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ABSTRACT 18 

Applying the Convected Particle Domain Interpolation (CPDI) to the Material Point Method 19 

has many advantages over the original Material Point Method, including significantly 20 

improved accuracy. However, in the large deformation regime, the CPDI still may not retain 21 

the expected convergence rate. The paper proposes an enhanced CPDI formulation based on 22 

least square reconstruction technique. The Convected Particle Least Square Interpolation 23 

(CPLS) Material Point Method assumes the velocity field inside the material point domain as 24 

non-constant. This velocity field in the material point domain is mapped to the background grid 25 

nodes with a Moving Least Squares reconstruction. In this paper, we apply the Improved 26 

Moving Least Squares method to avoid the instability of the conventional Moving Least 27 

Squares method due to a singular matrix. The proposed algorithm can improve convergence 28 

rate, as illustrated by numerical examples using the Method of Manufactured Solutions.   29 

mailto:tran.quocanh@aalto.fi


1. INTRODUCTION 30 

The Material Point Method (MPM), proposed by Sulsky et al. [1], has been successfully used 31 

to solve large deformation problems. However, when the material points cross the cell 32 

boundaries, numerical noises are introduced into the numerical solution. The Generalized 33 

Interpolation Material Point Method (GIMP) [2] can mitigate that cell-crossing instability. 34 

GIMP introduced material point domains which are supported by charateristic functions. The 35 

GIMP shape functions are the convolution of a charateristic function and a grid shape function. 36 

To calculate the integral of the shape functions, it is essential to track the evolution of the 37 

material point domain during deformations. GIMP assumes that the material point domains do 38 

not change (referred to as uGIMP), or track only the axial deformation of the material point 39 

domains (referred to as cpGIMP). In uGIMP and cpGIMP, the material point domains remain 40 

rectangular in 2D or cuboid in 3D, which leads to some inaccuracies during large shear 41 

deformation. On the other hand, Convected Particle Domain Interpolation Method [3, 4] 42 

(CPDI) allows the material point domains to become parallelograms in 2D or parallelepiped in 43 

3D. In such calculations, the CPDI approximates shape functions by an interpolation of the 44 

grid shape function at the parallelograms’ corners using the 4-node quadrilateral finite element. 45 

The CPDI improves the numerical accuracy of the MPM and prevents the occurrence of the 46 

non-physical numerical fractures in the MPM, which is possible under the large extension 47 

condition. Given these advantages, the CPDI has been applied in the MPM simulations of, 48 

among others: nanoindentation [5], chemical/mechanical coupling of a silicon anode [6], the 49 

impact of thin-walled structures [7] as well as being enhanced to model fracture [8] or fluid-50 

driven fracture [9]. The CPDI has also been used in simulations of geotechnical problems, such 51 

as modelling pile penetration [10], pile installation [11], soil liquefaction [12] and the coupled 52 

analysis of saturated porous media [13]. 53 

Although the CPDI can improve the numerical accuracy of the MPM and may lead to a 2nd 54 



order of convergence when the deformation is relatively small compared with the grid cell size 55 

(i.e. when no material points cross cell boundaries), this paper demonstrates that the CPDI 56 

cannot maintain the same convergence rate in large deformation problems. We propose to 57 

enhance the CPDI method, so it retains the same convergence rate in large deformation 58 

problems. Our proposed method constructs the velocity field in the entire particle domain, in a 59 

similar way to the MPM gradient projection [14]. Then, the nodal velocity is calculated on the 60 

background grid with the Moving Least Squares reconstruction technique. We refer to this 61 

method as the Convected Particle Least Square Interpolation Material Point Method (CPLS). 62 

The Least Square reconstruction technique has been used to improve the accuracy of the MPM 63 

beforehand [15, 16, 17, 18, 19, 20, 21]. However, these formulations require an inversion of 64 

the least squares moment matrix and a solution of a system of equations. This is numerically 65 

expensive, while requiring additional numerical treatments in case the moment matrix is 66 

singular. To avoid the instability of the original Moving Least Squares technique, this paper 67 

adopts an Improved Moving Least Squares (IMLS) technique, which has been applied 68 

elsewhere, to the element-free Galerkin method framework [22, 23, 24]. The difference is that 69 

IMLS applies orthogonal polynomials instead of monomials to overcome the instability of the 70 

conventional Moving Least Squares reconstruction.  71 

The paper is organized as follows. The formulation and algorithm of the new improved moving 72 

least square shape function are presented in Section 2. Section 3 describes the combination of 73 

the IMLS shape function combined with the CPDI. Though, this combination is referred to as 74 

the CPLS. Section 4 demonstrates the capability of the proposed formulation, using the Method 75 

of Manufactured Solutions and examples in which the displacement magnitude is controlled 76 

by a single parameter to switch between a problem characterized by small or large 77 

deformations. In this paper, the subscript p denotes the particle index, the subscript j denotes 78 

the index of polynomial order and the subscript i denotes the nodal index. 79 



2. IMPROVED MOVING LEAST SQUARES RECONSTRUCTION 80 

2.1. Moving Least Squares (MLS) reconstruction 81 

The MLS approximation of an unknown function u(𝐱) is: 82 

 uh(𝐱) =∑pj(𝐱)

nb

j=1

aj(𝐱) = 𝐩
T(𝐱)𝐚(𝐱) (1) 

in which 𝐩(𝐱) is the polynomial basis vector, 𝐚(𝐱) is the unknown coefficient vector and nb is 83 

number of basis functions. Given a set of N data points with position {x}p=1
N  and values of these 84 

points {u}p=1
N , the coefficient vector can be computed by minimizing the weighted least-square 85 

error J given by: 86 

 J = ∑w(𝐱 − 𝐱p)[𝐩
T(𝐱)𝐚(𝐱) − up]

𝟐
N

p=1

 (2) 

where w(𝐱− 𝐱p) ≥ 0 is a positive weighting function. Then, after differentiating the weighted 87 

least-square error J with respect to 𝐚(𝐱) and setting it to zero to we obtain: 88 

 
  J

 a
= 2∑w(𝐱 − 𝐱p)𝐩(𝐱)[𝐩

T(𝐱)𝐚(𝐱) − up]

N

p=1

= 0 (3) 

Equation (3) can be rewritten in matrix form as: 89 

 𝐀(𝐱)𝐚(𝐱) = 𝐁(𝐱)𝐔p (4) 

where 𝐀 is the moment matrix and 𝐁 can be written as: 90 

 𝐀(𝐱) = ∑w(𝐱− 𝐱p)𝐩(𝐱p)𝐩
T(𝐱p)

N

p=1

 (5) 

 𝐁(𝐱) = [w(𝐱 − 𝐱1)𝐩(𝐱1)     w(𝐱 − 𝐱2)𝐩(𝐱2)    …      w(𝐱 − 𝐱N)𝐩(𝐱N)] (6) 

 𝐔p = [u1 u2… uN]
T (7) 

Solving equation (4) is expensive as it requires the inversion of matrix A, while it may also be 91 

numerically difficult when matrix A is singular. Therefore, instead of solving the linear 92 



equation, we adopt the Improved Moving Least Squares technique, which uses orthogonal 93 

polynomials as basis. 94 

2.2. Improved Moving Least Squares (IMLS) shape function for the MPM 95 

For 2 arbitrary polynomials  f(𝐱) in a domain f and g(𝐱) in a domain g, given a non-negative 96 

weighting function w(x)  0, a weighted inner product of two polynomials f and g is defined 97 

as: 98 

                             f(𝐱), g(𝐱)     〈f, g〉 = ∫ w(𝐱)f(𝐱)g(𝐱)dx
f ∩ g

              (8) 

For the set of N material points with positions {𝐱p}p=1
N

, the value of the weighted inner product 99 

for a given position x could be approximated as: 100 

 〈f, g〉 ≈ ∑w(𝐱− 𝐱p)f(𝐱p)g(𝐱p)

N

p=1

 (9) 

In this paper, a structured grid with the size of le is used for the numerical simulations. Then, 101 

we select the weighting function as a cubic spline, suggested by Steffen et al. [25], for the 102 

function reconstruction as: 103 

 w(x) =

{
 
 

 
 
2

3
−
x2

le2
+
|x|3

2le
3
                 |x| le       

4

3
−
2x

le
+
x2

le2
−
|x|3

6le
3       le |x|  2le 

0                                          |x|  2le       

 (10) 

The cubic spline gives a smoother reconstructed function compared to the linear basis function. 104 

Furthermore, the wider domain captures more material points to reconstruct the higher order 105 

function and because the domain of the cubic spline is divisible to the size of the grid cell, it is 106 

numerically more convenient to find the material points in the support of the nodal weighting 107 

function when a structured grid is used. After taking into account equation (9), equation (4) 108 

becomes: 109 



 

[
 
 
 
 
〈p1, p1〉 〈p1, p2〉

〈p2, p1〉 〈p2, p2〉
⋯

〈p1, pnb〉

〈p2, pnb〉

⋮             ⋮ ⋱ ⋮
〈pnb , p1〉 〈pnb , p2〉 … 〈pnb , pnb〉]

 
 
 
 

[
 
 
 
a1(𝐱)

a2(𝐱)
⋮

anb(𝐱)]
 
 
 
=

[
 
 
 
 
〈p1, up〉

〈p2, up〉

⋮
〈pnb , up〉]

 
 
 
 

 (11) 

If the basis function set pj(𝐱) consists of orthogonal functions, then: 110 

 〈pj, pk〉 = 0,   for j  k (12) 

That means equation (11) becomes a diagonal matrix: 111 

 

[
 
 
 
〈p1, p1〉 0

0 〈p2, p2〉
⋯

0
0

⋮             ⋮ ⋱ ⋮
0            0 … 〈pnb , pnb〉]

 
 
 

[
 
 
 
a1(𝐱)

a2(𝐱)
⋮

anb(𝐱)]
 
 
 
=

[
 
 
 
 
〈p1, up〉

〈p2, up〉

⋮
〈pnb , up〉]

 
 
 
 

 (13) 

Then, the coefficients aj(𝐱) are given by: 112 

 aj(𝐱) =  
〈pj, up〉

〈pj, pj〉
;    j = 1, … , nb (14) 

Substituting equation (14) into equation (1), gives 113 

 uh(𝐱) =∑pj(𝐱)

nb

j=1

〈pj, up〉

〈pj, pj〉
=∑pj(𝐱)

∑ w(𝐱 − 𝐱p)pj(𝐱p)up
N
p=1

〈pj, pj〉
,

nb

j=1

 (15) 

and 114 

 uh(𝐱) = ∑∑
w(𝐱 − 𝐱p)pj(𝐱)pj(𝐱p)up

〈pj, pj〉

nb

j=1

N

p=1

= 𝐓(𝐱)𝐔p =∑ (𝐱)

N

p=1

up (16) 

where (𝐱) is the vector of IMLS shape function, with the IMLS shape function (𝐱) being: 115 

 (𝐱) = ∑
w(𝐱 − 𝐱p)pj(𝐱)pj(𝐱p)

〈pj, pj〉

nb

j=1

 (17) 

2.3. Orthogonal basis function 116 

In the Moving Least Squares method, the monomials, denoted by q, are used to construct the 117 

polynomial basis vector. For example, the 2D monomial basis functions are: 118 

 𝐪 = (qj) = {1, x, y, x
2, xy, y2} (18) 



In the Improved Moving Least Squares method, orthogonal polynomials are used instead of 119 

monomials. However, in the MPM the positions of the material points are arbitrary and may 120 

not coincide with quadrature points, leading to inaccuracies. Therefore, the adoption of certain 121 

structured orthogonal polynomials such as Legendre polynomials may not be preferred, as their 122 

use does not ensure that the integration in equation (8) always satisfies the orthogonality 123 

condition given by equation (12). Instead, in order to use a set of polynomials which always 124 

satisfy the orthogonality conditions, the set of polynomials is updated in every time step and 125 

depends on the material point coordinates using the Gram-Schmidt orthogonalization method. 126 

For example, the 2D polynomials p satisfying the orthogonality condition, referred to as the 127 

orthogonal basis function, can be computed from the q in equation (18) as follows: 128 

 pj = qj −∑
〈qj , pk〉

〈pk, pk〉

j−1

k=1

pk (19) 

 

Figure 1 Polynomials in equal 

distribution of 3 material points with 

cubic Bspline 

 

Figure 2 Polynomials in near-corner 

distribution of 3 material points with 

cubic Bspline 



 129 

Figure 3 Polynomials for 2 material points, rank(A) = 2 with 〈𝐩𝟑, 𝐩𝟑〉 = 0 130 

Figure 1 and Figure 2 show the change of polynomials in 1D corresponding to 2 different 131 

material points coordinates in the interval [-1,1] using a cubic Bspline function. The description 132 

of these calculations is presented in the Appendix. In case there is not enough material point 133 

data to reconstruct a high order function, the least squares moment matrix A may be singular. 134 

Then, given rank(A) = r < nb, the weighted inner products of orthogonal basis functions, which 135 

lie in the null space of A, become zeros such that: 136 

 〈pj, pj〉 = 0 (20) 

In this case, the IMLS shape function in equation (19) will automatically remove the 137 

polynomials which lie in the null space component of A. Figure 3 shows the polynomials for 2 138 

material points, using equation (19). In this case, because p3(xp) = 0 for all the xp, using equation 139 

(9) leading to 〈p3, p3〉 = 0. The algorithm automatically applies to only the 2 first orthogonal 140 

basis functions p1 and p2 for the function reconstruction. 141 

2.4.  Algorithm to construct IMLS shape function 142 

Consider a node xi and the set of polynomials 𝐪 = [1, x, y] for the linear function reconstruction 143 

(nb = 3) or 𝐪 = [1, x, y, x2, xy, y2] for the quadratic function reconstruction (nb = 6), the 144 

IMLS nodal value of the shape function for the material point 𝐱p, 
ip
= 

i
(𝐱p

t ), can be 145 

computed using the algorithm as follows: 146 



Algorithm. IMLS shape function for node 𝐱i 

Input:  

𝐱p, N – positions 𝐱p and number of material points N interacting with 𝐱i 

nb – desired order of polynomials 

𝐪 – set of monomials polynomials (𝐪 = [1, x, y] if nb = 3/ 𝐪 = [1, x, y, x2, xy, y2] if nb = 6) 

Output: 
ip

 – IMLS nodal value of the shape function for material point 𝐱p 

p̂1 = 1 

for j = 1 to nb 

     for p = 1 to N 

     w(𝐱i − 𝐱p) // Compute the weighting function (10) 

     〈p̂j, p̂j〉  = 〈p̂j, p̂j〉 + w(𝐱i − 𝐱p)p̂j(𝐱p)p̂j(𝐱p)      // Compute the inner product (9) 

    end 

if 〈p̂j, p̂j〉 ≠ 0 

     for p = 1 to N 

     
ip
= 

ip
+

w(𝐱i−𝐱p)p̂j(𝐱i)p̂j(𝐱p)

〈p̂j,p̂j〉
      // Compute the IMLS shape function (17) 

          for k = 1 to j 

                  for p = 1 to N 

                  〈qj+1, p̂k〉 = 〈qj+1, p̂k〉 + w(𝐱i − 𝐱p)qj+1(𝐱p)pk(𝐱p)  

                  end 

           // Compute the material points value of polynomials p̂j+1(𝐱p) (19) 

          p̂j+1(𝐱p) = qj+1(𝐱p) −
〈qj+1,p̂k〉

〈p̂k,p̂k〉
p̂k(𝐱p) 

          // Compute the nodal value of polynomials p̂j+1(𝐱i) (19) 

          p̂j+1(𝐱i) = qj+1(𝐱i) −
〈qj+1,p̂k〉

〈p̂k,p̂k〉
p̂k(𝐱i)       

          end 

     end      

end 

end 

In this paper the linear function reconstruction, given above, is used for all numerical examples. 147 



2.5. Accuracy and efficiency of improved moving least squares interpolation (IMLS) 148 

Figure 4 Reconstruction of sin(x) using improved least squares interpolation (IMLS) 149 

Figure 5 Convergence rate of Moving 

least squares interpolations  

Figure 6 Computational efficiency of 

moving least squares interpolations  

In this section, we examine the accuracy and efficiency of the improved moving least squares 150 

interpolation. Firstly, a function f(x) = sin(x) is considered on the interval [1, 4]. Then, we 151 

reconstruct the material point data by setting fp = f(xp) on the domain with 20 cells and 2 152 

material point equally distributed in each cell. Figure 4 shows the reconstructed nodal values 153 

using IMLS with 3 orthogonal polynomials [p1, p2, p3] determined in equation (19). The 154 

reconstruction is not exact but the root mean square (RMS) error (see equation (47)) reduces 155 

when refining grid. We also compare the IMLS reconstruction with the MPM interpolation and 156 

original MLS with the monomials [1, x, x2]. Compared to original MLS, IMLS is demonstrated 157 

to maintain similarly high convergence rate (see Figure 5) while become more efficient in terms 158 

of computational cost (see Figure 6). The high computational cost of the original MLS stems 159 



from solving the linear system in equation (4) by using the Cholesky decomposition for the 160 

symmetric positive-diagonal A (recall by the backslash operator in MATLAB). 161 

In literature, different least squares reconstruction techniques have been used (see Table 1) and 162 

can be distinguished by the choice of the interpolator, the weighting function and the 163 

polynomial sets. The use of monomials in the original MLS requires an additional numerical 164 

treatment when the least square moment matrix A is singular. On the other hand, Taylor least 165 

squares method [18] is designed to enforce the mass and momentum conservation during the 166 

mapping from the material points to the nodes. This method requires the reconstruction of 167 

material point’s data to integration points rather than nodes for the numerical integration on 168 

background grid. However, the integration errors will arise if the material points domain does 169 

not fully fill the cell [26] (partially-filled cells). This requires additional treatment to subdivide 170 

the partially-filled cell for the numerical integration, for example, using the multi-point 171 

approximate integration over the partially-filled cells [15] which becomes complex in 3D. In 172 

this paper, the improved moving least squares reconstruction is used only for the velocity 173 

projection from the material points to the nodes to avoid numerical inaccuracies arising from 174 

the partially-filled cells. 175 

Table 1 Summary of least squares reconstruction for MPM 176 

Method Interpolator 

based on 
Weighting function w(𝐱) Polynomial 

sets 𝐩(𝐱) 

Weighted Least Squares 

[15] 
GIMP [2] Quadratic spline Monomials 

High-order PIC [16] Particle-In-Cell 

(PIC) [27] 
splines Monomials 

Improved MPM [17] MPM [1] B-splines Monomials 

PolyPIC [28] Affine PIC [29] B-splines Monomials 

MLS-MPM [21] Affine PIC [29]/ 

PolyPIC [28] 
B-splines Monomials 

Taylor least squares [18] B-spline [25] - Taylor basis 

MLS B-spline [20] B-spline [25] B-splines Monomials 



Improved MLS [19] MPM [1] B-splines Orthogonal 

This study CPDI [3] B-splines Orthogonal 

3. CONVECTED PARTICLE LEAST SQUARE INTERPOLATION (CPLS): 177 

COMBINATION OF THE CPDI AND THE IMLS FUNCTION 178 

RECONSTRUCTION 179 

3.1. Material points variables field 180 

Figure 7 Material point domain in the CPDI 181 

The CPDI method tracks the particle domain as a parallelogram described by two vectors 𝐫1
o 182 

and 𝐫2
o as illustrated in Figure 7. At a current time step, denoted by a superscript n, these two 183 

vectors are updated by a current deformation gradient 𝐅p
n as: 184 

 

𝐫1
n = 𝐅p

t𝐫1
o 

𝐫2
n = 𝐅p

t𝐫2
o 

(21) 

As the particle domain is prescribed as a parallelogram, the corner coordinates could be 185 

calculated from the particle coordinate 𝐱p
n and two vectors 𝐫1

n and 𝐫2
n as: 186 

 

𝐱c1
n = 𝐱p

n − 𝐫1
n − 𝐫2

n 

𝐱c2
n = 𝐱p

n + 𝐫1
n − 𝐫2

n 

𝐱c3
n = 𝐱p

n + 𝐫1
n + 𝐫2

n 

𝐱c4
n = 𝐱p

n − 𝐫1
n + 𝐫2

n 

(22) 

The CPDI shape function and gradient of the shape function can be calculated using the linear 187 

basis function 
i
 [3] as follows: 188 



Nip = Ni(𝐱p
n) =

1

4
(

i
(𝐱c1

n ) + 
i
(𝐱c2

n ) + 
i
(𝐱c3

n ) + 
i
(𝐱c4

n )) (23) 

Nip = Ni(𝐱p
n) =

1

2Vp

{
 
 

 
 (

i
(𝐱c1

n ) − 
i
(𝐱c3

n )) [
𝐫1y
n − 𝐫2y

n

𝐫2x
n − 𝐫1x

n ] 

+ (
i
(𝐱c2

n ) − 
i
(𝐱c4

n )) [
𝐫1y
n + 𝐫2y

n

−𝐫2x
n − 𝐫1x

n ]
}
 
 

 
 

 (24) 

 189 

Figure 8 Particle velocity field 190 

In the CPDI, the material points momenta (m𝐯)p are interpolated to the grid nodes using the 191 

CPDI shape function given in equation (23). This implies that the velocity/momentum is locally 192 

constant in the material point domain, then distributed evenly to the material points corners (by 193 

the weight of 0.25 in the area of a quadrilateral particle domain) and interpolated from the 194 

material points corners to the grid nodes using the linear basis functions 
i
. This may reduce 195 

the spatial numerical accuracy as the velocity field in each material point domain are zero-196 

order polynomials. Different approaches have been studies to improve the velocity projection 197 

for the MPM. Wallstedt and Guilkey [14] employed the velocity gradient to GIMP’s velocity 198 

projection to reduce the velocity projection errors. Jiang et al. [29, 30] applied a velocity 199 

gradient to the momentum projection for the angular momentum conservation. While both 200 

approaches above consider velocity gradient in the velocity projection, the former considers 201 

the linear velocity gradient field while the latter considers both linear and rotation velocity 202 

gradient field to obtain the conservation of the angular momentum. In this study, we use a 203 

similar approach from Wallstedt and Guilkey [14] but for the CPDI. The velocity field in the 204 

material point’s domain depends on the velocity gradient 𝐯p as follows: 205 



 𝐯(𝐱) = 𝐯p + 𝐯p(𝐱 − 𝐱p) (25) 

In other words, the velocity is approximated as a linear function in the material point domain. 206 

As such, this approximation does not require an extra material point variable because the 207 

velocity gradient 𝐯p is already available within the MPM algorithm. Therefore, no extra step 208 

is required to compute the velocity gradient. However, the velocity gradients need to be stored 209 

as a state variable at material points. When the velocity is prescribed as a velocity field, the 210 

velocities at material point corners can be calculated using Equation (25). Then, each material 211 

point domain consists of 5 velocity data points including the velocity at material points and 212 

four corners, (𝐯p, 𝐯c1, 𝐯c2, 𝐯c3, 𝐯c4). These data points can be used to reconstruct the velocity 213 

function in the background grid using the Improved Moving Least Squares method as described 214 

in the previous section. 215 

3.2. Time discrete equations 216 

The numerical solution is obtained at discrete time steps using the Updated Stress Last 217 

approach [31] and the semi-implicit Euler time integration where t is the time step and Nt is 218 

the total number of time steps. The solution in both nodes and material points in the current 219 

time step is denoted by a superscript n and in the next time step is: 220 

 tn+1 = tn + ∆t (26) 

Initially, state variables for solids are generated including mass mp, position 𝐱p, velocity of 221 

material points and velocities of material point corners 𝐯p, 𝐯c=1:4, volume Vp, stress p, body 222 

force 𝐛p, deformation gradient 𝐅p. At the first of each time step, the nodal mass mi
n, internal 223 

forces 𝐟i
b,n

 and external forces 𝐟i
int,n

 are computed as: 224 

mi
n =∑Nip

p

mp (27) 



𝐟i
b,n =∑Nip𝐛p

n

p

mp (28) 

𝐟i
int,n = −∑Nipp

n

p

Vp (29) 

In the original CPDI method, the nodal velocity is updated as using the CPDI shape function 225 

Nip: 226 

𝐯i
n = (∑Nip

p

mp𝐯p
n) mi

n⁄  (30) 

However, in this paper, the nodal velocity is updated using the IMLS shape function in equation 227 

(17) evaluated at the position of material points 
ip
= 

i
(𝐱p

n) and at the position of material 228 

point corners 
ic
= 

i
(𝐱c

n)  as: 229 

𝐯i
n =∑(

ip
𝐯p
n +∑

ic
𝐯c
n

4

c=1

)

p

 (31) 

where 𝐯i
n is the nodal velocity, 𝐯p

n is the material point’s velocity, 𝐯c
n is the velocity at the 230 

corners of the material point. 
ip

 and 
ic

 are the IMLS nodal shape functions. Because the least 231 

squares shape function does not guarantee the partition of the unity, the linear momentum may 232 

not be conserved. Therefore, the conservation errors of the proposed least squares interpolation 233 

are examined in the given numerical examples. Subsequently, the CPDI algorithm [3] is 234 

followed. The total force 𝐟i
n, nodal acceleration 𝐚i

n and velocity at the next time step 𝐯i
n+1 are 235 

calculated as: 236 

 𝐟i
n = 𝐟i

int,n + 𝐟i
b,n + 𝐟i

ext,n
 (32) 

 𝐚i
n =

𝐟i
n

mi
n (33) 

 𝐯i
n+1 = 𝐯i

n + 𝐚i
ndt (34) 



After solving the equations of motion, the velocities and positions of the material points are 237 

updated: 238 

 𝐯p
n+1 = 𝐯p

n +∑Nip𝐚i
ndt

i

 (35) 

 𝐱p
n+1 = 𝐱p

n +∑Nip𝐯i
n+1dt

i

 (36) 

The velocity gradients, using the gradient of the shape function, can be computed at particle 239 

position based on nodal velocities as: 240 

 𝐯p
n+1 =∑Nip𝐯i

n+1

i

 (37) 

Subsequently, the quantities such as deformation gradient 𝐅p
n+1, volume of the material point 241 

Vp
n+1 and density of the material points 

p
n+1 are updated: 242 

 𝐅p
n+1 = (𝐈 +𝐯p

n+1dt)𝐅p
n (38) 

 Vp
n+1 = det(𝐅p

n+1) Vp
o (39) 

 

p
n+1 =

mp

Vp
n+1 (40) 

After that, the topology parameters 𝐫1
n+1, 𝐫2

n+1 are updated using equation (21) and position of 243 

material point corners 𝐱c
n+1 in equation (22). Now, the extra step required beyond the algorithm 244 

[3] is to update the velocities at material point domain corners: 245 

𝐯c
n+1 = 𝐯p

n+1 +𝐯p
n+1(𝐱c

n+1 − 𝐱p
n+1) (41) 

Then, a constitutive model is called to update the stress p
n+1 at the material points at the end 246 

of the time step. 247 



4. NUMERICAL EXAMPLES 248 

4.1. Method of Manufactured Solutions 249 

Method of Manufactured Solutions (MMS) has been used for the verification and validation 250 

for the MPM solution. The advantage of MMS is to test codes with boundaries or nonlinearities 251 

in which the exact solution is difficult to obtain. Furthermore, in MMS, the magnitude of the 252 

displacement in the solution can be controlled by a single parameter. It is convenient to study 253 

the cell-crossing errors in the MPM because the displacement magnitude can be modified 254 

ranging from small to large deformation. Steffen et al. [32] applied MMS for a 2D axis-aligned 255 

vibration problem; Wallstedt and Guilkey [33] adopted MMS to study the convergence rate of 256 

GIMP by simulating a large deformation radial expansion of a ring. Later, Kamojjala et al. [34] 257 

presented a serial of verification tests for solid mechanics including a MMS generalized vortex 258 

problem. In this paper, the axis-aligned vibration [32], the radial expansion of a ring [33] and 259 

the MMS generalized vortex of a ring [34] were used to study the convergence rate of the CPDI 260 

and the CPLS, presenting in section 4.2, 0 and 4.4 respectively. This section summarizes the 261 

general derivation of the method of manufacture solution for hyper-elastic materials. Firstly, 262 

the linear momentum balance equation can be written in the total Lagrangian form and updated 263 

Lagrangian form as follows: 264 

 
o
𝐚 = . 𝐏 + 

o
𝐛 (42) 

 𝐚 = .+ 𝐛 (43) 

where 265 


o
 Density in reference configuration, 

 Density in current configuration, 

𝐚 Acceleration vector, 

𝐏 1st Piola-Kichhoff Stress, 

 Cauchy Stress, 

𝐛 Body force vector. 



To manufacture the solution, a non-linear time-dependent displacement solution  266 

𝐮 is defined. Then the deformation gradient is computed as: 267 

𝐅 = 𝐈 +
𝐮

𝐗
 (44) 

After that, the 1st Piola-Kichhoff stress of the hyper-elastic neo-Hookean model to the reference 268 

configuration, denoted as 𝐗, can be written as: 269 

𝐏 = lnJ𝐅−1 + 𝐅−1(𝐅𝐅T − 𝐈) (45) 

where J is the determinant of deformation gradient 𝐅,  and  are the shear modulus and Lame 270 

constant. The Cauchy stress to the current configuration, denoted as 𝐱,  is: 271 

 =
𝐏𝐅T

J
=

lnJ

J
𝐈 +



J
(𝐅𝐅T − 𝐈) (46) 

The acceleration is computed by twice differentiating the displacement 𝐮 with respect to time. 272 

Then, substituting the given stress and acceleration to the govern equation (42), the body force 273 

can be found. The body forces are used as the source term. The source term (body force) is 274 

manufactured as the input for the model. The Root Mean Square (RMS) errors for numerical 275 

simulations are defined as: 276 

RMS = √
∑ ‖𝐟numerical(𝐱p) − 𝐟exact(𝐱p)‖

2Np
p=1

Np
 (47) 

4.2.  Axis-aligned vibration 277 

The first numerical example is a 1D vibration problem which the displacement and the velocity 278 

are: 279 

 𝐮(X, t) = A sin (2
 X

L
) sin (

c t

L
) (48) 

 
𝐯(X, t) =

d𝐮

dt
= Ac sin (2

 X

L
) cos (

c t

L
) (49) 



where A is the maximum amplitude of displacement, L is size of the unit square (L=1m), X is 280 

the position of material points in the reference configuration, c is the wave speed (c = √
E


). 281 

The deformation gradient computed using equation (44) is: 282 

𝐅(X, t) = 1 + 2
A 

L
cos (2

 X

L
) sin (

c t

L
) (50) 

Using the Method of Manufactured Solutions for the equation of motion, the body forces 283 

required to obtain the displacement and velocity field above are: 284 

𝐛(X, Y, t) =
 𝐮(X, t)

L2
(4




o

− c2 − 4
[ln(𝐅(X, t)) − 1] − 


o
𝐅(X, t)2

) (51) 

Table 2 Numerical parameters for 1D vibration 285 

Parameters Symbol Value 

Young’s modulus E 10e7 Pa 

Poisson’s ratio  0 

Shear modulus  3.85e6 Pa 

Lamé constant  5.77e6 Pa 

Initial density 
o
 1000 kg/m3 

Final time T 0.02s 

Time step dt 0.4
h

c
 

Displacement 

amplitude 
A 

0.0001m and 

0.1m 

A 1m-length bar is discretized into 8, 16, 32, 64,128, 256, 512 cells with 4 material 286 

points/particles per cell, labeled “PPC” in the figure’s legend. This discretization corresponds 287 

to cell sizes of 0.125m, (0.125/2)m, (0.125/4)m, (0.125/8)m, (0.125/16)m, (0.125/32)m and 288 

(0.125/64)m respectively. Table 2 summarizes the numerical parameters. The time step dt is 289 

equal to 0.4
h

c
. The final time of the simulation is 0.02s corresponding to 1 cycle motion of 290 

material points. We compared the CPLS, with the CPDI [3] and the MPM [1]  in the small 291 

deformation A = 0.0001m and the large deformation A = 0.1m. All the algorithms show similar 292 

accuracy and approximate 2nd order convergence rate for displacements (Figure 9), velocities 293 



(Figure 11) and stresses (Figure 13) when the deformation is small and cell-crossing does not 294 

occur. However, when the deformations are large leading to excessive cell-crossing, the MPM 295 

diverges and the CPDI does not retain the expected convergence rate. Furthermore, increasing 296 

the initial number of material points per cell (1 PPC, 4 PPC and 9PPC equally distributed in a 297 

square grid cell) increases slightly the convergence rate for the CPDI. In contrast, the CPLS 298 

retains the same order convergence rate for displacements (Figure 10), velocities (Figure 12) 299 

and stresses (Figure 14) in the large deformation. Similarly, the CPLS convergence rates shown 300 

are almost independent of the number of material points per cell. Figure 15 shows the 301 

computational cost of the CPLS-1PPC and the CPDI with different PPC. Visually, the CPLS 302 

with 1PPC has a similar computational cost with the CPDI with 9PPC in 2D but can lead to a 303 

higher accuracy. As the accuracy of the CPLS is independent from the number of the material 304 

points per cells, it is advised to avoid the excessive number of material points in cell. 305 

Furthermore, another reason for avoiding the excessive number of material points per cell is 306 

that they may contribute to the ringing instability/null-space instability. This instability was 307 

demonstrated for the MPM [35, 36] as well as for GIMP [37] and Dual Domain Material Point 308 

Method [38, 39]. 309 

 

Figure 9 Displacement Convergence rate 

at small deformation (A=0.0001m) 

 

Figure 10 Displacement Convergence rate 

at large deformation (A=0.1m) 



 

Figure 11 Velocity Convergence rate at 

small deformation (A=0.0001m) 

 

Figure 12 Velocity Convergence rate at 

large deformation (A=0.1m) 

 

Figure 13 Stress Convergence rate at 

small deformation (A=0.0001m) 

 

Figure 14 Stress Convergence rate at 

large deformation (A=0.1m) 

Figure 15 Computational cost of the CPLS 310 



The conservation errors of the least-squares interpolation are examined by comparing the total 311 

linear momentum of all material points and the total linear momentum of all nodes, which are 312 

defined by: 313 

 Pp =∑mp|𝐯p| (52) 

 Pi =∑mi|𝐯i| (53) 

Figure 16 and Figure 17 show the total linear momentum of both the CPDI and the CPLS for 314 

the cell size of 0.125m. While the CPDI shape function enforces a momentum conservation by 315 

the partition of unity, the CPLS shows a negligible conservative error (momentum difference 316 

between material points and grid nodes) and this error will get smaller by refining the mesh.  317 

 

Figure 16 Total momentum of the CPDI 

for cell size 0.125m (A=0.1m) 

 

Figure 17 Total momentum of the CPLS 

for cell size 0.125m (A=0.1m) 

To check the energy conservation, the total energy E is the sum of the strain U and the kinetic 318 

energy K which are computed in each time step as: 319 

K =
1

2
∑mp‖𝐯p‖

2

p

 
(54) 

U =
1

2
∑  p,ijp,ijVp
p

 
(55) 



E = U + K 
(56) 

Figure 18, Figure 19 and Figure 20 present the evolutions of the kinetic energy, the strain 320 

energy and the total energy. Both the CPDI and the CPLS show similar energy evolutions with 321 

the maximum energy being slightly higher than the exact solutions, but this energy discrepancy 322 

decreases when refining the mesh. 323 

Figure 18 Kinetic energy evolution for 

cell size 0.125m (A=0.1m) 

Figure 19 Strain energy evolution of the 

CPDI for cell size 0.125m (A=0.1m) 

Figure 20 Total energy evolution of the CPDI for cell size 0.125m (A=0.1m) 



4.3. 2D Ring expansion 324 

 325 

Figure 21 Schematic of 2D Ring expansion 326 

The displacement and velocity field are prescribed with the polar coordinates for a ring as: 327 

 𝐮(r, t) = A sin (
ct

2r̅
) (c3r

3 + c2r
2 + c1r1) (57) 

 
𝐯(r, t) =

d𝐮

dt
=
Ac

2r̅
cos (

ct

2r̅
) (c3r

3 + c2r
2 + c1r1) (58) 

where A is the maximum amplitude of displacement, r and  are radial and angular coordinates 328 

in the reference configuration, t is the time, c is the wave speed (c = √
E


). The inner and outer 329 

radius of the ring are ri and ro respectively and r̅ is the mean radius of the ring r̅ = (ri + ro)/2. 330 

The constants c3, c2, c1 are: 331 

 c1 =
−6ri

ro(ro − 3ri)
; c2 =

3(ri + ro)

ro2(ro − 3ri)
; c3 =

−2

ro2(ro − 3ri)
 (59) 

The body forces and stresses are calculated based on the Method of Manufactured solutions.  332 

Because of the symmetric condition, only a quarter of a ring is considered with a symmetric 333 

boundary condition. Five different cell sizes (le) including 0.1m, (0.1/2)m, (0.1/4)m, (0.1/8)m 334 

and (0.1/16)m are used to calculate the spatial convergence rate. The number of material points 335 

increases proportionally to the grid size. There are Nr = 0.4/le material points distributed 336 

equally in the radial direction (r=0.2m) and there are N = 1.6/le material points distributed 337 



equally in the angular coordinate (see Figure 22 for the discretization of material points domain 338 

and background grid). 339 

Table 3 Numerical parameters 340 

Parameters Symbol Value 

Young’s modulus E 10e7 Pa 

Poisson’s ratio  0 

Shear modulus  3.85e6 Pa 

Lamé constant  5.77e6 Pa 

Initial density 
o
 1000 kg/m3 

Final time T 0.02s 

Time step dt 0.4
h

c
 

Displacement amplitude A 0.0001m and 0.1m 

Table 3 shows the numerical parameters for the 2D ring expanding examples. Two algorithms 341 

are compared (CPDI and CPLS) in small deformation A = 0.0001m and large deformation A 342 

= 0.1m. For small deformation, both the CPDI and the CPLS show a 2nd order convergence 343 

rate for displacement (Figure 23), velocity (Figure 25) and 1st order convergence rate for stress 344 

(Figure 27). However, in large deformation, the CPDI cannot retain the same order 345 

convergence rate for the displacement and the velocity and 1st order convergence rate for the 346 

stress. In contrast, the CPLS retains a same order convergence rate for the displacement (Figure 347 

24), the velocity (Figure 26) and 1st order convergence rate for the stress (Figure 28). The 348 

conservation errors of the CPLS are also negligible in this example (see Figure 29 and Figure 349 

30). 350 



 

Cell size (0.1/2)m 

 

Cell size (0.1/4)m 

 

Cell size (0.1/8)m 

Figure 22 Grid and material point domain discretization for the 2D Ring Expanding 351 

 

Figure 23 Displacement Convergence rate 

at small deformation (A=0.0001m) 

 

Figure 24 Displacement Convergence rate 

at large deformation (A=0.1m) 

 

Figure 25 Velocity Convergence rate at 

small deformation (A=0.0001m) 

 

Figure 26 Velocity Convergence rate at 

large deformation (A=0.1m) 



 

Figure 27 Stress Convergence rate at 

small deformation (A=0.0001m) 

 

Figure 28 Stress Convergence rate at 

large deformation (A=0.1m) 

 

Figure 29 Total momentum of the CPDI 

for cell size 0.1m (A=0.1m) 

 

Figure 30 Total momentum of the CPLS 

for cell size 0.1m (A=0.1m) 

4.4.  Generalized vortex 352 

 

Figure 31 Polar coordinates for the ring 

  

Figure 32 Illustration of the displacement 

field of the MMS vortex [34] 



This example demonstrates the capability of the CPDI and the CPLS in extreme large 353 

distortion. Firstly, we consider a ring with an inner radius of ri = 0.75m and an outer radius 354 

of ro = 1.25m. The ring is rotated with a maximum rotation angle A= 1(radian) at r =
ri+ro

2
=355 

1m and zero rotation at the inner and outer boundary (see the illustration of the displacement 356 

field in Figure 32). The radius of each material points at the reference configuration is: 357 

R = √X2 + Y2 (60) 

The initial angle of each material point is: 358 

 = arctan(X, Y) (61) 

We define a constant which is zero at the inner and outer boundary of the ring as follows: 359 

h(R) = 1 − 32(R − 1)2 + 256(R − 1)4 (62) 

The induced rotation angle is: 360 

 = A sin(ct) h(R) (63) 

where A is the maximum rotation angle and c is the wave speed (c = √
E


). The angle of each 361 

material point at current configuration is: 362 

 = +  (64) 

The induced rotation angle corresponds to the displacement and velocity field as follows: 363 

𝐮(X, Y, t) = [
A(X cos−Ysin)

A(X sin+Y cos)
] (65) 

𝐯(X, Y, t) =
d𝐮

dt
= [

A2ch(R)cos(ct)(−X sin−Ycos)

A2ch(R)cos(ct)(X cos−Ysin)
] (66) 

The Cauchy stress in the polar coordinate ∗ [40] is computed using the Method of 364 

Manufactured Solutions, leading to 365 

∗ = [
rr r

r 
] (67) 

where. 366 



rr = 0 

r = r = ARsin(ct)(−64(−1 − R) + 1024(−1 + R)3) 

 =  (AR)
2sin2(ct)(−64(−1 − R) + 1024(−1 + R)3)2 

(68) 

Then, the Cauchy stress in the Cartesian coordinate  is converted from the Cauchy stress in 367 

the polar coordinate using a transformation tensor 𝐪 to the current configuration by: 368 

 = 𝐪∗𝐪T (69) 

where the transformation tensor 𝐪 to the current configuration is: 369 

𝐪 = [
cos −sin 

sin  cos 
] (70) 

Solving equation (69), the Cauchy stress components are: 370 

xx = sin  ( sin  − 2r cos) 

𝑥𝑦 = 𝑦𝑥 = r(cos
2  − sin2 ) −  sin  cos 

𝑦𝑦 = cos  (2r sin  + cos ) 

(71) 

The body forces required to obtain the displacement and velocity field above are: 371 

𝐛(X, Y, t) = 𝐪 [
br
b

] = [
br cos− b sin 

br sin + b cos 
] (72) 

where radial body forces and angle body forces in the polar coordinate are: 372 

br = −RA
2(4R − 5)2(4R − 3)2 

(−c22 cos2(ct) (4R − 3)2(4R − 5)2 +
4096


o

(R − 1)2 sin2(ct)) 
(73) 

b = −RAc
22 sin(ct) (4R − 3)2(4R − 5)2 +

64(96R3 − 240R2 + 188R − 45)


o

 
(74) 



 

Cell size 0.125m 

 

Cell size (0.125/2)m 

 

Cell size (0.125/4)m 

Figure 33 Grid and material point domain discretization for the 2D generalized Vortex 373 

Table 4 Numerical parameters for generalized vortex problem 374 

Parameters Symbol Value 

Young modulus E 10e3 Pa 

Poisson’s ratio  0.3 

Shear modulus  3.85e2 Pa 

Lame constant  5.77e2 Pa 

Initial density 
o
 1000 kg/m3 

Final time T 1s 

Time step dt 0.1
h

c
 

Displacement amplitude A 1 radian 

In this example, the material point domains are distributed in the radial direction and the 375 

background grid is structured. Four different cell sizes including 0.125m, (0.125/2)m, 376 

(0.125/4)m and (0.125/8)m are used to calculate the spatial convergence rate. In a similar 377 

way to the previous example, the number of material points increase proportionally to the 378 

number of grid cells. There are Nr = 1/le material points distributed equally in the radial 379 

direction (r = 0.5m) and N = 45 4le⁄  material points distributed equally in the angular 380 

coordinate (see Figure 33 for the discretization of material points domain and background grid). 381 

The numerical parameters for the generalized vortex problem are shown in Table 4. In this 382 

example, the MPM performs poorly as the ring is broken under excessive rotation (see Figure 383 

34). Both the CPDI and the CPLS perform better as the ring keeps the similar shape with the 384 



initial configuration at the final configuration (see Figure 35 and Figure 36). Figure 37 and 385 

Figure 38 show the norm of the displacement errors of material points for the cell size of 386 

0.125m. Because of the symmetry. Only a quarter of the ring is plotted. While high 387 

displacement errors for the CPDI are obtained in the middle and the inner boundary of the ring, 388 

high displacement errors for the CPLS are obtained in the middle and the outer boundary of 389 

the ring. Similar velocity and stress error distribution are observed for both the CPDI and the 390 

CPLS with a lower magnitude for the CPLS (see Figure 39, Figure 40, Figure 41 and Figure 391 

42). Figure 43, Figure 44 and Figure 45 show the spatial convergence rate of the displacement, 392 

the velocity and the stress respectively. Overall, the CPLS shows approximately 2nd order 393 

convergence while the CPDI, at a very fine mesh, loses convergence. Unlike the CPDI, the 394 

CPLS interpolation does not ensure the linear momentum conservation with a small deviation 395 

between total momentum of material points and nodes (see Figure 46 and Figure 47), these 396 

errors also reduce significantly when refining mesh in a similar way to the previous examples. 397 

 398 

Figure 34 MPM solution for cell size 0.125m 399 



 

Figure 35 Final configuration of the CPDI 

material point domain for the cell size 

0.125m 

 

Figure 36 Final configuration of the CPLS 

material point domain for the cell size 

0.125m 

 

Figure 37 Displacement error of the CPDI 

material point for the cell size 0.125 

 

Figure 38 Displacement error of the CPLS 

material point for the cell size 0.125 

 

Figure 39 Velocity error of the CPDI 

material point for the cell size 0.125 

 

Figure 40 Velocity error of the CPLS 

material point domain for the cell size 0.125 



 

Figure 41 Stress error of the CPDI material 

point for the cell size 0.125 

 

Figure 42 Stress error of the CPLS material 

point for the cell size 0.125 

 

Figure 43 Convergence rate of the 

displacement 

 

Figure 44 Convergence rate of the velocity 

 400 
Figure 45 Convergence rate of the stress 401 



Figure 46 Total momentum of the CPDI 

for the cell size 0.0625m 

Figure 47 Total momentum of the CPLS 

for the cell size 0.0625m  

4.5. Two elastic disks impact 402 

 

 
Figure 48 Colliding disks problem 

Figure 49 Initial condition (speed colorbar) 

 

Figure 50 Colliding Impact (t=1.05s) 

 

Figure 51 Releasing disks (t=2.5s) 

 

 403 



 
Figure 52 CPDI energy evolution 

 
Figure 53 CPLS energy evolution 

Figure 54 Total energy evolution 404 

The colliding impact of two elastic disks is simulated to examine the no-slip contact with the 405 

new interpolation function, replicated the simulation by Sulsky et al. [1] with given geometry 406 

and parameters in Figure 48. The structured grid has a square cell of 0.05m and there is a total 407 

of 896 material points for the 2 disks. The impact velocity is 0.1 m/s. Figure 49, Figure 50 and 408 

Figure 51 show the evolution of the speed during the colliding. Energy plots are given for the 409 

CPDI in Figure 52 and for the CPLS in Figure 53. In both the CPDI and the CPLS, the kinetic 410 

energy decreases and recovers after the impact while the strain energy reaches a maximum 411 

during the impact and decreases close to zero after the impact. That results in a similar total 412 

energy evolution of both the CPDI and the CPLS (see Figure 54). This example demonstrates 413 

that there is no need for the additional treatment for the no-slip contact for the CPLS. 414 



4.6. An elastic disk rebound with the wall 415 

The next example is the impact of an elastic disk with the frictionless wall at the boundary of 416 

the background grid domain with given geometry and parameters in Figure 55. The numerical 417 

parameters are the same for the colliding impact of two disks, but the impact now is between 418 

the elastic disk and the wall which enforces the Dirichlet boundary of the zero velocity. Energy 419 

plots are given for the CPDI in Figure 56 and for the CPLS in Figure 57. Both the CPDI and 420 

the CPLS show a slight decrease of total energy when rebounding from the boundary of the 421 

background grid. Like previous example, the CPLS show a slightly less dissipation than the 422 

CPDI (see Figure 58). The energy loss indicates some dissipation due to the use of the lumped 423 

mass matrix [41]. In general, the least square interpolation does not require any additional 424 

boundary treatment in this example. 425 

 426 

Figure 55 Wall rebound problem 427 

 

 
Figure 56 CPDI energy evolution 

 
Figure 57 CPLS energy evolution 



Figure 58 Total energy evolution  428 

5. CONCLUSION 429 

The CPLS, an improved version of the CPDI, has been proposed in this paper to obtain higher 430 

accuracy in the large deformation regime compared with the original CPDI and MPM. The 431 

accuracy enhancement is achieved by employing the Improved Moving Least Squares method, 432 

which improves the robustness compared with the conventional Moving Least Squares method. 433 

Furthermore, by using the velocity gradient, the velocity in the CPLS is considered as linear 434 

function rather than being locally constant within the material point domains. Three verification 435 

examples using the Method of Manufactured Solutions demonstrate the improved capabilities 436 

of the CPLS compared with the CPDI and the MPM. Furthermore, the CPLS improves the 437 

accuracy of the CPDI and maintains automatically the non-slip contact in a similar way to the 438 

CPDI. Further works are needed to examine whether the least square interpolation may affect 439 

the friction contact implementation and general boundary conditions. We also found that the 440 

Improved Moving Least Squares reconstruction does not always guarantee the linear 441 

momentum conservation in the mapping from the material points to the nodes although the 442 

conservative errors are minor in the given numerical examples. The work presented in this 443 

paper is not only limited to the CPDI with quadrilateral particle domain but also is able to be 444 

extended to other CPDI variants such as using the tetrahedron particle domain [42, 43]. 445 
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7. APPENDIX 454 

This Appendix describes in detail how to calculate the set of polynomials in Figure 1-3. The 455 

input requires the material point coordinates xp and the total number of material points in the 456 

interval [-1, 1] as follows: 457 

Figure 1: Material point’s coordinates: xp = [-0.5 0 0.5]; N = 3 458 

Figure 2: Material point’s coordinates: xp = [-0.99 -0.95 -0.9]; N = 3 459 

Figure 3: Material point’s coordinates: xp = [-0.1 -0.5]; N = 2 460 

Firstly, we define the set of polynomials in 1D: 𝐪 = [1, x, x2], Then, the domain is discretized 461 

into Ni = 1000 points {x}i=1
Ni , the value of the orthogonal polynomials of these points, denoted 462 

as p1(xi), p2(xi), p3(xi), can be calculated using equation (19) as: 463 

for i = 1 to Ni 464 

p1(xi) = 1; (75) 

p2(xi) =  q2(xi) −
〈q2, p1〉

〈p1, p1〉
p1(xi) = xi −

∑ w(xi − xp)xp
N
p=1

∑ w(xi − xp)
N
p=1

 (76) 

p3(xi) =  q3(xi) −
〈q3, p1〉

〈p1, p1〉
p1(xi) −

〈q3 , p2〉

〈p2, p2〉
p2(xi) (77) 

And 465 



p3(xi) = xi
2 −

∑ w(xi − xp)xp
2N

p=1

∑ w(xi − xp)
N
p=1

−
∑ w(xi − xp)xp

2p2(xp)
N
p=1

∑ w(xi − xp)p2(xp)p2(xp)
N
p=1

p2(xi) (78) 

where w(xi − xp) is the cubic spline function in equation (10). 466 

Then, the set of the orthogonal polynomials 𝐩 = [p1, p2, p3] are presented as the scatter plots 467 

of all Ni connected with straight lines. 468 
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