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ABSTRACT 

 
The paper presents an improved moving least squares reconstruction technique for the Material Point Method. The moving least 

squares reconstruction (MLS) can improve spatial accuracy in simulations involving large deformations. However, the MLS 
algorithm relies on computing the inverse of the moment matrix. This is both expensive and potentially unstable when there are 

not enough material points to reconstruct the high-order least squares function, which leads to a singular or an ill-conditioned 
matrix. The shown for mulation can overcome this limitation while retain the same order of accuracy compared with the 

conventional moving least squares reconstruction. Numerical experiments demonstrate the improvements in the accuracy and 
comparison with the original Material Point Method and the Convected Particles Domain Interpolation method. 

 
KEY WORDS: improved moving least squares, Material Point Method 

INTRODUCTION 

The Material Point method (MPM) (Sulsky et al., 1994) has been widely used to simulate the large deformation 

behaviour of solid continuum-based materials. In MPM, the continuum body is discretized into Lagrangian elements 

referred to “material points”. These material points are placed in a background grid which is used to solve the 

equations of motion. Although MPM is a powerful tool in computational mechanics, MPM still suffered from 

shortcomings such as grid-crossing and quadrature errors. These errors are reduced in the newer formulations of 

MPM, such as the Generalized Interpolation Material Point Method (Badenhagen and Kober, 2004), the MPM using 

B-spline shape functions (Steffen et al., 2008a; Tielen et al., 2017; Gan et al., 2017) or the Convected Particles 

Domain Interpolation (CPDI) (Sadeghirad et al., 2011). Many studies have shown that when grid-crossing occurs, 

the MPM solutions can either be non-convergent or reduce the convergence rate when refining grids with the spatial 

convergence rate varying between fir stand second order ( Wallstedt and Guilkey, 2007; Steffen et al., 2008a; 

Steffen et al., 2008b; Charlton et al., 2017). 

To improve the accuracy of MPM, Wallstedt and Guilkey (2009) and Sulsky and Gong (2015) showed that the 

moving least squares function reconstruction (MLS) could be used to achieve the higher accuracy in large 

deformation. However, the formulation requires the inversion of the moment matrix on the solution of a system of 

equations, therefore, this is both expensive and there is a possibility that the moment matrix may be singular or ill-

conditioned.Wallstedt and Guilkey (2009) showed that the nodes in the background grid can have spurious values 

due to the ill-conditioning of the moment matrix and proposed a method to detect the ill-conditioned nodes. In this 

paper, we propose an alternative methodfor function reconstruction within the MPM framework, this method is 

based on the improved moving least squares (IMLS), which has been applied to the element-free Galerkin method 

framework (Liew et al., 2006; Zhang et al., 2014; Zhang and Liew, 2014), to overcome the instability of the 

conventional MLS. The new formulation does not require the inversion of the moment matrix so it can avoid the 

singlar or ill-conditioned matrix in MLS. To evaluate the proposed formulation, the method of manufactured 

solutions is used to compare the spatial convergence rate of the solution with MPM and CPDI interpolation. 
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IMPROVED MOVING LEAST SQUARESRECONSTRUCTION 

Improved moving least squares shape function 

The MLS approximation of an unknown function uh(x) is: 

 uh(𝐱) =∑pi(𝐱)

m

i=1

ai(𝐱) = 𝐩
T(𝐱)𝐚(𝐱) (1) 

In which p(x) is the polynomial basis vector and a(x) is the unknown coefficient vector and m is number of basis 

functions. Given a set of N data points with position {x}p=1
N  and values of these points{u}p=1

N , the coefficient vector 

can be computed by minimizing the weighted least square error J given by: 

 J = ∑w(𝐱 − 𝐱p)[𝐩
T(𝐱)𝐚(𝐱) − up]

𝟐
N

p=1

 (2) 

where w(x – xp) > 0 is a positive weight function. In this paper, a quadratic Bspline function (eq.(27)) below will 

be used for density, body forces and stress reconstruction while a linear basis function is selected for the velocity 

reconstruction. Then, differentiating the weighted least square error J with respect to a(x), we obtain: 

 𝐀(𝐱)𝐚(𝐱) = 𝐁(𝐱)𝐔p (3) 

Where A the moment matrix, the vector B and the data vector 𝐔p are defined by: 

 𝐀(𝐱) =∑w(𝐱− 𝐱p)𝐩(𝐱p)𝐩
T(𝐱p)

N

p=1

 (4) 

 
𝐁(𝐱) = [w(𝐱 − 𝐱1)𝐩(𝐱1)w(𝐱 − 𝐱2)𝐩(𝐱2)    …      w(𝐱 − 𝐱N)𝐩(𝐱N)] (5) 

 𝐔p = [u1 u2… uN]
T 

(6) 

For f(x)and g(x), in MPM applying least squares reconstruction (Wallstedt and Guilkey, 2009; Sulsky and Gong, 

2015), an inner product of two polynomials f and g is computed using approximate quadrature rule given by: 

 〈f, g〉 =  ∫ f(𝐱)g(𝐱)dx ≈∑w(𝐱 − 𝐱p)f(𝐱p)g(𝐱p)

N

p=1

 (7) 

From eq.(7), eq.(3) can be rewritten in the matrix form as: 

 [

〈p1, p1〉 〈p1, p2〉

〈p2, p1〉 〈p2, p2〉
⋯

〈p1, pm〉

〈p2, pm〉
⋮             ⋮ ⋱ ⋮

〈pm, p1〉 〈pm, p2〉 … 〈pm, pm〉

] [

a1(𝐱)

a2(𝐱)
⋮

am(𝐱)

] =

[
 
 
 
 
〈p1, up〉

〈p2, up〉

⋮
〈pm, up〉]

 
 
 
 

 (8) 

If the basis function set pi(x) consists of  weighted orthogonal function, the orthogonality condition is satisfied 

such that: 

 {
〈pi, pj〉  0,         i = j

〈pi, pj〉 = 0,          i  j
 (9) 

Then, the eq.(8) becomes: 

 [

〈p1, p1〉 0

0 〈p2, p2〉
⋯

0
0

⋮             ⋮ ⋱ ⋮
0            0 … 〈pm, pm〉

] [

a1(𝐱)

a2(𝐱)
⋮

am(𝐱)

] =

[
 
 
 
 
〈p1, up〉

〈p2, up〉

⋮
〈pm, up〉]

 
 
 
 

 (10) 

Then, the coefficient a(x) can be calculated as: 
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 ai(𝐱) =  
〈pi, up〉

〈pi, pi〉
; i = [1,m] (11) 

Or in matrix form: 

 𝐚(𝐱) = 𝐀̅(𝐱)𝐁(𝐱)𝐔 =

[
 
 
 
 
 
 
 

1

〈p1, p1〉
0

0
1

〈p2, p2〉

⋯
0
0

⋮             ⋮ ⋱ ⋮

0            0 …
1

〈pm, pm〉]
 
 
 
 
 
 
 

𝐁(𝐱)𝐔 (12) 

Substituting for a(x) in equation (1), we get: 

 uh(𝐱) = 𝐩
T(𝐱)𝐚(𝐱) = 𝐩T(𝐱)𝐀̅(𝐱)𝐁(𝐱)𝐔p = (𝐱)𝐔p =∑ (𝐱)

N

p=1

up (13) 

Where (x) is the vector of IMLS shape function and the shape function (x) is computed from: 

 
(𝐱) =∑pi(𝐱)(𝐀̅(𝐱)𝐁(𝐱))𝐢𝐩

m

i=1

= 𝐩T(𝐱)(𝐀̅𝐁)𝐩 
(14) 

Orthogonal basis functions 

In the weighted least squares method (Wallstedt and Guilkey, 2009; Sulsky and Gong, 2015), the monomial 

polynomials, denoted by q, are employed to construct the polynomial basis vector. For example, the 2D monomial 

basis functions are: 

 
𝐪 = (qi) = [1, x, y, x

2, xy, y2, … ] 
(15) 

In MPM, applying least squares reconstruction, the density, velocity, stress and body forces are constructed from 

data at material points. However, MPM suffers from quadrature errors because the positions of material points are 

arbitrary and may not coincide with quadrature points. Therefore, the integration in eq.(7) does not always satisfy 

the orthogonality condition given by eq.(9). To build a set of polynomials to satisfy the orthogonality condition, the 

set of polynomials is updated in every time step and depends on the material points coordinates using the Gram 

Schmidt orthogonalization method. For example, the 2D orthogonal polynomials p can be computed from the 

monomial polynomial q in eq. (15) as follows: 

 
pi = qi −∑

〈qi, pk〉

〈pk, pk〉

i−1

k=1

pk 
(16) 

 
Figure 1Polynomials in equal distribution of3 material 

points with weighted quadratic Bspline 

 
Figure 2 Polynomials in near-corner distribution of 3 

material points with weighted quadratic Bspline 

Figure 1 and Figure 2 show the change of polynomials in 1D corresponding to 2 different material points coordinates in 
the interval [-1,1] including equal distribution and near-corner distribution. In this example, the weight function is a 

quadratic Bspline. In case there is not enough material points data to reconstruct high order function, then the moment 

matrix A may be singular. Then, given rank(A) = r<m, the inner products of orthogonal basis functions with order higher 
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than r become zeros such that: 

 〈pi, pi〉 = 0,        r < 𝑖 ≤ 𝑚 (17) 

In such cases, the coefficient a(x) is only calculated up to order r using eq.(11). Figure 3 shows the construction of 

polynomials for 2 material points, using eq.(16). In this case, because p3(xp) = 0 with xp, using eq.(7) leading to 〈p
3
, p
3
〉= 

0. The formulation automatically applies to only the 2 first orthogonal basis functions for the function 

reconstruction. 

 
Figure 3 Polynomials for 2 material points, rank(A) = 2 then〈p3, p3〉=0 

MATERIAL POINT METHOD WITH IMLS FUNCTION RECONSTRUCTION 

Governing equations 

The governing equations read: 

 
d𝐯

dt
= .+ 𝐛  for 𝐱 (18) 

Where  is the stress tensor,  is the density, b is the body acceleration, v is the velocity vector and x is the coordinate 

vector. The Dirichlet and Neumann boundary conditions are: 

 
𝐮 = 𝐮̂  for 𝐱u 

(19) 

 . 𝐧 =   for 𝐱 (20) 

where 𝐮̂ is the pre-described displacement vector in the boundary u, n is the normal vector in the boundary  

and  is the pre-described traction. The weak form of the governing equations can be written as: 

 ∫ 
d𝐯

dt
.𝐰d



= −∫  ∶ 𝐰d


+∫ 𝐛.𝐰d


+∫ .𝐰 d


 (21) 

Where w is a test function. Denoting the acceleration vector a and the terms in the right-hand side of the eq.(21) 

respectively as f int, f b, fext the discrete equations in the background grid can be written in a simple form as follows:  

 𝐌𝐚 = 𝐟int + 𝐟b + 𝐟ext (22) 

In this paper, the subscript i denotes the nodes of the background grid while the subscript p denotes material points. 

Time integration equations 

The numerical solution of the momentum balance eq.(22) is obtained at discrete time steps using explicit time 

integration (Sulsky et al 1994) where t is the time step and Nt is the total number of time steps. Superscript ‘L’ 

denotes the solution of nodes at the end of the time step. The solution at both nodes and material points in the current 

time step is denoted by a superscript ‘t’ and the next time step at the end of the calculation is: 
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 tt+1 = tt + dt (23) 

Initially, the state variables for material points including mass mp, position xp, velocity vp, volume Vp, stress p, body 

force bp, deformation gradient Fp are generated. At the beginning of the time step, the approximations to the density 


p
t , stress p

t  and body forces 𝐛p
t  are reconstructed using IMLS technique and evaluated at the Gauss quadrature 

points ‘g’ as follows: 

 
g
t =∑

gp

p
t

p

 (24) 

 𝐛g
t =∑

gp
𝐛p
t

p

 (25) 

 g
t =∑

gp
p

p

 (26) 

Where  
g
t , 𝐛g

t , g
t  are the value of density, momentum, body forces, stress at Gauss points. gp= g(xp) is the IMLS 

shape function of Gauss point ‘g’ evaluating at position of the material point xp, computed from eq.(14). For the 

IMLS shape function of Gauss point, the weight function for the cell size le is the quadratic spline function: 

 w(x − xi) =

{
 
 
 

 
 
 

3

4
− (

x − xp

2le
)
2

(
x − xp

2le
)
1

2

1

2
(
3

2
− (

x − xp

2le
))

2
1

2
 (
x − xp

2le
)
3

2

0                                     (
x − xp

2le
)
3

2

 (27) 

Then, the lumped nodal mass mi
t, internal forces 𝐟i

b,t
 and external forces 𝐟i

int,t
 are computed using Gauss quadrature 

integration: 

mi
t =∑Nigg

t

g

g (28) 

𝐟i
b,t =∑Nig𝐛g

t

g

g  (29) 

𝐟i
int,t = −∑Nigg

t

g

g (30) 

Where g is the quadrature weight at the Gauss points and Nig= Ni(xg), Nig= Ni(xg) are the linear shape function 

and the gradient of the shape function of the node ‘i’ evaluated at Gauss points xg. The nodal velocity is computed 

based on the nodal IMLS shape function evaluated at material points ip= i(xp) as: 

 𝐯i
t =∑

ip
𝐯p
t

p

 (31) 

where 𝐯i
t is the nodal velocity, 𝐯p

t  is the material point’s velocity and ip is the IMLS shape function with the weight 

function being the linear basis function. After that, the nodal acceleration 𝐚i
t and velocity at the next time step  𝐯i

t+1 

are calculated from: 

 
𝐚i
t =

𝐟i
int,t + 𝐟i

b,t + 𝐟i
ext,t

mi
t  

(32) 

 
𝐯i
t+1 = 𝐯i

t + 𝐚i
tdt 

(33) 
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After solving the motion equation, the velocities and positions of the material points are updated: 

 𝐯p
t+1 = 𝐯p

t +∑Nip𝐚i
tdt

i

 (34) 

 𝐱p
t+1 = 𝐱p

t +∑Nip𝐯i
t+1dt

i

 (35) 

where Nip= Ni(xp)is the linear shape function of the node ‘i’ evaluating material point xp. The nodal velocity at the 

end of the time step 𝐯i
L is calculated using IMLS shape function ip= i(xp) as: 

 𝐯i
L =∑ 

ip
𝐯p
t+1

p

 (36) 

The velocity gradients, using the gradient of the shape function, can be written as: 

 𝐯p
t+1 =∑Nip𝐯i

L

i

 (37) 

Subsequently, the quantities such as deformation gradient 𝐅p
t+1, volume of the material point Vp

t+1 and density of 

the material points 
p
t+1are updated: 

 𝐅p
t+1 = (𝐈 +𝐯p

t+1dt)𝐅p
t  (38) 

 Vp
t+1 = det(𝐅p

t+1)Vp
o (39) 

 

p
t+1 =

mp

Vp
t+1 (40) 

Finally, the constitutive model stress point algorithm updates the stress p
t+1 at the material points based on the 

deformation gradient 𝐅p
t+1. At that moment, the grid configuration is reset. 

METHOD OF MANUFACTURED SOLUTIONS 

To validate the proposed formulation, several numerical solutions are constructed with the method of manufactured 

solutions. The governing equation (18) can be written in the total and updated Lagrangian forms as follows: 

 

o
𝐚 = . 𝐏 + 

o
𝐛 (41) 

where o is the density in reference configuration, a is the acceleration vector, P is the 1st Piola-Kichhoff Stress 

tensor, b is the body force vector. In this paper, the hyper-elastic neo-Hookean model is used to test the non-linear 

behaviour. The 1st Piola-Kichhoff stress to the reference configuration, denoted as X, can be written as: 

𝐏 = ln(J)𝐅−1 + 𝐅−1(𝐅𝐅T − 𝐈) (42) 

where J is the determinant of deformation gradient F,  and are the shear modulus and Lame constant. The Cauchy 

stress to the current configuration, denoted as x is: 

 =
𝐏𝐅T

J
=
ln(J)

J
𝐈 +



J
(𝐅𝐅T − 𝐈) (43) 

To manufacture the solution, a non-linear time-dependent displacement solution u is defined. The displacement and 

velocity field are: 

 𝐮(X, t) = Asin (2
 X

L
) sin (

c t

L
) (44) 

 
𝐯(X, t) =

d𝐮

dt
= Ac sin (2

 X

L
) cos (

c t

L
) (45) 

where A is the maximum amplitude of displacement, L is size of the unit square (L=1m), X and Y are the position 

of material points in the reference configuration, c is the wave speed (c = √
E


). Then the deformation gradient is 

computed as: 
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𝐅 = 𝐈 +
𝐮

𝐗
= 1 + 2

A

L
cos (2

 X

L
) sin (

c t

L
) 

(46) 

After that, the 1st Piola-Kichhoff stress is computed from the deformation gradient. The acceleration is computed 

by twice differentiating the displacement u by time. Then, substituting the given stress and acceleration in the 

governing equation eq.(41), the body force can be found. The body forces are used as the source term. The source 

term is manufactured as the input for the model and the given displacement solution is considered as the exact 

solution for the spatial convergence rate computation. The body forces required to obtain the displacement and 

velocity field above are: 

𝐛(X, t) =
ux
L2

(4



o

− c2 − 4
[ln(Fxx) − 1] − 


o
Fxx
2

) (47) 

In order to study the spatial convergence of MPM, a 1m-length bar is discretized into 8, 16, 32, 64 cells with 3 

material points per cell. This discretization corresponds to cell sizes of 0.125m, 0.0625m, 0.03125m and 0.015625m 

respectively. The material properties include the shear modulus=3.85e6Pa and the Lame constant  = 5.77e6Pa, 

initial density o = 1000 kg/m3. The time step dt=1e-5s and the final time of the simulation is 0.02s. The displacement 

amplitude is 0.1m to generate the grid-crossings. The root-mean-square errors (RMS) for numerical simulations are 

defined as: 

RMS = √
∑ ‖𝐟numerical(𝐱p) − 𝐟exact(𝐱p)‖

2Np
p=1

Np
 

(48) 

 

Figure 4, Figure 5 and Figure 6 show the spatial convergence rates of displacement, velocity and stress of material 

points respectively. We observe that MPM is non-convergent when grid-crossing occurs. The CPDI interpolation 

(Sadeghirad et al., 2011) showed a second order of accuracy with the number of grid cells of 8 and 16. However, 

refining the grid causes a loss of convergence rate as the grid-crossing occurs more frequently with the finner mesh. 

Our proposed formulation using MPM with IMLS function reconstruction shows second order accuracy, which, 

appears to be better than the CPDI method. Futher numerical experiments are needed to explain this behaviour. 

 
Figure 4 Spatial convergence rate of 

displacement(A=0.1m) 

•  

 
Figure 5 Spatial convergence rate of 

velocity (A=0.1m) 

 
Figure 6 Spatial convergence rate of 

stress (A=0.1m) 

CONCLUSION 

This paper has presented a framework for improving the accuracy of the MPM. In this framework, the data at material 

points are reconstructed on a background grid using the improved moving least squares (IMLS) function reconstruction. 

The IMLS reconstruction does not require the inversion of the moment matrix, therefore, it avoids the singular or ill-
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conditioned problems in the original moving least squares method. After the function is reconstructed on the background 

grid, it is integrated using Gauss integration, in a way that is similar to the approach used in the Finite Element method. 

To evaluate the convergence rate of the proposed formulation, a solution is manufactured to obtain the exact solutions of 

displacement, velocity and stress in the large deformation. Clearly, our method has better accuracy than CPDI method 

and obtains second order accuracy in the given example. Future work will focus on the performance of the method in the 

large rotation problems, for example, validating with the generalized vortex problem using the method of manufactured 

solutions (Kamojjala et al., 2015). 
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