-
ceives inputs created by pasting random crops from labeled images onto unla-
beled images and vice versa (bi-direction copy). The supervision of the student
network involves combining both ground-truth labels and pseudo-labels gener-
ated by the teacher network using the same bidirectional copy-paste process.

Deep Adversarial Networks (AN) [32]. AN comprises two networks:
a Segmentation Network (SN) for performing segmentation and an Evaluation
Network (EN) for assessing segmentation quality. During training, EN learns
to distinguish between segmentations of labeled and unlabeled images, while
SN is trained to produce segmentations for unlabeled images that EN cannot
differentiate from those of labeled images. This iterative adversarial training
process, where EN critiques segmentations of unlabeled images, trains SN to
generate more accurate segmentations for both unlabeled and unseen samples,
resulting in improved segmentation performance.

Entropy Minimization (EM) [25]. In semi-supervised segmentation, en-
tropy minimization involves using entropy loss to penalize low-confidence pre-
dictions on unlabeled samples. The entropy loss is calculated from the model’s
pixel-wise predictions, reflecting the uncertainty or confidence in its segmenta-
tion outputs. By minimizing the entropy loss, the model is encouraged to make
more certain and accurate predictions, especially on unlabeled samples where it
may initially show higher uncertainty.

Regularized Dropout (RD) [27]. RD consists of two networks with dif-
ferent initial weight configurations. During training, both models are supervised
with a segmentation loss between their predictions and the ground truth for
labeled samples. For unlabeled data, a consistency loss using KL divergence
measures the agreement between the models’ outputs.

Uncertainty Rectified Pyramid Consistency (URPC) [18]. URPC
utilizes a network that provides multi-scale predictions and enforces consistency
among these predictions for both labeled and unlabeled data. A standard super-
vised loss is employed for learning from labeled images, while for unlabeled im-
ages, the model is encouraged to produce consistent multi-scale predictions as a
regularization strategy. An Uncertainty Rectified Pyramid Consistency (URPC)
module is incorporated to enhance model stability and performance by address-
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ing unreliable predictions in unlabeled data. The uncertainty estimation is based
on measuring the discrepancy between the model’s predictions at different scales,
allowing for the selection of reliable voxels for loss calculation and ensuring stable
unsupervised training.

SAM Med3D (SAM) [26]. SAM-Med3D transforms SAM’s original 2D
components into 3D counterparts, including a 3D image encoder, a 3D prompt
encoder, and a 3D mask decoder. The 3D image encoder uses 3D convolutions
with a learnable 3D absolute positional encoding, extending SAM’s 2D positional
encoding to capture spatial information. The 3D prompt encoder handles sparse
prompts with 3D positional encodings and dense prompts with 3D convolutions.
The 3D mask decoder employs 3D upscaling procedures and 3D transposed
convolutions. The SAM-Med3D model was trained from scratch using large-scale
volumetric medical data.

VNet Baseline. [1] VNet is a fully supervised method for volumetric medi-
cal image segmentation. It has a V-shaped architecture with residual connections
in each layer. It consists of a compression path on the left side and a decom-
pression path on the right side. The network operates in different stages, each
comprising one to three convolutional layers. Each stage learns a residual func-
tion by adding the input to the output of the last convolutional layer. The
convolutions in each stage use volumetric kernels of size 5x5x5 voxels, and the
resolution of the data is reduced as it progresses through the compression path.

3 Results and Discussion

Dataset Details. Two dataset were used for analysis, one public and one in-
house dataset. We used the NAMIC public Left Atrium segmentation dataset
used in [6]. Our in-house dataset consisted of 49 volumes, 40 for train and rest
9 for test. We experiment two different percent of labeled samples, more specifi-
cally we utilize 20% (8 labelled and 32 unlabelled) and 40% (16 labelled and 24
unlabelled) for training the semi-supervised models. For the public Left Atrium
dataset, we divide into 50 train and 9 for test. Similarly we experiment two dif-
ferent percent of labeled samples, more specifically we utilize 20% (10 labelled
and 40 unlabelled) and 40% (20 labelled and 30 unlabelled) for training the
semi-supervised models.
Implementation Details. Original implementation with default parameters
were used for Mean Teacher, Uncertainty Aware Mean Teacher, Bidirectional
Copy-Paste, Uncertainty Rectified Pyramid Consistency and SAM-Med3D. For
Deep Adversarial Networks, Entropy Minimization and Regularized Dropout
implementation provided by [17] with default parameters were used. For SAM-
Med3D 10 random points in foreground region were provided for inference.
ShapeWorks [8] was choosen as the tool to create all shape models for anal-
ysis because of it’s high efficacy [10]. The shape models were formed using the
prediction of unlabeled samples from training set.
Metric Used We employ the quantitative evaluation framework proposed by [9]
to assess shape models. This framework entails the examination of various met-
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rics including compactness, generalization, and specificity. Generalization and
specificity distance is reported in mm. These distance calculated as distance be-
tween SSM correspondences to closest surface point of the ground truth mesh.
These metrics, as a function of modes of variation, are derived from principal
component analysis (PCA) conducted on shape correspondences. Furthermore,
we expand our evaluation methodology by integrating a measure of subspace
distance. Specifically, we utilize the concept of Grassmannian distance as intro-
duced by [16]. The Grassmannian distance are calculated for each method from
the PCA space constructed from the ground truth segmentation’s. For qualita-
tive evaluation we utilize modes of variation to examine the shape variability
capture by the first two dominant modes.

3.1 Results and Discussion

Segmentation Results: We report the Dice score on unlabeled data sam-
ples in Table 1 for both 20% and 40% of labeled samples used in training the
semi-supervised method. It is evident that BCP is the best-performing semi-
segmentation methods when using 20% of labeled samples for both the femur
and left atrium. However, we observe a significant drop in BCP’s performance
for the left atrium as the number of labeled samples increases. This decline in
performance with an increasing number of labeled samples is also noted in other
semi-supervised methods. V-Net, trained from scratch using only labeled sam-
ples, outperforms some of the semi-supervised methods. This raises questions
about the efficacy of these semi-supervised approaches.

Table 1: Semi-Supervised Segmentation Results. Dice Score on the unla-
beled samples reported for all methods used in the study.

Dataset % Data BCP RD AN EM MT MT-UC URPC SAM10 V-Net

Femur
20 (8 labeled) 0.959 0.923 0.920 0.923 0.917 0.909 0.916 0.889 0.921
40 (16 labeled) 0.965 0.934 0.898 0.906 0.919 0.924 0.954 - 0.918

Left
Atrium

20 (10 labeled) 0.903 0.885 0.865 0.884 0.879 0.873 0.878 0.825 0.874
40 (20 labeled) 0.683 0.886 0.879 0.895 0.874 0.882 0.901 - 0.881

Statistical Shape modelling Results. SSMs were created using predicted
segmentations from various semi-supervised methods and compared with SSMs
derived from manual annotations of the full dataset. Qualitative results for first
and second mode of variation for Femur and Left Atrium are shown in Figure 2
and Supplementary Figure 6. Qualitative results indicate that predictions from
certain semi-supervised methods (MT, MT-UC, URPC, EM, and AN) produce
non-smooth surfaces. This affects the statistical shape model (SSM), causing
the first mode of variation captured by the SSM to reflect prediction noise
rather than diagnostically relevant information. We observe that while VNet
and RD results are smoother, the modes of variation they capture differ from
the ground truth SSM( obtained through manual segmentation). The BCP model
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most closely captures the mode of variation for the femur with SAM being the
second best model. However, both SAM and BCP fails to do so for the pul-
monary vein in the left atrium. This discrepancy is likely due to the pulmonary
vein being a small protuberance in the dataset, leading to poor segmentation and
causing all models to overlook the variations in the dataset. Qualitative results
for generalization and specificity are shown in Supplementary Figure 5.

Fig. 2: First Mode Of variation Results for Femur and Left Atrium
using 20% of labelled data. We show first mode of variations for both Femur
and Left Atrium datasets showing mean shape(µ), first (±σ) and second order
(±2σ) variations from mean shape.

Different metrics quantifying compactness, generalization, specificity and grass-
manian distance for femur and left atrium are shown in Figure 3 and 4. All met-
rics are calculated with different modes of variations found using PCA decom-
position. BCP is the closest model to manual segmentation SSM across different
metrics for all modes of variations. However, SAM is second best in specificity
and regularized dropout is second best in generalization. There is no clear pat-
tern across all metrics. Grassmanian distance doesn’t show any model being
hugely different from ground truth.
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Correlation between Dice and SSM quantitative metrics. For the femur, lower
specificity and a shorter generalization distance are correlated with a better Dice
score, although this relationship does not apply to compactness or Grassmannian
distance. Instead, it depends on factors such as the size of the labeled dataset
and the predicted segmentation quality of the method, particularly in capturing
the correct finer details of the underlying segmented anatomy.

Fig. 3: Femur Results. Compactness, Generalization Distance, Specificity Dis-
tance and Grassmanian results using (A) 20% of labelled samples (B) 40% of
labelled samples for training different Semi-supervised methods.

4 Conclusion

In this study, we address an important bottleneck limiting wide acceptance of
Statistical shape modelling for diagnostic decisions, i.e., manual annotation bur-
den. We offer semi-supervised and foundational models as alternatives to man-
ual segmentation and evaluate several of these models on two datasets. Through
qualitative and quantitative comparisons, our results demonstrated that some
of these weakly supervised methods can indeed serve as viable alternatives for
manual segmentation, thus reducing the annotation burden. Notably, our eval-
uation highlighted the effectiveness of BCP [5] and SAM [26] as a particularly
promising methods capturing the correct mode of variations. This finding high-
lights BCP’s [5] potential as a dependable alternative to manual segmentation
for certain anatomies. However, BCP struggles to capture intricate details in the
complex anatomy of the left atrium, leaving room for future improvements. We
intend to broaden this comparison by incorporating a wider array of weakly su-
pervised segmentation approaches, including self-supervised, unsupervised meth-
ods, transfer learning, and other foundational models. By exploring this diverse
spectrum of segmentation techniques, we aim to gain deeper insights into their
effectiveness and applicability for downstream diagnostics tasks such as statisti-
cal shape modeling.
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Fig. 4: Left Atrium Results Compactness, Generalization, Specificity and
Grassmanian results using (A) 20% of labelled samples (B) 40% of labelled
samples.
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Fig. 5: Specificity and Generalization examples for Femur (20%) (A)
Specificity - Reconstructions for the sampled shape and nearest ground truth
shape to the sampled shape. Sampled shape from bidirectional copy-paste (BCP)
are more closer to the nearest ground truth shape then other methods. (B) Gen-
eralization - Ground truth shape and shape reconstructions for unseen samples
for best and worst case scenarios. After ground truth (GT), BCP has the better
reconstructions



Weakly Supervised SSM 13

Fig. 6: Second Mode Of variation Results for Femur and Left Atrium
using 20% of labelled data. We show first mode of variations for both Femur
and Left Atrium datasets showing mean shape(µ), first (±σ) and second order
(±2σ) variations from mean shape. We can clearly see that MT, MT-UC, URPC
and EM fail to capture any relevant details for second mode of variations, where
as V-Net capture as different mode of variation for both left atrium and femur.
SAM and BCP capture same mode of variation for femur, but for left-atrium
BCP and RD capture same mode of variation.


	Weakly SSM : On the Viability of Weakly Supervised Segmentations for Statistical Shape Modeling

