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Abstract Area-preserving maps arise in the study of conservative dynamical sys-
tems describing a wide variety of physical phenomena, from the rotation of planets
to the dynamics of a fluid. The visual inspection of these maps reveals a remarkable
topological picture in which invariant manifolds form the fractal geometric scaffold
of both quasi-periodic and chaotic regions. We discuss in this paper the visualization
of such maps built upon these invariant manifolds. This approach is in stark contrast
with the discrete Poincare plots that are typically used for the visual inspection of
maps. We propose to that end several modified definitions of the finite-time Lya-
punov exponents that we apply to reveal the underlying structure of the dynamics.
We examine the impact of various parameters and the numerical aspects that pertain
to the implementation of this method. We apply our technique to a standard ana-
lytical example and to a numerical simulation of magnetic confinement in a fusion
reactor. In both cases our simple method is able to reveal salient structures across
spatial scales and to yield expressive images across application domains.

1 Introduction

The Hamiltonian description of dynamical systems, and the formalism arising from
it, applies to a large number of natural phenomena from areas as diverse as quantum
mechanics, orbital mechanics, fluid dynamics, molecular dynamics, and ecology. At
the heart of the Hamiltonian formalism is the principle of stationary action, stating
that a single scalar function – the Hamiltonian – entirely dictates the evolution of a
system. In this context, so-called maps that describe successive discrete states of an
evolving dynamical system and that are used to analyze its structure, can be show
to have the property of area preservation, and are extremely rich in structure. From
the point of view of scientific visualization, area-preserving maps are simultane-
ously fascinating and difficult to study as the exhibit fractal topological structure
and regions of chaotic behavior.
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Due to the widespread prevalence of Hamiltonian systems in applications, an
interest in reliable analysis and visualization of area-preserving maps, needed to
obtain insight into the fundamental nature of the described system, is found in many
scientific disciplines. However, the intrinsic complexity of such maps makes their
analysis challenging. So-called puncture plots – direct depictions of map iterates in
Poincaré sections – offer a straightforward means to obtain a rough picture of the
topological features, but are very limited in their ability to offer a reliable picture
of the main structures. Moreover, puncture plots are not a reliable tool to discover
a priori unknown structures, and inferring the topology of a system from such plots
is typically challenging. Despite the introduction of several techniques to address
these shortcomings, the effective analysis of maps remains a difficult task.

We present in this paper a new method for the effective visualization of the main
topological structures present in area preserving maps. Specifically, we apply in
this setting the concept of finite-time Lyapunov exponent to reveal the invariant
manifolds of the topology that form the key geometric structure of the map. Our
method offers a clear picture of the island chains, which are the signature of these
maps and permits to monitor their qualitative evolution over the course of a time-
dependent phenomenon.

We apply our approach to a practical scenario and show its application to a nu-
merical simulation of magnetic confinement in a Tokamak fusion reactor. It is im-
portant to note that we restrict our considerations to near-integrable systems. In
other words our method is not meant to process fully stochastic systems. The ba-
sic premise of our method is that the most significant features of the map can be
captured through relatively simple geometry, an assumption that is no longer valid
if the system is dominated by chaos. In fact, from a practical standpoint (e.g., in
magneto-hydrodynamics (MHD) simulations), the ability to characterize topolog-
ical transformations in the early stages of the simulation is key since it provides
a crucial insight into the long term evolution of the system (loss of stability, loss
of confinement, etc.). It is worthwhile to point out however that even in seemingly
fully ergodic regions, structures can be identified that control the apparently random
behavior of the system.

The contents of this paper are organized as follows. Basic definitions and the-
oretical results relevant to the presentation of our method are first introduced in
Section 2. We then briefly review previous work on map visualization and analysis
in Section 3 before describing the algorithmic details of our new method in Sec-
tion 4. Results are presented in Section 5. Specifically, we consider the important
special cases of the standard map (Section 5.1) before commenting on our expe-
rience with Tokamak simulation data in Section 5.2. Finally conclusion and future
research directions are discussed in Section 6.
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2 Theoretical and Numerical Foundations

Hamiltonian systems have received considerable attention in mathematics, physics,
and computational science. We summarize hereafter key theoretical results. The in-
terested reader is here referred to excellent classical references [15, 20].

2.1 Hamiltonian systems and area-preserving maps

Many systems of mechanics (and optics) can be described by a simple set of ordi-
nary differential equations, known as Hamilton’s equations,

dqi

dt
=

∂H
∂ pi

,
d pi

dt
=−∂H

∂qi
. (1)

The state of the system is entirely described by the point z(t)= (p1, . . . , pN ,q1, . . . ,qN),
in the 2N-dimensional phase space. The pi are the momenta, qi are the positions,
and the (scalar) function H(p,q, t) is called the Hamiltonian. In physical systems,
the latter typically describes the total energy of the system.

Expressing the evolution of the system in terms of a general autonomous ordinary
differential equation (ODE) initial value problem:

dz
dt

= f(z), z(0) = z0, (2)

whose solution we denote by z(t,z0), we can define its associated flow map {φt}t∈IR

φt(z0) := z(t,z0), φ0(z0)≡ z0. (3)

The flow map describes the mapping induced by the dynamical system. Equivalent
to Equation 1, the variational principle, or principle of least action, states that the
flow map is constrained to curves, C , in phase space along which the action integral:∫
C p · dq−Hdt is maximized. If the Hamiltonian H itself is an invariant of the

motion, the system is said to be conservative.
The Poincaré map is a fundamental tool in the study of dynamical systems ex-

hibiting periodicity. In a Hamiltonian system with two degrees of freedom (i.e.,z =
(p1, p2,q1,q2), a case that covers the application scenarios considered in this work)
we first observe that for a given value of the Hamiltonian H = E, we can express
one of the variables in terms of the others, say p2 = p2(p1,q1,q2,E), and study the
system in a 3D coordinate system (p1,q1,q2), where the motion is confined to a
doughnut-shaped invariant torus also known as energy surface. We then construct
the Poincaré map by first selecting a Poincaré section Π , that is a plane transverse
(i.e.,nowhere tangent) to the flow, say Π = {q2 = 0}. A point on the plane is there-
fore described by its coordinates x(x,y) :=(p1,q1). By following the trajectory from
this point, we define the Poincaré or return map, P , via x̃ = P(x), where x̃ is the
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first intersection of the trajectory emanating from x and the plane Π , see Figure 1.
Observe that the fact that the trajectories return to a vicinity of the starting point
(quasi-periodic behavior) is a consequence of the fact that the energy surface is
bounded.
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KAM curve

KAM curve
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Saddle (“X-point”)
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KAM curve

KAM curve

Stable
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x

Π

Fig. 1 Top left: Two iterations of a Poincaré map. Right: Islands of resonance. Top: Integrable
case. Separatrices connect saddle points in Poincaré map, forming the boundary of an island con-
taining a center point. Bottom: Chaotic case. The connections are replaced by the intersection of
stable and unstable manifolds forming the tangles that characterize chaos. Quasi-periodic orbits
exist both inside and outside of the island and densely populate KAM manifolds (bottom left).

An essential property of Hamiltonian systems compared to other dynamical sys-
tems is that the volume of a transported region of the phase space is preserved by
the flow map. As a consequence, the Poincaré map itself is area-preserving and the
vector field describing the transport associated with the map is divergence-free [22].
From an algorithmic standpoint this has important implications since typical low-
order piecewise polynomial reconstructions of the vector field will in general not
preserve this property. We further discuss this problem in Section 2.3 below and
provide corresponding results in Section 5.

2.2 Integrable, ergodic and chaotic motion

The simplest picture exhibited by Hamiltonian systems corresponds to the so-called
integrable case, in which the motion is completely ordered: the orbits z(.,z0) are
either closed (and therefore periodic) or they are confined to tori that are invariant
under the flow map. In the Poincaré section these tori appear as nested closed curves.

In the opposite limit of ergodic behavior the motion is essentially random. In
contrast, chaotic systems are neither completely integrable nor completely ergodic.
Chaotic systems are typical in practice and the primary challenge posed by their
analysis is to understand how the structure of phase space progressively “breaks” as
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the system deviates from integrability. In particular, so-called islands progressively
form in the phase portrait in which a locally linear motion develops. Further, irreg-
ular trajectories emerge that wander across circumscribed regions of phase space
called ergodic sea. Their motion is such that they come arbitrarily close to any
position within those regions. In the following, we limit our description to the two-
dimensional case; however, equivalent definitions apply to N-dimensional systems.

2.2.1 Periodic orbits and linearized motion

Periodic orbits of the system form fixed points of the Poincaré map. A periodic
orbit of period p is invariant under p iterations of the Poincaré map: P p(x0) :=
P(P p−1(x0)) = x0, where p is the smallest integer that satisfies this relation. We
refer to x0 as a fixed point of period p. The type of a fixed point can be determined
by a local linear analysis of the Poincaré map in its vicinity. More precisely, a linear
approximation of the local motion about x0 is based on the Jacobian Jp := ∇x P p

and the eigenvalues λi, i = {1,2} of Jp determine the nature of the fixed point. If
they are complex conjugates the Poincaré map displays elliptical motion under the
mapping near the fixed point. This ”O-point” configuration is called center in the
visualization literature [12]. A local island of dominantly regular motion will exist
(Figure 1, top right). If the eigenvalues are real and of opposite sign, x0 forms a
saddle (or ”X-point”) and the eigenvector of Jp associated with the negative (resp.
positive) eigenvalue aligns with the stable (resp. unstable) manifolds of x0. These
manifolds form the boundary of the islands and are the separatrices of the topology.
Saddle points (and the associated unstable orbit) lie at the heart of chaos. In general
stable and unstable manifolds intersect in patterns called chaotic tangles, and their
structure dominates the dynamics in the chaotic sea, see Figure 1, bottom right.

2.2.2 Quasi-periodic orbits and KAM theory

Beside fixed points, islands, and ergodic seas, the Poincaré map exhibits curves that
are densely covered by quasi-periodic orbits. The period of these orbits is therefore
irrational and the fundamental KAM theorem [13, 1, 23] states that those manifolds
(so-called KAM surfaces) that have ”sufficiently irrational” periods will survive the
onset of chaos through nonlinear perturbations. The KAM surfaces form perfect
barriers to transport in the phase portrait, hence their crucial importance in confine-
ment problems. As chaos increases these surfaces are progressively destroyed and
replaced by so-called Cantor sets, which offer only partial barrier to transport.

2.3 Numerical Aspects

The analysis of an area preserving map depends heavily on an accurate and efficient
integration of the flow map φt t∈IR. This computation yields the successive iterates



6 Xavier Tricoche, Christoph Garth, Allen Sanderson and Ken Joy

of the Poincaré map P i, i ∈ {1, ..,N}. An exception to this rule are discrete ana-
lytical maps where an explicit formula f describes the relationship xn+1 = f(xn).
We consider one such map in Section 5.1. In general, however, the computation of
the Poincaré map is made challenging by the need to maintain long term accuracy
in the numerical integration of an ODE. In the context of Hamiltonian systems in
particular, the property of area-preservation is essentially impossible to guarantee
through conventional integration schemes such as Runge-Kutta methods [19]. So-
called geometric (or symplectic) integrators do explicitly enforce the invariance of
these properties along the integration [7]. However, their application requires a spe-
cific formulation of the dynamics (e.g.,an explicit expression for the Hamiltonian of
the problem), which is rarely available in numerical simulations. When processing
such datasets, the continuous reconstruction of the field through piecewise polyno-
mial functions is not exactly conservative. In this case, the area-preserving property
is a theoretical reference for the behavior of the studied phenomenon rather than a
numerical reality. For this work, we applied the divergence cleaning approach based
on Hodge projection advocated by Peikert and Sadlo [24]. However we found the
overhead caused by the additional piecewise linear divergence-free interpolation
they proposed to outweigh the accuracy benefit. Practically, we used in this work
the classic Runge-Kutta triple Dormand-Prince DP6(5) method [26] whose dense
output provides an excellent balance of accuracy and speed. However, we found it
necessary to require very low relative tolerance of the integration scheme (ε = 10−8)
in order to achieve satisfactory results.

3 Previous Work

While discrete dynamical systems and area-preserving maps are not commonly ad-
dressed in visualization publications, a number of previous contributions provide
the foundations of our method. We briefly summarize them next.

The topological approach has been introduced in visualization by Helman and
Hesselink [11] who first showed that the topological skeleton offers a schematic and
insightful picture of a (continuous) flow. Numerous contributions have since been
made to that general methodology and it remains an active research area [32, 9, 10].
Closer to the topic of this paper, Löffelmann et al. proposed several methods for
the intuitive visualization of discrete dynamical systems defined analytically [18,
16, 17]. In particular, these authors devised representations that aim at revealing the
continuous structures underlying the map. Most recently, Peikert and Sadlo applied
a Poincaré map approach to the visualization of vortex rings in a flow recirculation
bubble [24, 25]. While the resulting map is not strictly area-preserving, they showed
that the topological structures that arise in this context are fundamentally similar.
Therefore, they proposed an image-based method to visualize the separatrices that
originate from the saddle points located at each extremity of the recirculation bubble
and used them to reveal the convoluted patterns formed by their successive intersec-
tions along with the associated island chains and stochastic behavior. They also
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described an iterative scheme to compute the O-points located in each of the main
islands by successive approximation of the location rotation pattern of the map.

Hamiltonian maps have also been studied in the artificial intelligence and data
mining. In his Ph.D. thesis, Yip developed a computer system (called KAM) [34]
that combines geometric and graph theory criteria commonly used in artificial intel-
ligence to automatic identify the three main types of orbits present in a map: closed
loop, island chain, and separatrix. Following a similar approach, Bagherjeiran and
Kamath applied a data mining approach to identify patterns in Poincaré plots [2].
Practically, a minimum spanning tree followed by a clustering step is used to infer
the 1-dimensional structure of a series of puncture points. Both of these approaches
are best suited for the detection of rather large structures of the map. Additionally
they do not provide the explicit boundaries of the structures but rather aim at detect-
ing the main features.

In the specific context of fusion reactor simulations, which we consider in Sec-
tion 5.2, Sanderson et al. recently presented a method that automatically constructs a
geometric approximation of 1-manifolds in Poincaré maps by resolving the connec-
tivity of the discrete plot [30]. Note that this technique does not explicitly identify
invariant manifolds of the topology but instead focuses on the irrational (KAM) sur-
faces sampled by the seeding. The available curve geometry can then be leveraged to
approximate the location of the O-points [31, 25]. The visualization is constructed
by probing the map at a discrete set of locations and takes advantage of inherent
symmetries in the Tokamak.

Finally, researchers in physics and applied mathematics have considered maps
from an algorithmic perspective. England et al. recently proposed a method to con-
struct stable and unstable manifolds in Poincaré maps from saddle points by succes-
sively extending the piece of manifold that has already been computed [3]. Again,
a similar approach was used in [25]. Levnajić and Mezić considered the applica-
tion of the ergodic partition theory to the visualization of the standard map [14],
whereby their method yields an image in which a piecewise constant color plot re-
veals coherent regions of the phase space. Most germane to the ideas presented in
this paper is the work carried out simultaneously by Grasso et al. [6] who applied
FTLE and LCS (Section 4) to identify transport barriers in magnetic fields used in
plasma confinement. We concentrate hereafter on the visualization implications of
this approach and study in more detail the relationship of LCS with the underlying
fractal topology.

4 Proposed Approach

We saw in Section 2 that the structure of Poincaré maps in Hamiltonian systems can
be readily described in topological terms. Hence, it would seem natural to resort to
the algorithmic framework of topological methods to create insightful representa-
tions of these systems. Unfortunately, this approach proves fantastically difficult in
the context of numerical data. Indeed, finding the fixed points of the map is a chal-
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lenging task that requires a very dense and expensive sampling of the phase portrait.
Once fixed points have been identified the next hurdle consists in characterizing the
linear type of the fixed point which requires to compute the associated Jacobian.
Estimating this derivative properly is also challenging given the chaotic behavior
that is unavoidably present in the vicinity of hyperbolic (saddle) points. Finally, the
construction of the invariant manifolds associated with the saddles is problematic
from a numerical standpoint since topologically they correspond to homoclinic or
heteroclinic connections that are known to be generically unstable.

We therefore propose to capture these manifolds in a numerically robust way
through the computation of the finite-time Lyapunov exponent (FTLE) in these
maps. By yielding an image in which separatrices of the topology are revealed as
ridges of the FTLE field this approach provides a powerful means to identify salient
geometric structure in a period-agnostic way.

4.1 Finite-time Lyapunov exponent

Haller in his seminal work [8] popularized the concept of finite-time Lyapunov ex-
ponent to the engineering and visualization community by defining Lagrangian co-
herent structures (LCS) as ridges of the FTLE. Following his approach, unstable
(resp. stable) invariant manifolds are characterized as height ridges of FTLE in for-
ward (resp. backward) direction.

Practically, one considers at instant t0 the flow map xT , whereby T = t0 + τ

and τ is the time interval considered for the flow transport. The variations of this
flow map around a given position x0 are determined by its Jacobian Jx(t, t0,x0) :=
∇x0x(t, t0,x0) at x0 and the maximal rate of dispersion of particles located around
x0 at t0 is given by following expression (λmax designates the largest eigenvalue):

στ(t0,x0) :=
√

λmax(Jx(t, t0,x0)
T Jx(t, t0,x0)).

The average exponential separation rate λ (t, t0,x0), for positive or negative τ , is
then called finite-time Lyapunov exponent and defined [8] as

λ (t, t0,x0) =
1
|τ| log στ(t0,x0).

Ridges of λ for forward (resp. backward) advection correspond to unstable (resp.
stable) manifolds that strongly repel (resp. attract) nearby particles. Note that this
technique has attracted a significant interest in the visualization literature in recent
years [4, 28, 27, 5, 33, 29].

It is important to note that, in the presence of a canonical reference frame, these
ridges typically capture the separatrices of the topology of steady vector fields [8],
owing to the hyperbolicity of the trajectories in the vicinity of the separatrices.
Hence the FTLE approach offers a promising alternative to the standard topolog-
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ical method to study the salient structures exhibited by area-preserving maps. In
addition, the FTLE method is more robust to noise since it defines structures as the
ridge surfaces of a continuously varying coherence measure. Therefore it automat-
ically quantifies the fuzziness of the extracted manifolds in the context of chaotic
motion. Algorithmic and numerical aspects of this strategy are discussed next.

4.2 Computing FTLE in maps

A first problem when trying to extend the definition of FTLE in maps is the discrete
nature of the dynamics that they describe. Indeed, the notion of finite-time must
be expressed in a setup where time is, at best, a discrete notion. Note that in the
context of the magnetic field considered in Section 5.2, the (integration) time is also
available as a continuous dimension. However it makes more sense from a physical
standpoint and for the sake of the corresponding analysis to consider the discrete
time associated at each particle with complete revolutions around the system.

The problem posed by discrete time can be solved by defining FTLE at a given
location x0 as:

λ (k,0,x0) =
1
|k| log σk(0,x0), with k ∈ IN.

In other word, one replaces time by a number of iterations of the map in the previous
definition of FTLE. However, when the map is derived from a continuous system,
this definition amounts to a reparameterization of the orbits of the system such that
all trajectories complete a full revolution in constant and uniform time. This trans-
formation is a standard procedure in the study of Hamiltonian dynamics where it
leads to so-called systems with one and a half degrees of freedom [22].

Another difficulty consists in identifying a proper time scale (τ or k) for the
characterization of the structures. While this problem is inherently associated with
Haller’s FTLE definition it is particularly salient in the case of maps because the
fractal complexity of the topology leads to manifolds whose associated time scales
vary dramatically across the phase portrait. To tackle this problem we experimented
with several approaches. The first one simply consists in integrating the map for a
large enough number of iterations to ”sharpen” even the small (visible) structures. A
clear downside of this approach is that the structures associated with a shorter ”time”
scale (typically the larger ones) become extremely noisy in the resulting images as
aliasing becomes pronounced in their vicinity. An alternative solution consists in
computing a FTLE image for each step of a large number of iterations and applying
some image processing technique on the resulting stack of image to obtain the best
feature characterization. This approach shares some conceptual similarities with the
notion of scale space whereby here the the number of map iterations forms a discrete
scale axis. A simple such operation consists in identifying at each pixel of the cre-
ated map the value k such that some image quality metric is maximized. Examples
include the value of FTLE or the corresponding ridge strength. Unfortunately this
approach provides no guarantee to yield a spatially coherent (e.g., smooth) scale
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picture since the decision is made on a per-pixel basis. The other shortcoming of
this solution is that it requires a large number of intermediate images to be stored as
the total number of iterations of the map is computed in order to offer a fine enough
sampling of the scale axis. Overall this approach offered some disappointing results
although it seems worthwhile to investigate further in future work. We compare the
results of these various approaches in Section 5.

5 Results

We present in this section results obtained for an analytical and a numerical dataset,
respectively. In each case, the computed FTLE values are displayed using a color
map that was previously described in [5]. Its basic idea is to favor a clear distinction
between stable and unstable hyperbolic behavior through a distinction between blue
and red colors while encoding the relative strength of this behavior through the
brightness of the color (stronger values yield darker colors). Aliasing issues caused
by the fractal nature of the topology are addressed through smooth downsampling
of high resolution maps. The computation of both flow map and FTLE is carried out
in on a 32-core Intel ”Nehalem” machine, leveraging the embarrassingly parallel
nature of the problem. Note that we also implemented the method on the GPU but
found the limited accuracy in this case to be unsuitable for our purpose.

5.1 Standard Map

The standard map (also known as Chirikov-Taylor map) is an area-preserving 2D
map of the 2π square onto itself defined as follows:

pn+1 = pn +K sin(θn) (4)
θn+1 = θn + pn+1, (5)

whereby pn and θn are taken modulo 2π . K is a parameter that controls the nonlin-
earity of the map. The standard map describes the dynamics of several mechanical
systems and has attracted the attention of theoretical and computational research
alike since it is a simple yet powerful tool to study Hamiltonian chaos. This map
allows us to test our proposed method across a range of configurations.

Figure 2, left, shows the invariant manifolds of the standard map with K = 0.7 as
computed for 50 iterations of the map. It can be seen that the FTLE-based visualiza-
tion clearly reveals the individual island chains of the map. A range of spatial scales
are present in this representation that confirm the fractal complexity of the topology.
Another compelling property of this representation is its ability to convey the chaos
that surround the saddle points of the map. In particular, the saddle of period 1, vis-
ible at the top and bottom of the domain (by periodicity) exhibit a typical picture
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of chaotic tangle. Similarly, this feature is noticeable at both saddles of the period-2
island chain that runs through the middle of the map. These images in fact echo the
observations made by Mathur et al. [21] in which an intricate picture of LCS man-
ifolds where shown to underly the apparently chaotic behavior of a turbulent flow.

p=20 p=100

p = 500 Poincaré plot

Fig. 2 Left: Topology of the standard map for K=0.7: the map begins to exhibit chaotic regions.
Right: Invariant manifolds in the vicinity of the 1-saddle as extracted by our method using varying
maximal periods. The chaos visible in the overall image is revealed as the product of chaotic
tangles. The increasing maximal period count reveals an increasing number of separatrices that
form the chaotic tangle.

The application of this approach to an analytical map offers the opportunity to
investigate the fractal nature of the topology at arbitrary resolution, only limited by
the machine precision. A close-up view in the vicinity of the saddle point visible
at the top and bottom of the previous image is proposed in Figure 2, right, which
reveals how subtle structures are properly captured by our method despite their chal-
lenging complexity. In particular, the chaotic tangle that is a hallmark of chaos in
such systems is prominently present in this image. A comparison with a standard
puncture plot offers a contrasting view of these structures.

By increasing the magnification, additional structures become visible, such as
those shown in Figure 3. Note that to achieve a dense enough coverage of such a
small region of the map, the puncture plot that is shown here for reference requires
an extremely high number of iterations, which goes at the expense of the numerical
accuracy of the resulting computation.
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Poincaré plot FTLE, p = 5000

Fig. 3 500×magnified region of the standard map (K=1.1). The visible island is embedded in the
chaotic region, which appears as the region of maximum separation (right image).

5.2 MHD Simulation of Plasma Confinement in a Tokamak
Fusion Reactor

Magnetic fusion reactors, such as the International Thermonuclear Experimental
Reactor (ITER), a Tokomak reactor scheduled for completion in 2018 will be the
source for future low cost power. In their basic operation, magnetic confinement
fusion uses the electrical conduction of the burning plasma to contain it within mag-
netic fields (refer to Figure 1 in Chapter 23).

A critical characteristic of a typical fusion reactor is the growth of instabilities in
the plasma due to the large gradients of density and temperature, the field geometry,
and the inherent self-consistent interactions between charged particles and electro-
magnetic waves. Plasma instabilities occur on very different spatial and temporal
scales and can represent highly unique phenomena. One such instability, magnetic
reconnection, prevents the magnetic field from confining the plasma and leads to
its transport. Locating these phenomena can best be done through visualizing the
topology of the magnetic field and identifying features within it.

In the normal operation of a tokamak reactor, the magnetic field lines are topolog-
ically distinct from each other and form a series of concentric flux surfaces that con-
fine the plasma. Because the magnetic field lines are either periodic, quasi-periodic,
or chaotic, the topology can clearly be seen by creating a Poincaré plot. In the pres-
ence of instabilities, the magnetic field can become distorted and form magnetic
islands. It is the formation of the islands that constitutes magnetic reconnection. Lo-
cating these features; islands, separatrices, and X points, is an important component
in understanding plasma transport in magnetic fusion research. However, generat-
ing Poincaré plots is computationally expensive and unless seed points for the plot
are selected carefully, features within the magnetic field may be missed. As such
developing a robust technique that allows for the rapid visualization and facilitates
the analysis of topological structures of magnetic field lines in an automatic fashion
will aid in the future design and control of Tokamak reactors.
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To analyze this time-dependent dataset we first map the computational mesh to
its parametric representation in computational space. This amounts to opening up
the mesh in both the poloidal and the toroidal direction to yield a 3D mesh in which
two directions are periodic. To illustrate some of the aspects discussed previously we
first show in Figure 4 the results obtained in the same dataset for various iterations
of the map.

Fig. 4 FTLE mapping of a time step of the Tokamak dataset for various iterations of the map. The
central image is obtained for 50 toroidal rotations, while the other ones are obtained for 10, 30, 70
and 100 rotations respectively. The major islands are clearly visible.

It can be seen that increasing the number of iterations yields a picture in which
the finest structures exceed the sampling resolution and lead to significant artifact
problems. As mentioned previously, selecting in a spatially varying way the best
scale to represent the underlying structures given the limited bandwidth of the image
is an open problem for which the solutions that we have investigated so far failed
to provide satisfactory results. The close relationship between the FTLE picture and
the topology of the Poincaré map is confirmed in Figure 5.

The images produced by our method lend themselves to an intuitive navigation of
the time axis of the simulation. Figure 6 provides such an illustration of the evolution
of the topology. In particular it can be seen that a major topological transformation
affects the 1-saddle that is visible in the upper part of the domain. This bifurcation
known as basin bifurcation induces a dramatic reorganization of the transport in the
domain.
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Saturday, February 26, 2011

Fig. 5 Comparison between FTLE and Poincaré plot in Tokamak dataset.

Fig. 6 Temporal evolution of the topological structures present in the map (T=500, 1000, 2000,
3000, 4000, 7000). Each image was obtained after 50 iterations of the map.

6 Conclusion

We have presented an algorithmic and computational framework to permit the ef-
fective visualization of area-preserving maps associated with Hamiltonian systems.
While these maps are of great theoretical interest they are also very important in
practice since they offer a geometric interpretation of the structural behavior of com-
plex physical systems. Our method, while conceptually simple and straightforward
to implement, significantly improves on previous work by allowing for the identifi-
cation of very subtle structures that would typically be missed through Poincaré plot
investigation of the map. In this context our method successfully addresses one of
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the primary difficulty posed by this type of structural analysis, namely the numer-
ical challenge associated with an accurate computation of Poincaré maps, which
requires the successive integration of an ordinary differential equation. By restrict-
ing our computation to a comparatively small number of iterations of the period
from any given point (commensurate with the period range relevant to the analysis)
we are able to obtain reliable results that are further enhanced by a robust correction
strategy motivated by topological considerations.

We have tested our methods on a standard analytical map and on a numerical sim-
ulation of magnetic confinement. Our results underscore the potential of our method
to effectively support the offline analysis of large simulation datasets for which they
can offer a valuable diagnostic tool. In that regard there are many promising av-
enues for future work. As pointed out in the paper, a proper characterization of the
best period to match the spatial scale of the structures would dramatically enhance
the results achieved so far. Of course, computational efficiency is a major concern
with this method and although it is embarrassingly parallel, adaptive methods, as
such recently proposed in the literature, could greatly increase the efficiency of our
implementation. Finally, it would be most definitely interesting to combine such a
visualization with an explicit extraction of the topology. In that regard, the images
obtained suggest that an image processing approach could directly leverage the ex-
tracted information while exploiting the theoretical framework of image analysis to
do so in a principled way.

Acknowledgements

This work was supported in part by a gift from Intel Visual Computing initiative.

References

1. V. I. Arnold. Proof of A. N. Kolmogorov’s thereom on the preservation of quasiperiodic mo-
tions under small perturbations of the Hamiltonian. Russ. Math. Surv., 18(5):9, 1963.

2. A. Bagherjeiran and C. Kamath. Graph-based methods for orbit classification. In Proc. of
Sixth SIAM International Conference on Data Mining, April 2006.

3. J. England, B. Krauskopf, and H. Osinga. Computing one-dimensional global manifolds of
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