
A scalable adaptive-matrix SPMV for
heterogeneous architectures

Han D. Tran
University of Utah, USA

hantran@cs.utah.edu

Baskar Ganapathysubramanian
Iowa State University, USA

baskarg@iastate.edu

Milinda Fernando
University of Texas at Austin, USA

milinda@oden.utexas.edu

Robert M. Kirby
University of Utah, USA

kirby@cs.utah.edu

Kumar Saurabh
Iowa State University, USA

maksbh@iastate.edu

Hari Sundar
University of Utah, USA

hari@cs.utah.edu

Abstract—
In most computational codes, the core computational kernel

is the Sparse Matrix-Vector product (SPMV) that enables spe-
cialized linear algebra libraries like PETSc to be used, especially
in the distributed memory setting. However, optimizing SPMV
performance and scalability at all levels of a modern heteroge-
neous architecture can be challenging as it is characterized by
irregular memory access. This work presents a hybrid approach
(HYMV) for evaluating SPMV for matrices arising from PDE
discretization schemes such as the finite element method (FEM).
The approach enables localized structured memory access that
provides improved performance and scalability. Additionally,
it simplifies the programmability and portability on different
architectures. The developed HYMV approach enables efficient
parallelization using MPI, SIMD, OpenMP, and CUDA with
minimum programming effort. We present a detailed comparison
of HYMV with the two traditional approaches in computational
code, matrix-assembled and matrix-free approaches, for struc-
tured and unstructured meshes. Our results demonstrate that the
HYMV approach achieves excellent scalability and outperforms
both approaches, e.g., achieving average speedups of 11x for
matrix setup, 1.7x for SPMV with structured meshes, 3.6x for
SPMV with unstructured meshes, and 7.5x for GPU SPMV.

Index Terms—adaptive-matrix, matrix-assembled, matrix-free,
element-by-element, FEM, parallel computing, heterogeneous
architectures

I. INTRODUCTION

For domain-based numerical methods, such as the finite

element method (FEM), the approximation of the weak form

results in a system of discretized equations Ku = f of

the unknown u. A traditional matrix-assembled approach is

often used to solve this system, in which elemental matrices

are assembled to form the global matrix K, and a sparse

matrix/linear algebra library (e.g., PETSc [1]) is employed.

An alternative is to use the so-called matrix-free approach

where the global matrix K is not explicitly assembled but

is computed implicitly during the matrix-vector multiplication

when solved by an iterative method. The matrix-assembled

approach is attractive from being efficient (less computation).

However, it has higher storage and communication overhead,

and irregular memory access. Additionally, optimizing sparse

linear algebra is complex, especially for modern heterogeneous

architectures, and is an area of active research [2]. The matrix-

free approach is attractive for large-scale distributed com-

puting, as we can limit communication (in the weak-scaling

sense). Memory footprint is also much lower as the matrix

is not stored and, more importantly, can be made structured.

However, it can be expensive when the elemental assemblies

are complex. The computational cost is compounded when

multiple matrix-vector products are required (e.g., implicit

solve). In most cases, optimizing the elemental assembly for

modern architectures can also be challenging, similar to the

Sparse Matrix-Vector product (SPMV).

For these reasons, we develop an SPMV that uses a ‘hybrid’

approach called HYMV to overcome the high costs associated

with the above methods. The theoretical background of our

approach is the element-by-element (EBE) technique, a well-

known method in FEM (e.g., [3]–[5]), in which the global

operation Kv (for an intermediate vector v during the iter-

ative solving) is performed via the sum of elemental matrix-

vector products (EMV). Within HYMV, we store the element

matrices provided by users and perform the EMV so that

the global (and therefore distributed memory) computations

are handled in a matrix-free fashion. Such an approach en-

sures lower computations and communication, while storage

(memory footprint) can still be high. While node-local stor-

age and computations are higher than the matrix-assembled

approach, it is essential to note that these involve structured

memory accesses (dense EMV) instead of irregular access

for SPMV. Additionally, it is far easier to write efficient

vectorized linear algebra kernels within HYMV. Furthermore,

adding GPU support in HYMV is straightforward, while it

can be challenging for both matrix-assembled and matrix-

free approaches. HYMV is particularly effective for prob-

lems requiring frequent refinements or enrichments, e.g., crack

modeling using the extended finite element method (XFEM).

In XFEM, when a crack occurs, additional unknowns are

enriched in the cracked element. This enrichment changes

the stiffness matrix of few (cracked) elements while most

(uncracked) elements are intact. HYMV handles this issue

efficiently since only the cracked elements are recomputed (in

contrast, if a matrix-assembled approach is used, the entire

13

2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/22/$31.00 ©2022 IEEE
DOI 10.1109/IPDPS53621.2022.00011

20
22

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 P

ro
ce

ss
in

g
Sy

m
po

siu
m

 (I
PD

PS
) |

 9
78

-1
-6

65
4-

81
06

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IP

DP
S5

36
21

.2
02

2.
00

01
1

Authorized licensed use limited to: The University of Utah. Downloaded on July 20,2022 at 17:26:14 UTC from IEEE Xplore. Restrictions apply.

global matrix must be reassembled). The primary purpose

of this work is to develop an SPMV operation combining

the advantages of matrix-assembled and matrix-free methods

for efficiently solving large-scale sparse systems on modern

heterogeneous architectures.
The main contributions of this work include:

• HYMV converts global sparse linear algebra to local

dense linear algebra, reducing the data-movement cost

and increasing the throughput when solving the dis-

cretized system Ku = f on modern heterogeneous

architectures. It is particularly beneficial for problems that

require frequent refinements or enrichments.

• HYMV demonstrates scalability for many different real-

life problems.

• In HYMV, it is far easier to implement efficient vector-

ized linear algebra kernels being optimized for various

architectures, and it is also straightforward to add GPU

support.

• HYMV is a standalone library that is easily incorpo-

rated into existing codes of any domain-based numerical

method. HYMV is an open source written in C++,

OpenMP, MPI, and supports GPUs. It also supports block

preconditioners.

Organization: Section II summarizes the preliminaries of

our development, including related works. The underlying

ideas of HYMV are in section III. Section IV presents the

HYMV’s key components for solving the discretized system.

Section V presents the numerical experiments conducted using

our developed HYMV for the problems of various computa-

tional complexities, illustrating the superiority of HYMV com-

pared with the matrix-assembled and matrix-free approaches.

The conclusion is in section VI.

II. PRELIMINARIES

In this section, we briefly explain the motivation for our

development and the past works that relate to the problem.

We take a simple example of solving the Poisson’s equation

by FEM for the mere purpose of illustration. The weak form of

a Poisson’s equation defined on the domain Ω for the field vari-

able u(x), subjected to body force b̄(x), boundary conditions

u(x) = ū(x) for x ∈ ∂Ωu and ∂u(x)/∂n = t̄(x) for x ∈ ∂Ωt

(where n is the unit vector normal to ∂Ωt), is written as∫
Ω

(∇u · ∇v) dV =

∫
∂Ωt

t̄vdA+

∫
Ω

b̄vdV (1)

where v(x) is an arbitrary test function such that v(x) =
0 for x ∈ ∂Ωu. Invoking Galerkin approximation u(x) =∑N

i=1 uiφi(x) and v(x) =
∑N

j=1 vjφj(x), and arbitrariness

of test function v(x), equation (1) is re-written as, for j =
1, 2, ..., N ,

N∑
i=1

∫
Ω

(∇φi · ∇φj) dV ui =

∫
∂Ωt

t̄φjdA+

∫
Ω

b̄φjdV ,

or Ku = f

(2)

where the components of the global matrix K are defined

as Kij =
∫
Ω
(∇φi · ∇φj) dV , and the right-hand-side vector

fj =
∫
∂Ωt

t̄φjdA +
∫
Ω
b̄φjdV . In equation (2), φi(x) is the

basis function associated with the grid point xi (hereafter

we call ‘node’ which is commonly used in the FEM com-

munity), ui = u(xi), and N is the total number of nodes.

Following the decomposition of domain Ω into Ne subdomains

(i.e. elements), the global matrix K is constructed from the

contribution of Ne element matrices Ke, i.e.,

Kij =

Ne∑
e=1

∫
e

(∇φi · ∇φj) dV =

Ne∑
e=1

(Ke)ij , (3)

where (Ke)ij =
∫
e
(∇φi · ∇φj) dV is the component of

element matrix associated with element e. The basis function

φi has compact support, i.e.,Kij �= 0 only when both nodes

xi and xj are on the same element. For this reason, the global

matrix K is sparse.

Matrix-assembled approach: The system (2) is often

solved using a matrix-assembled approach, i.e., the global

matrix K is fully assembled, as shown in (3), before invoking

a solver to obtain the solution of u. In distributed memory, the

domain Ω is partitioned into p partitions, i.e.,Ω = {ωi}pi=1.

Each partition ωi is discretized into a finite set of elements,

i.e.,ωi = {eim}|ωi|
m=1. Each partition needs to loop over its

owned elements during the global assembly and accumulate to

the global matrix using the element connectivity (i.e., mapping

from local-element indices to global indices of the nodes).

Even though the above communication is peer-to-peer, for

increasing p values, the global assembly becomes expensive.

This is primarily due to irregular memory access that is

difficult and expensive for an SPMV to optimize for.

Matrix-free approach: An alternative for solving the sys-

tem (2) is to use a matrix-free approach, in which the global

SPMV (i.e.,Kv where v is an intermediate vector during the

iterative solving) is performed without explicitly forming the

global matrix K. In this approach, the EMV (i.e.,Keve) is

computed in every iteration. The above requires either explicit

or implicit computation of element matrices Ke in every

iteration. Algorithm 4, shown in the appendix, is an example of

using explicit calculation of Ke. The calculation of elemental

matrices is operator-specific, i.e., it depends on the application

and can vary significantly. For example, the computation of

Ke for the Laplacian operator is substantially cheaper than

the operator in linear elasticity or Navier-Stokes equations.

For complicated operators, matrix-free approaches might be

expensive since, for each SPMV, we need to perform the

indirect computation of elemental matrices.

Hybrid approach: As seen in (3), the global matrix K is

accumulated by element contributions. Based on the element

connectivity, the global SPMV Kv can be decomposed into

a series of independent elemental EMV Keve. This keeps

the local computation structured, enabling good performance

on modern architectures and keeping distributed memory

computations efficient as in the matrix-free case. The same

idea has been used by the so-called Element-by-element

(EBE) methods [3], [4], [6]–[8], but largely for cases where

the architecture did not have sufficient memory to perform

14

Authorized licensed use limited to: The University of Utah. Downloaded on July 20,2022 at 17:26:14 UTC from IEEE Xplore. Restrictions apply.

full global assembly, and not motivated by performance or

programmatic aspects.

The challenges with matrix-free and matrix-assembled

methods to FEM discussed above have received significant

attention from the broader computational sciences commu-

nity. We briefly summarize some of these approaches. The

cost of assembling FEM matrices is well acknowledged, and

several approaches have been proposed to make them more

efficient. These include approaches that identify redundant

computations [9] and perform cross-loop optimizations [10].

Optimizations have also been proposed for improving parallel

performance using one-sided MPI communications [11] and

approaches for speeding up matrix-free implementations [12].

Several recent works also focus on GPU and many-core

implementations of matrix-assembled [13]–[15] and matrix-

free [16]–[19] approaches to FEM, highlighting the difficulty

in achieving good performance and scalability on modern

architectures. Finally, efficient sparse matrix-vector (SpMV)

is an active area of research with several works focusing on

scaling them on different architectures [20]–[23].

III. UNDERLYING IDEAS

To overcome the matrix assembly cost, we propose for

the HYMV approach that element matrices are computed

and stored locally. The global SPMV Kv is performed in

a way similar to the matrix-free approach, i.e., elemental

EMV is computed using locally stored pre-computed element

matrices. Communication between processes is carried out for

the elements sharing the nodes on partition boundaries.

No global assembly: Like matrix-free approaches,

HYMV does not assemble the global matrix, reducing sig-

nificantly the setup time when the number of processes p is

large. Indeed, the setup time of HYMV does not depend on p
provided that the granularity is kept constant. Furthermore, the

storing of element matrices is extremely useful for applications

with adaptive multiresolution (AMR) or frequent enrichments

(e.g., XFEM for crack modeling), where only a minor subset

of elements needs to be updated, while the global assembly is

completely avoided during the simulation.

No re-computation of Ke: Unlike matrix-free approaches,

HYMV does not recompute the element matrices in each

SPMV. This property is significantly helpful for applications

having expensive elemental operators.

Global sparse linear algebra → local dense linear alge-
bra: Achieving machine peak performance with sparse com-

putations is challenging due to the arbitrary data movement

patterns. The above is an additional drawback of the matrix-

assembled approaches. HYMV converts globally sparse linear

algebra to locally dense linear algebra that is well-suited for

modern heterogeneous architectures.

Ease of programming: HYMV has intrinsic support to

parallelism and optimizations enabling efficient SPMV com-

putations on heterogeneous machines. Additionally, it is far

easier to implement efficient vectorized linear algebra kernels

for the elemental EMV in HYMV.

IV. METHODOLOGY

In this section, we present the key components of the

HYMV approach for solving the sparse system Ku = f ,

which enable HYMV to be scalable on large-scale heteroge-

neous architectures.

A. HYMV’s data structures

HYMV can perform the SPMV operation (in iterative solu-

tion) on arbitrary meshes using the distributed data structures

and abstractions as described in the following section. Figure 1

shows a simple example to illustrate the maps used in HYMV.

In distributed-memory FEM computation, the computational

domain Ω is partitioned into subdomains with non-overlapping

interiors, i.e.,Ω = {ωi}pi=1. Each subdomain is discretized

into a finite set of elements, i.e., ωi = {eim}|ωi|
m=1. Each

partition consists of locally-owned nodes used to define the

basis functions (as explained in section II). The elemental and

nodal indices can be local (i.e., well-defined only for a specific

partition and globally ill-defined) or global (i.e. well-defined

across all partitions). HYMV is agnostic to the underlying

mesh structure provided the following information for each

partition.

• Number of local elements present, i.e., |ωi|;
• E2G map: For partition i, E2Gi acts as a mapping from

local-element index of a node to its corresponding global

index;

• Range of global indices of the nodes owned by ωi,

i.e., [N i
begin, N

i
end].

Fig. 1: Example to illustrate the E2G,E2L,LNSM, and GNGM
maps used in HYMV. There are 4 partitions P0 → P3. The

mesh composes of 12 elements and 17 nodes. Global node

indices (red color) are 0 → 16. The node’s pattern matches

with its owner’s pattern. Local node indices (underlined) are

0 → 6 for every partition. Local element indices are framed.

Taking P2 as an example: Nbegin = 11, Nend = 14, Nlocal =
4, Ntotal = 7, Gpre = {0, 3, 6}, Gpost = {∅}, element 0 has

E2G = [0, 3, 12, 11] and E2L = [0, 1, 4, 3], LNSM = {5, 6}, and

GNGM = {0, 1, 2}.

15

Authorized licensed use limited to: The University of Utah. Downloaded on July 20,2022 at 17:26:14 UTC from IEEE Xplore. Restrictions apply.

Based on this information, the following local maps are

computed during the HYMV setup phase.

• E2L map: For partition i, E2Li acts as a mapping from

the local-element index of a node (including ghost/halo

node) to its corresponding local index. Algorithm 1 shows

the construction of the E2L map;

• Local node scatter map (LNSM): For partition i, LNSMi

denotes the local node indices of partition i that need to

be scattered to neighboring partitions;

• Ghost node gather map (GNGM): For partition i, GNGMi

denotes the ghost node indices of partition i that need to

be accumulated to neighboring partitions for SPMV.

B. Connectivity maps

As introduced in section II, the global SPMV is performed

via a series of elemental EMV based on the element connectiv-

ity. The algorithm of HYMV SPMV is listed in Algorithm 2.

The extraction and accumulation of the element vectors shown

in Algorithm 2 require the local map (i.e.,E2Li). As shown

in Fig. 1 for given partition i, there exists nodal information

that should be communicated from neighboring partitions.

These are referred to as ghost/halo nodes. The ghost nodes are

further categorized into pre-ghost (if they are communicated

from neighboring partitions of lower ranks) and post-ghost (if

they are communicated from neighboring partitions of higher

ranks). The E2Li map is constructed based on the provided

ωi, E2Gi map, and the range [N i
begin, N

i
end] (see Algorithm 1).

The ghost nodes are identified based on the comparison of

E2Gi and [N i
begin, N

i
end]. The E2Li map is merely an offset

and reordering of the E2Gi map to accommodate the ghost

nodes and distributed computations on the mesh.

Algorithm 1 E2L map construction, processor i

Require: ωi,E2Gi, and [N i
begin, N

i
end]

Ensure: E2Li, Nlocal number of locally owned nodes, Ntotal

number of total nodes including ghost nodes

1: Nlocal ← N i
end −N i

begin + 1
2: [Gpre, Gpost] ← ComputeGhost(E2Gi, N i

begin, N
i
end)

Ntotal ← Nlocal + |Gpre|+ |Gpost|
3: for e← 1 to |ωi| do
4: E2L[e]← {∅}
5: for m ∈ E2Gi[e] do
6: if m < N i

begin then
7: E2L[e]← E2L[e] ∪Gpre.index(m)
8: else if m > N i

end then
9: E2L[e] ← E2L[e] ∪ (|Gpre| + Nlocal +

Gpost.index(m))
10: else
11: E2L[e]← E2L[e] ∪ (|Gpre|+ v −N i

begin)

C. Distributed array

The distributed array (DA) is the underlying data structure

in HYMV to represent partitioned vectors defined over a mesh.

As shown in Fig. 2, the DA consists of pre-ghost, owned,

Algorithm 2 SPMV in HYMV, processor i

Require: E2Li, LNSMi, GNGMi maps, {Ke}e∈ωi

(HYMV setup), partitioned ui,vi vectors

Ensure: vi = (Ku)i

1: vi ← 0
2: local node scatter begin(ui, LNSM i)
3: for e← 1 to |I(ωi)| do � independent elements

4: ue ← ui(E2Li[e]) � extract element vector ue

5: ve ←Keue

6: vi(E2Li[e])← vi(E2Li[e]) + ve � accumulate

element vector ve

7: local node scatter end(ui, LNSM i)
8: for e← 1 to |D(ωi)| do � dependent elements

9: ue ← ui(E2Li[e]) � extract element vector ue

10: ve ←Keue

11: vi(E2Li[e])← vi(E2Li[e]) + ve � accumulate

element vector ve

12: ghost node gather begin(vi, GNGM i)
13: ghost node gather end(vi, GNGM i)

Pre-ghost nodes

owned by ωm,m < i
Owned nodes Post-ghost nodes

owned by ωn, n > i

E2L E2L E2L

Elements of partition ωi

Dependent elements
D(ωi)

Independent elements
I(ωi)

Dependent elements
D(ωi)

Fig. 2: Memory layout for the distributed array (i.e., partitioned

vector). Partition ωi has local nodes composing pre-ghost,

post-ghost, and owned nodes. It is further logically decom-

posed into independent I(ωi), and dependent D(ωi) disjoint

element sets such that ωi = I(ωi)∪D(ωi), which are used in

overlapping the computation with the communication.

and post-ghost nodal information. The ghost regions consist

of the data received from neighboring partitions to perform

the SPMV operation. The locally owned elements of partition

ωi can be further classified as independent and dependent

elements based on the E2L map.

• Independent elements I(ωi) = e ∈ ωi and ∀m ∈ E2Li[e]
is owned by partition ωi.

• Dependent elements D(ωi) = ωi \ I(ωi)

The above distinction between independent and dependent

elements is used to overlap communication with computation

(either on host or device if using GPU as presented at the end

of this section).

16

Authorized licensed use limited to: The University of Utah. Downloaded on July 20,2022 at 17:26:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Snapshot of profiling shows the overlapping between data transfers and kernel execution when using eight streams for

the elasticity example defined in section V-B.

D. Communication maps (LNSM and GNGM)

The communications shown in Algorithm 2 require addi-

tional data structures to enable inter-process communication.

To perform inter-process communication, we construct two

maps: the local node scatter map (LNSM) and the ghost node

gather map (GNGM). For a given partition ωi, LNSMi stores

the information on the subset of the locally owned nodes

in partition ωi, that needed to be scattered to neighboring

partitions. Similarly, the inverse communication pattern is

computed and stored in the ghost node gather map (GNGM). For

partition ωi, the GNGMi is used to accumulate (i.e., gather) the

elemental EMV contribution from the neighboring partitions

to the local nodes of the partition ωi. The above maps are

constructed once based on the provided E2G, and the range

[N i
begin, N

i
end] during the HYMV setup phase.

E. Hybrid parallelism and vectorization

To achieve hybrid parallelism for HYMV SPMV, we deploy

OpenMP shared-memory parallelism by distributing the local

elemental EMV among OpenMP threads. Additionally, the

elemental EMV is vectorized with either AVX512 intrinsics

or OpenMP SIMD. For this, the element matrix Ke should

be stored in column-major format (to minimize cache misses),

and elemental EMV is computed as a sum of vector multipli-

cation operations, i.e.,

ve =

ne∑
j=1

[Ke]j · [ue]j , (4)

where vector [Ke]j is the jth-column of Ke, vector [ue]j
contains only the jth-component of ue, and ne is the number

of columns of Ke.

F. GPU parallelism

As a prominent advantage of the HYMV approach, the ac-

celeration of elemental EMV using GPU can be implemented

straightforwardly. Since element matrices are stored locally,

they are transferred from host to device once at the setup

time and only updated if necessary (e.g., when local enrich-

ment or refinement occurs). The algorithm of SPMV with

GPU is shown in Algorithm 3, in which the implementation

of data transfers and kernel execution is carried out using

the MAGMA library [24]. Algorithm 3 presents the non-

overlapping (i.e., pure GPU) SPMV. The overlapping of MPI

communication and independent element computation can

be easily included (as shown in Algorithm 2 of CPU-based

SPMV) since HYMV provides the modular non-blocking

communication and the dependent/independent element data

structure (see Fig. 2). Since the number of elemental EMV is

usually large, the batched matrix-vector multiplication [25],

[26] is employed for the kernel execution. Furthermore, the

kernel execution is set to overlap the data transferring between

host and device to optimize the GPU performance. For this, we

break up the array (of element matrices) bke and the arrays

(of element vectors) bue and bve into Ns chunks. The data

transfers and kernel execution of each chunk occur in Ns

different streams which are overlapped. Figure 3 shows the

overlapping obtained by using eight streams for the elasticity

example described in section V-B. We employ OpenMP par-

allelism to further improve the performance when setting the

array bue (pinned memory) and accumulating the array bve as

shown in Algorithm 3.

Algorithm 3 GPU SPMV in HYMV, processor i

1: local node scatter begin(ui, LNSM i)
2: local node scatter end(ui, LNSM i)
3: set element vectors bue from values of ui � parallelized

by OpenMP

4: for stream s← 1 to Ns do
5: transfer bsue from host to device

6: batched EMV bsve = bskeb
s
ue on device

7: transfer bsve from device to host

8: accumulate element vectors bve to vi � parallelized by

OpenMP

9: ghost node gather begin(vi, GNGM i)
10: ghost node gather end(vi, GNGM i)

As mentioned above, independent elements (see Fig. 2) do

not need to communicate with neighboring partitions. Thus

their EMV can overlap with the communication followed

by the EMV of dependent elements. We implemented two

options for the overlapping: 1). the host performs the EMV of

dependent elements; 2). the device performs the EMV of

dependent elements. The performance of these options is

discussed in section V-D.

V. RESULTS

In this section, we first summarize the tests used to verify

the implementation’s correctness. Next, we present the numer-

ical experiments showing the scalability of the HYMV ap-

proach in comparison with the matrix-assembled (i.e., PETSc

[1]) and the matrix-free methods.

17

Authorized licensed use limited to: The University of Utah. Downloaded on July 20,2022 at 17:26:14 UTC from IEEE Xplore. Restrictions apply.

56
112

224
448

896
1792

3584
7168

14336
28672

0

0.1

0.2

0.3

0.4

number of cores →

se
tu

p
ti

m
e

(s
)
→

PETSc setup HYMV setup

0

0.2

0.4

S
P
M

V
ti

m
e

(s
)
→

PETSc SPMV HYMV SPMV matrix-free SPMV

(a) Weak scalability: the problem size is 11.3K DoFs per process. The largest
problem has 331M DoFs. HYMV setup is 10× faster than PETSc setup.

896
1792

3584
7168

14336
0

0.1

0.2

0.3

0.4

number of cores →

se
tu

p
ti

m
e

(s
)
→

0

0.2

0.4

0.6

0.8

S
P
M

V
ti

m
e

(s
)
→

(b) Strong scalability: the problem size is 42M DoFs.
HYMV setup is 9× faster than PETSc setup.

Fig. 4: Scalability for Poisson’s problem using structured meshes with 8-node linear elements on TACC’s Frontera. The bars

show matrix setup time (left y-axis). The lines show the time for ten SPMV operations (right y-axis).

A. Experimental setup

The scalability experiments reported in this paper were

performed on TACC’s Frontera supercomputer. Frontera is an

Intel supercomputer at Texas Advanced Computing Center

(TACC) with a total of 8,008 nodes, each consisting of a

Xeon Platinum 8280 (“Cascade Lake”) processor, with a total

of 448,448 cores. Each node has 192 GB of memory. The

interconnect is based on Mellanox HDR technology with

full HDR (200 Gb/s) connectivity between the switches and

HDR100 (100 Gb/s) connectivity to the compute nodes. GPU

SPMV experiments are performed on Frontera nodes having

four NVIDIA Quadro RTX 5000 (Turing) accelerators, with

GPU memory of 16 GB.

B. Correctness verification

The key component of HYMV implementation is the

SPMV function, which is incorporated into PETSc matrix-

free solvers [1]. To verify the implementation’s correct-

ness, we examined Poisson’s problem defined as ∇2u +
sin(2πx) sin(2πy) sin(2πz) = 0 ∀{x, y, z} ∈ Ω = [0, 1]3;u =
0 on ∂Ω. We used linear hex elements for the analysis.

The domain is partitioned in z-direction into four partitions

owning equal numbers of elements. We started with a mesh

of 10 × 10 × 10 elements, and subsequently doubled the

elements in all directions up to 160 × 160 × 160 elements.

The numerical result of u is compared with the exact solu-

tion of u = 1
12π2 sin(2πx) sin(2πy) sin(2πz) by computing

err = ‖u − uexact‖∞. All errors are between 23.4 × 10−5

(the coarsest mesh) and 0.1× 10−5 (the finest mesh).

Next, we examined the problem of an elastic prismatic

bar stretched by its weight [27]. The bar, of dimension

{Lx, Ly, Lz}, is hung from its top face center, with gravity

acceleration g. The material has Young’s modulus E, Poisson’s

ratio ν, and density ρ. A uniform traction tz = ρgz is applied

on the top face. The coordinate system’s origin is at the bottom

face center. For the analysis, uniform meshes of either linear

hex elements or quadratic hex elements are employed. Three

meshes are used for the verification: 4 × 4 × 4, 8 × 8 × 8,

and 16 × 16 × 16 elements. These meshes are partitioned in

z-direction into 2, 4, 8 partitions, respectively. The numerical

displacements in the bar are compared with the exact solution

of ux = − νρg
E xz; uy = − νρg

E yz; uz = ρg
2E (z2 − L2

z) +
νρg
2E (x2+y2) by computing err = ‖u−uexact‖∞. All meshes

give err < 10−8.

C. Parallel scalability

For the experiments of HYMV parallel scalability, we repeat

the problems described in section V-B with different meshes.

The performance of HYMV is compared with the matrix-

assembled approach (i.e., PETSc) and matrix-free approach.

1) Example of Poisson’s equation: Figure 4a shows the

weak scalability with a problem size of approximately 11.3K

degrees of freedom (DoFs) per process. In matrix-assembled

and HYMV approaches, we measure the setup time that

includes the element matrix computation, followed by the

global matrix assembly (matrix-assembled) or local copy

operation (HYMV). There is no setup time in the matrix-

free method. Following the matrix setup, we perform ten

SPMV operations. In the matrix-assembled approach, we use

PETSc MatMult function for the SPMV operation. The

HYMV local assembly is significantly faster than the global

assembly of the matrix-assembled approach. This is due to

the high communication overhead associated with the global

assembly. Note that the cost of HYMV SPMV is comparable

with the matrix-assembled approach and significantly lower

than the matrix-free approach. The matrix-free approach is

much more expensive than matrix-assembled and HYMV ap-

proaches, mainly due to the indirect re-computation of element

matrices. In this experiment, the largest problem has 330M

DoFs, where the HYMV local assembly is 10× faster than the

global matrix assembly. Figure 4b shows the strong scalability

of this Poisson problem for a fixed problem size of 42M

DoFs, in which the HYMV setup is 9× faster than the matrix-

assembled setup.

18

Authorized licensed use limited to: The University of Utah. Downloaded on July 20,2022 at 17:26:14 UTC from IEEE Xplore. Restrictions apply.

56
112

224
448

896
1792

3584
7168

14336
28672

0

0.5

1

1.5

number of cores →

se
tu

p
ti

m
e

(s
)
→

PETSc EMat compute PETSc communication HYMV EMat compute HYMV local copy

0

1

2

S
P
M

V
ti

m
e

(s
)
→

PETSc SPMV

HYMV SPMV

matrix-free SPMV

(a) Weak scalability: the problem size is 33.5K DoFs per process. The largest
problem has 918M DoFs. HYMV setup is 5× faster than PETSc setup.

896
1792

3584
7168

14336
0

0.5

1

1.5

number of cores →

se
tu

p
ti

m
e

(s
)
→

0

2

4

S
P
M

V
ti

m
e

(s
)
→

(b) Strong scalability: the problem size is 117M DoFs.
HYMV setup is 5× faster than PETSc setup.

Fig. 5: Scalability for the elasticity problem using structured meshes with 8-node linear elements on TACC’s Frontera. The

bars show matrix setup time (left y-axis), in which EMat_compute denotes the element matrix computation. The lines show

the time of ten SPMV operations (right y-axis).

2) Example of elasticity: Figure 5a shows the weak scala-

bility for this problem using linear elements. The problem size

is approximately 33.5K DoFs per process. Also, in this figure,

we present the overall cost breakdown between elemental

matrix computation and the overhead associated with local and

global setup operations in the HYMV and matrix-assembled

approaches. The largest problem has 918M DoFs, where the

HYMV setup is 5× faster than the matrix-assembled setup.

Figure 5b shows the strong scaling results across 14K cores for

a fixed problem size of 117M DoFs. It is seen that the matrix-

free approach is significantly expensive compared to matrix-

assembled and HYMV approaches, mainly due to the indirect

re-computation of the element matrices. The HYMV setup is

5× faster than the matrix-assembled setup.

Figure 6a shows the weak scalability for this problem using

quadratic elements, with a problem size of approximately

33.5K DoFs per process. In this experiment, we also com-

pare the performance of the HYMV approach between pure

MPI parallelism and hybrid (MPI + OpenMP) parallelism.

To minimize network communication, in hybrid parallelism,

the number of OpenMP threads is set to the number of

physical cores per socket, and the number of MPI processes

is set to the number of sockets over the nodes. It is seen

that the SPMV time in both parallelism schemes of the

HYMV approach is less than the matrix-assembled approach.

Especially, the SPMV time of hybrid parallelism is better

than pure MPI parallelism for this elasticity example when

using quadratic elements (i.e., the complexity of elemental

matrix computation is higher compared with the case of linear

elements). As mentioned earlier, the HYMV approach enables

efficient element-level shared-memory parallelism. Figure 6b

shows the strong scalability of this example with a fixed

problem size of 174M DoFs.

3) Example of unstructured meshes: Uniformly struc-

tured meshes are trivial to partitioning and achieving work

and communication balance. Moving to unstructured meshes

56
112

224
448

896
1792

3584
7168

14336
28672

0.3

0.4

0.5

number of cores →

S
P
M

V
ti

m
e

(s
)
→

PETSc SPMV HYMV pure-MPI SPMV HYMV hybrid SPMV

(a) Weak scalability: the problem size is 33.5K DoFs per process. In
average, HYMV hybrid SPMV is 1.7× faster than PETSc SPMV.

896
1792

3584
7168

14336
0

0.5

1

1.5

number of cores →

S
P
M

V
ti

m
e

(s
)
→

(b) Strong scalability: the problem size is 174M DoFs. In average,
HYMV hybrid SPMV is 1.2× faster then PETSc SPMV.

Fig. 6: Scalability for the elasticity problem using structured

meshes with 20-node quadratic elements on TACC’s Frontera.

The measured time is for ten SPMV operations.

19

Authorized licensed use limited to: The University of Utah. Downloaded on July 20,2022 at 17:26:14 UTC from IEEE Xplore. Restrictions apply.

creates additional partitioning challenges, leading to complex

communication patterns where the matrix-assembled approach

becomes expensive. This experiment presents a comparison

of HYMV and the matrix-assembled approach on unstruc-

tured meshes with quadratic tetrahedral elements for the

Poisson problem described in section V-B. We used Gmsh

[28] to generate unstructured meshes and partitioned the

meshes using METIS [29] library. A strong scalability study

on HYMV and matrix-assembled approach for unstructured

meshes is presented in Fig. 7. We used a fixed mesh size of

8.5M DoFs (6.3M elements). As shown in Fig. 7, HYMV ob-

tains much better parallel scalability than the matrix-assembled

approach. The HYMV average setup is 11× faster than the

matrix-assembled setup. The sparsity pattern of the matrix-

assembled and the partitioning boundaries becomes irregular

with unstructured grids, making the matrix-assembled setup

and the SPMV inefficient with the increasing number of nodes.

In contrast, HYMV converts the global sparse computation

(i.e., irregular) to dense local computation (i.e., regular), with

the efficient overlapping between communication and compu-

tation to achieve efficient parallel scalability.

1 2 4 8 16 32
0

0.5

1

1.5

number of nodes →

se
tu

p
ti

m
e

(s
)
→

PETSc EMat compute PETSc communication

HYMV EMAT compute HYMV local copy

0

0.1

0.2

0.3

S
P
M

V
ti

m
e

(s
)
→

PETSc SPMV

HYMV SPMV

Fig. 7: Strong scalability for Poisson’s problem using an

unstructured mesh with quadratic tetrahedron elements on

TACC’s Frontera across 1792 cores (32 nodes). The bars show

matrix setup time (left y-axis). The lines show the time for ten

SPMV operations (right y-axis). The problem size is 8.5M

DoFs. In average, HYMV setup is 11× faster than PETSc

setup, and HYMV SPMV is 3.6× faster than PETSc SPMV.

D. HYMV-GPU SPMV

We examined the performance of GPU SPMV for the

elasticity problem described in section V-B. Firstly, we ran the

experiment with 25M DoFs on a single Frontera node (with

2 MPI processes and 14 OpenMP threads) with increasing

streams and measured the time of ten SPMV. The results

show that using eight streams gives the best performance

for this problem. For this, we used eight streams for the

following experiments. Next, we compare the performance

of GPU SPMV with CPU SPMV. We run the experiment

on a single Frontera node (with 2 MPI processes and 14

OpenMP threads) with increasing DoFs. As shown in Fig. 8a,

the speedup of GPU SPMV is approximately constant (e.g., the

speedup is 7.4 when DoFs = 25.1M). Even though the data

transfer overhead increases, the GPU’s parallel performance is

significantly better than the CPU for larger problems. The GPU

matrix setup time is slightly larger than the CPU setup time

due to the overhead associated with element matrix transfer

from the host to the device. Note that the HYMV setup is

a one-time cost to pay to achieve significant speedup in the

SPMV operation, which is essential for fast iterative solving

of a linear system.

0.8 1.6 3.2 6.4 12.7 25.1
0

20

40

60

80

number of DoFs (million) →

se
tu

p
ti

m
e

(s
)
→

CPU setup GPU setup

0

5

10

S
P
M

V
ti

m
e

(s
)
→

CPU SPMV

GPU SPMV

(a) Single Frontera node with increasing DoFs: the speedup of
GPU SPMV is 7.4× for the problem size of 25.1M DoFs.

4 8 16 32 64
0

20

40

60

80

number of MPI processes →

se
tu

p
ti

m
e

(s
)
→

0

5

10

15

S
P
M

V
ti

m
e

(s
)
→

CPU SPMV GPU SPMV

GPU/CPU(O) SPMV GPU/GPU(O) SPMV

(b) Weak scalability: the problem size is 6.3M DoFs per process.
In average, GPU SPMV is 7.5× faster than CPU SPMV.

Fig. 8: Performance of HYMV-GPU SPMV compared with

HYMV-CPU SPMV for the elasticity problem using struc-

tured meshes with 20-node quadratic elements on TACC’s

Frontera. The bars show matrix setup time (left y-axis), and the

lines indicate the time of ten SPMV operations (right y-axis).

Next, we performed weak scalability for this elasticity

problem across 16 Frontera nodes, as shown in Fig. 8b. Each

GPU Frontera node has 16 cores and 4 GPU accelerators. We

run the experiments using 4 OpenMP threads and 4 MPI tasks.

Similar to the previous single-node experiment, GPU SPMV is

about 7.5× faster than CPU SPMV, and GPU’s matrix setup is

a bit higher than CPU. Three different schemes of overlapping

20

Authorized licensed use limited to: The University of Utah. Downloaded on July 20,2022 at 17:26:14 UTC from IEEE Xplore. Restrictions apply.

are used: 1). GPU SPMV (i.e., using blocking MPI commu-

nication followed by GPU computation of all elements), 2).

GPU/CPU (overlapped) SPMV (i.e., using non-blocking MPI

communication overlapped by GPU computation of indepen-

dent elements and CPU computation of dependent elements),

3). GPU/GPU (overlapped) SPMV (i.e., using non-blocking

MPI communication overlapped by GPU computations of both

independent and dependent elements). There is no notable

difference between GPU and GPU/GPU (overlapped) for the

distributed GPU experiment. The above is expected because of

the problem scale (i.e., 16 nodes), while overlapped communi-

cation performs better in large-scale runs (see figures 4a, 5a,

and 6a). We also see that the GPU/CPU (overlapped) is slower

with increasing nodes due to the larger ratio of dependent

elements over independent elements. Finally, we compared

HYMV-GPU with PETSc-GPU (using cuSPARSE) as shown

in Fig. 9a (weak scaling) and Fig. 9b (strong scaling). It is seen

that using 27-node quadratic elements, HYMV-GPU is faster

than PETSc-GPU in both setup time and SPMV time.

E. Throughput comparison

As an additional comparison on the throughput between

HYMV, matrix-assembled, and matrix-free methods, we com-

puted the floating-point operations (FLOP) per second in the

SPMV function. Firstly, we analyzed the SPMV function

performance for the elasticity problem using quadratic ele-

ments. Figure 10 is the roofline plot generated using Intel

Advisor [30], where the arithmetic intensity (AI) and work

(in GFLOP/s) of each method are presented. We ran the

experiment on a single core of the Frontera node. The experi-

mental results show the work done by HYMV lies in between

matrix-assembled and matrix-free methods. Specifically, the

HYMV SPMV archives AI = 0.079 FLOP/Byte and 1.614

GFLOP/s, while the matrix-assembled approach has AI=0.161

FLOP/Byte and 1.062 GFLOP/s, and the matrix-free approach

has AI=0.083 FLOP/Byte and 5.053 GFLOP/s. The lower

AI of HYMV SPMV (compared with the matrix-assembled

method) is due to the loading of element matrices and vec-

tors (to perform EMV) and the accumulation of element

vectors back to the global vector. In contrast, the matrix-

assembled SPMV only loads the global matrix (accumulated

in the setup phase) and global vector. On the other hand, the

matrix-free SPMV loads more data (e.g., mesh information,

material properties) and performs additional computations

(e.g., interpolation, numerical integration). Hence, even though

the HYMV approach uses dense formats, the achieved AI is

different.

Next, we computed the FLOP per second (FLOP rate) of

ten SPMV function calls for the same elasticity problem with

results presented in Table I. This experiment is conducted on

Frontera with one and four nodes (56 cores per node). For the

same problem size, HYMV reports a higher FLOP rate than

the matrix-assembled method. Even though matrix-assembled

SPMV has higher AI (as shown in Fig. 10) and lower com-

putations, it fails to achieve a higher FLOP rate due to

irregular memory access. HYMV achieved a higher FLOP rate

4 8 16 32 64
0

5

10

number of MPI processes →

se
tu

p
ti

m
e

(s
)
→

PETSc-GPU setup HYMV-GPU/GPU(O) setup

0

0.05

0.1

0.15

S
P
M

V
ti

m
e

(s
)
→

PETSc-GPU SPMV HYMV-GPU/GPU(O) SPMV

(a) Weak scalability: the problem size is ∼488K DoFs per MPI
process. In average, HYMV-GPU is 3.0× faster in setup time and
1.5× faster in SPMV time than PETSc-GPU.

8 16 32 64 88
0

20

40

number of MPI processes →

se
tu

p
ti

m
e

(s
)
→

0

0.2

0.4

0.6

S
P
M

V
ti

m
e

(s
)
→

(b) Strong scalability: the problem size is 15.8M DoFs. In average,
HYMV-GPU is 2.9× faster in setup time and 1.4× faster in
SPMV time than PETSc-GPU.

Fig. 9: Performance of HYMV-GPU SPMV compared with

PETSc-GPU SPMV for the elasticity problem using unstruc-

tured meshes with 27-node quadratic elements on TACC’s

Frontera. The bars show matrix setup time (left y-axis), and the

lines indicate the time of ten SPMV operations (right y-axis).

due to dense local computations leading to memory-friendly

structured memory accesses. These experiments show that the

matrix-free approach performs the most work, achieving the

highest FLOPS among the three methods due to minimum

memory accesses. But we argue that both these traditional

metrics, i.e., higher AI and higher FLOP rate, are not the only

considerations, as HYMV achieves a lower time-to-solution

than both other approaches.

F. Preconditioning and total solve time

For most applications, the total solve time is the metric

of interest, which depends on the number of iterations for

convergence, the setup, and the SPMV time. Preconditioning

can reduce the number of iterations, thereby the total solve

time. Therefore, this section presents experiments comparing

total solve time (i.e., from matrix setup to solution conver-

gence) with and without preconditioning. HYMV SPMV is

21

Authorized licensed use limited to: The University of Utah. Downloaded on July 20,2022 at 17:26:14 UTC from IEEE Xplore. Restrictions apply.

Method
granularity = 0.1M DoFs per MPI process granularity = 0.2M DoFs per MPI process

one node, Np = 56 four nodes, Np = 224 one node, Np = 56 four nodes, Np = 224

GFLOP Time GFLOP/s GFLOP Time GFLOP/s GFLOP Time GFLOP/s GFLOP Time GFLOP/s

Matrix-assembled 19.2 0.80 24.1 76.8 0.78 98.7 38.2 1.55 24.7 152.8 1.55 98.4
HYMV 32.3 0.72 44.7 129.0 0.58 221.3 64.5 1.17 55.0 258.0 1.21 213.7
HYMV GPU 32.3 0.31 103.7 129.0 0.36 361.3 64.5 0.61 106.2 258.0 0.65 396.7
Matrix-free 2,264.0 7.46 303.4 9,056.1 7.47 1,211.9 4,528.0 14.96 302.7 18,112.1 15.05 1,203.6

TABLE I: Number of flops (GFLOP), time (s) and flop rate (GFLOP/s) of ten SPMV performed by matrix-assembled, HYMV,

and matrix-free approaches for the elasticity problem using 20-node quadratic elements on TACC’s Frontera across 224 cores.

The weak scaling is set up to run on one and four nodes of Frontera (56 cores per node). Two values of granularity 0.1M

DoFs and 0.2M DoFs per MPI task are examined.

0.001 0.01 0.1 1 10 100 1,000
0.001

0.01

0.1

1

10

100

L1 Bandwidth: 368.99 GB/s

L2 Bandwidth: 117.37 GB/s

L3 Bandwidth: 25.69 GB/s

DRAM
Bandwidth: 15.16 GB/s

SP Vector FMA Peak: 152.87 GFLOP/s
DP Vector FMA Peak: 76.44 GFLO

DP Vector Add Peak: 38.22 GFLOP/

Scalar Add Peak: 6.57 GFLOP/s

L2 Bandwidth: 117.37 GB/s

L3 Bandwidth: 25.69 GB/s

DRAM
Bandwidth: 15.16 GB/s

Scalar Add Peak: 6.57 GFLOP/s

FLOP/Byte (Arithmetic Intensity)

G
F

L
O

P
/s

Matrix-assembled HYMV Matrix-free

Fig. 10: Roofline plot for the SPMV function of HYMV com-

pared with matrix-assembled and matrix-free approaches for

the elasticity problem using 20-node quadratic elements on a

single core of Frontera. The plot was generated using Intel

Advisor [30].

incorporated with PETSc solvers via the MatShell inter-

face. We employ the conjugate gradient (CG) method in

all experiments. We examine the problem of an elastic bar

presented in section V-B. Firstly, we take a bar of dimensions

Lx = Ly = Lz = 100 and use an unstructured mesh with

8-node linear elements. The problem is solved using CG with

no preconditioning and CG with Jacobi preconditioner, and

the results are shown in Fig. 11a. Secondly, we use structured

meshes with 20-node quadratic elements and partition the bar

in the z-direction (both Lz and the number of elements in the

z-direction are increased proportionally with the number of

partitions, while Lx and Ly are fixed). Figure 11b presents the

total solve time using Jacobi and block Jacobi preconditioners

for this experiment. It can be seen that HYMV is faster

than PETSc in all cases. We remark that, for block Jacobi

preconditioner, HYMV needs to assemble the diagonal block

matrix (i.e., the block matrix corresponding to owned DoFs).

Finally, we re-examine the first experiment using unstructured

meshes of 27-node quadratic elements and compare HYMV-

GPU with PETSc’s CUDA backend, as shown in Fig. 11c.

It is seen that HYMV-GPU is also faster than PETSc-GPU

in total solve time. It is noted that HYMV only uses the

GPU for accelerating SPMV but not for other operations

part of the CG solve (handled by PETSc). Additionally,

we incorporated HYMV SPMV with select preconditioners

supported by PETSc to demonstrate the feasibility of using

HYMV with preconditioning. However, these are not heavily

optimized, and this will be addressed in future work.

VI. CONCLUSION

This paper presents an adaptive-matrix approach for the

SPMV when solving linear systems arising from PDE dis-

cretizations using iterative solvers. The proposed HYMV ap-

proach uses local assembly, avoids global communication,

and performs SPMV using dense linear algebra. HYMV is

well-suited for modern heterogeneous architectures, including

GPUs. HYMV enables efficient parallelization with MPI,

SIMD, OpenMP, and CUDA, achieving excellent scalability

and speedup in heterogeneous architectures. The developed

HYMV is a standalone library that can easily integrate with

existing computational codes and linear solver packages such

as PETSc.

ACKNOWLEDGMENT

This work was funded in part by National Science Foun-

dation grant OAC-1808652. The first, fifth, and sixth authors

acknowledge support from the Air Force Research Labora-

tory (under FA8650-19-C-5212 and FA8650-17-C-5269). The

computing resources on Frontera were through an allocation

by the Texas Advanced Computing Center PHY20033.

APPENDIX

Algorithm 4 presents the SPMV of the matrix-free ap-

proach [31] that we used for the comparisons with HYMV.

The overlapping of communication and independent element

computation is implemented similarly to Algorithm 2. The

critical difference from HYMV SPMV is the re-computation

of elemental matrices Ke (based on the nodal coordinates xe

and material properties) during every solution iteration instead

of loading from memory.

22

Authorized licensed use limited to: The University of Utah. Downloaded on July 20,2022 at 17:26:14 UTC from IEEE Xplore. Restrictions apply.

128 256 512 1024 2048

0

1

2

number of cores →

to
ta

l
ti

m
e

(s
)
→

PETSc no preconditioning

HYMV no preconditioning

PETSc Jacobi preconditioner

HYMV Jacobi preconditioner

(All cases: 194 N)
(All cases: 152 J)

(a) Strong scalability: an unstructured mesh with 8-node linear
elements is employed. The problem size is 3.4M DoFs. The infinity
norm of error (compared with analytic solution) is O(10−4) for
no preconditioning, and O(10−5) for Jacobi preconditioner. In
average, HYMV is 1.1× (no preconditioning) and 1.2× (Jacobi
preconditioner) faster than PETSc.

56 112 224 448 896

0

20

40

60

number of cores →

to
ta

l
ti

m
e

(s
)
→

PETSc Jacobi preconditioner

HYMV Jacobi preconditioner

PETSc block Jacobi preconditioner

HYMV block Jacobi preconditioner

(697 J)
(520 BJ)

(1116 J)
(980 BJ)

(1955 J)
(1252 BJ)

(3619 J)
(2188 BJ)

(6915 J)
(3747 BJ)

(b) Weak scalability: structured meshes of 20-node quadratic ele-
ments are employed. The problem size is 10.3K DoFs per process.
The infinity norm of error (compared with analytic solution) is
O(10−8) for Jacobi preconditioner, and O(10−5) for block Jacobi
preconditioner. In average, HYMV is 1.3× (Jacobi preconditioner)
and 1.1× (block Jacobi preconditioner) faster than PETSc.

4 8 16 32 64

5

10

15

number of MPI processes →

to
ta

l
ti

m
e

(s
)
→

PETSc-GPU HYMV GPU/GPU (O)

(139 J) (154 J) (186 J) (243 J) (294 J)

(c) Weak scalability: unstructured meshes of 27-node quadratic
elements are employed. The problem size is ∼488K DoFs per MPI
process. Jacobi preconditioner is used. The infinity norm of error
(compared with analytic solution) is O(10−5). In average, HYMV is
1.8× faster than PETSc.

Fig. 11: Total solve time for the elasticity problem using

different mesh types, elements, and preconditioners. The so-

lution converges with relative tolerance ε = 10−3 after the

corresponding number of iterations shown in the parentheses,

in which {N, J, BJ} represents for {No, Jacobi, block Jacobi}
preconditioner, respectively. In all cases, HYMV is faster than

PETSc in total solve time.

Algorithm 4 SPMV in matrix-free approach, processor i

Require: E2Li, LNSMi, GNGMi maps, partitioned ui,vi vec-

tors

Ensure: vi = (Ku)i

1: vi ← 0
2: local node scatter begin(ui, LNSM i)
3: local node scatter end(ui, LNSM i)
4: for e← 1 to |ωi| do
5: ue ← ui(E2Li[e]) � extract element vector ue

6: compute Ke

7: ve ←Keue

8: vi(E2Li[e])← vi(E2Li[e]) + ve � accumulate

element vector ve

9: ghost node gather begin(vi, GNGM i)
10: ghost node gather end(vi, GNGM i)

REFERENCES

[1] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune,
K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp,
D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May, L. C.
McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F.
Smith, S. Zampini, H. Zhang, and H. Zhang, “PETSc Web
page,” https://www.mcs.anl.gov/petsc, 2019. [Online]. Available: https:
//www.mcs.anl.gov/petsc

[2] M. Grossman, C. Thiele, M. Araya-Polo, F. Frank, F. O. Alpak, and
V. Sarkar, “A survey of sparse matrix-vector multiplication performance
on large matrices,” 2016.

[3] T. J. Hughes, I. Levit, and J. Winget, “An element-by-element solution
algorithm for problems of structural and solid mechanics,” Computer
Methods in Applied Mechanics and Engineering, vol. 36, pp. 241–254,
1983.

[4] G. F. Carey and B. N. Jiang, “Element-by-element linear and nonlinear
solution schemes,” Communications in Applied Numerical Methods,
vol. 2, no. 2, pp. 145–153, 1986.

[5] G. F. Carey, “Parallelism in finite element modeling,” Communications
in Applied Numerical Methods, vol. 2, no. 3, pp. 281–288, 1986.

[6] J. M. Winget and T. J. Hughes, “Solution algorithms for nonlinear tran-
sient heat conduction analysis employing element-by-element iterative
strategies,” Computer Methods in Applied Mechanics and Engineering,
vol. 52, pp. 711–815, 1985.

[7] G. F. Carey, E. Barragy, R. McLay, and M. Sharma, “Element-by-
element vector and parallel computations,” Communications in Applied
Numerical Methods, vol. 4, pp. 299–307, 1988.

[8] E. Barragy and G. F. Carey, “Parallel-vector computation with high-
p element-by-element methods,” International Journal of Computer
Mathematics, vol. 44, pp. 329–339, 1992.

[9] R. C. Kirby, M. Knepley, A. Logg, and L. R. Scott, “Optimizing
the evaluation of finite element matrices,” SIAM Journal on Scientific
Computing, vol. 27, no. 3, pp. 741–758, 2005.

[10] F. Luporini, A. L. Varbanescu, F. Rathgeber, G.-T. Bercea, J. Ra-
manujam, D. A. Ham, and P. H. Kelly, “Cross-loop optimization of
arithmetic intensity for finite element local assembly,” ACM Transactions
on Architecture and Code Optimization (TACO), vol. 11, no. 4, pp. 1–25,
2015.

[11] N. Jansson, “Optimizing sparse matrix assembly in finite element solvers
with one-sided communication,” in International Conference on High
Performance Computing for Computational Science. Springer, 2012,
pp. 128–139.

[12] S. Bauer, D. Drzisga, M. Mohr, U. Rude, C. Waluga, and B. Wohlmuth,
“A stencil scaling approach for accelerating matrix-free finite element
implementations,” SIAM Journal on Scientific Computing, vol. 40, no. 6,
pp. C748–C778, 2018.

[13] C. Cecka, A. J. Lew, and E. Darve, “Assembly of finite element methods
on graphics processors,” International journal for numerical methods in
engineering, vol. 85, no. 5, pp. 640–669, 2011.

23

Authorized licensed use limited to: The University of Utah. Downloaded on July 20,2022 at 17:26:14 UTC from IEEE Xplore. Restrictions apply.

[14] A. Dziekonski, P. Sypek, A. Lamecki, and M. Mrozowski, “Accu-
racy, memory, and speed strategies in gpu-based finite-element matrix-
generation,” IEEE Antennas and Wireless Propagation Letters, vol. 11,
pp. 1346–1349, 2012.

[15] M. Kronbichler and K. Ljungkvist, “Multigrid for matrix-free high-order
finite element computations on graphics processors,” ACM Transactions
on Parallel Computing, vol. 6, no. 1, 2019.

[16] K. Ljungkvist, “Matrix-free finite-element computations on graphics
processors with adaptively refined unstructured meshes.” in SpringSim
(HPC), 2017, pp. 1–1.

[17] J. Martı́nez-Frutos and D. Herrero-Pérez, “Efficient matrix-free gpu
implementation of fixed grid finite element analysis,” Finite Elements
in Analysis and Design, vol. 104, pp. 61–71, 2015.

[18] J. Martı́nez-Frutos, P. J. Martı́nez-Castejón, and D. Herrero-Pérez, “Fine-
grained gpu implementation of assembly-free iterative solver for finite
element problems,” Computers & Structures, vol. 157, pp. 9–18, 2015.

[19] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny,
V. Dobrev, Y. Dudouit, A. Fisher, T. Kolev, W. Pazner, M. Stowell,
V. Tomov, I. Akkerman, J. Dahm, D. Medina, and S. Zampini, “Mfem:
A modular finite element methods library,” Computers and Mathematics
with Applications, vol. 81, pp. 42–74, 2021.

[20] N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication
on cuda,” Nvidia Technical Report NVR-2008-004, Nvidia Corporation,
Tech. Rep., 2008.

[21] B. Xie, J. Zhan, X. Liu, W. Gao, Z. Jia, X. He, and L. Zhang, “Cvr:
Efficient vectorization of spmv on x86 processors,” in Proceedings of the
2018 International Symposium on Code Generation and Optimization,
2018, pp. 149–162.

[22] F. Sadi, J. Sweeney, T. M. Low, J. C. Hoe, L. Pileggi, and F. Franchetti,
“Efficient spmv operation for large and highly sparse matrices us-
ing scalable multi-way merge parallelization,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
2019, pp. 347–358.

[23] C. Liu, B. Xie, X. Liu, W. Xue, H. Yang, and X. Liu, “Towards efficient
spmv on sunway manycore architectures,” in Proceedings of the 2018
International Conference on Supercomputing, 2018, pp. 363–373.

[24] S. Tomov, J. Dongarra, and M. Baboulin, “Towards dense linear algebra
for hybrid GPU accelerated manycore systems,” Parallel Computing,
vol. 36, no. 5-6, pp. 232–240, Jun. 2010.

[25] A. Haidar, T. Dong, S. Tomov, P. Luszczek, and J. Dongarra, “Frame-
work for batched and gpu-resident factorization algorithms to block
householder transformations,” in ISC High Performance, Springer.
Frankfurt, Germany: Springer, 07-2015 2015.

[26] A. Abdelfattah, M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou,
A. Haidar, I. Karlin, T. Kolev, I. Masliah, and S. Tomov, “High-
Performance Tensor Contractions for GPUs,” Tech. Rep. UT-EECS-16-
738, 01-2016 2016.

[27] S. Timoshenko and J. N. Goodier, Theory of elasticity. McGraw-Hill
Book Company, 1951.

[28] C. Geuzaine and J.-F. Remacle, “Gmsh: A 3-d finite element mesh
generator with built-in pre-and post-processing facilities,” International
journal for numerical methods in engineering, vol. 79, no. 11, pp. 1309–
1331, 2009.

[29] G. Karypis and V. Kumar, “Metis: A software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices,” 1997.

[30] Intel, “Intel advisor.” [Online]. Available: https:
//software.intel.com/content/www/us/en/develop/tools/oneapi/
components/advisor.html#gs.2pbhqy

[31] M. O. Deville, P. F. Fischer, and E. H. Mund, High-Order Methods for
Incompressible Fluid Flow, ser. Cambridge Monographs on Applied and
Computational Mathematics. Cambridge University Press, 2002.

24

Authorized licensed use limited to: The University of Utah. Downloaded on July 20,2022 at 17:26:14 UTC from IEEE Xplore. Restrictions apply.

