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Skeletal Shape Correspondence
Through Entropy
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Abstract— We present a novel approach for improving
the shape statistics of medical image objects by generating
correspondence of skeletal points. Each object’s interior
is modeled by an s-rep, i.e., by a sampled, folded, two-
sided skeletal sheet with spoke vectors proceeding from
the skeletal sheet to the boundary. The skeleton is divided
into three parts: the up side, the down side, and the fold
curve. The spokes on each part are treated separately and,
using spoke interpolation, are shifted along that skeleton in
each training sample so as to tighten the probability distrib-
ution on those spokes’ geometric properties while sampling
the object interior regularly. As with the surface/boundary-
based correspondence method of Cates et al., entropy is
used to measure both the probability distribution tightness
and the sampling regularity, here of the spokes’ geometric
properties. Evaluation on synthetic and real world lateral
ventricle and hippocampus data sets demonstrate improve-
ment in the performance of statistics using the resulting
probability distributions. This improvement is greater than
that achieved by an entropy-based correspondence method
on the boundary points.
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I. INTRODUCTION

ESTABLISHING correspondence among similar shapes is
essential for accurate statistical shape analysis [1], [2]

in many biomedical applications such as understanding the
anatomic structural differences in various stages of growth or
disease [3]–[6]. This is often achieved by identifying a set of
sparsely sampled and well-corresponding landmarks on organs
or regions of interest across the shape instances.

Several representations of geometric models [3], [7]–[11]
have been proposed to describe anatomical structures. The
most popular one is the surface/boundary-based point dis-
tribution model (PDM) (e.g., [1], [12], [13]). Another well
studied representation describes a shape using a set of
parameterized basis functions such as spherical harmon-
ics (SPHARM) [3], [8], [14], which defines an ambiguous
correspondence and has been shown to be inadequate for
some biomedical shapes that have non-uniform spherical
parameterizations [15]. Deriving from the m-reps [16], [17],
skeletal representations have proven powerful for shape analy-
sis [11], [18]–[20] and biomedical applications [21]–[24] that
need the rich features (e.g., local thickness and orientation)
provided by the skeleton for quantifying the symmetric prop-
erties of organ shapes.

A key direction in the correspondence optimization research
has been the computation of an objective function based
on the determinant of the covariance matrix [25] and later
on the minimum description length (MDL) [26, 27] to tighten
the probability distribution of anatomically homologous points
across a dataset (see Section II-B). In general, the MDL
is approximately equivalent to minimum entropy [21], [28].
According to this, an energy function that encodes the entropy
of the geometric properties of the points in the ensemble of
shapes (the geometry entropy) summed with the entropies of
the point distribution on each shape’s boundary (the regularity
entropy) was proposed in [1] to solve the point correspondence
problem. This combined entropy allows them to optimize the
geometric accuracy and the statistical simplicity of the shape
model. However, in their method the shapes were described
as boundary-based PDMs, which ignore many of the higher
order geometric features (e.g., local orientation) [18], [29].
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Fig. 1. Left: an example of s-rep for lateral ventricle that is sampled as
a folded 3 × 13 skeletal sheet; right: object boundary (yellow) implied by
that s-rep.

In this paper, we adopt the skeletal model – termed as the
s-rep [30] – which samples not just the object boundary but
also its interior. The s-rep (Fig. 1) is formed by an approx-
imately medial folded 2-sided skeletal sheet with a vector
called a spoke proceeding from every skeletal point on the
sheet to and approximately normal to the object’s boundary.

Our purpose is to build a novel correspondence method
based on the aforementioned combined entropy to optimize the
spoke geometry while keeping the spoke distribution in each
object interior regular. Once correspondence is established, the
s-rep provides an intrinsic coordinate system for the points in
the object interior and near exterior that supports statistics on
object geometry and object appearance.

The first contribution of this paper is a novel spoke sliding
mechanism that shifts the discrete spokes to an interpolated
spoke along the part of the skeletal sheet from which it
proceeds. Spoke interpolation [24], [31], [32] is used to
produce the new spoke at the shifted position.

The second contribution is a novel form of s-rep in which
the skeletal positions of the up spokes, down spokes, and fold
spokes are not necessarily shared (see Fig. 4b). This new s-rep
form is produced iteratively with the spoke shifting.

The third contribution is the spoke regularity properties
that can effectively measure the regularity of the subregions
bounded by the spokes representing an object.

The final contribution is to improve spoke correspondence
by minimizing a weighted sum of the entropy of the spokes’
geometric properties over the shape training population (the
geometry entropy) and the within-object spokes’ distributional
entropy for each shape’s interior (the regularity entropy).

Evaluated on synthetic and real word datasets consisting
of lateral ventricles and hippocampi, the proposed method
effectively improved the tightness and regularity of the spoke
distribution and reduced shape variances. Also, when com-
pared to entropy-based optimization of a boundary PDM,
our method yields PDMs that are superior in specificity and
compactness while maintaining generalization in the first few
eigenmodes.

The remainder of this paper is organized as follows.
Section II presents the shape representation schemes and
overviews the previous related work along with common
correspondence validation metrics which are adopted in this
paper. Section III describes our correspondence method.
Section IV details the experiments and presents measure-
ments of the statistical performance of spoke optimization and

boundary PDM optimization. Section V discusses this new
correspondence method, including its possible improvements
and applications. Supplementary material are available in the
supplementary files/multimedia tab.

II. BACKGROUND

A. Shape Representation Schemes

We utilized three shape representations: SPHARM, PDM,
and s-rep. We used finite-dimensional PDMs derived from
each representation for the comparisons as discussed in
Section IV. SPHARM and PDM are described in Supplemen-
tary Section 2.

A continuous s-rep describes an object interior by two
functions: a 2D folded skeletal surface p(u, v) and a spoke
function S(u, v), a vector field pointing from p(u, v) to the
boundary (see Fig. 1). At each non-fold position on p(u, v)
there are both an “up” spoke and a “down” spoke. The vector
S can be decomposed into

S (u, v) = U(u, v) · r(u, v) (1)

where u, v parameterize the s-rep skeletal surface’s long and
short axes respectively, U(u, v) is a unit vector field pointing
in the direction of S(u, v), and r(u, v) is a scalar distance
function from the skeletal surface to the object boundary.

In the computer an s-rep is discretely sampled from the
continuous skeletal model at m ×n skeletal points. In this dis-
crete s-rep, each up spoke shares a skeletal point with a down
spoke, and fold spokes share a skeletal point with both an
up and a down spoke. The grid structure on the skeletal sheet
forms a collection of quadrilaterals with a skeletal point at each
corner. The object interior can be completely represented by
interpolating the discrete s-rep into a continuous skeleton with
a continuous field of spokes forming a continuous s-rep whose
spokes fill the interior of the object. This representation does
not rely on any inherent parameterization. Statistical analysis
is applied to these sparse spokes [19], [24], [33].

For a new object, previous methods [5], [30], [34] obtained
s-reps by an optimization that fits the interpolated form of a
previously defined s-rep template to the object. An improved
fitting process, both automatic and stable, was developed by
Tu et al. [35]. It produces s-reps via thin plate spline warping
of a reference s-rep. Both forms of fit yield reasonable initial
correspondence.

Free software named “Pablo” developed by the UNC
MIDAG (Medical Image Display and Analysis Group) team
supports s-rep production and visualization; it can be down-
loaded from http://www.nitrc.org/projects/sreps/. In this paper,
we divide the skeleton into its three parts: up spokes proceed-
ing from the skeletal sheet top, down spokes proceeding from
the skeletal sheet bottom, and fold spokes. For the k spokes
on each part, the set of spoke tails on the skeletal sheet forms
a PDM to which Kendall’s PDM scaling strategy [36] can
be applied to yield a point on R

1 × S
3k−4; the directional

component of each spoke abstractly lives on the unit 2-sphere
S

2. Therefore, the geometric properties of this s-rep abstractly
live on R

k+1 × S
3k−4 × (S2)

k
. More information on this is

provided in Supplementary Sections 1-2.
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B. Previous Work on Correspondence

Cootes and Taylor [7] first posed the correspondence prob-
lem combined with principal component analysis (PCA) on
manually defined significance points in a 2D boundary PDM.
Manually placing landmarks is error-prone, subjective and
time-consuming, which makes this approach impractical for
defining correspondence, the more so in 3D than 2D.

Various attempts have been made to solve the correspon-
dence problem automatically [3], [12], [27], [37], [38]. They
can be categorized according to which of three alternative
ways for building correspondence they follow. The first way
is to manipulate surface correspondence simultaneously while
computing geodesic deformation that is optimal according to
an elastic Riemannian metric [13], [39]–[41]. The second way
is to use a consistent, shape-sensitive method for fitting the
object representation to the object, for each object in the
training set [5], [30], [42]–[44]. The third way is to tighten
the resulting probability distribution on the representation
properties [1], [25], [26], [28], [45].

Srivastava et al. [13] and Jermyn et al. [39] introduced
an elastic correspondence method that treats shape com-
parisons and surface correspondence in a joint manner.
Kurtek et al. [10], [40] proposed a mechanism for computing
geodesic paths between surfaces that are invariant to the
parameterizations of surfaces and other shape-preserving trans-
formations of surfaces, which was re-formulated and extended
in [41] as a landmark-constrained correspondence method.

There are two extensively used methods based on fitting
consistency. The first is applied to boundary PDMs based on
SPHARM. The second is applied to s-reps and consequently to
s-rep implied boundary PDMs. “ The SPHARM-based method
uses a PDM made from the vertices of a triangular tiling of
the object boundary. It produces consistency in the areas of
the tiles and in the orientations of the tiles relative to the
parameterizing sphere. Kelemen et al. [42] used this method to
describe a population of 3D hippocampal shapes. Inspired by
their experiments, Gerig et al. [3] applied the same method to
study the similarity of lateral ventricles. Styner et al. [43], [44]
addressed the correspondence problem for anatomical objects
through SPHARM-implied PDMs.

The s-rep-based method [5], [30] achieves correspondence
by fitting a predefined template to each object instance.
It achieves consistency either by deformation according to
a common set of landmarks or by fitting each object over
the coefficients of common eigenmodes produced by the
PCA-like method called CPNS (Composite Principal Nested
Spheres) [46], [47].

Correspondence based on tightening the probability dis-
tribution began with the work of Kotcheff and Taylor [25].
They posed the problem as one of finding the circle-based
parameterization for each object in the training set that yields
the tightest distribution. They measured tightness from the
covariance matrix � on derived PDMs. Their measure was
FD = ln det(� + α I ), where I is the identity matrix
and α is a parameter that prevents the modes with smallest
eigenvalues from disturbing the optimization process. FD =∑

k ln (λk + α), where {λk are all the eigenvalues of � (prin-
cipal variances) and α is a user-chosen parameter.

Davies et al. [26] proposed a different objective function
based on �: MDL of the geometric representation. In [27]
they developed a 3D statistical shape model (SSM) based on
a PDM description with an infinite number of points derived
from a continuous parameterization. Later, they extended the
MDL approach to this PDM/SSM representation in [12]. Their
method manipulated correspondence by reparameterizing each
training shape. The regularity of the points on each object in
this method was achieved via the deformation of the common
parameterization.

Thodberg [28] suggested a rough approximation to the MDL
objective function for computational simplicity, which is a
slightly modified version of the actual MDL approach by
Davies et al. [26]. Styner et al. [48] described an empirical
study that extended Thodberg’s simplified approximate MDL
objective function by incorporating various local curvatures
(geometric information) to improve correspondence.

The entropy H (Z) of a multi-dimensional Gaussian dis-
tribution on the multivariate Z is linear in F with α = 0
if all the principal variances are used. Thus for a fixed
dimension, minimizing F is equivalent to minimize the geo-
metric entropy H (Z) if all the principal variances are used
and are offset by α. Realizing this, Cates et al. [1] recast
the boundary PDMs correspondence problem in terms of
entropy. This allowed them to express not only the geometric
properties but also the regularity properties by entropy on each
object. Their objective function was Q = HGeometry (Z) −
∑N

i=1 HRegularit y(Objecti ). In both entropies, offsetting the
principal variances by α was used. Q was minimized by
shifting the points along each object boundary.

Other methods try to obtain correspondence through various
geometric features. Brett and Taylor [49], Hill et al. [50]
and Wang et al. [51], [52] proposed various shape properties
(e.g., regions of high curvature) to establish point correspon-
dences. Joshi et al. [53] represented sulcal shapes as square-
root velocity functions of continuous open curves and com-
puted geodesics in the quotient space, trying to preserve impor-
tant local geometry. Oguz [45] presented an extension of [1]
by combining the features of point location with curvature
and image based features. Her work illustrates how multiple
modalities can be included in an entropy-based approach.

In this paper we present a correspondence method adopting
the aforementioned combined entropy for our s-rep to improve
correspondence of the sparse spokes. That is, we describe the
object as an s-rep and shift the spokes on the skeletal sheet
to tighten the probability distribution of spoke geometry while
keeping the spoke distribution in each object interior regular.

III. METHODS

Recall that our method optimizes the combined entropy in a
training set of s-reps by sliding each of the sparse spokes (the
thickened spokes of the same color in Fig. 2) on each object
onto an interpolated spoke on the part of the skeletal sheet
from which it proceeds. In this section, we elaborate on each
of the method’s components: a) spoke shifting through interpo-
lation, b) regularity properties calculation contributing to regu-
larity entropy, c) geometric properties calculation contributing
to geometry entropy, d) objective function and optimization.



4 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 37, NO. 1, JANUARY 2018

Fig. 2. Discrete s-reps of two lateral cerebral ventricles, each repre-
sented as a 3 × 13 sparse grid of spokes (the colored thickened lines).
The thin gray spokes are the interpolated spokes describing the object
interior. The color indicates the initial correspondence before any shifting
using entropies.

Fig. 3. (a) Each object is modeled with three regions: an up (cyan),
a down (magenta) and a fold region (yellow). The green grids represent
the skeletal sheet. (b) The up skeletal sheet with the original sparse
spokes shown as thickened cyan lines; the interpolated spokes shown
as thin cyan lines; the shifted spokes shown in thickened yellow. The
thickened cyan spokes S(u, v) are shifted to the thickened yellow position
S(u + Δu,v + Δv) by a small step (Δu, Δv), and interpolating to that
position.

A. Spoke Shifting Through Interpolation

As previously discussed and as illustrated in Fig. 3a, an
s-rep is made up of three regions of spokes: up, down and fold.
The spoke shifting within each region is done independently.
For an m × n s-rep, there are (m − 2) × (n − 2) up (or
down) spokes emanating from an interior grid position; the
remainder emanate from an exterior grid position (the fold).
The interior up and down spokes should be allowed to shift
on the interior of the respective region via a skeletal-based
interpolation method proposed in [32]. The spokes emanating
from the fold should be allowed to shift only on the fold via
the spoke interpolation method in [24]. The spokes emanating
from the corner of the grid are not allowed to shift. Fig. 3b
visualizes the shifting of the up region.

To optimize the aforementioned combined regularity and
geometry statistics, each sparse spoke S (u, v) is slid to the
shifted spoke at the interpolated position (u + �u, v + �v),
where �u,�v ∈ (−1, 1). Neighboring spokes are constrained
so that their tails cannot cross on the skeletal sheet.

In general, each movable spoke has restrictions on where it
can shift to, according to the following criteria:

Fig. 4. (a) A skeletal sheet has its 3 × 13 skeletal points projected
as a unit grid. The diamonds and balls respectively denote the interior
and the exterior grid positions. Each interpolated spoke has coordinate
(u + Δu, v + Δv) (e.g., the spoke at the red dot is (1.5, 1.2), and at the
cyan dot (0.5, 6.6)). (b) Part of the s-rep before and after shifting. The
shared skeletal points (white balls in original s-rep) split and shift to a
new place with its spoke. The cyan ball is the skeletal pt. of the up spoke,
magenta (down) and yellow (fold).

1) For the interior up and down spokes (diamonds in
Fig. 4a), �u ∈ (−1, 1) and �v ∈ (−1, 1).

2) The spokes on the exterior of the grid (green balls in
Fig. 4a), be they up, down or fold spokes, shift to the same
types of spokes in an adjacent quad edge by changing only
�u or �v. That is, for these spokes, the shifting is �u = 0,
�v ∈ (−1, 1) or �u ∈ (−1, 1), �v = 0.

3) For the corner spokes (blue balls in Fig. 4a), the shifting
is �u = 0 and �v = 0.

After applying the above shifting independently to each
region, the resulting s-rep may well not have any two spokes
which share a skeletal position (see Fig. 4b).

To produce correspondence, the spoke shifting is optimized
iteratively until convergence is achieved. Whereas the inter-
polation used in the shifting is always based on the original
s-rep; the regularity and geometric properties to be discussed
in Sections III-B,C are always based on the shifted s-rep.

B. Regularity Properties

Regularity is measured for each s-rep separately. The grid of
its sparse spokes is formed into curvilinear quads on both the
skeletal sheet (connecting four neighbor spoke tails, shown
as green balls and black grids in Fig. 5a-c) and the object
boundary (connecting four neighbor spoke tips, shown as
green or red sheets in Fig. 5a). At the fold there are curvilinear
segments on the skeleton rather than quads. Both sets of
quads are used to measure regularity. For each set, three
properties contribute to our regularity measure. We wanted
these properties to be close to probabilistically independent,
thus allowing entropies of each to be summed to form the
overall regularity entropy. We took these three properties to be
the horizontal lengths of the quad sides, the vertical lengths
of the quad sides, and the geometric similarity of the quads.
The latter has to do with angles of the quad corners and
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Fig. 5. Visualization of an 3 × 8 s-rep. (a) This s-rep has 24 up/down
spokes (blue/magenta lines), 18 fold spokes (red lines). These spokes
form 14 skeletal quads for the up/down region, each with a corresponding
boundary quad (e.g., B5 denotes a boundary quad). (b-c) Each quad

is divided into (23)
2

sub-quads. (d) Each sub-quad in B5 is further
subdivided into two triangles. (e) An example of the curvilinear segments
on the skeleton and its corresponding fold region on the boundary.
H and V denote the horizontal and vertical directions respectively. More
subdivision is visualized in Supplementary Fig. 1 for up/down region and
Supplementary Fig. 2 for fold region.

the relative orientations of the surface normals there. For
each of the three properties their values for a particular quad
on the skeletal surface and that for the corresponding quad
on the object boundary are correlated, so the entropy term
for each property must involve a feature (or, for the 3rd

property, features) measuring the property on skeletal surface
together with one measuring that property on the boundary
surface. Therefore, the features tuples used to compute the
three respective regularity entropy terms are as follows:

1) (vertical quad edge length on skeletal surface, vertical
quad edge length on the boundary surface); this pair is taken
over all quad edges and yields an entropy Evel .

2) (horizontal quad edge length on skeletal surface, hori-
zontal quad edge length on the boundary surface); this pair is
taken over all quad edges and yields an entropy Ehel .

3) (for the skeletal quad: angle cosine between edges at the
lower right corner of a quad, angle cosine between edges at
the upper left corner of that quad, angle cosine between the
normals at each of these quad corners, for the boundary quad:
the same three features); this tuple is taken over all quads and
yields an entropy Ecos .

All of these were computed by decimating the quads into
16 subquads, interpolating the s-rep spokes at the subquad
vertices, each producing skeletal and boundary positions, and
then computing the properties by combining the information
from the relevant subquads.

Similar properties are computed for the region bounded by
the fold curve on the skeleton and the corresponding fold
region on the boundary (Fig. 5e).

All the quad edges are curved. As visualized in Fig. 5,
we measure the lengths and angles by subdividing the quads
and summing the lengths and averaging the angles mea-
sured from each subdivision. Moreover, quad subdivision into
triangles handles the fact that the subdivision is curved. The
normal swing is an approximation counting from the upper-
left corner sub-triangle (e.g., the orange triangle in Fig. 5d) to
the bottom-right corner sub-triangle (e.g., the yellow triangle).

C. Geometric Properties

Tightening the probability distribution on the geometric
properties of the s-reps in the training set is the basic means
of producing correspondence. These properties include the
positions of the skeletal points pi = p(ui , vi ), the spoke radii
ri = r(ui , vi ), and the spoke directions Ui = U(ui , vi ), where
i is the index of each spoke. As with the regularity properties
calculation, the geometric properties for the up, down and
fold regions are also calculated separately and then combined
across all regions. The geometric properties of the spokes in
each region are computed in the same way.

A complication is that the entropy formulas used to mea-
sure tightness assume the properties are Euclidean, i.e., the
Pythagorean theorem applies, but unfortunately this does not
hold for many of the aforementioned geometric properties.
We deal with this by Euclideanizing the relevant properties
via Principal Nested Spheres (PNS) analysis [46] and making
them commensurate before applying PCA and thence the
entropy formulas. The commensurated form of each scale
factor of the kth s-rep, denoted by γ k , is γ̄ × log (γ k/γ̄ ),
where γ̄ is the geometric mean of γ k and k = 1, 2, . . . , N .
Each Euclideanized feature resulting from the PNS on the
scaled skeletal points pk

i is commensurated by multiplying it
by γ̄ . The commensurated, Euclideanized form of the spoke
radii rk

i , are similarly r̄i × log (rk
i /r̄i ), with r̄i = the geometric

mean of the radii of the i th spoke, i = 1, 2, . . . , n. The
Euclideanized features produced by PNS applied to each spoke
direction Ui , which abstractly lives on S

2, are commensurated
by multiplying by r̄i .

The result of this process is a collection of commensurate
zero-mean features that can be concatenated to form a Euclid-
ean feature tuple describing each s-rep. The sample covariance
matrix derived from these tuples is used to form the geometry
entropy Egeo, as will be described in Section III-D.

D. Energy Function and Optimization

Euclideanization and commensuration of the geometric fea-
tures of the i th s-rep, i = 1, 2, . . . , n, yields a k-dimensional
feature tuple Xi that approximately follows a multivariate
Gaussian distribution, X ∼ N(μ,�), where μ is the mean
tuple, � is a k × k covariance matrix, k is the feature
dimension of each s-rep, and n is the number of s-reps in
the training set [46]. This formulation can also be applied to
the regularity properties after they have been made zero-mean
and commensurate. The entropy of such an X is

H (x) = d

2
+ d

2
ln 2π + 1

2

d∑

i=1

ln λi (2)

where d is the number of non-zero eigenvalues of � and λ1,
λ2, . . . , λd are the non-zero eigenvalues of �.

In our application d < k, with the effect that computed
eigenvalues beyond the dth are small and contain almost pure
noise. Including these in the sum contributes dominating nega-
tive terms of large magnitude to H (x). Recall that Cates et al.
method used a constant factor to prevent the smallest modes
(those with smallest eigenvalues), which mainly constitute
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effects of noise, from disturbing the optimization process.
In our method, we handle this problem by removing those
eigenvalues with contribution (λi/

∑
λi ) smaller than a prior

threshold ϑ and correspondingly lowering d . This approach
is applied separately to compute the geometric entropy Egeo

and each of the three regularity entropies (Ecos , Ehel and
Evel) for each object. For all entropies ϑ = 0.01 is used (see
Supplementary Section 5.3 and Supplementary Table II).

The regularity entropy Ei
reg of the i th s-rep is computed as

Ei
reg = Ei

cos + Ei
hel + Ei

vel (3)

where Ecos indicates the angle cosine entropy, Ehel and Evel

indicate the horizontal and the vertical edge lengths entropies
separately as discussed in Section III-B. The overall regularity

entropy of the N training s-reps is Ereg =
N∑

i=1
Ei

reg .

The correspondence is established by solving the optimiza-
tion problem given by

f (x) = {
x | f (x) = ωEgeo−Ereg

}
(4)

where ω is the weight used to balance the tightness and
regularization and x is the collection of (�u,�v) that shift the
spokes. For the results reported later, we use the NEWUOA
optimizer [54] to minimize (4) and use the one-plus-one
evolutionary optimizer [55] to avoid local optima. However,
other optimizers are possible.

IV. EVALUATION AND RESULTS

A series of experiments were performed to evaluate the
proposed correspondence method. We first introduced the data
sets in use. Second, we set the parameters involved in our
objective function. Then we applied the proposed method to
different data sets to investigate the tightness and regularity
of the spoke distribution and the statistical parameters that
were extensively used previously [12], [43], [45], [56], [57] to
measure the correspondence quality. Finally, we compared our
method with two of the state-of-the-art PDM-based methods,
namely, SPHARM-PDM (spherical harmonics point distribu-
tion model) [15] and ShapeWorks [58] which is an up-to-date,
enhanced open-source distribution of Cates et al. method [1].
Our program was implemented in C++ and Matlab.
All experiments presented here were done on 64-bit 8GB
4-core PC.

The correspondence quality measurements used in this
paper: specificity, generalization, and compactness, are
detailed in Supplementary Section 3. Briefly, specificity mea-
sures the degree to which the model generates objects that are
similar to those in the training set, which is also understood as
a nearest-neighbor graph distance whose meaning is elucidated
in [59]; generalization measures the average reconstruction
error for all training objects; compactness of a model evaluates
the total variance of the model. For all three metrics, lower
values are desirable.

A. Data Sets

Three types of data sets were employed for the results
reported in this paper: synthetic objects and real world lateral
ventricles and hippocampi.

TABLE I
STANDARD DEVIATION OF THE QUAD REGULARITY PROPERTIES

ASSOCIATE WITH THAT FOLD SPOKE ACROSS THE TRAINING SET

BEFORE AND AFTER OPTIMIZATION. VERTICAL EDGE LENGTH ON

SKELETON (σvel_s), VERTICAL EDGE LENGTH ON BOUNDARY (σvel_b),
ANGLE COSINE OF THE UPPER-LEFT CORNER (σcos_ul ), ANGLE

COSINE OF THE BOTTOM-RIGHT CORNER (σcos_br ) AND ANGLE

COSINE OF THE NORMAL SWING (σcos_ns )

1) Synthetic Objects: A set of 80 synthetic lateral ventricles
s-reps with all spokes identical except one that was shifted by
a small random distance were produced to evaluate how the
correspondence optimization affects the spoke variance.

2) Lateral Ventricles: We were provided set of lateral ven-
tricles that were semi-automatically segmented from magnetic
resonance imaging (MRI) images in neonates [60]. Each ven-
tricle was preprocessed using SPHARM-PDM and deformed
to an initial skeletal model (manually defined by an expert)
using thin plate spline registration. We selected 31 resulting
ventricle s-reps for our tests presented here.

3) Hippocampi: We were provided s-reps fitted to a set of
binary images of the hippocampi that were segmented from
the MRI scans from normal control datasets in a schizophrenia
study [5]. We randomly selected 40 of them for our tests.

For the latter two data sets, a Procrustes alignment based
on the boundary points and their corresponding skeletal points
implied by s-rep spokes was performed before applying the
proposed correspondence method.

B. Parameter Selection

We first determined the best interpolation level (∂) for
computing the regularity and geometric properties. Then we
studied how to determine the weight to best balances the
tightness and regularization entropies.

1) Interpolation Level: The regularity properties described
in Section III-B were computed based on subdivision of the
curved quad edges into 2∂ linear pieces. We sought the ∂
that balances the accuracy and efficiency by investigating the
changes of the skeletal and boundary quad areas and of the
3D region volume bounded by the corresponding quad-quad
(or line-quad for fold region) pair and the average time used
for interpolating to each region of 10 different s-reps with
∂ = 0, 1, . . . , 8 on the real lateral ventricles.

As shown in Supplementary Fig. 3, both areas and the
volume change significantly as we increase ∂ up to 2, but
there is little change when we increase ∂ from 2 to any high
level. That is, ∂ = 0 or ∂ = 1 is inappropriate for the regularity
properties computation; while ∂ = 2 or 3 can achieve adequate
accuracy. Since ∂ = 3 takes three times the time of ∂ = 2
(Supplementary Table I), we use ∂ = 2: each edge is divided
into 4 sub-edges, each quad is divided into 16 sub-quads.

2) The Weight for the Tightness and Regularization: Consider
the weight ω on Egeo in (4). For different datasets, different
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Fig. 6. (a) The template s-rep; (b) the fold curve (green curve) and
fold spoke (red line) of the template and the 80 synthetic s-reps on top of
each other, with the corresponding fold spoke dispersed from the original
place (the red line pointing out from the green ball in oval) by a step with
σ = 0.4; (c-d) the corresponding spaced spokes distribution before and
after correspondence optimization, respectively. The color denotes each
case in the training s-reps.

values of ω yield best correspondence quality, as measured
through s-rep implied boundary points. As an example, Sup-
plementary Fig. 4 compares the statistical performance via
specificity, generalization, and compactness measures (Sup-
plementary Section 3) for the real lateral ventricles using
different ω. S-rep spoke tips (∂ = 0) were collected and used
as boundary PDMs for these measurements. The results show
that ω = 4 obtains the best performance.

We suggest that ω = Ereg/Egeo is a reasonable initial
value to try for any particular dataset, where Ereg and Egeo

are calculated from the input, aligned s-reps; then one would
switch ω up and down to investigate if better results can be
obtained. This approach yielded weights ω = 30, ω = 4 and
ω = 13, respectively used for our synthetic objects, real lateral
ventricles and hippocampi.

C. Comparisons Between Aligned and Optimized S-Reps

We applied the proposed method to the three aforemen-
tioned datasets and compared the entropies, shape vari-
ances and correspondence quality measurements between the
aligned, non-optimized s-reps (referred to as aligned s-reps)
and the correspondence-optimized s-reps from our method
(referred to as optimized s-reps). S-rep spoke tips at sub-
division level 0 (∂ = 0) were used as the implied bound-
ary points (PDMs) for the statistical measurements in this
subsection.

1) Synthetic Objects: We began with a predefined template
s-rep from a lateral ventricle (Fig. 6a). Each synthetic s-rep
was formed from the template by moving only one particular
fold spoke. The spoke was moved to an interpolated fold posi-
tion by a small distance according to a Gaussian distribution
(Fig. 6b-c). As depicted in Fig. 6c-d, after our program is
applied the spokes agreement improved in location as well
as lengths. Similar results were observed in Supplementary
Fig. 6.

The evolution of entropy values during the optimization are
illustrated in Fig. 7 (left panel). During the iterations Egeo

decreases from −10.47 to −38.64. Ereg changes little (from

Fig. 7. Left: entropies and the objective function (f(x) in (4)) during the
iterations for the 80 synthetic objects; right: the changing of Egeo of the
up region for the real hippocampi.

Fig. 8. Comparisons between optimized and aligned s-reps for the
hippocampi. (a) specificity; (b) generalization; (c-d) compactness with
s-reps geometric properties and with s-rep implied PDMs, respectively.
For all three metrics, lower values are desirable.

the beginning of 531.76 to the end of 533.95); nevertheless,
the 3D region volumes bounded by the fold curve on skeleton
and the corresponding quad on boundary associated with this
fold spoke have their variances in the ratio

σoptimized
σoriginal

= 0.16;
and as shown in Table I, the standard deviation of each
regularity property decreases. All three metrics of the shape
model performance improved (Supplementary Fig. 7) in a
similar way as that graphed in Fig. 8.

2) Hippocampi: For the hippocampi dataset the entropies
of up, down and fold regions were minimized separately.
In each region, Ereg increased and Egeo decreased (e.g., Fig. 7,
right panel for up region) in a similar pattern (Supplementary
Table III).

The correspondence quality between the optimized s-reps
and the aligned s-reps are compared in Fig. 8. The error
bars graphed on each line show the significance differences
in each metric. The specificity (Fig. 8a) and generalization
(Fig. 8b) measures for the s-rep-implied PDMs are based
on the s-rep shape space. The compactness measures were
computed both from the s-reps native geometric properties
(Fig. 8c) and then from the s-rep-implied PDMs (Fig. 8d),
whether on geometric properties or PDMs, were all computed
via CPNS. For all three measures lower values mean better
performance.
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TABLE II
REGULARITY ENTROPY (Ereg IN (4)) AND GEOMETRY ENTROPY (Egeo

IN (4)) OF EACH REGION BEFORE (R1) AND AFTER (R2)
OPTIMIZATION

TABLE III
TOTAL VARIANCES (

∑
λI ) OF THE LATERAL VENTRICLE S-REPS.

TABLE IV
CONTRIBUTION OF THE FIRST TWO DOMINANT S-REP EIGENVALUES

BEFORE AND AFTER OPTIMIZATION

The optimized s-reps are superior in compactness and
specificity. In generalization, the aligned s-reps are supe-
rior for a number of eigenmodes (M > 10). However, the
compactness graphs suggest that fewer than 10 eigenmodes
would be enough for statistical applications, and in this
range the generalization of the optimized s-reps are slightly
superior.

3) Lateral Ventricles: For the lateral ventricle dataset the
entropies of all three regions are shown in Table II. In all
regions, Ereg increases (reflecting improved regularity) while
Egeo decreases (reflecting a tightened probability distribution).
The entropies of the up and the down regions have similar
values because of the symmetry of the brain lateral ventricle,
but Egeo of the up region decreases more than that of the
down region, possibly because the surface of the up region
has lower curvature and its spoke geometries are less tight at
the beginning.

As shown in Table III, optimization yields smaller geo-
metric eigenvalues in all regions. The dominant portion of
this decrease is in the first six eigenvalues (Supplementary
Fig. 8). The portion of total variance captured by the two
dominant eigenvalues increased (Table IV), suggesting that
the optimized s-reps capture more variance in fewer principal
directions.

The statistical shape model performance of optimized s-reps
compared with aligned s-reps is laid out in Fig. 9. As with
Fig. 8 in Section IV-C2, S(M) (Fig. 9a) and G (M) (Fig. 9b)
measures for the s-reps are based on s-rep shape spaces. C(M)
was computed via CPNS from both s-reps features (Fig. 9c)
and then from s-rep-implied PDM features (Fig. 9d).

Fig. 9. Comparisons between optimized and aligned s-reps for the real
lateral ventricles. (a) specificity; (b) generalization; (c-d) compactness
with s-reps geometric features and with s-rep-implied PDMs (∂ = 0),
respectively.

As with the previous hippocampi dataset, the optimized s-
reps are also superior to the aligned s-reps in compactness and
specificity. In generalization, the optimized s-reps are superior
in the first 9 eigenmodes, which would be enough for statistical
applications according to the compactness graph.

D. Comparisons Between S-Reps and PDM-Based
Methods

As a further validation of the proposed method, this
experiment compares the statistical performance among the
optimized s-rep implied PDMs, the SPHARM-PDM and the
ShapeWorks on real lateral ventricles and hippocampi datasets.

On inspection, all the resulting s-reps appear to be of
good quality and imply high quality boundary PDMs. As an
example, Fig. 10 shows the surface mesh of the mean PDM
implied by the optimized s-reps as well as its deformations
along the first two dominant s-rep implied PDM eigenmodes.
Each main eigenmode describes some plausible pattern of
shape changes observed in the population.

The PDM-based evaluations for the s-reps involved in
our comparison were based on spoke boundary points only
(named B_PDM) and on boundary and skeletal points (named
BS_PDM), for each optimized s-rep at interpolation level 2.
This yields a B_PDM of 1218 points and a BS_PDM
of 2212 points for a 3 × 13 lateral ventricle s-rep; and
of 738 and 1332 points, respectively for a 3 × 8 hippocampus
s-rep. The SPHARM-PDMs used subdivision level 10 and
SPHARM degree 11, which yields a PDM with 1002 points.
The ShapeWorks used these SPHRM-PDMs as the input and
optimized them with scaling off. All PDMs were scaled to lie
in a same space.

The comparisons of statistical measurements among these
PDMs are laid out in Fig. 11 (top row for lateral ventricles
and bottom row for hippocampi).

For both data sets, the specificity and compactness measures
on our optimized s-rep implied PDMs are noticeably superior
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Fig. 10. The hippocampi (first row) and lateral ventricles (second row) model mean and ±3 standard deviations in two eigenmodes. The shapes
are generated from boundary PDMs implied by the optimized s-reps level 2 (∂ = 2) spoke tips.

Fig. 11. Comparisons among the optimized s-rep implied PDMs, the SPHARM-PDM and the ShapeWorks on lateral ventricles (top row) and
hippocampi (bottom row). The compactness for all models were computed via CPNS. All figures share the same legend as located in the middle
column.

to both the SPHARM-PDM and the ShapeWorks methods.
The generalization measure on s-reps is better than both
methods for low numbers of eigenmodes (M), e.g., M < 15
for lateral ventricles and M < 5 for hippocampi, but worse
than the optimized PDMs at higher numbers especially for
hippocampi. This is probably because the hippocampi have
small curvature and most of the shape variance in the training
population located on the boundary so that pure boundary
PDM optimization performs better.

The BS_PDM gains in all measures over the B_PDM
for both objects, suggesting that the skeletal points capture
some interior correspondence. This observation is consistent
with [4], [22], [61] that the use of point information alone
ignores many of the higher order geometric features that s-
reps provide, such as orientation and width.

As shown in Supplementary Fig. 9, PCA-based compactness
measures on the PDMs, albeit not properly applicable to
the aforementioned non-Euclidean shape representations (see
Section II-A and Supplementary Section 1), led to the same
conclusion as those based on CPNS.

V. CONCLUSION AND FUTURE WORK

In this work we proposed a novel group-wise optimization
of skeletal properties to establish an enhanced s-rep corre-
spondence. The proposed method represents each object in
the training set as an s-rep, whose spokes are shifted along its
skeletal part using spoke interpolation in each sample so as to
tighten the probability distribution on those spokes’ geometric
properties while sampling the object interior regularly. The
correspondence is established by minimizing an objective
function that balances entropy derived from geometric proper-
ties and entropy derived from regularity properties. All these
properties are computed from s-rep spokes.

This method effectively lowers the entropies and improves
the correspondence of the spokes. It noticeably tightens the
distribution of the corresponding spokes over the training
set and disperses the spokes of each s-rep regularly. And it
noticeably reduces the total variance of the spoke geometries.
Moreover, the proposed method yields models with improved
model properties as measured via generalization, specificity
and compactness. Surprisingly, on our two objects sets,
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the – result of our entropy-based correspondence optimization
on the skeleton showed superior boundary point statistics even
when compared to an entropy-based boundary correspondence
methodology.

In this work, we evaluated the established s-rep correspon-
dence with respect to model shape probability distributions.
Main applications of shape models though include classifi-
cation, hypothesis testing, segmentation via shape statistics,
and registration in statistically generated shape spaces. These
applications were not evaluated here and future research is
needed to show the improvement of our s-rep correspondence
method for these purposes.
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