
NUMERICAL STUDY AND IMPROVEMENT

OF THE METHODS IN UINTAH

FRAMEWORK: THE MATERIAL

POINT METHOD AND THE

IMPLICIT CONTINUOUS-

FLUID EULERIAN

METHOD

by

Lethuy Thi Tran

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computing

School of Computing

The University of Utah

December 2012

Copyright c© Lethuy Thi Tran 2012

All Rights Reserved

ABSTRACT

The Material Point Method (MPM) and the Implicit Continuous-fluid Eulerian method

(ICE) have been used to simulate and solve many challenging problems in engineering applica-

tions, especially those involving large deformations in materials and multimaterial interactions.

These methods were implemented within the Uintah Computational Framework (UCF) to

simulate explosions, fires, and other fluids and fluid-structure interaction. For the purpose

of knowing if the simulations represent the solutions of the actual mathematical models, it

is important to fully understand the accuracy of these methods. At the time this research

was initiated, there were hardly any error analysis being done on these two methods, though

the range of their applications was impressive. This dissertation undertakes an analysis of

the errors in computational properties of MPM and ICE in the context of model problems

from compressible gas dynamics which are governed by the one-dimensional Euler system. The

analysis for MPM includes the analysis of errors introduced when the information is projected

from particles onto the grid and when the particles cross the grid cells. The analysis for ICE

includes the analysis of spatial and temporal errors in the method, which can then be used to

improve the method’s accuracy in both space and time. The implementation of ICE in UCF,

which is referred to as Production ICE, does not perform as well as many current methods for

compressible flow problems governed by the one-dimensional Euler equations – which we know

because the obtained numerical solutions exhibit unphysical oscillations and discrepancies in the

shock speeds. By examining different choices in the implementation of ICE in this dissertation,

we propose a method to eliminate the discrepancies and suppress the nonphysical oscillations in

the numerical solutions of Production ICE – this improved Production ICE method (IMPICE) is

extended to solve the multidimensional Euler equations. The discussion of the IMPICE method

for multidimensional compressible flow problems includes the method’s detailed implementation

and embedded boundary implementation. Finally, we propose a discrete adjoint-based approach

to estimate the spatial and temporal errors in the numerical solutions obtained from IMPICE.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . ix

LIST OF TABLES . xiii

ACKNOWLEDGEMENTS . xv

CHAPTERS

1. INTRODUCTION . 1

1.1 Contributions . 2
1.2 Content . 4

2. BACKGROUND AND RELEVANT WORK . 5

3. COMPRESSIBLE FLOW PROBLEMS . 10

3.1 The Multidimensional Euler Equations . 11
3.2 The One-Dimensional Euler Equations . 14
3.3 Boundary Conditions . 16

3.3.1 Examples of Numerical Boundary Conditions . 16
3.3.2 Euler Characteristic Boundary Condition (ECBC) 17

4. ADJOINT-BASED ERROR ESTIMATION

FOR NUMERICAL SOLUTIONS OF

PARTIAL DIFFERENTIAL

EQUATIONS . 20

4.1 Errors in Numerical Solutions to Partial
Differential Equations . 22

4.2 Adjoint-based Error Estimation for ODEs . 23
4.3 Adjoint-based Error Estimation for

Numerical Solutions of PDEs . 26
4.4 Error Norms, Error Indices,

and Error Notations . 28
4.4.1 Error Norms . 28
4.4.2 Error Indices . 29
4.4.3 Error Notations for System of Euler Equations . 29

4.5 Examples of the Adjoint-based Approach
to the Global Error Estimate . 29

4.5.1 Backward Differentiation Formula Method for
Method-of-lines PDEs . 29

4.5.2 Residual Error and Global Error Estimation using
Approach of Cao and Petzold [21] . 31

4.5.3 Estimation of the Local Error
and the Truncation Error . 34

4.5.3.1 Estimation of the Local Error using
Residual Error Sampling . 34

4.5.3.2 Truncation Error Estimation by
Richardson Extrapolation . 35

4.5.4 Numerical Results . 36
4.5.4.1 Adjoint-based Global Error Estimate for ODEs 36
4.5.4.2 Adjoint-based Global Error Estimate for PDEs 39

4.6 Summary . 40

5. SOLVING TIME-DEPENDENT PDES

USING THE MATERIAL POINT

METHOD . 41

5.1 MPM Spatial Discretization . 42
5.1.1 Particle Basis Functions . 42
5.1.2 Grid Basis Functions . 43
5.1.3 Mapping from Particles to Grid . 44

5.2 MPM Computational Method . 45
5.2.1 Mesh and Particle Movement per Time Step . 46

5.3 Application to Gas Dynamics . 47
5.3.1 Particle Energy, Density and Pressure Update . 48
5.3.2 Positivity, Overshoots and Stability . 50
5.3.3 Particle Redistribution . 51

5.4 Gas Dynamics Computational Experiments . 51
5.4.1 Problem Description . 51
5.4.2 Initial Uniform Particle Distribution . 52
5.4.3 Alternative Particle Distribution . 55

5.5 Time Integration Error and
Grid Crossing by Particles . 56

5.5.1 Time Integration Discontinuities
Arising from Grid Crossing . 56

5.5.2 Time Integration Errors in Velocity . 58
5.5.3 Time Integration Errors in Spatial Position . 59

5.6 Spatial Error Estimation . 60
5.6.1 Hickernell’s Quadrature Error Bound . 61
5.6.2 Ringing Instability . 63
5.6.3 Mass Projection Error . 63
5.6.4 Momentum Projection Error . 64
5.6.5 Velocity Projection Error . 65
5.6.6 Acceleration Projection Error . 68
5.6.7 Velocity Gradient Error . 70

5.7 Combining the Error Estimate Results . 70
5.8 Summary . 72

6. THE IMPROVED PRODUCTION IMPLICIT

CONTINUOUS-FLUID EULERIAN METHOD

FOR COMPRESSIBLE FLOW PROBLEMS . 73

6.1 Cell-centered ICE by Kashiwa et al. [68] . 75
6.1.1 General Cell-centered ICE . 75

6.1.1.1 The Primary Phase . 76

v

6.1.1.2 The Lagrangian Phase . 76
6.1.1.3 The Eulerian Phase . 76
6.1.1.4 State Variables Update Phase . 76

6.1.2 The Implementation of Cell-centered ICE
by Kashiwa et al. [68] . 77

6.2 Production ICE in the Uintah
Computational Framework . 79

6.2.1 The Primary Phase . 79
6.2.2 The Lagrangian Phase . 80
6.2.3 The Eulerian Phase . 80
6.2.4 State Variables Update Phase . 81

6.3 CFL Condition . 81
6.4 IMPICE Method . 82

6.4.1 Numerical Discussion . 82
6.4.2 IMPICE Implementation . 84
6.4.3 Application of Slope Limiters

in the IMPICE Method . 86
6.5 Numerical Results and Comparisons . 89
6.6 Accuracy in Space and Time . 93

6.6.1 Temporal Error . 93
6.6.2 Spatial Error . 97

6.7 Higher-order Accuracy in Time . 99
6.8 Higher-order Advection . 101
6.9 Summary . 109

7. THE IMPROVED PRODUCTION IMPLICIT

CONTINUOUS-FLUID EULERIAN METHOD

FOR COMPRESSIBLE FLOW PROBLEMS

IN MULTIDIMENSIONAL SPACE AND

ITS EMBEDDED BOUNDARY

TREATMENT . 110

7.1 Spatial Discretization, CFL Condition
and Adaptive Time Step . 111

7.1.1 Spatial Discretization and Notations . 111
7.1.2 CFL Condition and Adaptive Time Step . 111

7.2 The HLL Solver for xk-split
Riemann Problem . 112

7.3 Method Description . 114
7.3.1 The Primary Phase . 114
7.3.2 The Lagrangian Phase . 118
7.3.3 The Eulerian Phase . 118
7.3.4 State Variables Update Phase . 119

7.4 High Order Extensions . 119
7.5 Boundary Conditions . 122

7.5.1 The Euler Characteristic Boundary
Condition Implementation . 123

7.5.2 Embedded Boundary Method . 124
7.5.2.1 Limited Cell-Centered Gradients . 125
7.5.2.2 Face-centered Pressure Gradient

of Cut Faces . 127

vi

7.5.2.3 Face-centered Fluxing Velocity and Pressure
of Cut Faces . 128

7.5.2.4 Face-centered Fluxing Velocity and Pressure
of Boundary Faces . 128

7.5.2.5 Higher Order Advection . 130
7.5.2.6 Merge Very Small Cells . 130

7.6 Numerical Results . 131
7.6.1 Testing Problems . 131

7.6.1.1 Modified Shock Tube Problem . 131
7.6.1.2 Two-dimensional Explosion Problem . 132
7.6.1.3 Two-dimensional Explosion Problem with

a Large Jump in Pressure . 132
7.6.1.4 Shock Reflection from a Wedge Problem . 132

7.6.2 Numerical Results of the Multidimensional
IMPICE Method with First-order Advection . 133

7.6.3 Numerical Results of the Multidimensional
IMPICE Method with Second-order Advection . 134

7.7 Accuracy of the IMPICE Method for
Solving the Advection Equation on
an Embedded Boundary . 137

7.7.1 Advection 1 . 138
7.7.2 Advection 2 . 138
7.7.3 Numerical Results . 139

7.8 Conclusions . 139

8. ADJOINT ERROR ESTIMATE FOR THE

IMPROVED PRODUCTION IMPLICIT

CONTINUOUS-FLUID EULERIAN

METHOD . 142

8.1 Introduction . 142
8.2 Adjoint Problem Formulation for the

One-dimensional IMPICE Method . 144
8.2.1 Partial Derivatives of Variables at Cell-centers . 145
8.2.2 Partial Derivatives of Limited Local Reconstructed

Variables at Face-centers . 145
8.2.3 Partial Derivatives of the HLL Riemann

Solution at Face-centers . 148
8.2.4 Partial Derivatives of Fluxing

Velocities at Face-centers . 149
8.2.5 Partial Derivatives of Pressures at Face-centers . 150
8.2.6 Partial Derivatives of Advected

Quantities at Face-centers . 151
8.3 Local Error and Truncation

Error Estimation . 152
8.3.1 Local Error . 152
8.3.2 Truncation Error . 153

8.4 Numerical Results . 154
8.4.1 Numerical Results of Adjoint-based Error

Estimate for the One-dimensional IMPICE
Method with First-order Advection . 154

vii

8.4.2 Numerical Results of Adjoint-based Error
Estimate for the One-dimensional IMPICE
Method with Second-order Advection . 160

8.5 Summary . 161

9. CONCLUSIONS AND FUTURE WORK . 165

APPENDIX . 168

REFERENCES . 185

viii

LIST OF FIGURES

5.1 MPM spatial discretization in one-dimensional space. 42

5.2 Piecewise-linear basis functions. 44

5.3 Numerical solutions for Sod’s problem in Section 5.4.1 using our variation of MPM
for gas dynamics at Te = 0.2 with 200 cells;

(a)density: ‖geρ(T)‖L1 = 6.4× 10−3, ‖geρ(T)‖L2 = 1.52× 10−2

(b)velocity: ‖geu(T)‖L1 = 1.85× 10−2, ‖geu(T)‖L2 = 5.80× 10−2 52

5.4 Numerical solutions for Sod’s problem in Section 5.4.1 using our variation of MPM
for gas dynamics at Te = 0.2 with the smoothing process applied by adding
viscosity-like terms described in Section 5.3.2;

(a)density: ‖geρ(T)‖L1 = 4.3× 10−3, ‖geρ(T)‖L2 = 1.05× 10−2

(b)velocity: ‖geu(T)‖L1 = 1.47× 10−2, ‖geu(T)‖L2 = 5.07× 10−2 53

5.5 Examination of the relationship between ‖geρ(T)‖L2 and the number of particles
for our variation of MPM for gas dynamics showing errors versus the number of
particles for various choices of mesh spacing (h) and CFL number. 54

5.6 Numerical solutions for the Sod’s shocktube problem in Section 5.4.1 using our
variation of MPM for gas dynamics at Te=0.2 with nonuniform initial particle
distribution discussed in Section 5.4.3 and application of the smoothing process;

(a)density: ‖geρ(T)‖L1 = 5.4× 10−3, ‖geρ(T)‖L2 = 1.38× 10−2

(b)velocity: ‖geu(T)‖L1 = 1.49× 10−2, ‖geu(T)‖L2 = 5.65× 10−2 56

5.7 Mesh Crossing Diagram. 60

5.8 Mass projection error in L1-norm, ‖epm(tn)‖L1 , for different mesh spacings, h. . . 65

5.9 L1-Norm of density global error, ‖geρ(Te)‖L1 , in time for different mesh sizes. . . . 71

6.1 Production ICE and IMPICE numerical solutions for test P1 with N=200 (cells),
Ccfl = 0.2, and first-order advection: (a) density; (b) velocity; (d) internal-energy;
and (c) pressure. 91

6.2 Production ICE and IMPICE numerical solutions for test P2 with N=200 (cells),
Ccfl = 0.2, and first-order advection: (a) density; (b) velocity; (d) internal-energy;
and (c) pressure. 92

6.3 Production ICE and IMPICE numerical solutions for test P3 with N=800 (cells),
Ccfl = 0.2, and first-order advection: (a) density; (b) velocity; (d) internal-energy;
and (c) pressure. 93

6.4 Production ICE and IMPICE numerical solutions for test P4 with N=200 (cells),
Ccfl = 0.2, and first-order advection: (a) density; (b) velocity; (d) internal-energy;
and (c) pressure. 94

6.5 Production ICE and IMPICE numerical solutions for test P5 with N=200 (cells),
Ccfl = 0.2, and first-order advection: (a) density; (b) velocity; (d) internal-energy;
and (c) pressure. 95

6.6 Production ICE and IMPICE numerical solutions for Shu and Osher test problem
with N=1600 (cells), Ccfl = 0.2, and first-order advection: (a) density and (b)
velocity. 96

6.7 The second-order-in-space IMPICE numerical solution for Shu and Osher test
problem with N=1600 (cells) and Ccfl = 0.2: (a) density and (b) velocity. 107

7.1 Point stencil for calculating face-centered pressure gradient ∇pn
j+ 1

2

. 117

7.2 Boundary of cut cells. 125

7.3 Cell-centered gradient of variables is approximated using values in the volume
defined by the centroids of the neighboring cells. 126

7.4 Cell-centered gradient of cut cell. 128

7.5 GRP at face centerer of boundary face. (a) unrotated grid and (b) rotated grid. . 130

7.6 Modified shock tube problem. Te = 0.2. IMPICE with first-order advection on
N1 ×N2 = 200× 10 grid, Ccfl = 0.3. Two-dimensional distribution of (a)density
and (b)velocity, and a cut along the x1-axis of (c)density and (d)velocity. 134

7.7 Two-dimensional explosion problem. Te = 0.25. IMPICE with first-order advec-
tion on N1 × N2 = 100 × 100 grid, Ccfl = 0.3. Two-dimensional distribution of
(a)density and (b)pressure, and a cut along the x1-axis of (c)density and (d)pressure.135

7.8 Two-dimensional explosion problem with large jump in pressure. Te = 0.03.
IMPICE with first-order advection on N1 × N2 = 300 × 300 grid, Ccfl = 0.3.
Two-dimensional distribution of (a)density and (b)pressure, and a cut along the
x1-axis of (c)density and (d)pressure. 136

7.9 Shock reflection from a wedge problem. Te = 0.2. IMPICE with first-order
advection on N1 × N2 = 900 × 600 grid, Ccfl = 0.3. A cut cell is merged if the
volume ratio, rc, is less than 0.05. Forty-eight density contour lines from 0.45 to
21.6. (b) is zoomed area of (a). 136

7.10 Modified shock tube problem. Te = 0.2. IMPICE with second-order advection on
N1 ×N2 = 200× 10 grid, Ccfl = 0.3. Two-dimensional distribution of (a)density
and (b)velocity, and a cut along the x1-axis of (c)density and (d)velocity. 137

7.11 Two-dimensional explosion problem. Te = 0.25. IMPICE with second-order
advection on N1×N2 = 100× 100 grid, Ccfl = 0.3. Two-dimensional distribution
of (a)density and (b)pressure, and a cut along the x1-axis of (c)density and
(d)pressure. 138

7.12 Two-dimensional explosion problem with large jump in pressure. Tend = 0.03.
IMPICE with second-order advection on N1 × N2 = 300 × 300 grid, Ccfl = 0.3.
Two-dimensional distribution of (a)density and (b)pressure, and a cut along the
x1-axis of (c)density and (d)pressure. 139

7.13 Shock reflection from a wedge problem. Te = 0.2. IMPICE with second-order
advection on N1 × N2 = 900 × 600 grid, Ccfl = 0.3. A cut cell is merged if the
volume ratio, rc, is less than 0.05. Sixty density contour lines from 0.4 to 23.5. . . . 140

x

7.14 Shock reflection from a wedge problem. Te = 0.2. IMPICE with second-order
advection on N1 × N2 = 900 × 600 grid, Ccfl = 0.3. This is a zoomed part of
Figure 7.13 with three hundred density contour lines to show the solution detail
in the interested area. 141

7.15 Numerical solutions to the advection problem at Te = 0.5 using IMPICE with
second-order advection on N1 ×N2 = 240× 160 grid, Ccfl = 0.3: (a) Advection 1
and (b) Advection 2. 141

8.1 MLP3 limiting function φ(r). 147

8.2 The adjoint-based estimate of the overall error in density of a numerical solution
to test problem in Section 7.7.1 is compared against its true overall error. This nu-
merical solution is obtained using the IMPICE method with first-order advection,
Ccfl = 0.2, and N = 300 (cells). 155

8.3 The adjoint-based estimate of the overall error in density of a numerical solution
to test problem in Section 7.7.2 is compared against its true overall error. This nu-
merical solution is obtained using the IMPICE method with first-order advection,
Ccfl = 0.2, and N = 300 (cells). 155

8.4 The adjoint-based estimate of the overall error in (a) density; (b) specific momen-
tum; and (c) specific total energy of a numerical solution to test problem P1 is
compared against the true overall error. This numerical solution is obtained using
the IMPICE method with first-order advection, Ccfl = 0.2, and N = 200 (cells). . 156

8.5 The adjoint-based estimate of the overall error in density of a numerical solution to
test problem P2 is compared against its true overall error. This numerical solution
is obtained using the IMPICE method with first-order advection, Ccfl = 0.2, and
N = 200 (cells). 157

8.6 The adjoint-based estimate of the overall error in density of a numerical solution to
test problem P3 is compared against its true overall error. This numerical solution
is obtained using the IMPICE method with first-order advection, Ccfl = 0.2, and
N = 200 (cells). 157

8.7 The adjoint-based estimate of the overall error in density of a numerical solution to
test problem P4 is compared against its true overall error. This numerical solution
is obtained using the IMPICE method with first-order advection, Ccfl = 0.2, and
N = 200 (cells). 158

8.8 The adjoint-based estimate of the overall error in density of a numerical solution to
test problem P5 is compared against its true overall error. This numerical solution
is obtained using the IMPICE method with first-order advection, Ccfl = 0.2, and
N = 300 (cells). 158

8.9 The adjoint-based estimate of the overall error in density of a numerical solu-
tion to test problem in Section 7.7.1 is compared against its true overall error.
This numerical solution is obtained using the IMPICE method with second-order
advection, Ccfl = 0.2, and N = 300 (cells). 160

8.10 The adjoint-based estimate of the overall error in density of a numerical solu-
tion to test problem in Section 7.7.2 is compared against its true overall error.
This numerical solution is obtained using the IMPICE method with second-order
advection, Ccfl = 0.2, and N = 300 (cells). 161

xi

8.11 The numerical solution for Shu and Osher test problem obtained from the IMPICE
method with second-order advection, N = 1600 (cells), and Ccfl=0.2; the “exact
solution” of Shu and Osher test problem as discussed in Section 6.5; the projected
exact solution obtained from adding the adjoint-based error estimate of the overall
error to the numerical solution. 163

8.12 A close-up picture of Figure 8.11 for the region where the numerical solution has
a significant error. 163

A.1 The second-order (second-order-in-space and second-order-in-time) IMPICE nu-
merical solutions for the inviscid Burgers’ problem at Te = 0.5 and on the spatial
domain [−1.0, 1.0] with N=200 (cells) and Ccfl = 0.2. 171

A.2 The second-order (second-order-in-space and second-order-in-time) IMPICE nu-
merical solutions for the viscous Burgers’ problem at Te = 0.5 from the plotted
initial cell averages with N=200 (cells) and Ccfl = 0.2: (a)ε = 0.05 and (b)ε = 0.01.173

A.3 The second-order (second-order-in-space and second-order-in-time) IMPICE nu-
merical solutions for the viscous Burgers’ problem at Te = 0.5 from the plotted
initial cell averages with N=200 (cells) and Ccfl = 0.2 and ε = 0.0001. 173

A.4 Conservative cell-centered ICE and IMPICE numerical solutions for test P1 with
N=200 (cells) and Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and
(c) pressure. 176

A.5 Conservative cell-centered ICE and IMPICE numerical solutions for test P2 with
N=200 (cells) and Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and
(c) pressure. 177

A.6 Conservative cell-centered ICE and IMPICE numerical solutions for test P3 with
N=800 (cells) and Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and
(c) pressure. 178

A.7 Conservative cell-centered ICE and IMPICE numerical solutions for test P4 with
N=200 (cells) and Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and
(c) pressure. 179

A.8 Conservative cell-centered ICE and IMPICE numerical solutions for test P5 with
N=200 (cells) and Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and
(c) pressure. 180

A.9 PL-IMPICE and IMPICE numerical solutions for test P1 with N=200 (cells) and
Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure. 181

A.10 PL-IMPICE and IMPICE numerical solutions for test P2 with N=200 (cells) and
Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure. 182

A.11 PL-IMPICE and IMPICE numerical solutions for test P4 with N=200 (cells) and
Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure. 183

A.12 PL-IMPICE and IMPICE numerical solutions for test P5 with N=200 (cells) and
Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure. 184

xii

LIST OF TABLES

4.1 Error indices eindex(et(Te)) of the estimated adjoint-based global errors for nu-
merical solutions to Examples 1–6 using DASSL DAE Solver and the residual error
sampling technique in Section 4.5.3.1 with different values of local error tolerance
(TOL). 38

4.2 Error indices eindex(et(Te)) of the estimated adjoint-based global errors for nu-
merical solutions to Examples 1–6 using DASSL DAE Solver and Cao and Pet-
zold’s approach described in Section 4.5.2 with different values of local error
tolerance (TOL). 39

4.3 Error indices eindex(ge(Te)) of the estimated adjoint-based global errors for nu-
merical solutions to the PDE problem discussed in Section 4.5.4.2. The numerical
solutions to this problem are obtained for different number of mesh points (NPTS)
of spatial discretization. The discretized ODEs are solved with DASSL DAE solver
using different values of local error tolerance (TOL). 40

5.1 Values of Stable Time Step. 55

5.2 The density errors at T = 0.2 in L1-Norm, ‖geρ(T)‖L1 , L2-Norm, ‖geρ(T)‖L2 ,
and L∞-Norm, ‖geρ(T)‖L∞

for the Sod’s shocktube problem discussed in Section
5.4.1. 71

6.1 Data for one-dimensional test problems with known exact solutions, for the time-
dependent, one-dimensional Euler equations . 90

6.2 Temporal Error: L1-norms and the order of accuracy n of the conserved and
primitive variables for the test cases in Table 6.1 using N=200 (cells). The time-

integrated exact solutions Uj

[
Te; t0, U

0
j

]
for the discretized problems of these test

cases are obtained by using Ccfl = 0.0001. The notation aE-b used here stands
for a× 10−b. 98

6.3 Spatial Error: L1-norms and the order of accuracy m of the conserved and prim-
itive variables for the test cases in Table 6.1. The exact solutions Uj

[
Te; t0,U

0
j

]
are the converged numerical solutions discussed in Section 6.6.1. 100

6.4 Temporal Error using the second-order-in-time IMPICE: L1-norms and the order
of accuracy n of the conserved and primitive variables for the test cases in Table

6.1 using N=200 (cells). The exact solutions Uj

[
Te; t0, U

0
j

]
for the discretized

problems of these test cases are obtained by using Ccfl = 0.0001. 102

6.5 Spatial Error using the second-order-in-space IMPICE: L1-norms and the order
of accuracy m of the conserved and primitive variables for the test cases in Table

6.1. The exact solutions Uj

[
Te; t0, U

0
j

]
are the converged numerical solutions as

described in Section 6.6.2. 106

6.6 Spatial Error using the second-order-in-space IMPICE: L1-norms and the order
of accuracy m of the conserved and primitive variables for Shu and Osher test

problem. The exact solutions Uj

[
Te; t0, U

0
j

]
are the converged numerical solutions.108

7.1 L1-norms and the order of accuracy m of the overall errors in the numerical
solutions to the advection problem at Te = 0.5. 140

8.1 Error indices eindex(et(Te)), eindex(et(Te)), and eindex(ge(Te)) of the esti-
mated adjoint-based global errors for numerical solutions to test problems dis-
cussed in Section 7.7 and Section 6.5. The numerical solutions to these problems
are obtained from the one-dimensional IMPICE method with first-order advection
and Ccfl = 0.2. 159

8.2 Error indices eindex(et(Te)), eindex(et(Te)), and eindex(ge(Te)) of the esti-
mated adjoint-based global errors for numerical solutions to test problems dis-
cussed in Section 7.7 and Section 6.5. The numerical solutions to these problems
are obtained from the one-dimensional IMPICE method with second-order advec-
tion and Ccfl = 0.2. 162

A.1 Spatial and Temporal Errors: L1-norms and the order of accuracy for the inviscid
Burgers’ problem at Te = 0.5 on the spatial domain [−1.0, 1.0]. The temporal
errors are calculated for the grid using N=200 (cells) and the time-integrated
exact solutions are the converged numerical solutions. 171

A.2 Spatial and Temporal Errors: L1-norms and the order of accuracy for the viscous
Burgers’ problem at Te = 0.5 on the spatial domain [−2.0, 4.0]. The temporal
errors are calculated for the grid using N=200 (cells) and the time-integrated
exact solutions are the converged numerical solutions. 175

xiv

ACKNOWLEDGEMENTS

This dissertation would not have been possible without the help from many people on the

path to where I am today. I may not individually thank many of you in the following note, but

I will always remember your support.

First and foremost, I would like to express my deepest gratitude to my advisor, Prof. Martin

Berzins, whose supervision, advice, and guidance helped me to have a thorough understanding

of the subject. In so doing, he still left room for my own ideas and let me grow to be an

independent researcher. He has given me a number of valuable insights which are useful for not

only my graduate school but also my future career. In various ways, he provided me necessary

encouragement and support in overcoming obstacles. I am truly inspired by his intuition and

passion for science which have made a huge impact on the decisions of my future career. Above

all and the most needed, he always showed sympathy for all the life events that happened to

me outside school that needed my immediate attention. I consider myself very fortunate to be

his student.

My deepest gratitude is also due to the members of the supervisory committee: Prof.

Mike Kirby, Prof. Christopher Johnson, Prof. Todd Harman, and Prof. Andrej Cherkaev. I

especially thank Prof. Harman for many helpful discussions.

I would like to thank my parents, Le Hung Tran and Huong Tran, for their unending love,

trust, and support. My parents hardly had any opportunities to go to school, but they always

reminded me how important education is. I would not have made it to this far if it were not

for them. I would also like to thank my parents-in-law, Vo Luong and Muoi Nguyen, for giving

me help when needed. Without their support and understanding, it would be hard for me to

pursue my graduate studies. I would also like to thank my uncle and aunt Alex and Jeanette

Tam. For what they have done for me, I am forever indebted. I also thank my sister and

brother for their caring and loving support.

Most importantly, I would like to thank my husband, Phong, and my children, Kha and

San, for being by my side for this long journey to share the joys and happinesses and to endure

the hardships. They have sacrified much for my success. To my beloved husband and children:

“You all are far more important to me than any success and have made my life much more

complete.”

Lastly, I would like to thank all of my friends and relatives – the list is too numerous to

mention all by name – who have supported me throughout the years. I can not imagine how

stressful my life would be without them.

This work was supported by the U.S. Department of Energy through the Center for the

Simulation of Accidental Fires and Explosions (C-SAFE) under grant W-7405-ENG-48.

xvi

CHAPTER 1

INTRODUCTION

The last few decades have seen a significant increase in the use of numerical methods

in many research areas. Numerical methods are no longer merely simulation tools; they

are now used to study and understand phenomena represented as mathematical models. A

broad range of physical processes in engineering applications are simulated and studied using

numerical methods; for example, micromechanics of heterogeneous materials [9]; deformation

processes in energetic materials [14]; large deformation fluid-structure interaction [52, 44];

aerodynamics of vocal fold movement [31]; explosions of energetic devices [45]; nano-scale

magnetization dynamics [59]; accidental fires and explosions [56] and densification of real

open-celled foam microstructures [19], to name just a few. These examples clearly demonstrate

the need to use numerical methods to solve increasingly complex problems. At the Center

for the Simulation of Accidental Fires and Explosions (C-SAFE) at the University of Utah

– created through the Advanced Simulation and Computing Program of the Department of

Energy – numerical methods were used to provide state-of-the-art, science-based tools for the

numerical simulation of accidental fires and explosions [56]; methods included in the Uintah

Computational Framework (UCF) [40, 56, 95, 96]. These methods are the product of more

than a decade of cutting-edge research.

The UCF was developed by a number of highly skilled researchers to provide a software

system for simulating complex physical phenomena [88], such as reacting flows, material proper-

ties, and multimaterial interactions. There are four main simulation slgorithms in the UCF: the

ARCHES simulation code, the Implicit Continuous-fluid Eulerian method (ICE), the Material

Point Method (MPM), and an integrated combination of MPM and ICE (MPMICE). Each

simulation component facilitates the solution of partial differential equations on structured

adaptive mesh refinement grids using hundreds to thousands of processors. Each component

is specifically designed for solving certain types of problems. Specifically, the ARCHES com-

ponent, a finite-volume incompressible flow C.F.D solver, was initially designed for predicting

the heat flux from large buoyant pool fires, and then later was extended for solving many

industrial relevant problems. ICE is for compressible flows; MPM is for solids; MPMICE is

2

for fluid-structure. These methods have been used to simulate a wide range of applications.

Examples of simulated applications using MPM include biomechanics of microvessels, effects of

wounding on heart tissue, and the properties of foam under large deformation [19]; densification

of foam [6]; compression of wood [94]; large-scale complex fluid-structure interactions arising

from the modeling of safety studies involving explosions [56, 97]; sea ice dynamics [115]; and

energetic device explosions [45]. Examples of simulated applications using ICE include fluidized

dust beds, the flow of a liquid with entrained bubbles, atmospheric condensation with the fall

of precipitation, the expansion and compression of a bubble formed by highly explosive gases

under water, dynamics resulting from intense atmospheric explosions from the early time highly

compressible flow [51, 68]; and explosions, fires, and other fluid and fluid-structure interaction

phenomena [45]. Finally, examples of simulated applications using MPMICE include modeling

of explosives and their interaction with solid structures, modeling of blast and soil [117], and

modeling of the material dynamics and aerodynamics of phonation [31].

Given that MPM, ICE, and MPMICE are used on such challenging problems, it is important

to fully understand the accuracy of these methods and to have these methods accurately

simulate the solutions of the actual mathematical models. At the time this research was initiated

in 2005, there were hardly any error analyses being done on any of these methods. Thus our

aim in this dissertation is to provide a numerical study of some variation of these methods.

In addition, we propose an improvement to the version of ICE that is currently implemented

in the Uintah Computational Framework, including an estimate of the errors in the improved

version. Several other researchers at C-SAFE were working simultaneously on MPM and ICE,

and this dissertation both builds upon and complements their work.

1.1 Contributions

By providing a numerical study of and improvement to the MPM and ICE algorithms, this

dissertation makes the following contributions:

• A study of errors in numerical solutions that are obtained from a variation of MPM

which we specifically proposed for gas dynamics. We undertake an analysis of MPM in

modeling compressible flow problems governed by the one-dimensional Euler equations.

Though this analysis is done for a specific variation of MPM, it is described in a way

that can be applied to other versions of MPM. In this analysis, we focus on two sources

of error: errors introduced when information from particles is projected onto the grid,

as well as errors introduced when particles cross grid cells. In addition to the analysis

obtained from studying the algorithm of the method, we include results obtained from

observing the method’s performance on the Sod’s shocktube problem. These aforemen-

3

tioned contributions are presented in Chapter 5 and were reported in the published article:

“Solving Time-Dependent PDEs using the Material Point Method, A Case Study from

Gas Dynamics,” L.-T. Tran, J. Kim, and M. Berzins, International Journal for Numerical

Methods in Fluids, Volume 62, Issue 7, pages 709–732, Copyright c©2009 John Wiley &

Sons, Ltd. [123].

• An improvement to the Production Implicit Continuous-fluid Eulerian Method (Produc-

tion ICE) in the Uintah Computational Framework for the case of one-dimensional com-

pressible flows, including an error study of this improved version. The implementation of

Production ICE depends upon choosing among several different implementation choices

of the cell-centered ICE method proposed by Kashiwa et al. [68]. We will explore such

different implementation choices of the cell-centered ICE method of Kashiwa et al. [68] in

order to propose an improved version of Production ICE. This Improved Production ICE

method (IMPICE) aims to eliminate the unphysical oscillations in the numerical solutions

to the one-dimensional compressible flow problems. Of comparable importance to having

a nonoscillating numerical solution is determining the accuracy of the IMPICE method

in time and space – which we study both theoretically and numerically. We can increase

the orders of accuracy in time and space by applying a high order time discretization

and a nonlinear spatial discretization respectively. These aforementioned contributions

are presented in Chapter 6 and were also reported in the published article: “Improved

Production Implicit Continuous-fluid Eulerian Method for Compressible Flow Problems

in Uintah,” L.-T. Tran, and M. Berzins, International Journal for Numerical Methods in

Fluids, Volume 69, Issue 5, pages 926–965, Copyright c©2012 John Wiley & Sons, Ltd.

[122].

• An extension of IMPICE to solve multidimensional compressible flow problems, including

the implementation of boundary conditions. The IMPICE method shows great improve-

ment in its accuracy and ability to capture discontinuities when solving one-dimensional

compressible flow problems. We propose the extension of IMPICE to solve the compress-

ible problems governed by the system of Euler equations in multidimensional space. In

this proposed IMPICE method’s detail implementation is the implementation of boundary

conditions, including the embedded boundary treatment which enables the solution of

problems with potentially complex geometries. These aforementioned contributions are

presented in Chapter 7 and will be submitted for publication in the future.

• An error estimate of the IMPICE Method for one-dimensional compressible flow problems.

We formulate a discrete adjoint-based approach for estimating spatial and temporal

errors in the numerical solutions of the time-dependent partial differential equations

4

(PDEs). We appropriate and modify the adjoint global error estimate discussed in Cao

and Petzold [21] to formulate our adjoint-based approach, which is then tested against

the numerical solutions obtained via the Backward Differentiation method (BDF) of the

ordinary differential equations (ODEs) and PDEs defined in this dissertation. Finally, we

apply our adjoint-based error estimate to the estimation of the temporal and spatial errors

in the IMPICE’s numerical solutions for one-dimensional compressible flow problems.

These aforementioned contributions are presented in Chapter 4 and Chapter 8 and will

be submitted for publication in the future.

1.2 Content

This dissertation is organized as follows. Chapter 2 reviews the background and relevant

work supporting the MPM and ICE methods used in the Uintah Computational Framework.

Chapter 3 provides an overview of the compressible flow problems which includes the necessary

mathematical formula and physical quantities for the discussion of MPM and ICE. In Chapter

4, we include the discrete adjoint-based approach for estimating spatial and temporal errors

for the method-of-lines PDEs. In Chapter 5, we introduce a variation of the MPM developed

for gas dynamics and provide an in-depth study of the method’s accuracy properties on a

well-known test problem in one dimensional space. In Chapter 6, we examine the different

implementation choices in the cell-centered ICE method and propose the IMPICE method,

which is an improvement to Production ICE for one-dimensional compressible flow problems.

We also include in Chapter 6 an error analysis of IMPICE. Chapter 7 discusses a generalization

of this method to work with the multidimensional compressible flow problems including the

implementation of boundary conditions is presented. In Chapter 8, we estimate the errors

in IMPICE’s numerical solutions for one-dimensional compressible flow problems using the

discrete adjoint-based approach. Chapter 9 summarizes the work presented in this dissertation

and conclusions are discussed.

CHAPTER 2

BACKGROUND AND RELEVANT WORK

Computational Fluid Dynamics (CFD) is an area of computational science that uses nu-

merical methods and algorithms to solve a broad range of physical processes in engineering ap-

plications involving the motion of liquids and gases. Several examples of physical processes and

engineering applications which are solved by CFD include simulating flows around automobile

surfaces and airplane wings; simulating fluid-structure interaction; simulating manufacturing

processes; calculating forces and moments on aircraft; determining the mass flow rate of

petroleum through pipelines; predicting weather patterns; understanding nebulae in interstellar

space; and reportedly modeling fission weapon detonation [1]. Much current research in

CFD is devoted to improving upon early (and still fundamental) methods developed by the

Fluid Dynamics Group (T-3) at Los Alamos National Laboratory (LANL). For example, the

Material Point Method (MPM) and the Implicit Continuous Eulerian (ICE) method used in

modern simulation were adopted from the early CFD methods of T-3 at LANL. The early

precursors of MPM and ICE include the Particle-In-Cell (PIC) method of Harlow and Evans

[46, 35], the Marker-And-Cell (MAC) method of Harlow and Welch [47, 48], and the Implicit

Continuous-fluid Eulerian (ICE) method of Harlow and Amsden [49, 50, 51]. While these early

precursors are used in the field of computational fluid dynamics, the MPM method, which

resulted from reformulating and modifying PIC, is for use in computational solid dynamics.

MPM is one of the fairly new computational methods – among these new computational

methods are meshfree and particle methods as surveyed by Li and Liu [77] – that solve problems

involving large deformations in materials. For a comprehensive history of MPM, see the doctoral

dissertation of Steffen [109]. Here we list only a selection relevant developments of MPM to

provide the necessary background for our current MPM work. The first variation of MPM, is

also referred to as the original MPM, introduced by Sulsky et al., [113, 114], may, perhaps, be

described as a quasi-meshless method. This MPM’s variation has evolved from the Particle-In-

Cell (PIC) and Fluid-Implicit-Particle (FLIP) methods [15] originally developed by Brackbill

et al.; see [17] and the references within. These two methods and their important theoretical

results are discussed by Grigoryev et al. [43]. One of the fundamental aspects of PIC methods is

6

a discretization of a material into particles, and the interpolation of information from particles

to grids and vice-versa. Evolving from PIC, MPM is a mixed Lagrangian-Eulerian method with

moving particles on a background grid. The particles are used to represent the Lagrangian state

of a material, and the equations of motion are solved on the background grid. In MPM, the

Lagrangian particles (or points) are used to discretize the volume of the fluid or solid. These

material points carry with them properties such as mass, velocity, stress, strain, and so on.

The background grid in MPM is used as a scratchpad for calculations; hence, MPM has a

quasi-meshless characterization. An important feature of MPM is its capability to model solid

materials undergoing large deformation. Bardenhagen et al. [5] later proposed their variation of

MPM which is referred to as the Generalized Interpolation Material Point method (GIMP) to

provide a general formulation covering MPM methods. These previously mentioned methods -

PIC, MPM, and GIMP - use similar approaches to Smoothed Particle Hydrodynamics (SPH) to

solve the governing equations [109]. A comparison between MPM and SPH has been undertaken

by Ma et al. [83].

MPM has not yet been subjected to as much analysis as many of the methods surveyed by

Li and Liu [77]. Prior to our research, the significant contribution to the analysis of MPM

was the analysis of time integration errors of Bardenhagen [4]. Still, projection errors of

MPM remained to be addressed. Though Vshivkov [135] provided a detailed analysis of the

projection errors for PIC, the difference between shape functions in PIC and MPM makes the

straightforward application of these results to MPM difficult [109]. In 2008, while we were

working on our analysis of MPM, Steffen et al. [110, 111] published an analysis on quadrature

errors and some of the spatial integration errors of the original MPM method. Their analysis

studied different contributing factors in the errors introduced by the quadrature employed in the

method’s algorithm, and examined the spatial integration errors in internal force due to these

quadrature errors. Although the original MPM was designed for solid mechanics problems,

we were performing our analysis on a variation of the method proposed for gas dynamics in

the context of a shock propagation problem. The shock propagation problem for compressible

gas dynamics has the advantage of being sufficiently simple to allow analysis of the method.

This problem has also been studied by Brackbill [20], Sulsky [113], York et al. [140], and

very recently in the context of SPH methods by Brown et al. [18]. Furthermore, the shock

propagation problem’s analytical solution makes it possible to evaluate the various sources of

error in our variation of MPM. In the present analysis of our MPM’s variation, we focused on two

sources of error: errors introduced when information from particles is projected onto the grid,

as well as errors introduced when particles cross grid cells. With the aforementioned advantages

of the settings for our study of MPM, we aimed to provide an analysis of all error sources in

7

our variation of the method and would later apply them to other variations. The result of this

analysis was published in 2009 by Tran et al. [123]. Then again in 2010, Steffen et al. [112]

published another analysis of MPM in which they considered our analysis of temporal errors

when integrating past a jump in continuity of the velocity field for their analysis on the impact

of spatial quadrature errors on time stepping.

With the availability of several analyses for MPM as mentioned above, we turned our

focus on the analysis of ICE when looking at the potential combination of MPM and ICE

in simulation; see [31, 117] for this potential combination of these two methods in simulation.

At the time, the analysis of ICE also had not received much attention.

While MPM is often used in computational solid dynamics, ICE is often used to simulate

fluid dynamics. The ICE method was developed by Harlow and Amsden in 1968 [49] with the

aim of calculating the compressible flows in all velocity ranges. With the use of semi-implicit

time discretization, in which the acoustic waves are treated implicitly while the advection terms

are treated explicitly, the method can remove the Courant stability limitation based on the

speed of sound in the fluid. According to Harlow and Amsden [49], this is a numerically stable

and efficient method for calculating transient, viscous fluid flows in several space dimensions.

In 1971, Harlow and Amsden [50] simplified the method and also greatly extended its scope of

applicability. There are several improved versions of the ICE method using a pressure-correction

solution procedure as seen in [22, 63, 62, 102, 128], and one typical pressure-correction method

is referred as PISO (Pressure Implicit with Splitting of Operations). ICE was first developed to

simulate single-phase fluid dynamics problems. It was later extended by Harlow and Amsden

in 1975 [51] and Kashiwa et al. in 1994 [68] to work with multiphase flow simulations. The

ICE method by Harlow and Amsden used a staggered grid with normal velocity components

at cell faces and all other variables at cell centers. The cell-centered ICE method by Kashiwa

et al. [68] uses a different approach from the previous ICE method proposed by Harlow and

Amsden. As mentioned in Kashiwa and Lee [67], Kashiwa et al. [68] uses a nonstaggered

grid in an ongoing effort to deal with the difficulties of the ICE method with staggered grid.

The main difficulties in the use of the staggered mesh include the addition of the artificial

terms corresponding to a bulk viscosity to the equations in order to obtain reasonably smooth

variation in density near shock waves and the development of spurious fluid as a result of a

purely nonphysical circumstance. In the nonstaggered approach in Kashiwa et al. [68], all

variables including velocity are located at the cell-center. In this approach, the velocity at cell

faces is not computed directly, but is defined using the flow field or other dependent variables.

The definition of the face-centered velocity is a crucial matter for the robustness of the method

as mentioned in Kashiwa and Lee [67].

8

With its ability to handle complex flow problems, the ICE method for multiphase flows is

utilized by UCF to simulate explosions, fires, and other fluid and fluid-structure interaction

phenomena [45]. The ICE method in UCF is designed to solve “full physics” simulations of

fluid-structure interactions involving large deformations and phase change [82]. As mentioned

in Luitjens et al. [82], “full physics” refers to problems involving strong coupling between the

fluid and solid phases with a full Navier Stokes representation of fluid phase materials and the

transient, nonlinear response of solid phase materials, which may include chemical or phase

transformation between the solid and fluid phases.

The implemented ICE method in the Uintah Computational Framework is referred to as

Production ICE in Tran and Berzins [122]. The implementation of Production ICE is based on

the cell-centered ICE method by Kashiwa et al. [68] with several exceptions that are discussed

in detail in Chapter 5. The implementation of the cell-centered ICE method by Kashiwa et al.

[68] uses a regular Cartesian grid to divide the computational domain into cells and to evaluate

the changes in mass, momentum, and energy in each cell with two stages: the Lagrangian Stage

and the Eulerian Stage. For the Lagrangian Stage, the advection changes in mass, momentum,

and energy along a path moving with fluid velocity are evaluated by neglecting the convective

terms. For the Eulerian Stage, the changes in mass, momentum, and energy in each cell due to

advection are calculated. The fully cell-centered ICE method of Kashiwa et al. [68] defines the

face-centered velocity, the rate of volume flux at cell boundary, and leaves a degree of freedom

in the choice of conservation variables. The numerical scheme used in Production ICE [44, 45,

52, 79, 80] solves the conservation of mass, linear momentum and internal energy. However,

the Lagrangian part of Production ICE is defined in a nonconservative form which appears to

be an exception to the standard ICE method. While this may not be a problem for some cases,

it appears to be a problem when applying this Production ICE code to single-fluid cases that

are governed by the Euler equations in which the obtained numerical solutions exhibit some

discrepancies in the shock speeds and they additionally show unphysical oscillations. Several

researchers have investigated the effect of nonconservative schemes approximating hyperbolic

conservation laws; for example, see [60, 75, 121]. In these investigations, they found that the

numerical solutions obtained from nonconservative schemes might converge to wrong solutions.

Because of the importance of having a numerical solution that does not have spurious

oscillations, we propose improvements to Production ICE in order to eliminate unphysical

oscillations in its numerical solutions to compressible flow problems. We first focus on the

improvements to Production ICE in one-dimensional space and then later extend these im-

provements to this method in multidimensional space. The cause of oscillations in numerical

solutions of Production ICE is the lack of a special treatment for data discontinuities. When

9

dealing with discontinuities in data, the idea of using a nonoscillatory piecewise linear recon-

struction is typically used. This data discontinuity treatment originates from the technique

used in second-order Godunov-type methods for solving numerically hyperbolic conservation

laws; for some examples, see see [120] and the references within. In this approach, the value at

the discontinuous point is the solution of the Generalized Riemann Problem whose piecewise

constant data are obtained from a piecewise linear reconstruction. We used this treatment of

data discontinuity in our improvement of Production ICE.

To enable this improved Production ICE method (IMPICE) the capability to solve signif-

icant problems, it is necessary to extend IMPICE to solve multidimensional flows in complex

geometries. The use of Cartesian grids in IMPICE has the advantage of seamless grid generation

for simple regular geometries, but the disadvantage of being unable to deal with complex ones.

To solve complex geometries, we used in IMPICE the method of cut cells to handle the case

when the computational boundary is not aligned with the cell edges; several implementations

of cut cells are found in [38, 55, 124, 139]. In these implementations, there are several

techniques that have previously been proposed, but the trimming of cell surfaces has mostly

been used for compressible inviscid flows; see [124] and the references within. We will discuss

the implementation of this technique as well as how to overcome the “small cell problem” in

the IMPICE’s method of cut cells; for explanations of “small cell problem,” see [55] and its

references. To address the “small cell problem,” cell merging techniques were used by many

authors; for example, see [24, 26, 36, 37, 98, 101]. We derived a new variant of the cell merging

technique for merging small cells in IMPICE.

Since IMPICE is used to solve a wide range of important applications, its error analysis is

necessary. In this dissertation, we determine both theoretically and numerically the accuracy

of the temporal and spatial errors in the IMPICE method. The orders of accuracy in time and

space can be increased by applying a high order time discretization and a nonlinear spatial

discretization, respectively. We will use this error analysis of ICE to estimate the errors in this

method.

As mentioned above, in addition to the use of MPM and ICE as independent simulation

tools, an advanced new simulation tool is being developed that uses the combination of these

two methods to simulate multimaterial and fluid-structure interactions. The combined tool,

MPMICE, uses MPM to model the materials and uses ICE to model aerodynamics. As discussed

in [117], the modeling techniques used by MPMICE differ from traditional methods and hold

promise for increased accuracy. Basic analysis of MPM and ICE presented in this dissertation

may help to understand the fluid-structure interaction modeling MPMICE in the future.

CHAPTER 3

COMPRESSIBLE FLOW PROBLEMS

Compressible flows appear in many processes in nature and technology, so the study of

these flows is very important. Compressible flows model the fluids in which the fluid density

varies significantly in response to a change in pressure. Such flows are obtained in gases, and

they are referred to as compressible gas flows. Compressible gas flows are the subjects in the

study of gas dynamics. Two of the most distinctive phenomena which occur in compressible flow

problems are shock waves and choked flows [137]. Shock waves occur when there is a very sharp

discontinuity in the fluid properties such as velocity, pressure, and temperature and choked flows

are phenomena in which the flow rate and the velocity remain the same after the downstream

change in pressure has reached a certain point. However, many of the numerical methods

developed for compressible flow problems consider only the ability to accurately capture shock

waves, but not choked flow; shock capturing schemes can be found in many papers such as

[84, 75, 54, 61, 106, 107, 138]. The ability to capture the sharp changes in the fluid properties

is essential in numerical methods for compressible flow problems in order to deal with shock

waves.

The Navier-Stokes equations for compressible flow problems are time-dependent and consist

of a set of nonlinear partial differential equations that describe the flow of fluids. These

equations are obtained from the principles of conservation of mass, conservation of momentum,

and conservation of energy with the assumption that the fluid is a continuum. In allowing

shock waves to be treated as discontinuities, the system of Euler equations are usually utilized.

As mentioned in Toro [120], the system of Euler equations is derived from the Navier-Stokes

equations by neglecting the effects of body forces, viscous stresses and heat flux.

In this chapter, we provide a summary of the Euler equations for compressible flow problems.

Here we study the system of time-dependent Euler equations in one-dimensional and multidi-

mensional space with several important derived equations and boundary conditions. Though

there are many different forms of the Euler equations along with basic physical quantities and

thermodynamics relations, we include here only the forms which are useful to the discussion

of the numerical methods included in this dissertation, namely the Material Point Method

11

(MPM) and the Improved Production Implicit Continuous-fluid Eulerian method (IMPICE).

Many forms and equations in the discussion of the Euler equations in this chapter are obtained

from Toro [120].

3.1 The Multidimensional Euler Equations

The system of time-dependent Euler equations of nonlinear hyperbolic conservation laws

that governs the compressible flow problems in d-dimensional space can be written in the

following compact form:

∂ρ

∂t
+∇ · (ρu) = 0, (3.1)

∂ρu

∂t
+∇ · (ρu⊗ u) +∇p = 0, (3.2)

∂ρE

∂t
+∇ · (ρEu) +∇ · (pu) = 0, (3.3)

where ρ(x, t) is the density function, u(x, t) = (u1, u2, ..., ud)
T (x, t) is the vector of the velocity

functions, p(x, t) is the pressure function, and E(x, t) is the function of specific total energy on

the problem domain x = (x1, x2, ..., xd)
T ∈ R

d and t ∈ R
+. In Equation (3.2), ⊗ denotes the

tensor product. The tensor product of u and u is defined as:

u⊗ u =

⎡
⎢⎢⎢⎣

u1
2 u1u2 . . . u1ud

u2u1 u2
2 . . . u2ud

...
. . .

udu1 udu2 . . . ud
2

⎤
⎥⎥⎥⎦ . (3.4)

An equation of state is required to close the system given by Equations (3.1)–(3.3); the

commonly used equation of state derived from the ideal gas law is as follows:

p = (γ − 1)ρ

(
E − 1

2
u · u

)
, (3.5)

where γ is the specific heat ratio with the value of 1.4 for ideal gas.

The speed of sound, which is the transmission speed of a small disturbance through a

medium, is a variable of interest. This variable is often used in controlling the time integration

step in numerical methods for the system of Euler equations. The speed of sound, c(x, t), in an

ideal gas is approximately given by:

c =

√
γp

ρ
. (3.6)

12

There are two different sets of variables often used to describe the flow of compressible fluids

governed by the system of Euler equations. The first set of variables called the set of conserved

variables includes the mass density ρ, the momentum ρu, and the total energy per unit mass

ρE. The time derivatives of the conserved variables are directly obtained from conservation

laws and shown in Equations (3.1)-(3.3). Hereafter, the vector of conserved variables is denoted

using the column vector U. The second set of variables called the set of primitive variables or

physical variables includes the mass density ρ, the velocity u, and the pressure p. The time

derivatives of variables in vector W = [ρ,u, E, p]T are shown as follows:

∂ρ

∂t
+∇ · (ρu) = 0, (3.7)

∂u

∂t
+ u · ∇u+

1

ρ
∇p = 0, (3.8)

∂E

∂t
+ u · ∇E +

1

ρ
∇ · (pu) = 0, (3.9)

∂p

∂t
+ u · ∇p+ c2ρ∇ · u = 0. (3.10)

These equations are useful for the discussion of the numerical methods in Chapters 5, 6, 7, and

8. It is also useful for the discussion of the IMPICE method in these chapters if we know about

material derivatives. The material derivative of a quantity is a derivative taken along a moving

path with the moving velocity u. The material derivative of a scalar field φ(x, t) and a vector

field b(x, t) are defined respectively as:

Dφ

Dt
=

∂φ

∂t
+ u · ∇φ,

Db

Dt
=

∂b

∂t
+ (u · ∇)b. (3.11)

Using these definitions, the material derivatives of the velocity vector u in Equation (3.8) and

pressure p in Equation (3.10) are respectively given by:

Du

Dt
= −1

ρ
∇p, (3.12)

Dp

Dt
= −c2ρ∇ · u. (3.13)

These equations are also called the Lagrangian forms of Equations (3.8) and (3.10). We also

use the definitions in Equation (3.11) to rewrite (3.1), (3.8), and (3.9) as follows:

13

Dρ

Dt
= −ρ∇ · u, (3.14)

ρ
Du

Dt
= −∇p, (3.15)

ρ
DE

Dt
= −∇ · (pu). (3.16)

In order to obtain the changes in mass, momentum, and energy along the path moving with

the fluid velocity, we need to derive the equations of material derivatives for a fluid volume

corresponding to the system in Equations (3.1)–(3.3). In Vallis [125], the material derivative of

a finite fluid volume V for fluid density is given by:

D

Dt

∫
V
ρdV =

∫
V

(
Dρ

Dt
+ ρ∇ · u

)
dV. (3.17)

Also in Vallis [125], the material derivative of a finite fluid volume V for the multiplication of

some fluid property φ and the fluid density ρ is given by:

D

Dt

∫
V
ρφdV =

∫
V
ρ
Dφ

Dt
dV. (3.18)

As mentioned in Vallis [125], the above formula also holds if φ is a vector. Applying Equation

(3.18) to fluid velocity u and fluid specific total energy E, we have the following equations:

D

Dt

∫
V
ρudV =

∫
V
ρ
Du

Dt
dV, (3.19)

D

Dt

∫
V
ρEdV =

∫
V
ρ
DE

Dt
dV. (3.20)

In these equations, the volume V changes due to the movement of the bounding surface. Let

S be the bounding surface of the volume V , then the change in volume is described by the

following equation:

D

Dt

∫
V
dV =

∫
S
u · dS. (3.21)

From Equations (3.14)–(3.20), the following equations are obtained:

D

Dt

∫
V
ρdV = 0, (3.22)

D

Dt

∫
V
ρudV = −

∫
V
∇pdV, (3.23)

D

Dt

∫
V
ρEdV = −

∫
V
∇ · (pu)dV. (3.24)

14

Equations (3.22)–(3.24) are used to evaluate the changes in mass, momentum, and energy

along a path moving with fluid velocity u neglect the convective terms. In the other hand, the

changes in mass, momentum, and energy due to the convective terms are governed by:

d

dt

∫
V
ρdV = −

∫
V
∇ · (ρu)dV, (3.25)

d

dt

∫
V
ρudV = −

∫
V
∇ · (ρu⊗ u)dV, (3.26)

d

dt

∫
V
ρEdV = −

∫
V
∇ · (ρEu)dV. (3.27)

The concepts of material derivatives introduced above are used to explain the implementation of

numerical methods for the system of Euler equations with a separate Lagrangian Phase and an

Eulerian Phase; for example, the implementation of the cell-centered ICE method of Kashiwa

et al. [68], the Production ICE method, and the improved Production ICE method which will

be discussed in detail in Chapter 6 and Chapter 7.

3.2 The One-Dimensional Euler Equations

In the case of one-dimensional space (d = 1), the system of Euler equations in conservation

form given by Equations (3.1)–(3.3) is now simplified as follows:

∂ρ

∂t
+

∂ρu

∂x
= 0, (3.28)

∂ρu

∂t
+

∂
(
ρu2 + p

)
∂x

= 0, (3.29)

∂ρE

∂t
+

∂ (ρuE + pu)

∂x
= 0, (3.30)

where u(x, t) is the velocity in the one-dimensional space and x ∈ R. The equation of state

(3.5) becomes:

p = (γ − 1)ρ

(
E − 1

2
u2
)
. (3.31)

One nonconservative form of the one-dimensional system of Euler equation is given by

∂ρ

∂t
+

∂ρu

∂x
= 0, (3.32)

∂ρu

∂t
+

∂
(
ρu2

)
∂x

+
∂p

∂x
= 0, (3.33)

∂ρe

∂t
+

∂ (ρue)

∂x
+ p

∂u

∂x
= 0, (3.34)

15

where e(x, t) is the specific internal energy and its relationship with the total energy per unit

mass, E(x, t), is given by:

E = e+
1

2
u2. (3.35)

In an ideal gas, the internal energy is a function of temperature. The equation of state in (3.31)

is rewritten in terms of the density and the internal energy as follows:

p = (γ − 1)ρe. (3.36)

The material derivatives of velocity in Equation (3.12) and pressure in Equation (3.13) for the

one-dimensional space are written as follows:

Du

Dt
= −1

ρ

∂p

∂x
, (3.37)

Dp

Dt
= −c2ρ

∂u

∂x
. (3.38)

The one-dimensional forms of material derivatives in Equations (3.22)–(3.24) are now given by:

D

Dt

∫
V
ρdV = 0, (3.39)

D

Dt

∫
V
ρudV = −

∫
V

∂p

∂x
dV, (3.40)

D

Dt

∫
V
ρEdV = −

∫
V

∂(pu)

∂x
dV, (3.41)

where the volume change is governed by the following equation:

D

Dt

∫
V
dV =

∫
S
u dS. (3.42)

The changes in mass, momentum, and energy due to the convective terms described by Equa-

tions (3.25)–(3.27) are rewritten for the one-dimensional space as follows:

d

dt

∫
V
ρdV = −

∫
V

∂(ρu)

∂x
dV, (3.43)

d

dt

∫
V
ρudV = −

∫
V

∂(ρuu)

∂x
dV, (3.44)

d

dt

∫
V
ρEdV = −

∫
V

∂(ρEu)

∂x
dV. (3.45)

16

Another form of Equations (3.32)–(3.34) is used in the discussion of the Material Point Method

in Chapter 5 as given by Sulsky et al. [113] as follows:

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0, (3.46)

∂e

∂t
+ u

∂e

∂x
+

p

ρ

∂u

∂x
= 0. (3.47)

The equations of material derivatives corresponding to Equations (3.46) and (3.47) are given

by:

Dρ

Dt
= −ρ

∂u

∂x
, (3.48)

De

Dt
= −p

ρ

∂u

∂x
. (3.49)

3.3 Boundary Conditions

We have, so far, presented the fluid flows in R
d. If the fluid flows are bounded in a spatial

region Ω ⊂ R
d, then it is necessary to impose conditions on the boundary ∂Ω. Different bound-

ary conditions associated with partial differential equations include the Neumann boundary

condition, the Dirichlet boundary condition, and the mixed boundary condition which is a

combination of the Dirichlet and Neumann boundary conditions [134]. In a Dirichlet boundary

condition, the value of a variable at the boundary is prescribed; in a Neumann boundary

condition, the derivative of a variable at the boundary is prescribed; in a mixed boundary

condition, a linear combination of the Dirichlet and Neumann boundary conditions at the

boundary is prescribed. At a given boundary, different types of boundary conditions can be

used for different variables.

The commonly used boundary conditions for the system of Euler equations are discussed in

Sod [108]. Great care is necessary in the implementation of the numerical boundary conditions

for numerical simulations of the compressible flow problems. At a computational boundary, a

boundary condition is used to direct the flow between the boundary inlet and outlet. This flow

is specified by a wide range of boundary condition types.

In the following sections, we will describe several examples of numerical boundary conditions

and the Euler characteristic boundary conditions.

3.3.1 Examples of Numerical Boundary Conditions

The following is the list of the most often implemented numerical boundary conditions for

the Euler equations. These numerical boundary conditions are discussed in [99, 120].

17

Periodic Boundary. As mentioned in Poinsot and Veynante [99], the computation domain

is folded on itself for the case of periodic boundary. In the treatment of periodic boundary

conditions, the value of a variable at the inlet boundary is set to the value of that variable at

the outlet boundary.

Transmissive Boundary. As mentioned in Toro [120], transmissive boundaries arise from

the need to define finite (or sufficiently small) computational domains. At a transmissive

boundary, the waves are allowed to pass without any change being made to the waves. In the

treatment of the transmissive boundary condition, the value of a variable at the boundary is

defined using the value of this variable inside the computational domain.

Reflective Boundary. At a reflective boundary, the waves reflect and move in the inverse

direction. In the treatment of the reflective boundary condition, the value of all variables

at the boundary except for velocity is defined using the value of these variables inside the

computational domain; the normal component of the velocity at boundary is the negation of

the normal component of the velocity inside the computational domain.

Solid Boundary. At a solid boundary, the fluid flow will have zero velocity relative to the

boundary. This result is derived from the no-slip condition for viscous fluids in fluid dynamics.

Generally this boundary condition implies that the fluid in contact with a solid wall will have

the same velocity as the velocity of the solid wall.

Nonreflecting Inflow Boundary. At the inflow boundary, the fluid enters the compu-

tational domain. In the treatment of the nonreflecting inflow boundary, the inlet values of

the flow velocity vector and temperature are imposed. The pressure gradient will again be

given by momentum considerations under the assumption that the flow is fully developed at

the entrance.

Outflow Boundary. At the outflow boundary, the fluid leaves the computational domain.

In order to maintain the smoothness of the flow through the boundary, the normal derivative

of velocity at the boundary is set to zero.

3.3.2 Euler Characteristic Boundary Condition (ECBC)

There are two classes of boundary conditions used to specify dependent variables at the

boundaries: physical boundary conditions – using known physical behaviors, and numerical

boundary conditions – using numerical descriptions. Physical boundary conditions are in-

dependent of the method used to solve the relevant equations; on the contrary, numerical

boundary conditions are dependent of the method used. For the case of system of Euler

equations, when the number of physical boundary conditions is lower than the number of

primitive variables, then the variables which are not specified using physical attributes must

be obtained using numerical boundary conditions. The numerical boundary conditions of these

18

variables may be obtained from extrapolation or the set of characteristic relations. However, it

seems reasonable to obtain the numerical boundary conditions using characteristic relations and

so to avoid extrapolations. The method of Euler Characteristic Boundary Conditions (ECBC)

uses characteristic relations based on the analysis of the different waves crossing the boundary

to specify boundary conditions for the system of Euler equations. In ECBC methods, some of

the variables on the boundaries may be obtained from extrapolations while some others may

be obtained using characteristic relations.

The following derivation of the ECBCs in xi-direction of the multidimensional space is

shown in [99]. Using a wave analysis of the Euler equations, the decomposition of the normal

terms in xi-direction into vector h = [h1, h2, ..., hd+2]
T as given by:

h1 =
∂ρui
∂xi

, (3.50)

h2 = ρc2
∂ui
∂xi

+ ui
∂p

∂xi
, (3.51)

h2+k =

⎧⎪⎨
⎪⎩

ui
∂ui
∂xi

+
1

ρ

∂p

∂xi
if (k = i)

ui
∂uk
∂xi

otherwise,
(3.52)

where k = 1, ..., d and d is the dimension of the multidimensional space. An explanation of how

these terms are decomposed as shown can be found in [118]. The system of Euler equations in

(3.1)–(3.3) is now rewritten as follows:

∂ρ

∂t
+ h1 +

d∑
j=1
j �=i

∂ (ρuj)

∂xj
= 0, (3.53)

∂ (ρE)

∂t
+

1

2

d∑
j=1

u2kh1 +
h2

γ − 1
+ ρ

d∑
j=1

ujh2+j +
d∑

j=1
j �=i

∂ (ρEuj)

∂xj
+

d∑
j=1
j �=i

∂ (puj)

∂xj
= 0, (3.54)

∂ (ρuk)

∂t
+ ukh1 + ρh2+k +

d∑
j=1
j �=i

∂ (ρukuj)

∂xj
=

⎧⎨
⎩

0 if (k = i)

−1

ρ

∂p

∂xk
otherwise,

(3.55)

for k = 1, ..., d. Define the vector L = [L1, L2, ..., Ld+2]
T of the amplitudes of characteristic

waves associated with the characteristic velocities in xi-direction. These characteristic wave

amplitudes are specified as follows:

19

L1 = (ui − c)

(
∂p

∂xi
− ρc

∂ui
∂xi

)
, (3.56)

L2 = ui

(
c2

∂ρ

∂xi
− ∂p

∂xi

)
, (3.57)

L2+k =

⎧⎪⎨
⎪⎩

ui
∂uk
∂xi

if (k �= i)

(ui + c)

(
∂p

∂xi
+ ρc

∂ui
∂xi

)
otherwise,

(3.58)

for k = 1, ..., d. The ECBC defines {Lj : j = 1, ..., d+ 2}, which are the amplitudes of the

waves crossing the boundary, by imposing the physical conditions.

CHAPTER 4

ADJOINT-BASED ERROR ESTIMATION

FOR NUMERICAL SOLUTIONS OF

PARTIAL DIFFERENTIAL

EQUATIONS

The importance of obtaining a reliable error estimate for numerical solutions to time-

dependent ordinary differential equations (ODEs) and partial differential equations (PDEs)

is well understood, see [21, 34, 58, 81, 91, 92, 93]. As mentioned in Cao and Petzold [21], many

methods of global error estimation have been proposed, studied carefully, and implemented in

several ODE solvers. These error estimators either use residual errors for the error indicators

or error recovery techniques. Residual errors are the errors resulting from failing to satisfy

exactly the differential equations of numerical solutions. The estimate of residual error is also

sometimes used to gain confidence in a numerical solution. The global error estimates that use

error recovery techniques often solve the problem a second time with a reduced step size or

tolerance and assume the second integration is more accurate; the error in the first integration

is then recovered by the difference between the two numerical solutions. These estimates may

sometimes be inaccurate since the second integration may not yield a more accurate solution

[21, 104]. As a consequence, there have been many error estimates that use residual errors and

multipliers obtained from the solution of the adjoint problem [21].

There are two different approaches for ODE global error estimates: the classical approach

(based on the forward integration of an error equation) and the adjoint-based approach (based

on residual errors and the backward integration of the adjoint problem). These approaches

are compared by Lang and Verwer [73] for their reliability and efficiency. One disadvantage

of adjoint-based methods is the need to store the forward solution that is required during the

backward time integration. Lang and Verwer [73] suggested that the adjoint-based approach

may not be competitive against the classical approach due to its huge storage demand for large

problems, even though both approaches work well in terms of reliability. On the other hand,

Cao and Petzold [21] suggested that the adjoint-based approach was an attractive choice and

21

proposed a novel approach to reduce the number of backward time integrations using the small

sample statistical method. Furthermore, adjoint systems are linear, so they can be solved in

parallel. Even though solving the adjoint system requires extra work and storage, the adjoint

solutions are useful for adaptively control the global error as they are the appropriate weighting

cofficients of local errors contributed to the global error.

Adjoint-based error estimates have also been used and become increasingly important in

the error analysis of applications in Computational Fluid Dynamics (CFD). The use of adjoint

methods in CFD error analysis has been discussed in many papers; for example, see [8, 41,

7, 133, 2, 64, 65, 66]. The main factor that contributes to the growing interest in adjoint

methods is their application towards sensitivity analysis for large-scale systems governed by

PDEs. Sensitivity analysis is applied in a wide range of applications in science and engineering

that involve optimal design problems and error control problems. In these applications, the

impact of input parameters on the errors in functional outputs is determined using sensitivity

analysis. As mentioned in Venditti and Darmofal [133] and the references within, invoking the

adjoint problem has the primary advantage of directly relating the error in a chosen functional

output to the local residual errors. We show in this chapter that if the initial condition in

the adjoint problem is properly set then the global error of the numerical solutions to systems

of PDEs can be formulated using the local errors (the sum of ODE local error and the PDE

truncation error) and the solutions of the adjoint problems. The proper initial condition for

the adjoint problem was discussed in Cao and Petzold [21].

The adjoint problem when solving a system of PDEs can be formulated using either the

continuous approach or the discrete approach. In the continuous approach, the adjoint problem

is obtained from discretizing the analytic adjoint PDE. In the discrete approach, the adjoint

problem is obtained from the system of ODEs approximating the PDEs. As mentioned in Li

and Petzold [76], the system resulting from the continuous approach is much simpler than the

system obtaining from the discrete approach. However, the discrete approach has the advantage

of not requiring the explicit derivation and the discretization of the adjoint equations and

corresponding boundary conditions as mentioned in Venditti and Darmofal [133].

In this chapter, we discuss our discrete adjoint-based approach for estimating spatial and

temporal errors for the method-of-lines PDEs. We also test this approach on numerical solutions

to several ODE and PDE problems using the Backward Differentiation Formula (BDF) method

implemented in the DASSL DAL solver described in Ascher and Petzold [3]. In order to use

our adjoint-based approach for numerical solutions obtained via the BDF method, we derive a

technique for estimating the local error by sampling the integration residual error at two points

per time interval.

22

4.1 Errors in Numerical Solutions to Partial
Differential Equations

Consider the following class of time-dependent PDEs:

∂Y

∂t
= G(t,Y,∇Y), (4.1)

where x ∈ Ω ⊂ R
d and t ∈ (0, Te]. Boundary conditions are imposed on ∂Ω, and the initial

condition has the form:

Y(x, 0) = Y0(x), ∀x ∈ Ω. (4.2)

The system of Euler equations discussed in Chapter 3 is an instance of the above class of PDEs.

Let ΩH be some space discretization of Ω. In ΩH , the solution to the PDE system in (4.1)

is numerically computed at the discrete points x0,x1,x2, ...,xN . Let

YH(t) = [YH(x0, t),YH(x1, t),YH(x2, t), ...,YH(xN , t)]T , (4.3)

where YH(t) is the solution to the following ODE system:

{
ẎH(t) = GH (t,YH(t))

YH(0) = Y0H ,
(4.4)

and vector GH(t,YH(t)) approximates the column vector of values of G at discrete points

G (t,Y(x0),∇Y(x0)), G (t,Y(x1),∇Y(x1)), ..., G (t,Y(xN),∇Y(xN)). The initial condition

in Equation (4.4) is given by:

Y0H = [Y0(x0),Y0(x1),Y0(x2), ...,Y0(xN)] . (4.5)

Let ỸH(t) be a perturbed solution of YH(t). The temporal error (also known as the time

integration error), etH(t), is defined as:

etH(t) = YH(t)− ỸH(t). (4.6)

Let Y(x, t) be the exact solution of the system in (4.1). The restriction of this exact solution

to the discretized mesh is denoted as:

Y[H](t) = [Y(x0, t),Y(x1, t),Y(x2, t), ...,Y(xN , t)] . (4.7)

23

The error introduced by the space discretization, also known as the spatial error, is denoted as

esH(t) = Y[H](t) −YH(t). The overall error in numerical solutions of PDEs, geH(t), is then

written as:

geH(t) = Y[H](t)− ỸH(t) = (Y[H](t)−YH(t)) +
(
YH(t)− ỸH(t)

)
= esH(t) + etH(t), (4.8)

thus showing that there are two parts of errors in the numerical solutions to PDEs: the spatial

error and the temporal error. The spatial error comes from the spatial discretization of the

PDEs and the temporal error comes from the time integration of the discretized ODEs.

4.2 Adjoint-based Error Estimation for ODEs

The adjoint-based global error estimate of Cao and Petzold given in [21] is described here

in a slightly modified form. We consider the class of ODEs given by:

{
Ẏ(t) = G(Y, t) 0 ≤ t ≤ Te

Y(0) = Y0,
(4.9)

where Y ∈ R
d. The numerical solution Ỹ ∈ R

d satisfies the following perturbed system:

{
Ẏ(t) = G(Y, t) + r(t) 0 ≤ t ≤ Te

Y(0) = Y0 + r0,
(4.10)

where r(t) denotes the pertubation of the numerical solution at time t and the initial pertubation

r(0) = r0. The pertubation function r(t) is also referred to as the residual error.

Let et(t) be defined by et(t) = Ỹ(t)−Y(t), which is the error in the numerical solution Ỹ

of Y at time t. Then et(t) approximately satisfies the following ODE system:

{
ėt(t) = J(Ỹ, t)et(t) + r1(Y, Ỹ, t) + r(t)

et(0) = r0,
(4.11)

where J(Ỹ, t) is the Jacobian of G at Ỹ. The residual r1(Y, Ỹ, t) is an approximation to

the quadratic and subsequent Taylor series terms given by r1(Y, Ỹ, t) = G(Ỹ, t) −G(Y, t) −
J(Ỹ, t)(Ỹ −Y) with ‖r1(Y, Ỹ, t)‖∞ is assumed to be small when Ỹ(t) is close to Y(t). The

adjoint-based global error estimate of Cao and Petzold [21] was derived with the assumption

that the term ‖r1(Y, Ỹ, t)‖∞ was small enough to be neglected. Therefore, the approach of

24

global error estimate described in this section cannot be trusted if the system of ODEs in

(4.9) is not solved to a sufficient accuracy. With the assumption that ‖r1(Y, Ỹ, t)‖∞ may be

neglected, we have:

{
ėt(t) ≈ J(Ỹ, t)et(t) + r(t)

et(0) = r0.
(4.12)

Let λ(t) be some vector in R
d that solves the following system:

{
λ̇(t) = −JT (Ỹ, t)λ(t) 0 ≤ t ≤ Te

λ(Te) = l,
(4.13)

for some vector l in R
d. Multiplying both sides of first equation in (4.12) by λT (t) gives:

λT (t)ėt(t) ≈ λT (t)J(Ỹ, t) et(t) + λT (t)r(t) (4.14)

= (JT (Ỹ, t)λ(t))T et(t) + λT (t)r(t)

=
(
−λ̇(t)

)T
et(t) + λT (t)r(t).

Rearranging this yields:

λT (t)ėt(t) +
(
λ̇(t)

)T
et(t) ≈ λT (t)r(t), (4.15)

and, in turn, gives:

d

dt
(λT (t) et(t)) ≈ λT (t)r(t). (4.16)

Integrating both sides of the above equation gives:

∫ Te

0

d

dt
(λT (t) et(t))dt ≈

∫ Te

0
λT (t)r(t)dt,

λT (Te) et(Te)− λT (0) et(0) ≈
∫ Te

0
λT (t)r(t)dt,

lT et(Te)− λT (0)r0 ≈
∫ Te

0
λT (t)r(t)dt.

Or:

lT et(Te) ≈
∫ Te

0
λT (t)r(t)dt+ λT (0)r0. (4.17)

25

It is perhaps worth remarking that if we replace r(t) by r(t) + r1(Y, Ỹ, t), then this equation

is exact. To estimate the ith-component of error vector et(Te), we solve system in (4.13) with

initial condition l = ei = [0, 0, ..., 0, 1, 0, ...0]T with a value of 1 at the ith-component and 0

elsewhere. So in order to estimate the global error vector et(Te), we have to solve the system

in (4.13) d times (d: number of ODE equations) with d different values of vector l: e1, e2, ...,

or ed, where e1, e2, ..., and ed are the standard basis for R
d. Since the value of λ(t) can only

be obtained numerically, the adjoint-based global error estimate cannot be trusted either if the

adjoint system in (4.13) is not solved to a sufficient accuracy.

The global error estimate using Equation (4.17) requires the estimate of the residual error

r(t) in addition to the solution of the adjoint system in (4.13). The residual error defined by

Equation (4.10) is as follows:

r(t) = ˙̃
Y(t)−G(Ỹ, t), (4.18)

where Ỹ(t) is some approximation of function Y(t) obtained from interpolating the temporal

discrete numerical solutions.

Assume that some time integration procedure is used and the discrete temporal numerical

solutions, {Ỹn
: n = 1, ...,m}, are obtained at t1 = 0, t2, t3, ..., tm = Te. We then approximate

the left side of Equation (4.17) as follows:

lTet(Te) ≈
m∑
j=1

∫ tj+1

tj

λT (t)r(t)dt+ λT (0)r0 (4.19)

At t = tn, define the following local problem:

{
Żn+1(t) = G(Zn+1(t), t), t ∈ [tn, tn+1],

Zn+1(tn) = Ỹ
n
.

(4.20)

The error for this local problem is given by:

le
(
t; tn, Ỹ

n
)
= Zn+1(t)− Ỹ(t). (4.21)

The local error per time step, le
(
tn+1; tn, Ỹ

n
)
, is then defined by:

le
(
tn+1; tn, Ỹ

n
)
= Zn+1(tn+1)− Ỹ

n+1
. (4.22)

26

The residual error, r(t), in Equation (4.18) is then estimated by:

r(t) = ˙̃
Y(t)−G(Ỹ(t), t) = ˙̃

Y(t)− Żn+1(t) +G(Zn+1(t), t)−G(Ỹ(t), t)

≈ ˙̃
Y(t)− Żn+1(t)− J(Ỹ(t), t)(Ỹ(t)− Zn+1(t))). (4.23)

Using a similar derivation as given by Equations (4.15)–(4.16), we have:

λT (t)r(t) ≈ d

dt

(
λT (t)(Ỹ(t)− Zn+1(t)

)
. (4.24)

Therefore:

∫ tn+1

tn

λT (t)r(t)dt ≈
∫ tn+1

tn

d

dt

(
λT (t)(Ỹ(t)− Zn+1(t)

)
dt

= λT (tn+1)
(
Ỹ(tn+1)− Zn+1(tn+1)

)
− λT (tn)

(
Ỹ

n − Zn+1(tn)
)

= −λT (tn+1)le
(
tn+1; tn, Ỹ

n
)
.

Equation (4.19) is then given by:

lTet(Te) ≈
m∑
j=1

−λT (tj+1)le
(
tj+1; tj , Ỹ

j
)
+ λT (0)r0. (4.25)

The global error (also time integration error et(Te) of numerical solutions to ODEs) in the

adjoint-based approach is then calculated by the summation of products of the discrete adjoint

solution and the local error.

4.3 Adjoint-based Error Estimation for
Numerical Solutions of PDEs

From Equations (4.6) and (4.12), the temporal error etH(t) in the numerical solution to

PDEs (4.1) approximately satisfies the following system:

{
ėtH(t) = JH(t, ỸH)etH + rH(t)

etH(0) = r0H ,
(4.26)

where JH(t, ỸH) is Jacobian of GH(t,YH(t)) with respect to YH(t) and rH(t) = ˙̃
Y(t) −

GH(t, ỸH(t)).

27

According to Berzins [13], the approximate equation for spatial error esH(t) is given by:

{
ėsH(t) = JH(t, ỸH)esH(t) +TEH(t)

esH(0) = 0,
(4.27)

where TEH(t) = Ẏ[H](t)−GH(t,Y[H](t)).

From Equations (4.8), (4.26) and (4.27), we have:

{
ġeH(t) = JH(t, ỸH)geH(t) + rH(t) +TEH(t)

geH(0) = r0H .
(4.28)

Consider the following adjoint system:

{
λ̇(t) = −JT

H(t, ỸH)λ(t), 0 ≤ t ≤ Te

λ(Te) = l,
(4.29)

for some vector l in R
d where d is the number of ODEs in system in (4.4) . Given the similar

form of Equations (4.12) and (4.27), the adjoint-based spatial error estimate is then given as

follows:

lTesH(Te) =

∫ Te

0
λT (s)TEH(s)ds+ λT (0)r0H . (4.30)

With the assumption that λ(tj + τ) ≈ λ(tj) for 0 ≤ τ ≤ (tj+1 − tj), Equation (4.30) now

becomes:

lTesH(Te) =
m∑
j=1

λT (tj)

∫ tj+1

tj

TEH(t)dt+ λT (0)r0H . (4.31)

The combination of spatial and temporal error for numerical solutions of time-dependent

PDEs is then approximated using:

lTgeH(Te) =
m∑
j=1

λT (tj)

∫ tj+1

tj

(rH(t) +TEH(t)) dt+ λT (0) (r0 + r0H) , (4.32)

≈
m∑
j=1

λT (tj)
(
leH

(
tj+1; tj , Ỹ

j
H

)
+ (tj+1 − tj)TEH(tj)

)
+ λT (0) (r0 + r0H) ,

where leH

(
tj+1; tj , Ỹ

j
H

)
is the local integration error.

28

Exactly as in Section 4.2, once the vector l is chosen, the value in each component of error

vector geH(Te) is estimated using the solution to the adjoint system in (4.29), the ODE local

error, and the PDE truncation error.

The subscript H in above notations is called the mesh characteristic length. Hereafter, the

mesh characteristic length H is used within these notations only if different meshes simulta-

neously exist and there is a need to specify which mesh is being referred to; otherwise, this

subscript is omitted.

4.4 Error Norms, Error Indices,
and Error Notations

It is important to seek quantitative information on the error of the obtained numerical

solutions to decide if the numerical solutions can be trusted. In order to make an assessment of

error in the numerical solutions obtained with different numerical methods discussed later on

in this dissertation, we consider several definitions of error norms, definition of error indices,

and several error notations for the variables in the system of Euler equations. In the following

discussion, the error vector e can be replaced by the vector of global error ge, the vector of

spatial error es, or the vector of temporal error et.

4.4.1 Error Norms

Let e(t) be some vector of errors defined at discrete points xj ∈ R (j = 1, ..., N) at time t,

e(t) = [e1(t), e2(t), ..., eN (t)]T , (4.33)

we consider the following approximations to standard error norms:

L1-norm:

‖e(t)‖L1 ≈
N−1∑
j=1

(xj+1 − xj)
(ej+1(tn) + ej(tn))

2
. (4.34)

L2-norm:

‖e(t)‖L2 ≈

√√√√√N−1∑
j=1

(xj+1 − xj)

(
(ej+1(t))

2 + (ej(t))
2
)

2
. (4.35)

L∞-norm:

‖e(t)‖L∞
=

N
max
j=1

|ej(t)|. (4.36)

29

Depending on the property of the problem we are interested in, one norm may be more favored

than others.

4.4.2 Error Indices

For the case that the exact error is available, it is reasonable to know how the estimate value

of error is compared to the exact value. In order to know how reliable is the error estimate

method, we compute the error index which is the ratio of the estimate error and the exact

error. Let etrue(t) be the exact error and e(t) be the estimate value of etrue(t). The error index

eindex(e(t)) is then defined as follows:

eindex(e(t)) =
‖e(t)‖

‖etrue(t)‖ . (4.37)

The error norms in the above equation can be L1-norm, L2-norm, or L∞-norm.

4.4.3 Error Notations for System of Euler Equations

In order to distinguish the errors for different interested quantities in the numerical solutions

of the system of Euler equations, we use the superscript that represents the quantity of interest

along with the error notations. More specifically, the notation eq (t) is used to denote the error

in numerical solutions of quantity q at t where q = ρ,u, p, E, ρu, or ρE. Also we consider the

following error notations:

eW (t) =
[
eρ (t) , eu (t) , eE (t) , ep (t)

]T
, (4.38)

where W = [ρ,u, E, p], and:

eU (t) =
[
eρ (t) , eρu (t) , eρE (t)

]T
, (4.39)

where U is the vector of conserved variables in the system of Euler equations.

4.5 Examples of the Adjoint-based Approach
to the Global Error Estimate

4.5.1 Backward Differentiation Formula Method for
Method-of-lines PDEs

The Backward Differentiation Formula (BDF) methods as described in Ascher and Petzold

[3] are widely used for obtaining solutions to stiff differential equations and differential algebraic

equations. The fixed leading coefficient BDF method is implemented in the DASSL DAE Solver.

30

The DASSL DAE Solver uses divided formulae to represent the numerial solution to DAEs. The

divided differenceY[tn, tn−1, ..., tn−k] on the nodal valuesY(tn), Y(tn−1), ..., Y(tn−k) is defined

by:

Y[tn, tn−1, ..., tn−k] =
Y[tn, tn−1, ..., tn−k+1]−Y[tn−1, tn−2..., tn−k]

tn − tn−k
, (4.40)

where Y[tn] = Y(tn) and Y[tn, tn−1] =
Y[tn]−Y[tn−1]

tn − tn−1
.

Suppose that numerical solutions Ỹ
n
, Ỹ

n−1
, Ỹ

n−2
, ..., Ỹ

n−k
are given at time levels tn, tn−1,

tn−2, ..., tn−k, then the standard Newton divided difference form of the interpolating polynomial

used by the DASSL DAE Solver to predict the numerical solution at any point in the interval

[tn−k, tn+1] is given by:

Yn+1(p)(t) = b0,n(t) Ỹ[tn] + b1,n(t) Ỹ[tn, tn−1] + b2,n(t) Ỹ[tn, tn−1, tn−2] + ...

+bk,n(t) Ỹ[tn, tn−1, tn−2, ..., tn−k], (4.41)

where:

b0,n(t) = 1, b1,n(t) = (t− tn), b2,n(t) = (t− tn)(t− tn−1), (4.42)

The predicted derivative may be similarly written as:

dYn+1(p)(t)

dt
=

db1,n(t)

dt
Ỹ[tn, tn−1] +

db2,n(t)

dt
Ỹ[tn, tn−1, tn−2] + ...

+
dbk,n(t)

dt
Ỹ[tn, tn−1, tn−2, ..., tn−k]. (4.43)

BDF codes such as the DASSL DAE Solver also make use of these polynomials to predict the

numerical solution at the next time step. The system of equations solved for the new solution

at time tn+1 is given by:

dYn+1(p)

dt
(tn+1)− αs

(tn+1 − tn)

(
Ỹ

n+1 −Yn+1(p)(tn+1)
)
= G(tn+1, Ỹ

n+1
), (4.44)

where αs = −
k∑

i=1

1

i
for a method of order k. Substituting Equations (4.41)–(4.43) into Equation

(4.44) and multiplying Equation (4.44) by
(tn+1 − tn)

αs
enables Equation (4.44) to be written in

31

a more recognizable BDF form as:

(
Ỹ

n+1 − Ỹn

)
−

k∑
j=1

[
bj,n +

(tn+1 − tn)

αs

dbj,n
dt

]
Ỹ[tn−j , ..., tn] =

(tn+1 − tn)

(−αs)
f(tn+1, Ỹn+1).

(4.45)

The above equation is solved to obtain the numerical solution Ỹ
n+1

at tn+1. The numerical

solution at any point t that lies between tn and tn+1 is obtained using the interpolating

polynomial defined as in (4.41) but with a different set of nodal values Ỹ
n+1

, Ỹ
n
, ..., Ỹ

n+1−k
.

This polynomial may be rewritten in Lagrange form as:

Ỹ(t) =
k∑

i=0

k∏
j=0,j �=i

(t− tn+1−j)

(tn+1−i − tn+1−j)
Ỹ

n+1−i
. (4.46)

We use a shorthand notation �k1..k2
i (t) for

k2∏
j=k1,j �=i

(t− tn+1−j)

(tn+1−i − tn+1−j)
for convenience of exposi-

tion. Using this shorthand notation in the Lagrange form of Ỹ(t) gives:

Ỹ(t) =

k∑
i=0

�0..k
i (t)Ỹ

n+1−i
. (4.47)

Equation (4.47) is used to evaluate the numerical solution at any point t ∈ [tn, tn+1] using the

discrete numerical solutions at tn+1, tn, ..., tn+1−k.

4.5.2 Residual Error and Global Error Estimation using
Approach of Cao and Petzold [21]

Cao and Petzold [21] give way to estimate the global error of the numerical solutions obtained

with BDF method implemented in the DASSL DAE solver using the adjoint-based approach.

The global error estimate in Cao and Petzold [21] will be reiterated as follows. The local

solution on the interval [tn, tn+1] used in [21] satisfies:

{
V̇n+1(t) = G(Vn+1(t), t) t ∈ [tn+1−k, tn+1],

Vn+1(tn+1−k) = Ỹn+1−k.
(4.48)

This local problem is different from the local problem defined in Equation (4.20). Let Sn+1(t) be

the polynomial that interpolates k + 1 points (tn+1,S
0
n+1),(tn,S

1
n+1), ..., (tn−k+1,S

k
n+1) where

Si
n+1 is the notation for Sn+1(tn+1−i) and Si

n+1 = Vn+1(tn+1−i) for i = 0, ..., k. The polynomial

32

Sn+1(t) is then written in Lagrange form using the shorthand notation as in Equation (4.47)

as follows:

Sn+1(t) =
k∑

i=0

�0..k
i (t)Si

n+1. (4.49)

Then for any t in [tn, tn+1], we have:

Vn+1(t) = Sn+1(t) + IE(t) (4.50)

where IE(t) is interpolation error at t, and is defined as:

IE(t) = (t− tn+1)(t− tn)...(t− tn−k+1)
V

(k+1)
n+1 (τ)

(k + 1)!
, (4.51)

for some value τ that lies in the interval [tn−k+1, tn+1]. For any t in [tn, tn+1], the time derivative

�̇a..b
i of �a..b

i is given by:

�̇a..b
i =

b∑
j=a,j �=i

1

(tn+1−i − tn+1−j)

b∏
l=a,l �=i,j

(t− tn+1−l)

(tn+1−i − tn+1−l)
. (4.52)

Differentiating Equation (4.50) gives:

V̇n+1(t) =
k∑

i=0

�̇0..k
i (t)Si

n+1 +
˙IE(t). (4.53)

We now rewrite the residual error, r(t), for the perturbed system in (4.10) on the interval

[tn, tn+1] using the definition of local solution in Equation (4.48) as:

r(t) = ˙̃
Y(t)−G(Ỹ, t) = ˙̃

Y(t)− V̇n+1(t) +G(Vn+1(t), t)−G(Ỹ(t), t). (4.54)

Cao and Petzold [21] assume that the function G(Y, t) is sufficiently smooth and satisfies the

Lipschitz condition, ‖G(Vn+1(t), t) −G(Ỹ(t), t)‖ ≤ L‖Vn+1(t) − Ỹ(t)‖ for some constant L.

It is pointed out in [21] that if |Δt L| ≤ 1 then Vn+1(t) − Ỹ(t) = O(Δtk+1) while V̇n+1(t) −
˙̃
Y(t) = O(Δtk). Consequently, the term G(Vn+1(t), t)−G(Ỹ(t), t) may be disregarded as not

making a significant contribution to the residual error. The idea of disregardingG(Vn+1(t), t)−

33

G(Ỹ(t), t) from the residual error is also used in Enright [32]. The residual error in Equation

(4.54) is thus given by:

r(t) ≈ ˙̃
Y(t)− V̇n+1(t),

≈
k∑

i=0

�̇0..k
i (t)(Ỹn+1−i − Si

n+1)− ˙IE(t). (4.55)

This equation may be rewritten as:

r(t) ≈
k∑

i=0

�̇0..k
i (t)di

n+1 − ˙IE(t), (4.56)

where di
n+1 = Ỹn+1−i−Si

n+1 for i = 0, ..., k. Cao and Petzold [21] state that di
n+1 = O((tn+1−

tn)
k+1) and so:

r(t) ≈
k∑

i=0

(tn+1 − tn)
k+1�̇0..k

i C0 − ˙IE(t), (4.57)

where C0 = Ck+1Y
(k+1) with Ck+1 estimated using the DASSL DAE Solver and

˙IE(t) ≈ Y(k+1)(τ)

(k + 1)!

k∑
i=0

k∏
j=0,j �=i

(t− tn+1−i) ≈
k∑

i=0

1

i+ 1
Y(k+1)(t)(tn+1 − tn)

k. (4.58)

The calculation of the above term requires the estimation of Y(k+1)(t) which is available within

the DASSL DAE Solver. In the DASSL DAE Solver, the estimation of Y(k+1)(t) is obtained

from the divided difference representation of the numerical solution. The residual error may

then be written as:

r(t) ≈ C(tn+1 − tn)(tn+1 − tn)
k, (4.59)

where C(tn+1 − tn) is calculated using Equations (24) and (26) of Cao and Petzold [21] as

follows:

C(tn+1 − tn) ≈ Ck+1Y
(k+1)

k∑
i=0

�̇0..k
i (tn+1 − tn) +

k∑
i=0

1

(i+ 1)
Y(k+1). (4.60)

34

Cao and Petzold [21] use residual error r(t) defined in Equation (4.59) to rewrite Equation

(4.19) as follows:

lTet(Te) ≈
m∑
j=1

λT (tj)C(tj+1 − tj)(tj+1 − tj)
k+1 + λT (0)r0. (4.61)

This equation is used by Cao and Petzold [21] to estimate the global error. Therefore, in

order to estimate the global error using Cao and Petzold’s approach in [21] with the DASSL

DAE Solver, we need to solve the ODE system in (4.9), solve the adjoint system in (4.13), and

evaluate the residual error using the available data given by DASSL DAE Solver when solved for

the ODE system in (4.9). For the global error estimate using our approach as using Equation

(4.25), we need also to evaluate the local error le
(
tj+1; tj , Ỹ

j
)
for each time integration step.

We will discuss how to evaluate the local error using residual error sampling in the following

section.

4.5.3 Estimation of the Local Error
and the Truncation Error

4.5.3.1 Estimation of the Local Error using
Residual Error Sampling

Consider the local problem given by Equation (4.20) and the local error given by Equation

(4.22). Define, P(t), a polynomial of degree k on [tn+1−k, tn+1], that satisfies:

{
P(tn+1−j) = Ỹ

n+1−j
, j = 1, ..., k,

P(tn+1) = Zn+1(tn+1),
(4.62)

where Zn+1(tn+1) is the solution to the system in (4.20). Then P(t) is an interpolation

polynomial of degree k that interpolates k + 1 known points on the interval [tn+1−k, tn+1]

and approximates Zn+1(t) on the interval [tn, tn+1]. The interpolation polynomial P(t) may

also be written in Lagrange form:

P(t) =

k∑
i=1

�0..k
i (t)Ỹ

n+1−i
+�0..k

0 (t)Zn+1(tn+1). (4.63)

Since P(t) approximates the local solution on the interval [tn, tn+1], we have:

Zn+1(t) ≈ P(t) +Q(t), (4.64)

35

where the term Q may be written as a divided difference term as follows:

Q(t) ≈ π(t)[Zn+1(tn+1), Ỹ
n
, Ỹ

n−1
, ..., Ỹ

n−k
], (4.65)

and π(t) = (t − tn+1)(t − tn)...(t − tn+1−k). As mentioned in Section 4.5.2, Cao and Petzold

[21] assume the term G(Zn+1(t), t)−G(Ỹ(t), t) may be disregarded as not making a significant

contribution to the overall residual error. The residual error, r(t), in Equation (4.23) may be

then estimated as follows:

r(t) ≈ ˙̃
Y(t)− Żn+1(t). (4.66)

From Equations (4.47), (4.63), (4.64), and (4.65), we have:

Ỹ(t)− Zn+1(t) ≈ −�0..k
0 le(tn+1; tn, Ỹ

n
)− π(t)[Zn+1(tn+1), Ỹ

n
, Ỹ

n−1
, ..., Ỹ

n−k
]. (4.67)

Therefore:

r(t) ≈ −�̇0..k
0 le(tn+1; tn, Ỹ

n
)− π̇(t)[Zn+1(tn+1), Ỹ

n
, Ỹ

n−1
, ..., Ỹ

n−k
]. (4.68)

Two quantities that determine the form of the estimated residual over a step are le(tn+1; tn, Ỹ
n
)

and [Zn+1(tn+1), Ỹ
n
, Ỹ

n−1
, ..., Ỹ

n−k
]. So with two samples of the residual error at t1, and t2

in the interval [tn, tn+1], we form the system:

[
�̇0..k

0 (t1) π̇(t1)

�̇0..k
0 (t2) π̇(t2)

] [
−le(tn+1; tn, Ỹ

n
)

−[Zn+1(tn+1), Ỹ
n
, Ỹ

n−1
, ..., Ỹ

n−k
]

]
=

[
r(t1)
r(t2)

]
. (4.69)

Solve the above system with two samples of the residual error for the time interval [tn, tn+1],

we obtain the local error le(tn+1; tn, Ỹ
n
) per time step.

4.5.3.2 Truncation Error Estimation by
Richardson Extrapolation

Berzins [13] proposed a method to estimate the spatial truncation error by Richardson

extrapolation. We will reiterate the method here and use it in the global error estimation for

the numerical solutions of PDEs proposed in this chapter.

Consider two different discretized meshes Ωh and ΩH of the PDE system in (4.1) where

h and H represent the mesh characteristic length and h = H
2 . The mesh Ωh is the actual

36

mesh used to compute the numerical solution to the PDEs and also be the “fine” mesh in the

Richardson extrapolation; the mesh ΩH is the “coarse” mesh. The truncation error for the

mesh Ωh as defined in Section 4.3 is:

TEh(t) = Ẏ[h](t)−Gh(Y[h](t), t). (4.70)

Let Yh
H(t) and Ẏ

h
H(t) be the restriction of the numerical solution Yh(t) and the numerical

derivative Ẏh(t) from the “fine” mesh to the “coarse” mesh. The truncation error for the

“coarse” mesh is then obtained by evaluating the following equation as proposed in Berzins

[13]:

TEH(t) =
4

3

[
ẎH(t)−GH(t, Uh

H(t))
]
+

4

3
[ėtH(t)− ∂GH

∂YH(t)
etH(t)]. (4.71)

The trunction error at the grid nodes that belong to both “fine” mesh and “coarse” mesh is

then given by:

[TEh(t)]2i−1 =
1

4
[TEH(t)]i. (4.72)

The truncation error at grid nodes that are in “fine” mesh, but not in “coarse” mesh is then

obtained by extrapolating using the following equation:

[TEh(t)]2i =
1

8
([TEH(t]i + [TEH(t)]i+1). (4.73)

This method of Richardson extrapolation for truncation error estimation as discussed above is

based on the assumption that the spatial discretization error is second order in space in terms

of the mesh characteristic length.

4.5.4 Numerical Results

4.5.4.1 Adjoint-based Global Error Estimate for ODEs

We consider six examples below for testing of the adjoint-based global error estimate. In

these examples: Examples 1–4 are from [21] and Examples 5–6 are from [81].

Example 1.

{
Ẏ = aY, 0 < t ≤ Te,

Y(0) = Y0.
(4.74)

37

This problem is solved with three different cases:

a = 1, Y0 =
[
10−4

]
, Te = 10.0,

a = −1, Y0 = [1.0] , Te = 1.0,

a = −20, Y0 = [1.0] , Te = 1.0.

Example 2.

{
Ẏ = −(0.25 + sinπt)Y ·Y, 0 < t ≤ Te,

Y(0) = [1.0] .
(4.75)

The analytical solution at t is Y(t) = [π/(π + 1 + 0.25πt− cosπt)] and we consider the time

integration at Te = 1.0.

Example 3.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ẏ =

⎡
⎣ 1

2(1 + t)
−2t

2t 1
2(1+t)

⎤
⎦Y 0 < t ≤ Te,

Y(0) = [1.0 0.0]T .

(4.76)

The analytical solution at t is Y(t) =
[
(1 + t)

1
2 cos(t2), (1 + t)

1
2 sin(t2)

]T
and we consider the

time integration at Te = 10.0.

Example 4.

⎧⎪⎨
⎪⎩
Ẏ =

[
0 −1

−1 0

]
Y 0 < t ≤ Te

Y(0) =
[
2× 10−4 0.0

]T
.

(4.77)

The analytical solution at t is Y(t) =
[
10−4(et + e−t), 10−4(e−t − et)

]T
and we consider the

time integration at Te = 10.0.

Example 5.

⎧⎪⎨
⎪⎩
Ẏ =

[
0 1

−1 0

]
Y 0 < t ≤ Te

Y(0) = [0.0 1.0]T .

(4.78)

The analytical solution at t is Y(t) = [sin(t), cos(t)]T and we consider the time integration at

Te = 50.0.

38

Example 6. Let Y = [y1, y2, y3, y4, y5]
T . Consider the ODE system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẏ =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1

y2 + y1y1

y3 + y1y2

y4 + y1y3 + y2y2

y5 + y1y4 + y2y3

⎤
⎥⎥⎥⎥⎥⎥⎦

0 < t ≤ Te

Y(0) = [1.0, 1.0, 0.5, 0.5, 0.25]T .

(4.79)

The analytical solution at t is Y =
[
et, e2t, 1

2e
3t, 1

2e
4t, 1

2e
5t
]T

and we consider the time

integration at Te = 50.0.

The ODE systems of Examples 1–6 are solved using DASSL DAE Solver with local error

tolerances of 10−4, 10−5, 10−6, 10−7, 10−8, 10−9, and 10−10. Applying the adjoint global error

estimate given by Equation (4.25) where the local error is determined by sampling the residual

error at two points per time interval as mentioned in Section 4.5.3.1, we obtain the error indices

(the ratio of estimated global error and exact global error L2-norms) in Table 4.1. As shown

in Table 4.1, our approach of adjoint global error estimate is reliable when the obtained error

indices are very close to one (the ideal value of error indices) in most cases. For the result of

Example 1 with λ = −20, the obtained error indices for large TOL (such as 10−4 and 10−5)

are not close to one as the term G(Zn+1(t), t)−G(Ỹ(t), t) makes a significant contribution to

the residual error but being disregarded from the estimation of the residual error as mentioned

in Section 4.5.2.

In order to compare the obtained results using our approach and Cao and Petzold’s approach

in [21], we include in Table 4.2 the error indices of Cao and Petzold’s global error estimate for

Table 4.1. Error indices eindex(et(Te)) of the estimated adjoint-based global errors for
numerical solutions to Examples 1–6 using DASSL DAE Solver and the residual error sampling
technique in Section 4.5.3.1 with different values of local error tolerance (TOL).

TOL
Example 10−4 10−5 10−6 10−7 10−8 10−9 10−10

1(λ = 1) 0.95 0.95 0.95 0.96 0.96 0.96 0.95
1(λ = −1) 0.96 0.97 0.99 0.96 0.96 0.96 0.98
1(λ = −20) 2.71 2.63 1.80 1.07 1.05 0.96 1.03
2 0.97 0.98 0.98 1.07 1.00 0.99 0.99
3 0.96 0.95 0.97 0.98 0.98 0.97 0.97
4 0.95 0.95 0.95 0.95 0.97 0.96 0.98
5 0.96 0.97 0.97 0.97 0.97 0.96 0.98
6 0.96 0.97 0.97 0.97 0.97 0.98 0.98

39

Table 4.2. Error indices eindex(et(Te)) of the estimated adjoint-based global errors for
numerical solutions to Examples 1–6 using DASSL DAE Solver and Cao and Petzold’s approach
described in Section 4.5.2 with different values of local error tolerance (TOL).

TOL
Example 10−4 10−5 10−6 10−7 10−8 10−9 10−10

1(λ = 1) 7.23 7.09 9.12 8.95 8.54 16.72 9.18
1(λ = −1) 3.22 2.96 129.2 6.74 2.45 8.67 5.73
1(λ = −20) 1.59 0.46 0.45 2.08 7.63 10.12 10.36

2 9.27 106.9 19.36 72.67 13.98 16.38 0.31
3 13.02 13.66 13.00 11.59 10.92 10.77 11.35
4 7.25 7.08 6.45 8.68 12.10 15.70 12.45
5 8.89 15.04 7.98 1.45 7.63 8.64 4.16
6 10.54 14.31 8.09 12.94 4.62 8.35 13.86

numerical solutions to Examples 1–6 using DASSL DAE Solver. When comparing the data

shown in Table 4.1 and Table 4.2, here are some comments that we have. Though we need

an extra of two residual error samplings (this is equivalent to two evaluations of the system

in (4.9)) per time step; the result shown in Table 4.1 is much more accurate than the result

shown in Table 4.2. As shown in Table 4.2, the global error estimate gives a wide range of

error indices, and often the global error estimate for Examples 1–6 is overestimated. Although

the error is sometimes overestimated using the approach of Cao and Petzold [21], it helps to

control well the global error in [21].

4.5.4.2 Adjoint-based Global Error Estimate for PDEs

We consider here a PDE problem in one-dimensional space with a nonlinear source term

and a reaction diffusion equation:

∂y

∂t
=

∂2y

∂x2
+ y2(1− y) (x, t) ∈ (0, 10)× (0, Te] (4.80)

with Dirichlet boundary conditions and initial conditions consistent with the analytic solution

of:

y(x, t) =
1

1 + ep(x−pt)
(4.81)

where p = 0.5
√
2. We consider the numerical solution at Te = 1.0.

When solving the above problem, we discretize this PDE with different numbers of mesh

points (NPTS) and approximate the spatial derivatives with a second order central finite

40

difference. The discretized ODEs are then solved using DASSL DAE solver with different

values of TOL. Applying the adjoint-based global error estimate given by Equation (4.32)

where the trunction error is obtained via Richardson extrapolation discussed in Section 4.5.3.2

and the local error is determined by sampling the residual error at two points per time interval

as mentioned in Section 4.5.3.1, the obtained error indices are shown in Table 4.3. As shown in

Table 4.3, our approach of adjoint-based global error estimate gives a good approximation to

the overall error in the numerical solutions of PDEs when the obtained error indices are very

close to the ideal value of one.

4.6 Summary

Spatial and temporal errors are the error sources associated with the discretization of time-

dependent PDEs when using the method of lines. We have presented in this chapter the adjoint-

based approach for estimating both temporal and spatial errors in the numerical solutions of

time-dependent PDEs. Our adjoint-based temporal error estimate is based upon the adjoint

ODE error estimate proposed by Cao and Petzold [21], but improved with the addition of

the residual error sampling technique presented in this chapter. Making use of the similarity

between the systems of spatial and temporal error evolution, we derived the discrete adjoint-

based approach for spatial error estimate in which the PDE trunction error obtained from

Richardson extrapolation is being used. Numerical results presented in this chapter have shown

that our adjoint-based error estimate gives a reliable and close estimate of the true global error.

We will use this approach towards the global error estimation of the numerical solutions obtained

from the Improved Production Implicit-Continuous Eulerian (IMPICE) method in Chapter 8.

Table 4.3. Error indices eindex(ge(Te)) of the estimated adjoint-based global errors for
numerical solutions to the PDE problem discussed in Section 4.5.4.2. The numerical solutions to
this problem are obtained for different number of mesh points (NPTS) of spatial discretization.
The discretized ODEs are solved with DASSL DAE solver using different values of local error
tolerance (TOL).

TOL
NPTS 10−4 10−5 10−6 10−7 10−8 10−9 10−10

11 0.90 0.89 0.88 0.88 0.87 0.87 0.87
21 0.98 0.97 0.95 0.97 0.97 0.97 0.97
41 1.01 1.01 0.96 0.99 0.99 0.99 0.99
81 0.99 1.00 0.89 1.00 1.00 1.01 1.01
161 0.98 0.99 0.92 1.01 1.01 1.01 1.01
321 0.97 0.98 0.98 1.02 1.01 1.01 1.01

CHAPTER 5

SOLVING TIME-DEPENDENT PDES

USING THE MATERIAL POINT

METHOD

The Material Point Method is a particle method [109]. It is used in computational solid

dynamics to simulate large material deformations as the spatial mesh in MPM remains fixed

throughout the calculation. As mentioned in Steffen [109], the method is a mixed Lagrangian

and Eulerian method with particles representing the discrete Lagrangian state of a material.

Though the method is widely used in many applications in the field of solid dynamics, there

is not much analysis of the method. In this chapter, we will study in depth the accuracy of a

variation of MPM proposed for gas dynamics on a well-known test problem in one-dimensional

space. The test problem is Sod’s shocktube problem presented in Sod [108] where the motion of

the compressible and inviscid fluid is governed by the one-dimensional system of Euler equations.

Though this analysis is done for a specific variation of MPM, it is described in a way that

can be applied to other versions of MPM. We will perform analysis on two sources of error:

errors introduced when information from particles is projected onto the grid, as well as errors

introduced when particles cross grid cells.

The content of this chapter is organized as follows. Section 5.1 includes the spatial dis-

cretization of MPM. In Section 5.2, we describe an abbreviated form of the computational

method of MPM discussed in Steffen et al. [111]. The application to gas dynamics of MPM

is carried out in Section 5.3. In Section 5.4, we will experiment with numerical solutions of

Sod’s shocktube problem corresponding to different cases of particles’ distribution and different

initial numbers of particles per cell used in this variation of MPM. We will analyze the method’s

time integration error and space discretization error in Section 5.5 and Section 5.6 respectively.

The discussion on the combined error for numerical solutions of Sod’s shocktube problem is

presented in Section 5.7. Finally, Section 5.8 is a summary of this chapter.

42

5.1 MPM Spatial Discretization

MPM is a particle method based on the Finite Element Method in which the computational

domain Ω = [a1, b1] ⊂ R is discretized into a mesh on which a set of particles are placed;

see Figure 5.1. Let Np be the number of particles in the computational domain Ω, p be the

subscript index of the particle where p = 1, .., Np, and Ωp be the particle domain of particle

p. Each particle p (referred to as the material point) is associated with the particle volume,

Vp, the particle position, xp, the particle mass, mp, and the particle momentum, Pp. In MPM,

the motion of these particles is solved on a background grid. The background grid is a set of

points (referred to as nodes or grid nodes) that divides the computational domain into cells.

Let N be the number of nodes in the computational domain Ω, and j be the subscript index of

the nodes where j = 1, .., N . Unlike particles, the position of nodes is fixed at xj . The spatial

domain of a cell j where j = 1, .., N − 1 is denoted as Ωj where Ωj = [xj , xj+1]. We consider a

uniform background grid with the mesh spacing of h and the same initial number of particles

in each cell. The movement of particles between cells is based on the nodal velocity and the

nodal acceleration whose calculation will be discussed in detail in Section 5.2. The following

discussion will explain how to approximate a function value using particles’ values, how to

represent a continuous function using discrete nodal data, and how to map from particles to

grid nodes.

5.1.1 Particle Basis Functions

Let f(x) be a function defined on the computational domain x ∈ Ω and fp be the value of

function f at particle p. The approximation to the function f(x) in terms of particle values is

written as:

f(x) ≈
Np∑
p=1

fpχp(x) ∀x ∈ [a1, b1], (5.1)

Figure 5.1. MPM spatial discretization in one-dimensional space.

43

where χp(x) is the basis function associated with particle p. In the original form of the MPM,

Delta functions are used for the particle basis functions and the basis function for particle p is

defined by:

χp(x) = δ(x− xp)Vp, p = 1, ..., Np, (5.2)

where:

δ(x) =

{
1 if x = 0,
0 otherwise,

(5.3)

and the paticle volume, Vp, will be defined later in this section. Bardenhagen and Kober [5]

use the piecewise constant form for the particle basis function which is given by:

χp(x) =

{
1 if x ∈ Ωp,
0 otherwise

(5.4)

where Ωp is the interval [xp − hp/2, xp + hp/2] and hp is the particle width. This has the

advantage that the functions form a partition of unity on the interval [a1, b1]:

Np∑
p=1

χp(x) = 1 ∀x ∈ [a1, b1]. (5.5)

For the case when the particle basis function is defined in Equation (5.4), the particle volume

is then defined by:

Vp =

∫
Ω
χp(x)dx. (5.6)

5.1.2 Grid Basis Functions

Let g(x) be a function defined on the computational domain x ∈ Ω and gj be the value of

function g at node j. The continuous representation function g(x) using discrete data gj (j =

0, ..., N) is given by:

g(x) =

N∑
j=1

gjSj(x), (5.7)

44

where Sj(x) is a grid basis function at node j and these basis functions form a partition of unity

on the interval [a1, b1]. The most commonly used grid basis functions are the piecewise-linear

basis functions; see Figure 5.2. The piecewise-linear grid basis function for node j is given by:

Sj(x) =

⎧⎨
⎩ 1− |x− xj |

h
if |x− xj | < h,

0 otherwise
(5.8)

where h is mesh spacing.

5.1.3 Mapping from Particles to Grid

Let define S̄jp and Ḡjp as follows:

S̄jp =
1

Vp

∫
Ω
Sj(x)χp(x)dx, (5.9)

and

Ḡjp =
1

Vp

∫
Ω

dSj

dx
(x)χp(x)dx. (5.10)

In the case of the standard MPM when Delta functions are used for the particle basis functions

and the linear basis functions are used for the grid basis functions, then, according to [5],

S̄jp = Sj(xp), (5.11)

and

Ḡjp =
dSj

dx
(xp). (5.12)

Figure 5.2. Piecewise-linear basis functions.

45

Consider the particle basis functions χp(x) that form a partition of unity on the domain Ω as

shown in Equation (5.5) and function S̄jp which is defined in Equation (5.9). We define two

different mappings as given by:

f(xj) =

Np∑
p=1

f(xp) S̄jp, (5.13)

and

G(xj) = −
Np∑
p=1

dG

dx
(xp) ḠjpVp. (5.14)

These mappings are used to map particle values onto a value at node j.

5.2 MPM Computational Method

Given an initial distribution of particles on the domain at time t = t0, each particle p is

assigned a point mass, m0
p, which is defined in terms of density as given by:

m0
p =

∫
Ωp

ρ(x, 0)χp(x)dx. (5.15)

The initial particle density average, ρ0p, may also be defined by:

ρ0p = m0
p/V

0
p , (5.16)

where V 0
p is the initial particle volume. The particle p is also initially assigned a momentum,

P 0
p , which is defined in terms of density and velocity by:

P 0
p =

∫
Ωp

ρ(x, 0)u(x, 0)χp(x)dx. (5.17)

The Cauchy stresses are:

σ0
p =

∫
Ωp

σ(x, 0)
χp(x)

V 0
p

dx, (5.18)

where σ(x, 0) is continuum bodies initial Cauchy stress. In the most general case, the stress

tensor is given by σ = −pI + T , where p is the pressure, T denotes the viscous stress tensor

46

and I is an identity tensor whose size is same as the modeling dimension. In a perfect fluid

model such as the gas dynamics problem considered here, the stress at a particle is equal to

the pressure:

σp = −pp. (5.19)

5.2.1 Mesh and Particle Movement per Time Step

This subsection describes an abbreviated form of the original MPM; a detail description of

this method can be found in Steffen et al. [111]. This abbreviated description includes the

steps to advance the numerical solution from time level tn to tn+1. Since the motion of the

particles is solved on a background grid, the particle data (the particle mass and the particle

momentum) are projected onto the nodes at the start of the time step. The nodal mass, mn
j ,

is approximated using the mass of the particles via the lumped mass matrix form of MPM in

[113]. As given by Equation (5.13), the nodal mass is as follows:

mn
j =

Np∑
p=1

S̄jpm
n
p , j = 1, ..., N. (5.20)

Similarly, the nodal momemtum, Pn
j , is given by:

Pn
j =

Np∑
p=1

S̄jpm
n
pu

n
p , j = 1, ..., N. (5.21)

where unp is the particle velocity at tn. The movement of the particles is determined by the

velocity and the acceleration at the nodes on the background grid. The nodal velocity, unj , is

calculated from the nodal mass, mn
j , and the nodal momentum, Pn

j , which is given by:

unj =
Pn
j

mn
j

. (5.22)

Assuming that the nodal internal force, Fintnj , is defined, then the nodal acceleration, anj , is

given by:

anj =
Fintnj
mn

j

. (5.23)

47

Since σ =
dFint

dx
, the following equation is derived from Equations (5.14) and (5.19):

Fintnj =

Np∑
p=1

pnp ḠjpV
n
p , (5.24)

where pnp is the particle pressure at tn. The relationship between the acceleration, the velocity,

and the displacement of the material is given by kinematics:

u̇(x, t) = a(x, t), (5.25)

ẋ(x, t) = u(x, t). (5.26)

The nodal velocity at the end of Lagrangian step is calculated using the Euler method for the

time derivative of velocity in Equation (5.25) as follows:

un+1
j = unj + anjΔt, (5.27)

where Δt = tn+1 − tn. The particle velocity and location are time-advanced using the Euler

method for the ODEs (5.25) and (5.26) where the function on the right side of these ODEs is

evaluated using the projection of nodal values. The updated particle velocity and location are

then given by:

un+1
p = unp +

N∑
j=1

S̄jpa
n
jΔt, (5.28)

xn+1
p = xnp +

N∑
j=1

S̄jpu
n+1
j Δt. (5.29)

Remark If un+1
p was used to replace the sum in the right side of Equation (5.29), the time

integration method could be viewed as a first-order Runge-Kutta-Nystrom method, Chawla

and Subramanian [23].

5.3 Application to Gas Dynamics

At the start of the time step tn, the approximate particle volume for particle p can be

calculated using the number of particles in the cell that contains the particle, Nn
j , by:

V n
p =

h

Nn
j

, (5.30)

48

where h is mesh spacing. While this is a reasonable approximation for compressible flows,

and was first used by [70], it represents a departure from the standard MPM approach for

solid mechanics, in which the volumes associated with particles are tracked; see Steffen et al.

[110, 111, 112] for an analysis of this case. The particle’s mass is calculated from the density

and the volume of the particle as:

mn
p = ρnpV

n
p . (5.31)

The nodal mass is calculated from the projection of the particle properties as shown in (5.20)

and nodal momentum is given by Equation (5.21). The nodal velocity is calculated from the

mass and the momentum of the node as given by Equation(5.22). The nodal force may be

written as the jump on the averaged particle pressures:

Fintnj = p
n(−)
j − p

n(+)
j , (5.32)

where

p
n(−)
j =

∑
p:xn

p∈Ωj−1

pnp
1

Nn
j−1

, (5.33)

p
n(+)
j =

∑
p:xn

p∈Ωj

pnp
1

Nn
j

. (5.34)

The internal force at a node is thus equal to the averaged pressure drop around that node. The

nodal acceleration is calculated from the nodal force and the nodal mass as follows:

anj =
p
n(−)
j − p

n(+)
j

mn
j

. (5.35)

The particle velocity and location are then updated using Equations (5.27)–(5.29). This method

of force calculation has been developed here as being more appropriate for compressible gas

dynamics as it assumes that the particles within a cell have the same volume.

5.3.1 Particle Energy, Density and Pressure Update

Once the nodal velocity has been determined using (5.28), it is possible to update the

velocity gradient and hence calculate the particle density, ρn+1
p , and the particle energy, en+1

p ,

for the next time step following Equations (3.48) and (3.49) by:

49

en+1
p = enp −Δt

pnp
ρnp

∂un+1
p

∂x
, (5.36)

and

ρn+1
p = ρnp −Δtρnp

∂un+1
p

∂x
, (5.37)

where the particle velocity gradient,
∂un+1

p

∂x
, is calculated using nodal velocities and the gradi-

ents of the nodal basis functions as given by:

∂un+1
p

∂x
=

N∑
j=1

Ḡjpu
n+1
j , (5.38)

where Ḡjp is defined by Equation (5.10). Note that all particles in the same cell have the same

velocity gradient as calculated using Equation (5.38). The updated particle pressure is then

calculated using equation of state (3.36) and an added viscosity term as follows:

pn+1
p = (γ − 1)ρn+1

p en+1
p + νn+1

p , (5.39)

where the term νn+1
p is a standard artificial viscosity term which is defined by:

νn+1
p =

⎧⎪⎨
⎪⎩ C2dx2ρn+1

p

(
∂un+1

p

∂x

)2

if
∂un+1

p

∂x
≤ 0

0 otherwise,

where C = 2.5. This form of artificial viscosity was used by Monaghan and Gingold [89, 90] to

reduce oscillations in the numerical solutions of the SPH methods. This formula exploits the

property of shock front that the gradient of velocity is less than zero. Using Equation (5.39)

to obtain the value of the pressure/density ratio and substitute into Equation (5.36), we then

have:

en+1
p = enp

(
1− (γ − 1)

∂un+1
p

∂x
Δt

)
− νn+1

p

ρnp

∂un+1
p

∂x
Δt, (5.40)

pn+1
p =

[(
pnp − an−1

p

)(
1− ∂un+1

p

∂x
Δt

)
+ an+1

p

][
1− (γ − 1)

∂un+1
p

∂x
Δt

]
. (5.41)

50

Using Equation (5.40), Equation (5.39) is rewritten as follows:

pn+1
p =

[(
pnp − νn−1

p

)(
1− ∂un+1

p

∂x
Δt

)
+ νn+1

p

][
1− (γ − 1)

∂un+1
p

∂x
Δt

]
. (5.42)

5.3.2 Positivity, Overshoots and Stability

Since the values of density, energy, and pressure are positive, their numerical approximations

should also be positive. From Equations (5.36)-(5.37), it may be seen that this occurs for the

discrete density and energy equations under a Courant-like condition:

0 ≤ ∂un+1
p

∂x
Δt ≤ 1. (5.43)

Although this ensures the values of density and energy remain positive; local extrema may be

caused by the use of the velocity gradient from “old” cell when cell crossing occurs. Suppose

that there are two adjacent particles in different cells whose densities satisfy the following

equation:

ρnp < ρnp+1, (5.44)

and whose velocity gradients satisfy the following equation:

(
1−Δt

∂un+1
p

∂x

)
>>

(
1−Δt

∂un+1
p+1)

∂x

)
, (5.45)

then it is possible that one particle will over take the other in magnitude:

ρn+1
p > ρn+1

p+1 ; (5.46)

this may result in a new extremal value. A similar argument may be developed for the creation

of new extrema in energy. When extrema occur in the velocity, it is necessary to apply the

artificial diffusion to the calculation of the nodal velocity. An extremum occurs in the velocity

at node j if the following condition is met:

(
unj−1 − unj

) (
unj+1 − unj

)
> 0. (5.47)

51

The new value of velocity is then calculated by the addition of an artificial viscosity-like term

that approximates
h2

3

∂2u

∂x2
which gives:

unj = unj +
unj−1 − 2unj + unj+1

3
. (5.48)

The same approach is applied if extrema are detected in density.

5.3.3 Particle Redistribution

When the particles move among the cells, the number of particles in a cell is changed. The

number of particles in a cell is used in the calculation of particle volume in Equation (5.30),

and therefore the calculation of particle mass in Equation (5.31). If there were too few particles

per cell and some of these particles move from one cell to another, it is possible for a cell not to

have any particles. This may cause stability problems. To prevent this situation, care must be

taken in the initial assignment of particles; see Section 5.4.2 and Section 5.4.3. The main idea

is to ensure that there is always sufficient number of particles per cell. This may be obtained by

redistributing particles or by ensuring that particles are placed where they will move into cells

with fewer particles. It may also be necessary to create new particles in the empty cells with

the particles’ properties obtained by interpolating the particles’ properties in the adjacent cells.

We have not experienced the idea of creating new particles in the empty cells in our variation

of MPM for gas dynamics.

5.4 Gas Dynamics Computational Experiments

5.4.1 Problem Description

The model problem used here is that of Sod [108] who used a simple gas dynamics problem

to investigate finite difference schemes for shock propagation type problems. This problem

has an analytical solution and may be used in the comparison against the numerical solution

obtained from the variation of MPM for gas dynamics. This problem has often been used as a

test problem for PIC and MPM methods; see [140]. Sod’s shocktube problem consists of a shock

tube, where a diaphragm is located in the middle of the tube. Two sides of the diaphragm have

different pressures and densities, which make the fluids flow when the diaphragm is broken.

At time t = 0, the diaphragm is removed and the motion of the compressible and inviscid

fluid is governed by the one-dimensional system of Euler equations in (3.28)–(3.31). The initial

condition at t = 0 of this problem is defined as:

(ρ, u, p)(x, 0) =

{
(1.0, 0.0, 1.0) if x < 0.5
(0.125, 0.0, 0.1) otherwise,

(5.49)

52

on spatial domain Ω = [0.0, 1.0] and the diaphragm is placed at x0 = 0.5. The final time for

this problem is Te = 0.2.

5.4.2 Initial Uniform Particle Distribution

As particles can move from one cell to another, the number of particles in a cell varies,

and so does their volume according to Equation (5.30). Since we assume each material point

is part of a perfect compressible gas, changing the particle’s volume is a reasonable modeling

assumption. In solving the Sod’s shocktube problem using our variation of MPM, we initially

assign the same number of particles for each cell. The result in Figure 5.3 is obtained when the

initial number of particles in each cell is 8, the cell size (h) is 0.005, and the time step (Δt) is

0.00025. In this figure, each dot represents a material point and the solid line is the analytical

solution. As seen in Figure 5.3, the obtained numerical result shows large errors behind the

shock front. In order to reduce the error in this numerical solution, the smoothing process

described in Section 5.3.2 was applied. The solution of the Sod’s shocktube problem after

the smoothing process was applied is shown in Figure 5.4. The error norms in the obtained

numerical solution with smoothing process is about 67 to 90% of that when the smoothing

process is not applied.

To investigate the relationship between the global error and the initial number of particles

assigned to each cell, we examine the errors in the numerical solutions of the Sod’s shocktube

problem obtained from our variation of MPM with various choices of initial number of particles.

In these numerical solutions, we either vary the size of mesh spacing h and keep the time step

Δt fixed or vary the time step Δt and keep the mesh spacing h fixed. Figure 5.5(a) shows the

change of errors in density when the size of mesh spacing h changes and the time step Δt is

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

Figure 5.3. Numerical solutions for Sod’s problem in Section 5.4.1 using our variation of MPM
for gas dynamics at Te = 0.2 with 200 cells;

(a)density: ‖geρ(T)‖L1 = 6.4× 10−3, ‖geρ(T)‖L2 = 1.52× 10−2

(b)velocity: ‖geu(T)‖L1 = 1.85× 10−2, ‖geu(T)‖L2 = 5.80× 10−2

53

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

Figure 5.4. Numerical solutions for Sod’s problem in Section 5.4.1 using our variation of MPM
for gas dynamics at Te = 0.2 with the smoothing process applied by adding viscosity-like terms
described in Section 5.3.2;

(a)density: ‖geρ(T)‖L1 = 4.3× 10−3, ‖geρ(T)‖L2 = 1.05× 10−2

(b)velocity: ‖geu(T)‖L1 = 1.47× 10−2, ‖geu(T)‖L2 = 5.07× 10−2

fixed. As seen in Figure 5.5(a), smaller mesh spacing generates more accurate results. It is

also seen in Figure 5.5(a) that the computation is inaccurate or unstable when the number of

particles is too small (less than 3). For the Sod’s shocktube problem, the numerical result is at

best if the number of particles in a cell is between 4 to 8 and the mesh spacing is sufficiently

small. It is interesting to see that the smaller mesh spacing does not reduce the need for a

certain number of particles in a cell in order to obtain a stable and accurate result. In Section

5.4.3, we will show the result for the case when the initial particle distribution is not uniform.

The initital particle distribution in Section 5.4.3 is based on the difference of density in various

spatial regions. Figure 5.5(b) shows the change of errors in density when the time step Δt

changes and the size of mesh spacing h is fixed. It also means that the results obtained in

Figure 5.5(b) are from fixed mesh spacing h and varied CFL

(
Δt

h

)
. Figure 5.5(b) shows that

the error does not change much for the numerical results obtained with the same mesh spacing

but different time steps which satisfy the condition CFL < 0.1. Figure 5.5(b) also shows that

there is a slight increase in error as the time step decreases; perhaps it is due to the buildup of

the global error over the larger number of steps, but the global error is still dominated by the

spatial error. To investigate the choice of CFL number to maintain the stability of the discussed

MPM method for gas dynamics, we keep the mesh spacing and number of particles per cell

fixed and vary the time step. Table 5.1 shows the allowed maximum time step to keep the

method stable for three different values of mesh spacing: h = 0.005, h = 0.01, and h = 0.015.

As seen in Table 5.1, the method is unstable if the time step is bigger than 0.00057 when the

mesh spacing is 0.005. The meaning of “unstable” is that the particle velocity is so large that

the particle leaves the spatial domain. Table 5.1 shows that the method generates stable results

54

(a) Errors for various choices of h.

2 4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

0.25

Number of particles

E
rr

or

h = 0.005
h = 0.01
h = 0.02
h = 0.04

(b) Errors for various choices of CFL.

2 4 6 8 10 12 14 16 18
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Number of particles

E
rr

or

CFL = 0.04
CFL= 0.05
CFL=0.06
CFL=0.08
CFL=0.1

Figure 5.5. Examination of the relationship between ‖geρ(T)‖L2 and the number of particles
for our variation of MPM for gas dynamics showing errors versus the number of particles for
various choices of mesh spacing (h) and CFL number.

55

Table 5.1. Values of Stable Time Step.

Mesh Spacing (h) 0.005 0.01 0.015
N.S.* S* N.S. S N.S. S

Max stable time step (Δt) 0.00057 0.0006 0.00114 0.00124 0.00171 0.00185
Max stable CFL(Δt/h) 0.114 0.124 0.114 0.124 0.114 0.123

*(N.S.: Nonsmoothing Process, S: Smoothing Process Applied)

only if the CFL number is smaller than about 0.11 ∼ 0.12. If the smoothing process is applied,

the maximum CFL number to maintain the stability of the method is slightly larger.

5.4.3 Alternative Particle Distribution

Although the smoothing process reduced much of instability of the particles, there are still

remaining spurious oscillations in the solution. Brackbill [16] showed that the ringing instability

in the PIC method was reduced with smaller number of particles per cell; see Section 5.6 below.

However, the result in Section 5.4.2 shows that the use of 2 ∼ 3 particles increases the error

and the use of one particle may generate unstable results. We would like to experiment with an

alternative initial particle distribution by noting that, based on the given initial condition, the

gas to the right of the diaphragm has a lower density. Hence we consider the initial distribution

of particles based on the density of the gas on the computational domain in which the number

of particles per cell is in proportion to the density of gas in that cell. Since the density of gas

on the left side of the computational domain is 1.0 and on the right side is 0.125, eight particles

are assigned to each cell on the left and one particle is assigned to each cell on the right.

This nonuniform particle distribution gives a stable result as shown in Figure 5.6, although the

number of particles on the right side is only one per cell. This is due to the particles on the left

side of the computational domain move rightwards during the time integration process. Because

there are enough particles on the left side of the computational domain and these particles move

to the right, the solution process remains stable as we are constantly introducing particles into

the cells on the right. Figure 5.6 shows the numerical solution of the Sod’s shocktube problem

obtained from our variation of MPM with fewer particles on the right hand side of the diaphram

and application of the smoothing process discussed in Section 5.3.2. Comparing the result in

Figure 5.6 to the result in Figure 5.4, the result in Figure 5.6 has fewer oscillations, but has a

similar error norm to the previous cases.

56

(a) (b)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Figure 5.6. Numerical solutions for the Sod’s shocktube problem in Section 5.4.1 using our
variation of MPM for gas dynamics at Te=0.2 with nonuniform initial particle distribution
discussed in Section 5.4.3 and application of the smoothing process;

(a)density: ‖geρ(T)‖L1 = 5.4× 10−3, ‖geρ(T)‖L2 = 1.38× 10−2

(b)velocity: ‖geu(T)‖L1 = 1.49× 10−2, ‖geu(T)‖L2 = 5.65× 10−2

5.5 Time Integration Error and
Grid Crossing by Particles

5.5.1 Time Integration Discontinuities
Arising from Grid Crossing

The comparative lack of smoothness of the spatial basis grid functions used in the MPM

translates into a lack of smoothness in time when particles cross grid points and then have

properties that are redefined in terms of the basis functions of the cell into which the particles

move.

Since the updated particle velocity is calculated using Equation (5.28), it means that the

higher time derivatives of the particle velocity are discontinuous when a particle crosses a

grid point. This may be illustrated by considering Equation (5.27) which is a forward Euler

discretization of:

u̇np =

N∑
j

S̄jpa
n
j . (5.50)

If the point xnp is in the cell domain Ωj−1 then Equation (5.50) may be written as:

u̇n(−)
p = αn

j a
n
j−1 + (1− αn

j)a
n
j , αn

j =
xnp − xj

xj−1 − xj
, (5.51)

whereas if the point xnp is in the cell domain Ωj then Equation (5.50) may be written as:

u̇n(+)
p = αn

j+1a
n
j + (1− αn

j+1)a
n
j+1, αn

j+1 =
xnp − xj+1

xj − xj+1
. (5.52)

57

The second derivative of unp when the point xnp is in the cell domain Ωj−1 is given by:

ün(−)
p = αn

j ȧ
n
j−1 + (1− αn

j)ȧ
n
j + ẋnp

anj−1 − anj
xj−1 − xj

, (5.53)

or if the point xnp is in the cell domain Ωj then:

ün(+)
p = αn

j+1ȧ
n
j + (1− αn

j+1)ȧ
n
j+1 + ẋnp

anj − anj+1

xj − xj+1
. (5.54)

The jump in the second derivative of particle velocity as the particle crosses the point xj is

given by:

[ün(+)
p − ün(−)

p] = ẋnp

[
anj − anj+1

xj − xj+1
− anj−1 − anj

xj−1 − xj

]
. (5.55)

The local error at particle p associated with one step of the forward Euler method applied to

Equation (5.28) is given by:

leup(tn+1; tn, u
n
p) =

Δt2

2
ünp . (5.56)

This formula does not apply if üp is discontinuous with “left” and “right” values denoted by

ü
n(−)
p and ü

n(+)
p respectively. One standard ODE method for crossing a discontinuity is to

march up to it with one step of size Δt1 and one step from it of size Δt2. The local error for

an Euler time step in region one may be estimated by:

leup(tn +Δt1; tn, u
n
p) ≈

Δt21
2

ün(−)
p , (5.57)

and the local error for an Euler time step in region two is estimated by:

leup(tn+1; tn +Δt1, u
tn+Δt1
p) ≈ Δt22

2
ün(+)
p , (5.58)

by assuming that the second derivatives may be regarded as constant on a step. It may be

shown by using techniques such as those used by Shampine [105] that the error introduced

over one time step that crosses the discontinuity is then the sum of the local errors of the two

58

substeps and the difference between the solutions obtained using one big step and two substeps,

i.e.,

leup(tn+1) = leup(tn +Δt1; tn, u
n
p) + leup(tn+1; tn +Δt1, u

tn+Δt1
p) + (ūn+1

p − un+1
p), (5.59)

where un+1
p is the solution computed using one Euler step of size Δt and where ūn+1

p is the

solution computed using two Euler steps of size Δt1 and Δt2. The next two sub-sections will

show that the gap between the two Euler solutions (ūn+1
p − un+1

p) is one power of Δt less than

the local errors for both velocity and position errors.

5.5.2 Time Integration Errors in Velocity

Having determined the nature of the discontinuity, it now remains to determine the error

introduced by stepping over it. It is worth noting that with a standard PDE method, dis-

continuities in time derivatives do not occur in the same way as when material point method

particles cross cells. In the case when a particle xnp lies in the cell [xj−1, xj] and passes over

a grid node and moves into the cell [xj , xj+1] then the particle velocity is updated using the

following equation:

un+1
p = unp +

[
anj−1 +

xnp − xj−1

xj − xj−1
(anj − anj−1)

]
Δt. (5.60)

Alternatively, the forward Euler method may be applied to march up to the grid node at xj in

one step and then take another step to bring the particle to the spatial position xnp . For the

first substep of length Δt1 the particle velocity is given by:

ūnp = unp +

[
anj−1 +

xnp − xj−1

xj − xj−1
(anj − anj−1)

]
Δt1. (5.61)

For the second substep of length Δt2, the particle velocity is as follows:

ūn+1
p = ūnp +

[
anj +Δt1ȧ

n
j

]
Δt2, (5.62)

where Δt = Δt1+Δt2. Hence the difference in the velocities calculated using the two approaches

is given by:

ūn+1
p − un+1

p = (anj − anj−1)

[
xj − xnp
xj − xj−1

]
Δt2 +Δt1Δt2ȧ

n
j , (5.63)

59

and so may be written as:

ūn+1
p − un+1

p ≈ CΔt2(a
n
j − anj−1) + h.o.t, (5.64)

where C =

[
xj − xnp
xj − xj−1

]
and where 0 ≤ C ≤ 1. For the Euler equations considered here the

values of (anj − anj−1) may be as large as 103. This dictates the use of a time step of the order

of that used in Section 5.4. 1

5.5.3 Time Integration Errors in Spatial Position

We are now determine the error introduced in spatial position when the particle xp lies in

the cell domain Ωj−1 and crosses the grid node at xj and moves into the cell Ωj using the same

approach of time integration errors in velocity. In the variation of MPM discussed above, the

particle position is updated as follows:

xn+1
p = xnp +

[
un+1
j−1 +

xnp − xj−1

xj − xj−1
(un+1

j − un+1
j−1)

]
Δt , (5.65)

which may be written as:

xn+1
p = xnp +

[
unj−1 +

xnp − xj−1

xj − xj−1
(unj − unj−1)

]
Δt+

[
anj−1 +

xnp − xj−1

xj − xj−1
(anj − anj−1)

]
Δt2. (5.66)

As stated above, consider using the forward Euler method to march up to the edge of the cell

in one step and then in another step to step to the same point in time. For the first step, the

particle position is calculated as follows:

x̄np = xnp +

[
unj−1 +

xnp − xj−1

xj − xj−1
(unj − unj−1)

]
Δt1 +

[
anj−1 +

xnp − xj−1

xj − xj−1
(anj − anj−1)

]
Δt21. (5.67)

For the second step, the particle position is given by:

x̄n+1
p = x̄np + un+1

j Δt2 , (5.68)

and so:

x̄n+1
p = x̄np + unjΔt2 + anjΔt Δt2 , (5.69)

1The reader should note that throughout C will be used as a generic constant whose value may be different

each time it is used.

60

where Δt = Δt1 + Δt2. Hence the difference between the positions calculated by the two

approaches is:

x̄n+1
p −xn+1

p = (un+1
j −un+1

j−1)

[
xj − xnp
xj − xj−1

]
Δt2−

[
anj−1 +

xnp − xj−1

xj − xi−1
(anj − anj−1)

]
Δt1 Δt2 (5.70)

Figure 5.7 illustrates the different values of spatial position that may result when the discon-

tinuity is and is not considered.

Dividing both sides of Equation (5.70) by (xj − xj−1) gives:

x̄n+1
p − xn+1

p

xj − xj−1
≈ Δt2

(un+1
j − un+1

j−1)

(xj − xj−1)
C − Δt1Δt2

xj − xj−1

[
anj−1 +

xnp − xj−1

xj − xj−1
(anj − anj−1)

]
, (5.71)

where C =

[
xj − xnp
xj − xj−1

]
and where 0 ≤ C ≤ 1.

5.6 Spatial Error Estimation

There are several sources of error that contribute to the overall spatial error at grid nodes

in the variant of MPM for gas dynamics. These error sources includes the error from mapping

the particle values onto grid nodes, the error from crossing particles cells boundaries, and the

error from projecting the material movement at grid nodes onto particles. In this section,

we consider the estimation of error from mapping the values of particles onto the value of a

grid node. In particular, we evaluate the mass mapping error introduced by Equation (5.20),

the momentum mapping error introduced by Equation (5.21), and the force mapping error

introduced by Equation (5.24). In order to distinguish between the mapping spatial error and

the overall spatial error, we use ep for mapping spatial error instead of using es for the overall

spatial error. The vector of mapping spatial errors of grid nodes is denoted as:

X X
t

t

n

n+1

p
n

i

X X p
n+1

p

n+1

Figure 5.7. Mesh Crossing Diagram.

61

epq(t) =
[
epq1(t), ep

q
2(t), ep

q
3(t), ..., ep

q
N (t)

]T
, (5.72)

where q is the quantity that error is being measured and N is the number of grid nodes. In

the following analysis, we consider q = m (for mass), P (for momentum), F (for force), u (for

velocity), a (for acceleration), and ∇u (for velocity gradient). Before estimating errors in these

quantities, it is helpful to establish some notation relating to an important result of quadrature

error bound result by Hickernell [57].

5.6.1 Hickernell’s Quadrature Error Bound

Theorem 2.3 of Hickernell [57] on quadrature error bound proves that for any function

f(x) ∈ X2 ≡
{
f :

df

dx
∈ L2([0, 1])

}
and some random or deterministic sample Q of Np points

in [0, 1], then the following inequality holds:

∣∣∣∣∣∣
∫ 1

0
f(y)dy − 1

Np

Np∑
p=1

f(zp)

∣∣∣∣∣∣ ≤ D2(Q)

∥∥∥∥ dfdx
∥∥∥∥
2

, (5.73)

where:

D2(Q) =

√√√√ 1

12N2
p

+
1

Np

Np∑
p=1

(
zp − 2p− 1

2Np

)2

, (5.74)

and:

∥∥∥∥ dfdx
∥∥∥∥
2

=

[∫ 1

0

(
df

dx

)2

dx

]1/2
, (5.75)

and {zp} is an ordered set of the points of sample Q. Although Hickernell proves the result for

more general norms, the above result is sufficient for this analysis.

It is important to map Hickernell’s result to a cell domain used in the discussed variant

of MPM. Let {zp : p = 1, ..., Nj+1} be an ordered set of Nj+1 points in [0, 1] of sample Q.

When mapping this set of points into the cell domain Ωj , we obtain the set of points as given

by {hzp + xj : p = 1, ..., Nj+1}. The set of Nj+1 equidistant points in the cell domain Ωj is{
xj +

(2p− 1)h

2Nj+1
: p = 1, ..., Nj+1

}
. A similar inequality to the inequality in Equation (5.73)

when we integrate the function f over the cell length h is given as follows:

∣∣∣∣∣∣
1

h

∫ xj+1

xj

f(y)dy − 1

Nj+1

Nj+1∑
p=1

f(hzp + xj)

∣∣∣∣∣∣ ≤ D2(Q) h
1
2

∥∥∥∥ dfdx
∥∥∥∥
2,Ωj

, (5.76)

62

where:

∥∥∥∥ dfdx
∥∥∥∥
2,Ωj

=

[∫
Ωj

(
df

dx

)2

dx

]1/2
, (5.77)

and:

D2(Q) =

√√√√ 1

12N2
j+1

+
1

Nj+1h2

Nj+1∑
p=1

(
(hzp + xj)−

(
xj +

(2p− 1)h

2N j+1
p

))2

. (5.78)

It should also be noted that from the mean value theorem for integration, we then have:

h
1
2

[∫
Ωj

(
df

dx

)2

dx

] 1
2

= h

∣∣∣∣ dfdx(ξ)
∣∣∣∣ , (5.79)

for some ξ ∈ Ωj . Hence:

∣∣∣∣∣∣
∫ xj+1

xj

f(y)dy − h

Nj+1

Nj+1∑
p=1

f(hzp + xj)

∣∣∣∣∣∣ ≤ D2(Q) h2
∣∣∣∣ dfdx(ξ)

∣∣∣∣ . (5.80)

The values of D2(Q) clearly depend on the point distribution of sample Q and thus in turn on

the problem being solved. Considering the worst case of particles’ negligible distances apart at

the end of an interval, it is straightforward to show that:

1

2
√
3Nj+1

≤ D2(Q) ≤ 1√
3
. (5.81)

This result has a similar form to the results of Vshivkov [135] (as quoted by Brackbill, [17])

except that the key difference here lies in the choice of quadrature rule. Vshivkov calculates

the error, δk, in the charge density at node k as computed with the PIC. His result states that:

δk ≤
(

3ρ2av
2ρmin

+ h
ρ2avρmax

6ρ3min

∣∣∣∣∂ρ∂x
∣∣∣∣
max

)
1

N2
+

h2

12

∣∣∣∣∂2ρ

∂x2

∣∣∣∣
max

, (5.82)

where N is the average number of particles in a cell.

63

5.6.2 Ringing Instability

It is also important to remark that, as with any quadrature rule, there exist values of xj

such that f(xj) = 0. For example if:

f(x) =

N i
p∏

j=1

(x− xj) , (5.83)

then the integral approximation is zero and the error is the value of the integral. Furthermore

there are functions that are nonzero at the particle points such as:

f(xi) = (−1)i , (5.84)

which in the case of even numbers of mesh points will give a zero contribution to the integral.

The problem is made worse by the fact that the quadrature rule is essentially using a piecewise

constant approximation to function in forming the integral in the most general case. This loss

of information due to quadrature is known as the “Ringing Instability” and is a well-known

feature of particle methods that is attributed to the under-representation of particle data on

the grid. Brackbill [16] and MacNeice [85] explain this instability in terms of Fourier analysis.

5.6.3 Mass Projection Error

The mass projection error at node j at time tn is denoted as epmj (tn) and is defined by:

epmj (tn) =

∫
Ω
ρ(x, tn)Sj(x)dx−mn

j , (5.85)

where mn
j is nodal mass defined in Equation (5.20). From Equations (5.20), (5.11), and (5.31),

the nodal mass is given by:

mn
j =

Np∑
p=1

Sj(xp)ρ
n
pV

n
p . (5.86)

With the piecewise-linear grid basis function for node j defined in Equation (5.8), the contribu-

tion to the nodal mass at node j is from the particles in cell Ωj−1 and Ωj . With the definition

of particle volume in (5.30), Equation (5.85) is then rewritten as:

64

epmj (tn) =

∫
Ωj−1

ρ(x, tn)Sj(x)dx−
∑

p:xn
p∈Ωj−1

Sj(xp)ρ
n
p

h

Nn
j−1

+

∫
Ωj

ρ(x, tn)Sj(x)dx−
∑

p:xn
p∈Ωj

Sj(xp)ρ
n
p

h

Nn
j

. (5.87)

The mass projection error in (5.87) is thus composed of two terms each of which is similar to

the right side of Equation (5.80). Using the result in Equation (5.80), we obtain the following

bound of mass projection error:

∣∣epmj (tn)
∣∣ ≤ D2(Qj−1)h

2

∣∣∣∣d(ρ(x, tn)Sj(x))

dx
(ξj−1)

∣∣∣∣+D2(Qj)h
2

∣∣∣∣d(ρ(x, tn)Sj(x))

dx
(ξj)

∣∣∣∣ , (5.88)

for some ξj−1 ∈ Ωj−1 and ξj ∈ Ωj . In Equation (5.88), sample Qj is a set of Nn
j points in

cell Ωj which is the ordered set of particle positions,
{
xnp : p = 1, .., Np and xnp ∈ Ωj

}
, in this

cell. As the basis grid function, Sj(x), is defined using (5.8), the first-order spatial derivative

of Sj(x) depends on
1
h . This results in the mass projection error epmj (tn) being first-order in h.

In order to approximate the mass projection error in Equation (5.87), we use the trapezoidal

quadrature rule to approximate the integrals in this equation.

The result in Figure 5.8 shows how the mass projection error in L1-norm, ‖epm(tn)‖L1 ,

grows for different mesh sizes and is first-order of mesh size as expected. The errors grow in

time in a way that is consistent with first time integration using the forward Euler method.

5.6.4 Momentum Projection Error

The momentum projection error at node j at tn associated with Equation (5.35) is denoted

as epPj (tn). Using a similar derivation to the derivation of the mass projection error in Section

5.6.3, the bound of momentum projection error, epPj (tn), is given by:

∣∣epPj (tn)∣∣ ≤ D2(Qj−1)h
2

∣∣∣∣d(ρ(x, tn)u(x, tn)Sj(x))

dx
(ξj−1)

∣∣∣∣
+D2(Qj)h

2

∣∣∣∣d(ρ(x, tn)u(x, tn)Sj(x))

dx
(ξj)

∣∣∣∣ , (5.89)

for some ξj−1 ∈ Ωj−1 and ξj ∈ Ωj . In Equation (5.89), sample Qj is a set of Nn
j points in

cell Ωj which is the ordered set of particle positions,
{
xnp : p = 1, .., Np and xnp ∈ Ωj

}
, in this

cell. As the first-order spatial derivative of Sj(x) depends on
1
h , it follows that the momentum

projection error is also first-order in h.

65

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10−4

Time

E
rr

or

h=0.02
h=0.01
h=0.005
h=0.0025
h=0.00125
h=0.000625

Figure 5.8. Mass projection error in L1-norm, ‖epm(tn)‖L1 , for different mesh spacings, h.

5.6.5 Velocity Projection Error

Consider the exact nodal projected velocity, uj(tn), which is the ratio of the exact nodal

projected momentum and the exact nodal projected mass as given by:

uj(tn) =

∫
Ω ρ(x, tn)u(x, tn)Sj(x)dx∫

Ω ρ(x, tn)Sj(x)dx
. (5.90)

The error in the velocity projection, epūj (tn), is defined by:

epūj (tn) = uj(tn)− unj , (5.91)

where unj is given by Equation (5.28). Let u(xj , tn) be the exact nodal velocity at node j at tn.

Define the error from projection in the exact value as:

ep
¯̄u
j (tn) = u(xj , tn)− uj(tn). (5.92)

Then overall error in velocity projection may be split into two parts:

epuj (tn) = u(xj , tn)− unj = ep
¯̄u
j (tn) + epūj (tn). (5.93)

66

Let:

δ2U

δx2
(x, t) = ρ(x, t)u(x, t) , (5.94)

and:

δ2V

δx2
(x, t) = ρ(x, t). (5.95)

Then the exact velocity is defined by:

u(x, t) =
h δ2U

δx2 (x, t)

h δ2V
δx2 (x, t)

. (5.96)

Using integration by parts, the projection of the velocity is then given by:

uj(tn) =

∫
Ω Sj(x)ρ(x, tn)u(x, tn)dx∫

Ω Sj(x)ρ(x, tn)dx

=
1
h(U(xj − h, tn)− 2U(xj , tn) + U(xj + h, tn))
1
h(V (xj − h, tn)− 2V (xj , tn) + V (xj + h, tn))

.

Define two projection errors epUj (tn) and epVj (tn) by:

epUj (tn) = h
δ2U

δx2
(xj , tn)−

∫
Ω
Sj(x)ρ(x, tn)u(x, tn)dx, (5.97)

and:

epVj (tn) = h
δ2V

δx2
(xj , tn)−

∫
Ω
Sj(x)ρ(x, tn)dx. (5.98)

Using standard finite difference analysis, we have epUj = O(h3)+h.o.t, and and epVj = O(h3)+

h.o.t. From Equations (5.92), (5.90), and (5.96), we have:

ep
¯̄u
j (tn) =

h δ2U
δx2 (x, tn)

h δ2V
δx2 (x, tn)

−
∫
Ω Sj(x)ρ(x, tn)u(x, tn)dx∫

Ω Sj(x)ρ(x, tn)dx

=
1∫

Ω Sj(x)ρ(x, tn)dx
(epUj − u(xj , tn)ep

V
j).

As epUj and epVj are third-order in h and
∫
Ω Sj(x)ρ(x, tn)dx is first-order in h, it follows that

ep¯̄uj (tn) is second-order in h.

67

From Equations (5.91), (5.90), and (5.28), we have:

epūj (tn) =

∫
Ω Sj(x)ρ(x, tn)u(x, tn)dx∫

Ω Sj(x)ρ(x, tn)dx
− Pn

j

mn
j

=
1

mn
j

(
epPj (tn)− u(xj , tn)ep

m
j (tn)

)
,

where:

epPj (tn) =

∫
Ωj−1

Sj(x)ρ(x, tn)u(x, tn)dx− h

Nn
j−1

∑
p:xn

p∈Ωj−1

Sj(x
n
p)ρ

n
pu

n
p

+

∫
Ωj

Sj(x)ρ(x, tn)u(x, tn)dx− h

Nn
j

∑
p:xn

p∈Ωj

Sj(x
n
p)ρ

n
pu

n
p . (5.99)

Using a Taylors series expansion of velocity about xj gives:

epPj (tn) = u(xj , tn)ep
m
j (tn) + ux(xj , tn)ep

up1
j (tn) +

uxx(xj , tn)

2
epup2j (tn) + ...+ (5.100)

where:

epupkj (tn) =

∫
Ωj−1

Sj(x)ρ(x, tn)(x− xj)
kdx− h

Nn
j−1

∑
p:xn

p∈Ωj−1

Sj(x
n
p)ρ

n
p (x

n
p − xj)

k

+

∫
Ωj

Sj(x)ρ(x, tn)(x− xj)
kdx− h

Nn
j

∑
p:xn

p∈Ωj

Sj(x
n
p)ρ

n
p (x

n
p − xj)

k. (5.101)

Therefore:

epuj (tn) = ep
¯̄u
j (tn) +

1

mn
j

(
ux(xj , tn)ep

up1
j (tn) +

uxx(xj , tn)

2
epup2j (tn) + ...

)
. (5.102)

Using Hickernell’s result from Equation (5.76) to Equation (5.101) gives:

∣∣∣epupkj (tn)
∣∣∣ ≤ D2(Qj−1)h

2

∣∣∣∣d(Sj(x)ρ(x, tn)(x− xj)
k)

dx
(ξj−1)

∣∣∣∣
+D2(Qj)h

2

∣∣∣∣d(Sj(x)ρ(x, tn)(x− xj)
k)

dx
(ξj)

∣∣∣∣ , (5.103)

for some ξj−1 ∈ Ωj−1 and some ξj ∈ Ωj . For the lowest order term k = 1 this is second-order.

68

5.6.6 Acceleration Projection Error

We define the projection error in acceleration, epaj (tn), as:

epaj (tn) = a(xj , tn)− anj , (5.104)

where a(xj , tn) is the exact acceleration at node xj at time tn. Same as for the velocity projection

error, the acceleration projection error may be split into two parts:

epaj (tn) = (a(xj , tn)− aj(tn)) +
(
aj(tn)− anj

)
= ep

¯̄a
j (tn) + epāj (tn) , (5.105)

where anj is calculated nodal acceleration from (5.29) and aj(tn) is exact nodal acceleration

obtained by projecting the exact pressure and density onto the mesh points as given by:

aj(tn) =

1
h(
∫
Ωj−1

p(x, tn)dx− ∫
Ωj

p(x, tn)dx)∫
Ω ρ(x, tn)Sj(x)dx

. (5.106)

The error ep¯̄aj (tn) may be shown to be second-order in h using the same approach as in

Equation (5.90)–(5.101). In the other hand, we have:

epāj (tn) =

1
h(
∫
Ωj−1

p(x, tn)dx− ∫
Ωj

p(x, tn)dx)∫
Ω ρ(x, tn)Sj(x)dx

− 1

Nn
j−1

∑
p:xn

p∈Ωj−1

pnp − 1

Nn
j

∑
p:xn

p∈Ωj

pnp . (5.107)

Then:

epāj (tn) =
1

mn
j

(epFj (tn)− a(xj , tn)ep
m
j (tn), (5.108)

where:

epFj (tn) =

⎛
⎝1

h

∫
Ωj−1

p(x, tn)dx− 1

Nn
j−1

∑
p:xn

p∈Ωj−1

pnp

⎞
⎠

+

⎛
⎝−1

h

∫
Ωj

p(x, tn)dx+
1

Nn
j

∑
p:xn

p∈Ωj

pnp

⎞
⎠ . (5.109)

69

Expanding the values of pressure about xj gives:

1

h

∫
Ωj−1

p(x, tn)dx− 1

Nn
j−1

∑
p:xn

p∈Ωj−1

pnp = px(x
n
j)

⎛
⎝xj + xj−1

2
− 1

Nn
j−1

∑
p:xn

p∈Ωj−1

xnp

⎞
⎠

+
pxx(x

n
j)

2

⎛
⎝∫

Ωj−1

(x− xj)
2

h
dx− h

Nn
j−1

∑
p:xn

p∈Ωj−1

(xnp − xj)
2

h

⎞
⎠ ,

and similarly for the interval Ωj . The lowest order term in the error is then:

epFj = px(xj)

⎛
⎝h− 1

Nn
j−1

∑
p:xn

p∈Ωj−1

xnp +
1

Nn
j

∑
p:xn

p∈Ωj

xnp

⎞
⎠+ h.o.t. (5.110)

In order to investigate the order of this term, it is necessary to consider the evolution of the

points that contribute to the calculation of acceleration at the point xj at time tn. Let means

of particle positions and velocities be defined by:

x̄nj+1(t) =
1

Nn
j

∑
p:xn

p∈Ωj

xp(t), (5.111)

ūnj+1 =
1

Nn
j+1

∑
p:xn

p∈Ωj

up(t). (5.112)

Furthermore define:

dūnj
dx

(t) =
ūnj+1(t)− ūnj (t)

x̄nj+1(t)− x̄nj (t)
. (5.113)

From Equations (5.111),(5.112) and (5.113) it follows that:

x̄nj+1(tn+1)− x̄nj (tn+1) =

[
1 + Δt

dūnj
dx

(tn)

]
(x̄nj+1(tn)− x̄nj (tn)), (5.114)

and hence that the gap between the means may be related back to the initial mesh distribution

as given by:

x̄nj+1(tn+1)− x̄nj (tn+1) =
∏
k

[
1 + Δt

dūnj
dx

(tk)

]
(x̄nj+1(t0)− x̄nj (t0)). (5.115)

Suppose that initially all the points are evenly distributed at time t0 with spacing hp, then:

(x̄nj+1(t0)− x̄nj (t0)) = hp(N
n
j+1 +Nn

j)/2, (5.116)

70

where the interval spacing h is connected to the initial particle spacing hp through:

h = hp(N
0 + 1) (5.117)

where N0 is the total number of points in every interval at t0. Hence:

x̄nj+1(tn+1)− x̄nj (tn+1) = h
∏
k

[
1 + Δt

dūnj
dx

(tk)

] [
Nn

j+1 +Nn
j

2(N0 + 1)

]
. (5.118)

Using the CFL condition as defined by Δt
dx then gives:

x̄nj+1(tn+1)− x̄nj (tn+1) = h [1 + h CFL K]
Nn

j+1 +Nn
j

2(N0 + 1)
+ h.o.t , (5.119)

where:

K =
∑
k

[
dūnj
dx

(tk)

]
. (5.120)

This result shows that the acceleration order may be first-order if local velocity gradients are

“small” if particles are rezoned as to be closer to evenly spaced as in Section 5.3.3.

5.6.7 Velocity Gradient Error

The accuracy of the equations used to update energy and density in Section 5.3.1 depends

on the accuracy of the velocity gradient, and the velocity gradient at any particle xnp ∈ Ωj is

defined as:

δu

δx
(xnp) =

unj+1 − unj
xj+1 − xj

−
(
xj+1 + xj

2
− xnp

)
δ2u

δx2
(xnp) + h.o.t . (5.121)

The velocity gradient error at particles is rewritten as:

ep∇u
j =

epuj+1 − epuj
h

+
Δt

h

[
epaj+1 − epaj

]− (
xi+1 + xi

2
− xnp

)
δ2u

δx2
(xnp) . (5.122)

Thus the velocity gradient error depends on the first-order interpolation error.

5.7 Combining the Error Estimate Results

The density errors, geρ(T), at Te = 0.2 in L1-Norm, L2-Norm, and L∞-Norm for the Sod’s

shocktube problem discussed in Section 5.4.1 with different sizes of mesh spacing are shown

71

in Table 5.2. These results are obtained for the case CFL = 0.1 and the initial number of

particles per cell is 8. The numbers in Table 5.2 indicate that the density error is order of h

in L1-Norm, order of h
1
2 in L2-Norm, and order of h0 in L∞-Norm. In order to understand

the orders of these norms, a detailed inspection of the order of accuracy in each part of the

spatial domain was made. In the regions around the contact discontinuity and the shock, the

maximum pointwise error does not decrease as the size of mesh spacing decreases. The error in

L∞-Norm is therefore order of h0. The density error in L1-Norm, ‖geρ(T)‖L1 , is proportional

to h‖geρ(T)‖L∞
while the approximate L2-Norm is

√
h‖geρ(T)‖L∞

, thus giving rise to the

observed orders of convergence. Figure 5.9 shows the evolution in time of the L1-Norm of the

density error, ‖geρ(t)‖L1 , for different mesh sizes. This error is first-order in mesh spacing h.

Table 5.2. The density errors at T = 0.2 in L1-Norm, ‖geρ(T)‖L1 , L2-Norm, ‖geρ(T)‖L2 , and
L∞-Norm, ‖geρ(T)‖L∞

for the Sod’s shocktube problem discussed in Section 5.4.1.

h ‖geρ(T)‖L1 ‖geρ(T)‖L2 ‖geρ(T)‖L∞

0.02 0.00161 0.02484 0.1051
0.01 0.00831 0.01587 0.0812
0.005 0.00434 0.01046 0.1139
0.0025 0.00231 0.00759 0.1063
0.00125 0.00136 0.00626 0.1002

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Time

D
en

si
ty

 E
rr

or
(L

1−
N

or
m

)

h=0.02
h=0.01
h=0.005
h=0.0025

Figure 5.9. L1-Norm of density global error, ‖geρ(Te)‖L1 , in time for different mesh sizes.

72

5.8 Summary

In this chapter, we have presented a numerical analysis of our variation of MPM proposed

for gas dynamics. In this study, we consider the global errors resulting from different particle

distributions, the errors in time integration, and the mapping errors in spatial discretization.

The analyses of these errors are obtained numerically and experimentally on the well-known

Sod’s shocktube test problem in one-dimensional space. Analysis shows that the accuracy of the

method depends on a sufficiently well-behaved point distribution. For time integration errors,

we consider time integration error in velocity and spatial position when particles cross cells.

These integration errors are first-order in time. For mapping errors in spatial discretization,

we consider the estimation of errors from mapping the values of particles onto the values of

grid nodes; these mapping errors include the errors in mapping mass, momentum, velocity,

acceleration, and velocity gradient. The importance of this analysis is that it provides a way

to make a more formal assessment of many of the errors in MPM type methods.

CHAPTER 6

THE IMPROVED PRODUCTION IMPLICIT

CONTINUOUS-FLUID EULERIAN METHOD

FOR COMPRESSIBLE FLOW PROBLEMS

The Implicit Continuous-fluid Eulerian method (ICE) for multiphase flows is utilized by

the Uintah Computational Framework (UCF) to simulate explosions, fires and other fluid and

fluid-structure interaction phenomena [44]. The ICE code in UCF is referred to as Production

ICE. The implementation of Production ICE is based on the fully cell-centered implementation

of the ICE method (cell-centered ICE) by Kashiwa et al. [68, 69] with a few exceptions that

are discussed in detail in Section 6.2. Cell-centered ICE of Kashiwa et al. [68] employs a

conservative advection operator and a Lagrangian part which leaves a degree of freedom in the

choice of conservation variables. The conservation laws used include at least those of mass, linear

momentum, and internal energy (or alternatively the total energy). The Lagrangian method in

most standard ICE implementations is fully conservative and it usually conserves the internal

energy rather than the total energy. The numerical scheme used in Production ICE [44, 45,

52, 79, 80] solves the conservation of mass, linear momentum and internal energy. However,

the Lagrangian method of Production ICE is a nonconservative form. While this may not be

a problem for some cases, it appears to be a problem when applying this Production ICE code

to single-fluid cases that are governed by the Euler equations in which the obtained numerical

solutions exhibit some discrepancies in the shock speeds and they additionally show unphysical

oscillations. With the need to improve the implementation of the Production ICE method, we

start the improvement of Production ICE in the one-dimensional case. In order to improve

Production ICE for the numerical solutions of compressible flow problems, we will explore the

various choices in the implementation of cell-centered ICE and discuss how various choices affect

the obtained numerical solutions. By exploring the various choices in the implementation of cell-

centered ICE and by proposing an improvement of Production ICE for the one-dimensional case,

we will provide some insights into the improvement of Production ICE for the multidimensional

case.

74

The one-dimensional Production ICE method solves the time-dependent Euler equations of

gas dynamics described by Equations (3.32)-(3.34) and the equation of state (3.36). It has been

mentioned in [60, 75, 121] that nonconservative schemes approximating hyperbolic conservation

laws do not converge to the correct solution in general. So the existence of discrepancies

in the numerical solutions for nonlinear hyperbolic systems using Production ICE is quite

understandable. Therefore, in order to improve the Production ICE method, we first must

change the method to solve the system of one-dimensional Euler equations in conservative form

where the total energy instead of the internal energy is conserved. The Improved Production

ICE method, that will be referred to hereafter as IMPICE, is a cell-centered ICE method

which solves the system of one-dimensional Euler equations in conservation form described by

governing Equations (3.28)-(3.30) and the equation of state (3.31). As a result of changing

the Production ICE method to solve the system of Euler equations in conservative form, the

computational results show the disappearance of the discrepancies in the obtained numerical

solutions. However, cell-centered ICE suffers from unphysical oscillations when there are moving

contact discontinuities. Typically, methods in the literature use a variety of techniques such as

constrained data reconstruction so as to avoid spurious oscillations; for example, [10, 11, 25,

129, 130, 131, 132]. To suppress oscillations, we will use a similar approach in which the data

at the cell interface are the approximate Riemann solution to the local Riemann problem that

is constructed by using slope-limited interpolation of the left and right cell-centered data. The

approximate Riemann solver which was proposed by Harten et al. [53] and used by Davis [28]

to satisfy consistency with the integral forms of the conservation law and entropy condition

will be used to solve the local Riemann problem. The slope limiter used is selected from

the extensive literature on the functions for slope limiters in the last few decades; see, for

example, [39, 54, 116, 126, 129, 130, 131, 136]. The IMPICE method is cell-centered ICE with

the oscillations being suppressed using the aforementioned technique. In effect, although the

original ICE method is a Von Neumann type method in which the fluxes are fully dependent

on the time increment, we have now introduced a ICE method with Riemann solver approach

in which the fluxes depend directly on the approximate solution to the Riemann problem.

As for many numerical methods for the solution of PDEs, the IMPICE method approximates

the Euler equations by a finite volume method using a spatial discretization of the problem and

a time integration technique. Of comparable importance to having a nonoscillating numerical

solution is determining the accuracy of the IMPICE method in time and space. cell-centered

ICE with first-order advection is first-order in space and time. However, first-order methods are

known to be not accurate enough to be used for large problems on relatively coarse grids. We can

increase the orders of accuracy in time and space by applying a high order time discretization

75

and a nonlinear spatial discretization, respectively. The goal is to obtain an IMPICE method

with second-order accuracies in both time and space.

The content of this chapter is organized as follows. In Section 6.1, we recap the cell-centered

ICE method by Kashiwa et al. [68] which includes the spatial discretization and essential steps

in the time integration. In Section 6.2, we present the detail implementation of the Production

ICE method and describe how the Production ICE method is different from the cell-centered

ICE method by Kashiwa et al. [68]. In Section 6.3, we discuss the proposed method by Kwatra

et al. [72] that can be applied to calculate the time integration step of the semi-implicit ICE

method. This method removes the restriction of sound speed in calculating the time step,

but still maintains stability. In Section 6.4, we propose a modification to the Production

ICE method to remove the unphysical oscillations in the numerical solutions. The numerical

solutions of the IMPICE method are presented and compared to the numerical solutions of the

Production ICE method in Section 6.5. The spatial and temporal accuracies of the IMPICE

method are shown in Section 6.6. We discuss in Section 6.7 and Section 6.8 how to obtain

second-order accuracy in time and space, respectively. The conclusions are drawn in Section

6.9.

6.1 Cell-centered ICE by Kashiwa et al. [68]

6.1.1 General Cell-centered ICE

Cell-centered ICE for the one-dimensional space, which is described in detail in [68], is a

finite-volume solver in which the computational domain Ω = [a1, b1] ∈ R is discretized into N

uniform cells of width Δx = (b1 − a1)/N . The cells are centered at xj = a1 + (j − 1
2)Δx where

j = 1, ..., N . The boundaries of these cells are located at xj+ 1
2
= a1 + jΔx where j = 0, ..., N

and are called face-centers or cell interfaces. With this discretization, the domain boundaries

are aligned with the first and last cell edges.

A time integration method is used to estimate the averages of cell variables at some time

t = Te from the averages of cell variables at t = 0. For each time integration step, assuming that

the cell averages at time tn are known, the goal is to compute the averages of cell variables at

the next time step tn+1. The time integration step of ICE invokes operator splitting in which

the solution consists of a Lagrangian phase and an Eulerian phase. The Lagrangian phase

advances cell values without advection and maps new values to cell variables and the Eulerian

phase advects the cell variables. The essential point that makes the ICE method an all-speed

scheme is to use an implicit scheme for the Lagrangian phase and an explicit scheme for the

Eulerian phase. The time integration of cell-centered ICE comprises the following phases:

76

6.1.1.1 The Primary Phase

With the spatial discretization as discussed above, the spatial derivatives in the governed

equations are approximated using finite differences of quantities at face-centers. Since an

implicit scheme is used for the Lagrangian phase, the variables involved in the Lagrangian

phase are those evaluated at face-centers at tn + Δt
2 and are determined in the Primary phase.

It is also necessary in the Primary phase to estimate the fluxing velocity which is going to be

used in the Eulerian phase. The fluxing velocity, u∗
j+ 1

2

, is the flux of volume across the cell

interface. In order to make clear which variables are defined at face center, the superscript ∗ is

used here for these variables as required.

6.1.1.2 The Lagrangian Phase

Let V n
j be the volume of cell j and Un

j be the vector of averaging cell conserved variables

at tn. In particular, V n
j is equal to Δx for the above discretization. Assume that the cell

volume is changed during the Lagrangian phase to V L
j and V L

j = V n
j +Δt(u∗

j+ 1
2

−u∗
j− 1

2

) where

u∗
j− 1

2

and u∗
j+ 1

2

are fluxing velocities at cell interfaces. There is also a change in the vector of

averaging cell variables to UL
j after the Lagrangian phase has been completed. A numerical

scheme obtained from neglecting the convective effects is used to evaluate the change in the

material state and in turn evaluate UL
j .

6.1.1.3 The Eulerian Phase

For this phase, we have to evaluate the change in the solution due to advection. Let V n+1
j

be the cell volume at tn+1 and assume that the mesh is stationary, then V n+1
j = Δx. The

change in the solution due to advection is as follows:

V n+1
j Un+1

j = V L
j UL

j −Δt(u∗
j+ 1

2

〈U〉n
j+ 1

2

− u∗
j− 1

2

〈U〉n
j− 1

2

), (6.1)

where 〈U〉n
j+ 1

2

=
1

Δt

∫ tn+1

tn

U(xj+ 1
2
, t)dt is the vector of advected quantities and is numerically

determined. As suggested by [68], this numerical value may be determined using Un
j or UL

j ;

however, how to numerically determine these values is not described.

6.1.1.4 State Variables Update Phase

In this phase, we update the primitive cell variables Wn+1
j using the values of conserved

variables Un+1
j and their satisfaction of the equation of state. The value of Wn+1

j is then used

in the following time integration step.

77

6.1.2 The Implementation of Cell-centered ICE
by Kashiwa et al. [68]

Above is the general description of the ICE method. Kashiwa et al. [68] have made

some improvements to the ICE method by changing the implementation of the Primary and

Lagrangian phase. Two important quantities used in these phases are the face-centered velocity

and pressure as denoted by u∗
j+ 1

2

and p∗
j+ 1

2

. The face-centered velocity, u∗
j+ 1

2

, is also the advected

speed for the Eulerian phase, so [68] refers this as the fluxing velociy. The face-centered fluxing

velocity, u∗
j+ 1

2

, is calculated based on the time-advanced equation for velocity as given by

Equation (3.37). The fluxing velocity in cell-centered ICE of Kashiwa et al. [68] is obtained

using the semi-implicit Euler scheme in the Lagrangian frame of Equation (3.37) as given by:

u∗
j+ 1

2

= 〈〈un
j+ 1

2

〉〉ρ − Δt

2Δx

p
n+ 1

2
j+1 − p

n+ 1
2

j

〈〈ρn
j+ 1

2

〉〉 , (6.2)

where p
n+ 1

2
j is the cell-centered pressure at tn + Δt

2 , 〈〈un
j+ 1

2

〉〉ρ is the mass-weighted average

face-centered velocity, and 〈〈ρn
j+ 1

2

〉〉 is the average face-centered density at time tn. The mass-

weighted average velocity, 〈〈un
j+ 1

2

〉〉ρ, of left and right states at face-center is given by:

〈〈un
j+ 1

2

〉〉ρ =
ρnj u

n
j + ρnj+1u

n
j+1

ρnj + ρnj+1

, (6.3)

and the average face-centered density, 〈〈ρn
j+ 1

2

〉〉, of left and right cell-centered densities is given

by:

〈〈ρn
j+ 1

2

〉〉 = ρnj + ρnj+1

2
. (6.4)

As the cell-centered pressure at tn +
Δt
2 , p

n+ 1
2

j , is not readily available, it needs to be obtained

from correcting the cell-centered pressure at tn, pnj . Let δpnj = p
n+ 1

2
j − pnj be the difference

between the cell-centered pressures at these two time levels and which is referred to in Kashiwa

et al. [68] as the “pressure corrector”; Equation (6.2) is then rewritten by using these values

as:

u∗
j+ 1

2

= ũ∗
j+ 1

2

− Δt

2Δx

δpnj+1 − δpnj
〈〈ρn

j+ 1
2

〉〉 , (6.5)

78

where:

ũ∗
j+ 1

2

= 〈〈un
j+ 1

2

〉〉ρ − Δt

2Δx

pnj+1 − pnj
〈〈ρn

j+ 1
2

〉〉 . (6.6)

In order to determine the face-centered fluxing velocity, u∗
j+ 1

2

, the “pressure corrector” values,

δpnj+1 and δpnj , need to be determined using Equation (3.38). In [68], two different ways to

determine the “pressure corrector” values are discussed. The explicit “pressure corrector” uses

the explicit discrete form and the implicit “pressure corrector” uses the semi-implicit discrete

form of (3.38). The explicit form of “pressure corrector” is given by:

δpnj = −Δt

2
unj

(
pnj+1 − pnj−1

2Δx

)
− Δt

2Δx
(c2ρ)nj (〈〈unj+ 1

2
〉〉ρ − 〈〈un

j− 1
2
〉〉ρ). (6.7)

The implicit “pressure corrector” is obtained using:

δpnj = −Δt

2
unj

(
pnj+1 − pnj−1

2Δx

)
− Δt

2Δx
(c2ρ)nj (u

∗
j+ 1

2
− u∗

j− 1
2
). (6.8)

The implicit “pressure corrector” is complicated since Equations (6.5) and (6.8) show that the

face-centered fluxing velocities and the “pressure corrector” values are interrelated, so there is

a need to calculate the fluxing velocities using these two equations and this is not explicitly

discussed in [68]. After having determined the “pressure corrector” values at the cell centers, the

face-centered fluxing velocity, u∗
j+ 1

2

, is determined using Equation (6.5) where ũ∗
j+ 1

2

is defined

in (6.6).

There are several suggested choices for calculating the face-centered pressure, p∗
j+ 1

2

, in [68]

and [69]. Two of these choices, which are derived from the pressure equation in Kashiwa et al

in 1994 [68], will be discussed in Appendix A.4. In this chapter, we employ the choice that is

mentioned in Kashiwa in 2001 [69]. This choice aims to satisfy continuity of acceleration by

equating acceleration increments for the left/right half spaces. The equation as specified in [69]

is:

p∗
j+ 1

2

=

⎛
⎜⎝

1
ρnj+1

p
n+ 1

2
j+1 + 1

ρnj
p
n+ 1

2
j

1
ρnj

+ 1
ρnj+1

⎞
⎟⎠ . (6.9)

In the above equation, the face-centered pressure is thus calculated using specific volumes-

weighted of the left and right time-advanced cell-centered pressures.

79

The Primary phase is executed after the face-centered velocity and pressure, u∗
j+ 1

2

and p∗
j+ 1

2

,

are calculated. The choice of the vector of conserved variables, U, and the numerical procedure

to determine the vector of the face-centered advected quantities, 〈U〉j+ 1
2
, are neccessary for the

implementation of the Lagrangian phase and the Eulerian phase.

6.2 Production ICE in the Uintah
Computational Framework

The term Production ICE is used to denote the ICE method as implemented in the Uintah

Computational Framework (UCF) by [44, 45, 52, 79, 80] to simulate fluid flows that are

governed by the Euler and Navier Stokes equations. Production ICE solves the Euler system

in nonconservative form described by Equations (3.32)–(3.34) with the vector of variables

U = [ρ, ρu, ρe]T . The detail implementation of the phases in Production ICE follows the

description given in Kashiwa et al. [68] with some exceptions that will be pointed out explicitly

in the following discussion.

6.2.1 The Primary Phase

The first exception is that the face-centered quantities in Production ICE are not time-

centered. The face-centered fluxing velocity, u∗
j+ 1

2

, and pressure, p∗
j+ 1

2

, for the time step

[tn, tn+1] are approximated at the face-center at time tn+1. For this reason, we use the notations

u∗∗
j+ 1

2

and p∗∗
j+ 1

2

for the face-centered fluxing velocity and pressure in Production ICE. Using a

different approach from Equation (6.2), the face-centered fluxing velocity in Production ICE,

u∗∗
j+ 1

2

, is approximated as:

u∗∗
j+ 1

2

= 〈〈un
j+ 1

2

〉〉ρ − Δt

Δx

pnj+1 − pnj
〈〈ρn

j+ 1
2

〉〉 , (6.10)

where the mass-weighted average velocity, 〈〈un
j+ 1

2

〉〉ρ, is defined in (6.3) and the average face-

centered density, 〈〈ρn
j+ 1

2

〉〉, is defined as follows:

〈〈ρn
j+ 1

2

〉〉 =
2.0

(
ρnj + ρnj+1

)
ρnj ρ

n
j+1

. (6.11)

So another exception in calculating the fluxing velocity in Production ICE is that the scheme

in (6.10) is not semi-implicit when the pressures used are defined at tn.

The face-centered pressure, p∗∗j+1/2, in Production ICE is calculated using the following

equation:

80

p∗∗
j+ 1

2

=

⎛
⎝ 1

ρnj+1
pn+1
j+1 + 1

ρnj
pn+1
j

1
ρnj

+ 1
ρnj+1

⎞
⎠ . (6.12)

This is similar to Equation (6.9), but with the cell-centered pressures at time tn+1, p
n+1
j , where

pn+1
j is evaluated using an explicit scheme applied to the Lagrangian form of the equation of

pressure evolution in (3.38), which is given by:

pn+1
j = pnj − Δt

Δx
(c2ρ)nj (〈〈unj+ 1

2

〉〉ρ − 〈〈un
j− 1

2

〉〉ρ). (6.13)

6.2.2 The Lagrangian Phase

Production ICE chooses the vector of conserved variables to include mass, linear momentum

and internal energy. The use of the nonconservative form of the system of Euler equations in

(3.32)–(3.34) means that the Lagrangian part of Production ICE is given by:

V L
j UL

j = V n
j Un

j −Δt

⎡
⎢⎣ 0

p∗∗j+1/2 − p∗∗j−1/2

pn+1
j (u∗∗j+1/2 − u∗∗j−1/2)

⎤
⎥⎦ . (6.14)

6.2.3 The Eulerian Phase

The change in solution values due to advection over the step [tn, tn+1] is given by:

V n+1
j Un+1

j = V L
j UL

j −Δt(u∗∗
j+ 1

2
〈U〉n

j+ 1
2
− u∗∗

j− 1
2
〈U〉n

j− 1
2
). (6.15)

However, the numerical values of face-centered advected quantities in the following definition:

〈U〉n
j+ 1

2

=
1

Δt

∫ tn+1

tn

U(xj+ 1
2
, t)dt (6.16)

has not been quantified so far in this chapter and we will now show how to approximate it.

Normally U(xj+ 1
2
, t) is not constant for the step [tn, tn+1], but first-order accuracy is obtained

by assuming that this is constant and is an upwinded cell-centered value. However, there are

the cell-centered values at two different time levels that are available for the Eulerian phase.

These are the value at tn and the value after the Lagrangian step. By chosing the upwinded

cell-centered values at time tn for the face-centered advected quantities, we have:

〈U〉n
j+ 1

2

=

{
Un

j+1 if (u∗
j+ 1

2

< 0)

Un
j otherwise.

(6.17)

81

Alternatively, if the upwinded cell-centered values at Lagrangian time level are considered

for face-centered advected quantities, we have:

〈U〉n
j+ 1

2
=

{
UL

j+1 if (u∗
j+ 1

2

< 0)

UL
j otherwise.

(6.18)

The Production ICE code uses Equation (6.18) to define the face-centered advected quan-

tities, [52, 79, 80].

6.2.4 State Variables Update Phase

The averages of cell variables ρ, u, e, and p are then updated using the averages of cell

conserved variables ρ, ρu, ρe, and the equation of state (3.31).

6.3 CFL Condition

The choice of the time step Δt in time integration affects the stability of the ICE method.

As mentioned in [120], one requirement for the method to be stable is the fastest wave at a

given time is allowed to travel, at most, one cell length Δx in the chosen time step Δt. For the

system of Euler equations, the time step Δt is chosen to satisfy the condition:

Δt =
CcflΔx

Sn
max

, (6.19)

where Ccfl is a Courant or CFL coefficient satisfying 0 < Ccfl < 1 and Sn
max is the largest wave

speed present through the domain at time tn. A practical choice of Sn
max as mentioned in Toro

[120] is:

Sn
max = max

j
(|unj |+ cnj). (6.20)

However, Kwatra et al. [72] proposed a novel method for alleviating the stringent CFL condition

imposed by the sound speed in simulating highly nonlinear compressible flow with shocks,

contacts and rarefactions. It is mentioned in [72] that the maximum speed in Equation (6.20)

is too restrictive for flows where the sound speed, c, may be much larger than |u|, so the

stringent CFL time step restriction imposed by the acoustic waves can be avoided and only

the material velocity CFL restriction is used in calculating the maximum speed. The proposed

method of [72] is well suited to the semi-implicit solver like the ICE method where only the

advection step is the explicit part. The proposed maximum speed calculation in [72] is:

Sn
max = max

j
|unj |. (6.21)

82

The time step used is determined using (6.19) where Sn
max is calculated using (6.21).

6.4 IMPICE Method

We now propose the IMPICE method, an improved implementation of Production ICE,

which aims to eliminate the discrepancies and suppress the nonphysical oscillations in the

numerical solutions to the one-dimensional, time-dependent Euler equations of gas dynamics.

Foremost, the IMPICE method makes an improvement to Production ICE by solving the Euler

equations in conservative form in (3.28)–(3.30) and the equation of state in (3.31). We denote

cell-centered ICE that solves the conservative form of Euler equations as the conservative cell-

centered ICE. As shown in Appendix A.3, conservative cell-centered ICE can eliminate the

discrepancies in the obtained numerical solutions. However, the obtained numerical solutions

have unphysical oscillations that need to be reduced or eliminated. The oscillations in the

numerical solutions of conservative cell-centered ICE cannot be diminished by decreasing the

time step, so in this section, we will describe the algorithm used to suppress these oscillations

numerically by using a simple approximate Riemann solver.

6.4.1 Numerical Discussion

To help explain the IMPICE method, we start with a discussion of schemes that approximate

conservation laws as follows and consider a one-dimensional system in a conservation law form:

∂U(x, t)

∂t
+

∂F(U(x, t))

∂x
= 0, x ∈ [a1, b1] and t ≥ 0, (6.22)

where U(x, t) is the vector of conserved variables and F(U(x, t)) is the vector of fluxes. In

order to approximate the solution of (6.22) with the initital condition:

U(x, 0) = U0(x), (6.23)

we discretize space into N uniform cells as in Section 6.1. The cell average of the cell [xj− 1
2
, xj+ 1

2
]

at time tn is denoted by Un
j , where:

Un
j =

1

Δx

∫ x
j+1

2

x
j− 1

2

U(x, tn)dx. (6.24)

A standard approach is used in integrating system (6.22) in space and time in the control

volume [xj− 1
2
, xj+ 1

2
]× [tn, tn+1] to give:

83

∫ x
j+1

2

x
j− 1

2

[U(x, tn+1)−U(x, tn)] dx = −
∫ tn+1

tn

[
F(U(xj+ 1

2
, t))− F(U(xj− 1

2
, t))

]
dt.

This can then be written in the standard conservation form:

ΔxUn+1
j = ΔxUn

j −Δt
(
Fj+ 1

2
(tn)− Fj− 1

2
(tn)

)
(6.25)

where:

Fj+ 1
2
(tn) =

1

Δt

∫ tn+1

tn

F(U(xj+ 1
2
, t))dt. (6.26)

Equation (6.25) is used by finite volume methods to solve the system (6.22) approximately.

In order to use this relation, a spatial integration of the initital condition is required and the

approximations of the fluxes at the cell interfaces are needed.

The numerical flux derivation follows cell-centered ICE of Kashiwa et al. [68] will be derived

shortly. The system of Euler equations (3.28)–(3.30) of gas dynamics is written in the form

(6.22) where U = [ρ, ρu, ρE]T and F(U) =
[
ρu, ρu2 + p, ρuE + up

]T
. The face-centered flux

(6.26) in this case is written as:

Fj+ 1
2
(tn) =

⎡
⎢⎢⎣

1
Δt

∫ tn+1

tn
(ρu)(xj+ 1

2
, t)dt

1
Δt

∫ tn+1

tn
(ρu2 + p)(xj+ 1

2
, t)dt

1
Δt

∫ tn+1

tn
(ρuE + pu)(xj+ 1

2
, t)dt

⎤
⎥⎥⎦ . (6.27)

A Taylor series approximation of u(xj+ 1
2
, t) is given by:

u(xj+ 1
2
, t) = u(xj+ 1

2
, tn+ 1

2
) + (t− tn+ 1

2
)ut(xj+ 1

2
, tn+ 1

2
) +O(Δt2). (6.28)

Using the notation u
n+ 1

2

j+ 1
2

= u(xj+ 1
2
, tn+ 1

2
) and (ut)

n+ 1
2

j+ 1
2

= ut(xj+ 1
2
, tn+ 1

2
), we have:

1

Δt

∫ tn+1

tn

ρu(xj+ 1
2
, t)dt =

1

Δt

∫ tn+1

tn

ρ(xj+ 1
2
, t)

(
u
n+ 1

2

j+ 1
2

+ (t− tn+ 1
2
)(ut)

n+ 1
2

j+ 1
2

+O(Δt2)

)
dt

= u
n+ 1

2

j+ 1
2

(
1

Δt

∫ tn+1

tn

ρ(xj+ 1
2
, t)dt

)
+O(Δt2).

With a similar approach, we also have:

1

Δt

∫ tn+1

tn

(ρu2 + p)(xj+ 1
2
, t)dt = u

n+ 1
2

j+ 1
2

(
1

Δt

∫ tn+1

tn

(ρu)(xj+ 1
2
, t)dt

)
+ p

n+ 1
2

j+ 1
2

+O(Δt2)

84

and:

1

Δt

∫ tn+1

tn

(ρuE + up)(xj+ 1
2
, t)dt = u

n+ 1
2

j+ 1
2

(
1

Δt

∫ tn+1

tn

(ρE)(xj+ 1
2
, t)dt

)
+ (up)

n+ 1
2

j+ 1
2

+O(Δt2).

Then face-centered flux Fj+ 1
2
(tn) vector in (6.27) is rewritten as:

Fj+ 1
2
(tn) = u

n+ 1
2

j+ 1
2

⎡
⎢⎢⎣

1
Δt

∫ tn+1

tn
ρ(xj+ 1

2
, t)dt

1
Δt

∫ tn+1

tn
(ρu)(xj+ 1

2
, t)dt

1
Δt

∫ tn+1

tn
(ρE)(xj+ 1

2
, t)dt

⎤
⎥⎥⎦+

⎡
⎢⎢⎢⎣

0

p
n+ 1

2

j+ 1
2

(up)
n+ 1

2

j+ 1
2

⎤
⎥⎥⎥⎦+O(Δt2). (6.29)

The reader should note that Equation (6.25) with the terms Fj− 1
2
and Fj+ 1

2
are defined by

Equation (6.29) will be used in Section 6.6 to assess the numerical accuracy of the IMPICE

method.

6.4.2 IMPICE Implementation

The scheme used for approximating the fluxing velocity, u∗
j+ 1

2

, in the IMPICE method is

similar to Equation (6.2), that is:

u∗
j+ 1

2

= un
j+ 1

2

− Δt

2Δx

(
p
n+ 1

2
j+1 − p

n+ 1
2

j

)
ρn
j+ 1

2

. (6.30)

This equation was obtained by replacing 〈〈un
j+ 1

2

〉〉ρ in (6.2) with un
j+ 1

2

, and 〈〈ρn
j+ 1

2

〉〉 with ρn
j+ 1

2

.

While these quantities denote the velocity and density at face-center at tn, their numerical

values are determined differently. While 〈〈un
j+ 1

2

〉〉ρ and 〈〈ρn
j+ 1

2

〉〉 are determined using the

weighted averages in (6.3) and (6.4), the values un
j+ 1

2

and ρn
j+ 1

2

are determined based on the

simple approximate Riemann solver that will be discussed in Section 6.4.3 below.

Since the pressures used in (6.30) are time-advanced values, we need to perform a “pressure

corrector” to obtain these. The explicit “pressure corrector” in (6.7) is the one used in our

implementation of the IMPICE method. However, it is worth looking at the implicit “pressure

corrector” and seeing the difference between the solutions of these two methods. By substituting

(6.5) into (6.8), the equation for cell-centered “pressure corrector” now becomes:

δpnj = −Δt

2
unj

(
pnj+1 − pnj−1

2Δx

)
− Δt

2Δx
(c2ρ)nj (ũ

∗
j+ 1

2

− ũ∗
j− 1

2

)

+

[
Δt

2Δx

]2
(c2ρ)nj

⎡
⎣δpnj+1 − δpnj

ρn
j+ 1

2

− δpnj − δpnj−1

ρn
j− 1

2

⎤
⎦ .

85

where ũ∗
j+ 1

2

is defined by Equation (6.6).

Let σ =
Δt

2Δx
and rearrange the terms of above equation to get:

⎡
⎣1 + σ2

(c2ρ)nj
ρn
j+ 1

2

+ σ2
(c2ρ)nj
ρn
j− 1

2

⎤
⎦ δpnj − σ2

(c2ρ)nj
ρn
j+ 1

2

δpnj+1 − σ2
(c2ρ)nj
ρn
j− 1

2

δpnj−1

= −σunj

(
pnj+1 − pnj−1

2

)
− σ(c2ρ)nj (ũ

∗
j+ 1

2

− ũ∗
j− 1

2

).

Therefore, the values δpnj are the solutions of the tri-diagonal linear system:

Ax = b (6.31)

where:

A =

⎡
⎢⎢⎢⎢⎣

b1 c1 0
a2 b2 c2

a3 b3 .
. . cN−1

0 aN bN

⎤
⎥⎥⎥⎥⎦ b =

⎡
⎢⎢⎢⎢⎣

d1
d2
d3
.
dN

⎤
⎥⎥⎥⎥⎦ x =

⎡
⎢⎢⎢⎢⎣

δp1
δp2
δp3
.

δpN

⎤
⎥⎥⎥⎥⎦ (6.32)

and aj , bj , cj , dj are defined as follows:

aj = σ2
(c2ρ)nj
ρn
j− 1

2

for j = 2..(N − 1),

bj = 1 + σ2
(c2ρ)nj
ρn
j+ 1

2

+ σ2
(c2ρ)nj
ρn
j− 1

2

for j = 2..(N − 1),

cj = σ2
(c2ρ)nj
ρn
j+ 1

2

for j = 2..(N − 1),

dj = −σunj

(
pnj+1 − pnj−1

2

)
− σ(c2ρ)nj (ũ

∗
j+ 1

2

− ũ∗
j− 1

2

) for j = 2..(N − 1),

and b1, bN , d1 and dN are obtained from the boundary condition. So in order to use the implicit

“pressure corrector”, we have to solve the tri-diagonal linear system in (6.31). While this

obviously takes more time to calculate than the explicit “pressure corrector” in (6.7), the

results computed using the two methods show that there is not much difference between the

numerical solutions obtained from using the implicit and explicit “pressure corrector” in the

IMPICE method for the Euler equations examples used here.

The IMPICE method calculates the face-centered pressure, p∗
j+ 1

2

, the same way as the

cell-centered ICE method does in Section 6.1.2. It uses the calculation described in Equation

(6.9).

86

The IMPICE method chooses to conserve the total energy instead of internal energy, so the

vector of conserved variables is U = [ρ, ρu, ρE]T . The Lagrangian and Eulerian phases of the

IMPICE method are then given by:

V L
j UL

j = V n
j Un

j −Δt

⎡
⎢⎣ 0

p∗j+1/2 − p∗j−1/2

p∗j+1/2u
∗
j+1/2 − p∗j−1/2u

∗
j−1/2

⎤
⎥⎦ , (6.33)

and:

V n+1
j Un+1

j = V L
j UL

j −Δt
(
u∗
j+ 1

2

〈U〉n
j+ 1

2

− u∗
j− 1

2

〈U〉n
j− 1

2

)
, (6.34)

in which V L
j = V n

j +Δt
(
u∗
j+ 1

2

− u∗
j− 1

2

)
and the terms 〈U〉n

j− 1
2

and 〈U〉n
j+ 1

2

are given by Equation

(6.18).

6.4.3 Application of Slope Limiters
in the IMPICE Method

In common with many methods for conservative laws, slope limiters may be applied to the

calculation of face-centered fluxing velocity, u∗j+1/2. For the face-centered fluxing velocity, slope

limiters are used in the estimation of face-centered quantities at tn; in particular, they are used

in the calculation of ρn
j+ 1

2

and un
j+ 1

2

. This approach originates from the idea of approximating

the cell-centered state by the reconstructed states obtained from the left and right cell-averaged

states of the previous time step. The slope limited, reconstructed states are used as inputs to

a Riemann solver to determine the state at the cell interface. This will be discussed in detail

below.

Let Wn
j , W

n
j =

[
ρnj , u

n
j , E

n
j , p

n
j

]T
, be the vector of average cell-centered values of primitive

variables of cell j at time tn, then the value of W on the spatial domain at tn is represented by

the piecewise constant data
{
Wn

j

}
. The simplest and widely used way to modify the piecewise

constant data
{
Wn

j

}
is to replace the constant state Wn

j by a piecewise linear functions Wn
j (x).

The construction of the piecewise linear functions can be found in many papers; the construction

in Toro [120] will be used as described below.

As for the first-order Godunov method, one assumes that Wn
j represents an integral average

in cell Ij = [xj− 1
2
, xj+ 1

2
] as given by:

Wn
j =

1

Δx

∫ x
j+1

2

x
j− 1

2

Wn
j (x)dx. (6.35)

87

A piecewise linear, local reconstruction of Wn
j is:

Wn
j (x) = Wn

j + (x− xj)ΔWn
j , x ∈ Ij , (6.36)

where ΔWn
j is a suitably chosen slope of Wn

j (x) in cell Ij . The integral of Wn
j (x) in cell Ij is

identical to that of Wn
j and thus the reconstruction process is conservative. The slope ΔWn

j

can be approximated by a simple finite difference formula given by:

ΔWn
j =

Wn
j+1 −Wn

j

Δx
. (6.37)

However, to achieve a higher order scheme and to maintain bounded solutions, the slope at

the current node is usually limited based on adjacent slopes. The obtained slope is a “limited

slope” Δ̄Wn
j which is used as:

Wn
j (x) = Wn

j + (x− xj)Δ̄Wn
j , x ∈ Ij , (6.38)

to approximate W on Ij . The ratio rnj represents the ratio of successive gradients on the

solution mesh at xj :

rnj =
Wn

j −Wn
j−1

Wn
j+1 −Wn

j

, (6.39)

and the limited slope ΔWn
j may be written in the form:

Δ̄Wn
j = φ(rnj)ΔWn

j , (6.40)

where φ(rnj) is some flux limiter function. Note that the division and multiplication in (6.39)

and (6.40) are the component-wise operations. For the results in this chapter, we choose the

Monotonized Central(MC) limiter function for calculating the limited slope in (6.40). The MC

limiter function by Van Leer [130] is:

φ(r) = max[0,min(2r, 0.5 + 0.5r, 2)]. (6.41)

At each interface xj+ 1
2
, we now may consider the so-called Generalized Riemann Prob-

lem(GRP) as follows:

∂U

∂t
+

∂F(U)

∂x
= 0, (6.42)

88

W(x, tn) =

{
Wn

j (x) if (x < xj+ 1
2
)

Wn
j+1(x) if (x > xj+ 1

2
)

(6.43)

where Wn
j (x) is the limited local reconstruction in (6.38). Naturally, for nonlinear systems

the exact solution of the GRP is exceedingly complicated, but for the purpose of evaluating

face-centered states, an approximate solution may be suffice. In this approach, we are not trying

to evaluate the solution of the GRP in (6.42) analytically but rely on the boundary extrapolated

values at the interfaces. The values of Wn
j+ 1

2

at cell boundaries using local reconstructions

Wn
j (x) and Wn

j+1(x) are denoted as W
n(L)

j+ 1
2

and W
n(R)

j+ 1
2

where:

W
n(L)

j+ 1
2

= Wn
j (xj+ 1

2
) = Wn

j + 0.5φ(rnj)
(
Wn

j+1 −Wn
j

)
; (6.44)

W
n(R)

j+ 1
2

= Wn
j+1(xj+ 1

2
) = Wn

j+1 − 0.5φ(rnj+1)
(
Wn

j+2 −Wn
j+1

)
. (6.45)

The values W
n(L)

j+ 1
2

and W
n(R)

j+ 1
2

are left and right extrapolated values at the boundary xj+ 1
2

at time tn. In this way, one may instead consider the conventional Riemann Problem with

piecewise constant data in a new coordinate (ξ, τ) where ξ = x− xj+ 1
2
and τ = t− tn as:

∂U

∂τ
+

∂F

∂ξ
= 0, (6.46)

W(ξ, 0) =

⎧⎨
⎩

W
n(L)

j+ 1
2

if (ξ < 0)

W
n(R)

j+ 1
2

if (ξ > 0).
(6.47)

The face-centered state at tn, W(0, 0), is the value at the origin immediately after the

interaction of the piecewise constant data W
n(L)
j and W

n(R)
j+1 where:

W(0, 0) = lim
τ→0+

W(0, τ). (6.48)

By determining W(0, 0) in (ξ, τ) coordinate, we have the values of face-centered states given

by Wn
j+ 1

2

= [ρn
j+ 1

2

, un
j+ 1

2

, pn
j+ 1

2

]T at tn. There are several ways to approximate the solution to

the piecewise constant data Riemann problem (6.46) and therefore to approximate W(0, 0).

In this paper, we use the simple approximate Riemann solver which was proposed by Harten

et al. [53] and discussed in Davis [28] to approximate W(0, 0). In order to use the approximate

Riemann solver described in these papers, we rewrite Equation (6.46) as:

89

∂U

∂τ
+

∂F

∂ξ
= 0, (6.49)

U(ξ, 0) =

{
UL if (ξ < 0)
UR if (ξ > 0),

(6.50)

whereUL andUR are obtained fromW
n(L)

j+ 1
2

andW
n(R)

j+ 1
2

respectively. The approximate Riemann

solution of (6.49) is given by:

U(x/t;UL,UR) =

⎧⎨
⎩

UL for (x/t < aL)
ULR for (aL < x/t < aR)
UR for (aR < x/t) ,

(6.51)

where aL and aR are lower and upper bounds, respectively, for the smallest and largest signal

velocity and:

ULR =
aRUR − aLUL

aR − aL
− F(UR)− F(UL)

aR − aL
. (6.52)

The bounds aR and aL for the Euler equations are defined in Davis [28] as:

aL = uL − cL, aR = uR + cR, (6.53)

where uL, cL are the velocity and wave speed respectively obtained from UL, and uR, cR are the

velocity and wave speed obtained from UR. The solution W(0, 0) in (6.48) is derived from the

approximate solution U(0;UL,UR) in (6.51) which includes the approximations of un
j+ 1

2

and

ρn
j+ 1

2

; these in turn are used in Equation (6.30) instead of using the mass-weighted quantities

in Equations (6.3) and (6.4).

In summary, the face-centered fluxing velocity, u∗
j+ 1

2

, is estimated via the following steps.

First, using the local recontruction in (6.38), the left and right extrapolated values at this

cell-center are obtained using (6.44) and (6.45). These extrapolated values then form the

piecewise constant data to the Riemann problem (6.46). Second, this Riemann problem is

solved approximately using the approach of Harten et al. [53] and Davis [28]. The approximate

Riemann solution includes the approximate face-centered density, ρn
j+ 1

2

, and face-centered

velocity, un
j+ 1

2

. Third, the “pressure correctors”, δpnj , are calculated using Equation (6.8).

Finally, Equations (6.5) and (6.6) are used to calculate u∗
j+ 1

2

.

6.5 Numerical Results and Comparisons

The following well-known test problems are often used to test the accuracy and robustness

of many numerical methods in fluids. These tests for the one-dimensional, time-dependent

90

Euler equations for ideal gases can be found in Toro [120]. In [120], these examples are used

to access the performance of the numerical schemes being presented in the book. These tests

are also employed here to illustrate the performance of the Production ICE method and the

IMPICE method. In these chosen problems, two constant states, WL = [ρL, uL, pL]
T and

WR = [ρR, uR, pR]
T , are separated by a discontinuity at a position x = x0. The states WL

and WR are given in Table 6.1 and the problem domain is (x, t) ∈ [0, 1] × (0, Te]. We use the

transmissive boundary for these problems.

P1 is the well-known Sod’s problem and P2 is a modified version of P1. These tests are

considered very mild, but as mentioned in Toro [120] they are useful for assessing numerical

methods. P3 is considered a very hard problem for numerical methods. As mentioned in Toro

[120], the solution to P4 represents the collision of two strong shocks and consists of a left-facing

shock, a right travelling contact discontinuity and a right-travelling shock wave. Problem P5

is Lax’s test problem [74].

Beside the problems with known exact solutions in Table 6.1, we also include here the

numerical solutions to the Shu and Osher [107] test problem. This test problem contains

detailed features and structures and is considered by Greenough and Rider [42] to be a good

one-dimensional surrogate for the interaction of a shock wave with a turbulent field. The initial

condition at t = 0 of the problem is defined as:

(ρ, u, p)(x, 0) =

{
(3.85714, 2.62936, 10.33333) if (x < −4.0)
(1.0 + 0.2sin(5x), 0.0, 1.0) otherwise,

(6.54)

on spatial domain [−5.0, 5.0]. The end time for this problem is Te = 1.8. As the analytical

solution of this test problem is not readily available, we use the “exact” solution obtained from

our implementation of the unmodified WENO-JS scheme discussed in Martin et al. [86] to

show how accurate of the numerical methods presented in this chapter. The “exact” solution of

Shu and Osher test problem in this chapter is obtained with the unmodified WENO-JS scheme

with r = 3 and p = 2 on 6400 grid points.

Table 6.1. Data for one-dimensional test problems with known exact solutions, for the
time-dependent, one-dimensional Euler equations

Problem ρL uL pL ρR uR pR x0 Te

P1 1.0 0.0 1.0 0.125 0.0 0.1 0.3 0.2
P2 1.0 0.75 1.0 0.125 0.0 0.1 0.3 0.2
P3 1.0 0.0 1000 1.0 0.0 0.1 0.5 0.011
P4 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950 0.4 0.034
P5 0.445 0.698 3.528 0.5 0.0 0.571 0.5 0.16

91

The numerical results for the above test problems of the IMPICE method are compared

against those of the Production ICE method and shown in Figures 6.1–6.6. The time step

in Production ICE is chosen using Equations (6.19) and (6.20) while the time step in the

IMPICE method is chosen using Equations (6.19) and (6.21). It shows that the maximum

speed calculation of Kwatra et al. [72] indeed alleviates the stringent CFL condition imposed

by the sound speed in simulating these test problems. As seen in Figures 6.1–6.6, a significant

improvement in numerical solutions of the IMPICE method is shown. The profiles of the

numerical solutions of Production ICE in these figures are not close to the exact solutions.

This is due to the use of the nonconservative form in Production ICE. To see how the use

of the nonconservative scheme affects the numerical solution profiles, we include in Appendix

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

D
en

si
ty

(a)

IMPICE
Production ICE
Exact

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

V
el

oc
ity

(b)

IMPICE
Production ICE
Exact

0 0.2 0.4 0.6 0.8 1
1.6

1.8

2

2.2

2.4

2.6

2.8

3

x

In
te

rn
al
−E

ne
rg

y

(c)

IMPICE
Production ICE
Exact

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

P
re

ss
ur

e

(d)

IMPICE
Production ICE
Exact

Figure 6.1. Production ICE and IMPICE numerical solutions for test P1 with N=200 (cells),
Ccfl = 0.2, and first-order advection: (a) density; (b) velocity; (d) internal-energy; and (c)
pressure.

92

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

D
en

si
ty

(a)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

x

V
el

oc
ity

(b)

0 0.2 0.4 0.6 0.8 1
2

2.5

3

3.5

x

In
te

rn
al
−E

ne
rg

y

(c)

IMPICE
Production ICE
Exact

IMPICE
Production ICE
Exact

IMPICE
Production ICE
Exact

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

P
re

ss
ur

e

(d)

IMPICE
Production ICE
Exact

Figure 6.2. Production ICE and IMPICE numerical solutions for test P2 with N=200 (cells),
Ccfl = 0.2, and first-order advection: (a) density; (b) velocity; (d) internal-energy; and (c)
pressure.

A.3 the comparision between the numerical results of the IMPICE method and conservative

cell-centered ICE. Conservative cell-centered ICE denotes the method that is implemented using

cell-centered ICE of Kashiwa et al. [68] described in Section 6.1.2 which conserves mass, linear

momentum and total energy. From the results in Figures 6.1–6.6 and Appendix A.3, it may be

seen that the use of conservation form improves the solution profiles. It can also be seen that,

there are no existing oscillations at the shock-front in the numerical solutions of the IMPICE

method. This results from the application of slope limiters in the data reconstruction of the

Riemann problem as shown in Appendix A.3. In short, the results in 6.1–6.6 and Appendix A.3

show that the use of conservation form improves the solution profiles and the reconstruction of

93

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

x

D
en

si
ty

(a)

IMPICE
Production ICE
Exact

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

x

V
el

oc
ity

(b)

IMPICE
Production ICE
Exact

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

x

In
te

rn
al
−E

ne
rg

y

(c)

IMPICE
Production ICE
Exact

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

x

P
re

ss
ur

e

(d)

IMPICE
Production ICE
Exact

Figure 6.3. Production ICE and IMPICE numerical solutions for test P3 with N=800 (cells),
Ccfl = 0.2, and first-order advection: (a) density; (b) velocity; (d) internal-energy; and (c)
pressure.

the Riemann problem with the slope limiters helps to eliminate the nonphysical oscillations.

6.6 Accuracy in Space and Time

6.6.1 Temporal Error

Let leU(tn+1) be the time integration error in U introduced at the cell centers over the step

[tn, tn+1] of the IMPICE method. The time integration error per step at cell j is then given by:

leUj (tn+1) = Uj

[
tn+1; tn,U

n
j

]−Un+1
j , (6.55)

94

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

x

D
en

si
ty

(a)

IMPICE
Production ICE
Exact

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

x

V
el

oc
ity

(b)

IMPICE
Production ICE
Exact

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

x

In
te

rn
al
−E

ne
rg

y

(c)

IMPICE
Production ICE
Exact

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

x

P
re

ss
ur

e

(d)

IMPICE
Production ICE
Exact

Figure 6.4. Production ICE and IMPICE numerical solutions for test P4 with N=200 (cells),
Ccfl = 0.2, and first-order advection: (a) density; (b) velocity; (d) internal-energy; and (c)
pressure.

where Uj

[
tn+1; tn,U

n
j

]
is the exact cell value at tn+1 if the exact cell value at tn is Un

j . From

Equation (6.25), the exact cell value Uj

[
tn+1; tn,U

n
j

]
is given by:

Uj

[
tn+1; tn,U

n
j

]
= Un

j − Δt

Δx

(
Fj+ 1

2
(tn)− Fj− 1

2
(tn)

)
, (6.56)

where Fj+ 1
2
(tn) is defined in (6.29). On the other hand, the IMPICE solution at tn+1 is:

Un+1
j = Un

j − Δt

Δx

(
FIMPICE
j+ 1

2

(tn)− FIMPICE
j− 1

2

(tn)
)
, (6.57)

where:

95

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2

1.4

x

D
en

si
ty

(a)

IMPICE
Production ICE
Exact

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

x

V
el

oc
ity

(b)

IMPICE
Production ICE
Exact

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

x

In
te

rn
al
−E

ne
rg

y

(c)

IMPICE
Production ICE
Exact

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

x

P
re

ss
ur

e

(d)

IMPICE
Production ICE
Exact

Figure 6.5. Production ICE and IMPICE numerical solutions for test P5 with N=200 (cells),
Ccfl = 0.2, and first-order advection: (a) density; (b) velocity; (d) internal-energy; and (c)
pressure.

FIMPICE
j+ 1

2

(tn) = u∗
j+ 1

2

〈U〉n
j+ 1

2

+

⎡
⎢⎣

0
p∗
j+ 1

2

u∗
j+ 1

2

p∗
j+ 1

2

⎤
⎥⎦ . (6.58)

Therefore:

leUj (tn+1) =
Δt

Δx

[(
FIMPICE
j+ 1

2

(tn)− Fj+ 1
2
(tn)

)
−
(
FIMPICE
j− 1

2

(tn)− Fj− 1
2
(tn)

)]
. (6.59)

From Equations (6.29) and (6.58), we have:

96

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

x

D
en

si
ty

(a)

IMPICE
Production ICE
"Exact"

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

0

1

2

3

x

V
el

oc
ity

(b)

IMPICE
Production ICE
"Exact"

Figure 6.6. Production ICE and IMPICE numerical solutions for Shu and Osher test problem
with N=1600 (cells), Ccfl = 0.2, and first-order advection: (a) density and (b) velocity.

Fj+ 1
2
(tn)− FIMPICE

j+ 1
2

(tn) = u
n+ 1

2

j+ 1
2

(
1

Δt

∫ tn

tn−1

U(xj+ 1
2
, t)dt− 〈U〉n

j+ 1
2

)

+

(
u
n+ 1

2

j+ 1
2

− u∗
j+ 1

2

)
〈U〉n

j+ 1
2

+

⎡
⎢⎢⎢⎣

0

p
n+ 1

2

j+ 1
2

− p∗
j+ 1

2

(up)
n+ 1

2

j+ 1
2

− u∗
j+ 1

2

p∗
j+ 1

2

⎤
⎥⎥⎥⎦+O(Δt2). (6.60)

As

(
u
n+ 1

2

j+ 1
2

− u∗
j+ 1

2

)
= O(Δt2) and

(
p
n+ 1

2

j+ 1
2

− p∗
j+ 1

2

)
= O(Δt2), we then have:

Fj+ 1
2
(tn)− FIMPICE

j+ 1
2

(tn) = u
n+ 1

2

j+ 1
2

(
1

Δt

∫ tn+1

tn

U(xj+ 1
2
, t)dt− 〈U〉n

j+ 1
2

)
+O(Δt2). (6.61)

By considering the expansion of U(xj+ 1
2
, t) about 〈U〉n

j+ 1
2

:

U(xj+ 1
2
, t) = 〈U〉n

j+ 1
2

+ (t− tn)
(
〈U〉n

j+ 1
2

)
t
+

(t− tn)
2

2

(
〈U〉n

j+ 1
2

)
tt
+ ..., (6.62)

97

Equation (6.61) now becomes:

Fj+ 1
2
(tn)− FIMPICE

j+ 1
2

(tn) =
Δt

2
u
n+ 1

2

j+ 1
2

(
〈U〉n

j+ 1
2

)
t
+O(Δt2). (6.63)

Therefore:

(
FIMPICE
j+ 1

2

(tn)− Fj+ 1
2
(tn)

)
−
(
FIMPICE
j− 1

2

(tn)− Fj− 1
2
(tn)

)
(6.64)

=
Δt

2

[
u
n+ 1

2

j+ 1
2

(
〈U〉n

j+ 1
2

)
t
− u

n+ 1
2

j− 1
2

(
〈U〉n

j− 1
2

)
t

]
+O(Δt2). (6.65)

From Equations (6.59) and (6.65), leUj (tn) is second-order in Δt for a fixed Δx. Therefore,

etUj (Te) is first-order in Δt.

As discussed in Chapter 4, the overall temporal error at cell j at tn is given by:

etUj (tn) = Uj

[
tn; t0,U

0
j

]−Un
j . (6.66)

In order to calculate the overall temporal error at Te in Equation (6.66), we need to determine

the IMPICE time-integrated exact solutionUj

[
Te; t0,U

0
j

]
. As we do not have the exact solution

Uj

[
Te; t0,U

0
j

]
, we assume that the calculated solution Un

j converges to the time-integrated

exact solution Uj

[
Te; t0, U

0
j

]
when reducing Ccfl. Therefore, we use a highly resolved solution

as the time-integrated exact solution Uj

[
Te; t0, U

0
j

]
with Ccfl = 0.0001. This solution meets

the criterion mentioned in Greenough and Rider [42] that the grid converged solutions should

be at least 8 times finer than the finest grid examined for error. The temporal error norms

and their orders of accuracy of the conserved and primitive variables for the above test cases

at Te are shown in Table 6.2. The results in Table 6.2 show that the orders of accuracy of the

conserved variables for these test cases are very close to one; this is consistent with the above

analysis. The orders of accuracy of the primitive variables are also very close to one. With the

result of the method with first-order-in-time shown in Appendix A.2, we may confirm that we

do indeed get first-order convergence in the case of smooth solutions.

6.6.2 Spatial Error

With the linear spatial discretization as discussed above, the spatial error of the vector of

conserved variables U is first-order in Δx. As discussed in Chapter 4, the overall spatial error

at cell j at tn is given by:

esUj (tn) = U(xj , tn)−Uj

[
tn; t0,U

0
j

]
. (6.67)

98

T
a
b
le

6
.2
.
T
em

p
or
a
l
E
rr
o
r:

L
1
-n
o
rm

s
a
n
d
th
e
o
rd
er

of
ac
cu
ra
cy

n
o
f
th
e
co
n
se
rv
ed

a
n
d
p
ri
m
it
iv
e
va
ri
a
b
le
s
fo
r
th
e
te
st

ca
se
s
in

T
a
b
le

6
.1

u
si
n
g
N
=
2
0
0
(c
el
ls
).

T
h
e
ti
m
e-
in
te
g
ra
te
d
ex
a
ct

so
lu
ti
o
n
s
U

j

[T
e
;t

0
,U

0 j

] fo
r
th
e
d
is
cr
et
iz
ed

p
ro
b
le
m
s
o
f
th
es
e
te
st

ca
se
s
a
re

o
b
ta
in
ed

b
y
u
si
n
g

C
cf

l
=

0.
0
0
0
1
.
T
h
e
n
o
ta
ti
o
n
a
E
-b

u
se
d
h
er
e
st
a
n
d
s
fo
r
a
×

10
−
b
.

e
tρ
(T

e
)

e
tρ

u
(T

e
)

e
tρ

E
(T

e
)

e
tu
(T

e
)

e
tp
(T

e
)

C
cf

l
‖.‖

L
1

n
‖.‖

L
1

n
‖.‖

L
1

n
‖.‖

L
1

n
‖.‖

L
1

n

0
.4

6
.9
2
E
-0
4

—
5
.7
1
E
-0
4

—
1
.1
6
E
-0
3

—
1
.0
5
E
-0
3

—
4
.4
2
E
-0
4

—
P
1

0
.2

3
.3
7
E
-0
4

1.
0
4

2
.7
4
E
-0
4

1
.0
6

5
.5
4
E
-0
4

1.
0
7

5
.1
4
E
-0
4

1.
0
3

2
.1
1
E
-0
4

1
.0
7

0
.1

1
.6
7
E
-0
4

1.
0
1

1
.3
6
E
-0
4

1
.0
1

2
.7
6
E
-0
4

1.
0
0

2
.5
5
E
-0
4

1.
0
0

1
.0
5
E
-0
4

1
.0
0

0
.0
5

8
.3
6
E
-0
5

1.
0
0

6
.8
2
E
-0
5

1
.0
0

1
.3
9
E
-0
4

1.
0
0

1
.2
7
E
-0
4

1.
0
0

5
.2
9
E
-0
5

1
.0
0

0
.4

1
.5
3
E
-0
3

—
1
.4
2
E
-0
3

—
3
.1
5
E
-0
3

—
1
.9
8
E
-0
3

—
1
.1
1
E
-0
3

—
P
2

0
.2

7
.5
5
E
-0
4

1.
0
2

6
.9
6
E
-0
4

1
.0
3

1
.5
6
E
-0
3

1.
0
1

9
.9
0
E
-0
4

1.
0
0

5
.5
5
E
-0
4

1
.0
0

0
.1

3
.7
4
E
-0
4

1.
0
1

3
.4
5
E
-0
4

1
.0
1

7
.7
8
E
-0
4

1.
0
1

4
.9
3
E
-0
4

1.
0
0

2
.7
6
E
-0
4

1
.0
0

0
.0
5

1
.8
6
E
-0
4

1.
0
1

1
.7
1
E
-0
4

1
.0
1

3
.8
8
E
-0
4

1.
0
0

2
.4
6
E
-0
4

1.
0
0

1
.3
8
E
-0
4

1
.0
0

0
.4

1
.0
8
E
-0
2

—
2
.1
8
E
-0
1

—
3
.4
4
E
-0
0

—
3
.1
2
E
-0
2

—
6
.6
1
E
-0
1

—
P
3

0
.2

5
.2
0
E
-0
3

1.
0
6

1
.0
4
E
-0
1

1
.0
6

1
.6
3
E
-0
0

1.
0
8

1
.5
3
E
-0
2

1.
0
3

3
.1
1
E
-0
1

1
.0
9

0
.1

2
.5
7
E
-0
3

1.
0
2

5
.1
6
E
-0
2

1
.0
2

8
.0
6
E
-0
1

1.
0
2

7
.6
4
E
-0
3

1.
0
0

1
.5
3
E
-0
1

1
.0
2

0
.0
5

1
.2
7
E
-0
3

1.
0
2

2
.5
5
E
-0
2

1
.0
1

4
.0
0
E
-0
1

1.
0
1

3
.8
1
E
-0
3

1.
0
1

7
.5
9
E
-0
2

1
.0
1

0
.4

3
.9
4
E
-0
2

—
3
.2
4
E
-0
1

—
5
.2
6
E
-0
0

—
1
.8
5
E
-0
2

—
2
.0
5
E
-0
0

—
P
4

0
.2

1
.9
4
E
-0
2

1.
0
2

1
.5
9
E
-0
1

1
.0
3

2
.5
9
E
-0
0

1.
0
2

8
.8
7
E
-0
3

1.
0
6

9
.7
6
E
-0
0

1
.0
7

0
.1

9
.4
5
E
-0
3

1.
0
4

7
.9
0
E
-0
2

1
.0
1

1
.2
6
E
-0
0

1.
0
4

4
.4
1
E
-0
3

1.
0
1

4
.8
5
E
-0
1

1
.0
1

0
.0
5

5
.0
1
E
-0
3

0.
9
1

3
.9
4
E
-0
2

1
.0
0

6
.1
0
E
-0
1

1.
0
5

2
.2
3
E
-0
3

0.
9
8

2
.4
7
E
-0
1

0
.9
8

0
.4

2
.1
1
E
-0
3

—
3
.5
3
E
-0
3

—
6
.3
2
E
-0
3

—
1
.3
9
E
-0
3

—
1
.6
4
E
-0
3

—
P
5

0
.2

1
.0
4
E
-0
3

1.
0
2

1
.7
5
E
-0
3

1
.0
2

3
.2
1
E
-0
3

0.
9
8

7
.2
5
E
-0
4

0.
9
4

8
.5
5
E
-0
3

0
.9
4

0
.1

5
.1
8
E
-0
4

1.
0
1

8
.6
7
E
-0
4

1
.0
1

1
.6
1
E
-0
3

1.
0
0

3
.6
6
E
-0
4

0.
9
8

4
.3
0
E
-0
4

0
.9
9

0
.0
5

2
.5
8
E
-0
4

1.
0
1

4
.3
2
E
-0
4

1
.0
1

8
.0
3
E
-0
4

1.
0
0

1
.8
3
E
-0
4

1.
0
0

2
.1
5
E
-0
4

1
.0
0

99

In order to access the spatial errors of a test case, we need the exact solution Uj

[
Te; t0, U

0
j

]
; see

Equation (6.67). The result in Section 6.1.1 gives the rate at which the time integration com-

puted solution approaches the true time integration solution, so a more accurate approximation

to the exact solution Uj

[
Te; t0, U

0
j

]
might be obtained by comparing the numerical solution to

a finer-mesh numerical solution. Therefore, we estimate the exact solution Uj

[
Te; t0, U

0
j

]
in

Table 6.3 using the computed solutions of the IMPICE method with Ccfl = 0.025 and one with

Ccfl = 0.0125.

The spatial error norms and their orders of accuracy for the above test cases at Te are shown

in Table 6.3.

Theoretically the spatial error order of accuracy is first-order. However it is shown in Table

6.3 that the order of accuracy is mostly below one due to the discontinuities in the solutions of

these test cases. Greenough and Rider [42] mention earlier work showing less than first-order

accuracy for the first-order version of Godunov’s method and suggest that this is due to the

low resolution computed solutions being very different from the highly resolved solution. For

reference purposes, we include in Appendices A.1 and A.2 of this dissertation the spatial errors

and the orders of accuracy for the inviscid and viscous Burgers’ problems. For the inviscid

Burgers’ problem, the order of accuracy is below one. For the viscous Burgers’ problem, the

order is around one.

As numerical solutions obtained with first-order methods are diffusive and not accurate

enough to be used for some large problems on relatively coarse grids – for example, the numerical

solution to Shu and Osher test problem shown in Figure 6.6 – we raise the order of accuracy of

the IMPICE method to second-order in both space and time in the following sections.

6.7 Higher-order Accuracy in Time

In order to raise the order of accuracy globally in time, we use the method of extrapolation

to raise the order of accuracy locally. By raising the local order of accuracy of the temporal error

to third-order, we raise the order of accuracy of the temporal error to second-order globally.

The second-order-in-time IMPICE method is achieved using Richardson extrapolation. The

steps in the IMPICE method with second-order temporal error to obtain the solution for next

time step Un+1
j from current time step solution Un

j are:

• Perform one step of the first-order IMPICE method with stepsize Δt to obtain the solution

U1n+1
j at tn+1.

• Perform two consecutive steps of the first-order IMPICE method with stepsize Δt
2 to

obtain the solution U2n+1
j at tn+1.

• Set the solution at tn+1 of second-order-in-time IMPICE method to
(
2U2n+1

j −U1n+1
j

)
.

100

T
a
b
le

6
.3
.
S
p
a
ti
a
l
E
rr
o
r:

L
1
-n
o
rm

s
a
n
d
th
e
o
rd
er

of
ac
cu
ra
cy

m
o
f
th
e
co
n
se
rv
ed

a
n
d
p
ri
m
it
iv
e
va
ri
a
b
le
s
fo
r
th
e
te
st

ca
se
s
in

T
a
b
le

6
.1
.

T
h
e
ex
a
ct

so
lu
ti
o
n
s
U

j

[T
e
;t

0
,U

0 j

] a
re

th
e
co
n
ve
rg
ed

n
u
m
er
ic
a
l
so
lu
ti
o
n
s
d
is
cu

ss
ed

in
S
ec
ti
o
n
6
.6
.1
.

e
s
ρ
(T

e
)

e
s
ρ
u
(T

e
)

e
s
ρ
E
(T

e
)

e
s
u
(T

e
)

e
s
p
(T

e
)

N
‖.‖

L
1

m
‖.‖

L
1

m
‖.‖

L
1

m
‖.‖

L
1

m
‖.‖

L
1

m

10
0

1
.3
8
E
-0
2

—
1
.1
5
E
-0
2

—
2
.6
8
E
-0
2

—
2
.1
5
E
-0
2

—
1
.0
6
E
-0
2

—
20
0

9
.1
6
E
-0
3

0
.5
9

7
.4
4
E
-0
3

0
.6
3

1
.5
6
E
-0
2

0
.7
9

1
.2
0
E
-0
2

0
.8
4

6
.1
0
E
-0
3

0
.7
9

P
1

40
0

5
.8
3
E
-0
3

0
.6
5

4
.6
5
E
-0
3

0
.6
8

9
.1
0
E
-0
3

0
.7
7

6
.6
7
E
-0
3

0
.8
5

3
.4
8
E
-0
3

0
.8
1

80
0

3
.6
8
E
-0
3

0
.6
6

2
.9
2
E
-0
3

0
.6
7

5
.2
9
E
-0
3

0
.7
8

3
.6
3
E
-0
3

0
.8
8

1
.9
5
E
-0
3

0
.8
4

16
00

2
.4
0
E
-0
3

0
.6
2

1
.8
9
E
-0
3

0
.6
2

3
.0
6
E
-0
3

0
.7
9

1
.9
5
E
-0
3

0
.9
0

1
.0
9
E
-0
3

0
.8
4

10
0

2
.1
7
E
-0
2

—
1
.8
9
E
-0
2

—
4
.4
7
E
-0
2

—
2
.8
3
E
-0
2

—
1
.6
6
E
-0
2

—
20
0

1
.4
5
E
-0
2

0
.5
8

1
.2
6
E
-0
2

0
.5
9

2
.8
7
E
-0
2

0
.6
4

1
.6
3
E
-0
2

0
.8
0

1
.0
2
E
-0
2

0
.7
1

P
2

40
0

9
.8
7
E
-0
3

0
.5
5

8
.9
3
E
-0
3

0
.5
0

1
.8
0
E
-0
2

0
.6
7

9
.2
5
E
-0
3

0
.8
2

6
.1
1
E
-0
3

0
.7
4

80
0

6
.4
5
E
-0
3

0
.6
1

5
.9
8
E
-0
3

0
.5
8

1
.1
0
E
-0
2

0
.7
1

5
.1
5
E
-0
3

0
.8
5

3
.5
8
E
-0
3

0
.7
7

16
00

4
.2
4
E
-0
3

0
.6
0

4
.1
3
E
-0
3

0
.5
3

7
.0
4
E
-0
3

0
.6
4

3
.1
3
E
-0
3

0
.7
2

2
.1
7
E
-0
3

0
.7
2

10
0

1
.8
0
E
-0
1

—
3
.4
9
E
+
0
0

—
8
.0
6
E
+
0
1

—
5
.5
6
E
-0
1

—
1
.1
6
E
+
0
1

—
20
0

1
.4
7
E
-0
1

0
.2
9

2
.9
6
E
+
0
0

0
.2
4

4
.8
4
E
+
0
1

0
.7
3

3
.3
8
E
-0
1

0
.7
2

6
.9
3
E
+
0
0

0.
7
4

P
3

40
0

1
.0
9
E
-0
1

0
.4
3

2
.2
0
E
+
0
0

0
.4
3

3
.4
8
E
+
0
1

0
.4
8

1
.9
5
E
-0
1

0
.7
9

4
.1
0
E
+
0
0

0.
7
6

80
0

7
.6
0
E
-0
2

0
.5
2

1
.5
0
E
+
0
0

0
.5
5

2
.2
6
E
+
0
1

0
.6
2

1
.0
6
E
-0
1

0
.8
7

2
.3
3
E
+
0
0

0.
8
1

16
00

5
.4
4
E
-0
2

0
.4
8

1
.0
7
E
+
0
0

0
.4
9

1
.2
9
E
+
0
1

0
.8
1

5
.6
3
E
-0
2

0
.9
2

1
.2
5
E
+
0
0

0.
9
0

10
0

7
.7
0
E
-0
1

—
6
.8
0
E
+
0
0

—
6
.9
3
E
+
0
1

—
2
.1
1
E
-0
1

—
1
.7
3
E
+
0
1

—
20
0

5
.7
6
E
-0
1

0
.4
2

5
.2
1
E
+
0
0

0
.3
9

4
.2
3
E
+
0
1

0
.7
1

9
.2
8
E
-0
2

1
.1
9

8
.8
3
E
+
0
0

0.
9
7

P
4

40
0

3
.9
3
E
-0
1

0
.5
5

3
.4
6
E
+
0
0

0
.5
9

2
.4
7
E
+
0
1

0
.7
7

5
.3
2
E
-0
2

0
.8
0

4
.4
2
E
+
0
0

1.
0
0

80
0

2
.6
9
E
-0
1

0
.5
5

2
.3
9
E
+
0
0

0
.5
3

1
.5
8
E
+
0
1

0
.6
5

2
.4
7
E
-0
2

1
.1
0

2
.1
9
E
+
0
0

1.
0
1

16
00

1
.9
1
E
-0
1

0
.5
0

1
.6
7
E
+
0
0

0
.5
2

9
.9
9
E
+
0
0

0
.6
6

1
.4
1
E
-0
2

0
.8
1

1
.2
9
E
+
0
0

0.
7
6

10
0

3
.9
0
E
-0
2

—
6
.4
7
E
-0
2

—
1
.5
3
E
-0
1

—
3
.0
4
E
-0
2

—
3
.3
5
E
-0
2

—
20
0

3
.0
0
E
-0
2

0
.3
8

4
.9
3
E
-0
2

0
.3
9

8
.3
7
E
-0
2

0
.8
7

1
.8
2
E
-0
2

0
.7
4

2
.1
0
E
-0
2

0
.6
8

P
5

40
0

2
.0
3
E
-0
2

0
.5
6

3
.2
6
E
-0
2

0
.6
0

5
.1
9
E
-0
2

0
.6
9

1
.0
0
E
-0
2

0
.8
6

1
.1
6
E
-0
2

0
.8
6

80
0

1
.4
1
E
-0
2

0
.5
3

2
.2
6
E
-0
2

0
.5
3

3
.5
2
E
-0
2

0
.5
6

5
.9
0
E
-0
3

0
.7
7

6
.9
5
E
-0
3

0
.7
3

16
00

9
.8
0
E
-0
3

0
.5
3

1
.5
4
E
-0
2

0
.5
5

2
.1
7
E
-0
2

0
.7
0

3
.2
5
E
-0
3

0
.8
6

3
.8
2
E
-0
3

0
.8
6

101

The temporal error norms and the orders of accuracy of the conserved and primitive variables

for the above test cases using the second-order-in-time IMPICE method are shown in Table 6.4.

We use a highly resolved solution as the exact solution Uj

[
T ; t0, U

0
j

]
by setting Ccfl = 0.0001

when calculating temporal errors. It is shown in Table 6.4 that the time integration accuracy

for both conserved and primitive variables is very close to second-order.

In doing so, we note that this extrapolated method corresponds to the Runge-Kutta method

whose positivity properties are described by Mehdizadeh Khalsaraei [87].

6.8 Higher-order Advection

The solutions with first-order accuracy of advection where advected quantities obtained

from (6.18) are highly smeared at contact discontinuities. We have improved the spatial error

accuracy of the IMPICE method by using a higher-order advection method. A higher-order

Van Leer advection method is discussed in VanderHeyden and Kashiwa [127], in which the

compatible fluxes are also derived for this type of advection method. There are several mi-

nor differences between the derivation of the face-centered advected quantity for IMPICE in

this section and [127]. A higher-order advection scheme for IMPICE is derived based on a

higher-order approximation of the advected quantities in (6.16). This is done by assuming that

U(xj+ 1
2
, t) in Equation (6.16) is not a constant for the time step [tn, tn+1]. The advection

equations of conserved variables in the Eulerian phase in Section 6.4.2 are given by:

Ut + (uU)x = 0. (6.68)

In order to determine U(xj+ 1
2
, t), we will use Equation (6.68) and the constructed values,

Wn
j (x, t), of primitive variables in the control volume [xj− 1

2
, xj+ 1

2
] × [tn, tn+1]. Within this

control volume, the constructed values, Wn
j (x, t), are obtained by using Taylor series:

Wn
j (x, t) = Wn

j + (x− xj)

(
∂W

∂x

)n

j

+ (t− tn)

(
∂W

∂t

)n

j

+O(Δx2,Δt2). (6.69)

In VanderHeyden and Kashiwa [127], the first-order term in time in the above Taylor series

expansion is omitted. The extrapolated values at cell boundaries obtained by using the con-

structed values, Wn
j (x, t), are:

Wn
j (xj− 1

2
, t) = Wn

j − Δx

2

(
∂W

∂x

)n

j

+ (t− tn)

(
∂W

∂t

)n

j

+O(Δx2,Δt2), (6.70)

Wn
j (xj+ 1

2
, t) = Wn

j +
Δx

2

(
∂W

∂x

)n

j

+ (t− tn)

(
∂W

∂t

)n

j

+O(Δx2,Δt2). (6.71)

102

T
a
b
le

6
.4
.
T
em

p
or
a
l
E
rr
o
r
u
si
n
g
th
e
se
co
n
d
-o
rd
er
-i
n
-t
im

e
IM

P
IC

E
:
L
1
-n
o
rm

s
a
n
d
th
e
o
rd
er

of
a
cc
u
ra
cy

n
o
f
th
e
co
n
se
rv
ed

a
n
d
p
ri
m
it
iv
e

va
ri
a
b
le
s
fo
r
th
e
te
st

ca
se
s
in

T
a
b
le

6.
1
u
si
n
g
N
=
2
0
0
(c
el
ls
).

T
h
e
ex
a
ct

so
lu
ti
o
n
s
U

j

[T
e
;t

0
,U

0 j

] fo
r
th
e
d
is
cr
et
iz
ed

p
ro
b
le
m
s
o
f
th
es
e
te
st

ca
se
s
ar
e
o
b
ta
in
ed

b
y
u
si
n
g
C
cf

l
=

0.
00
01
.

e
tρ
(T

e
)

e
tρ

u
(T

e
)

e
tρ

E
(T

e
)

e
tu
(T

e
)

e
tp
(T

e
)

C
cf

l
‖.‖

L
1

n
‖.‖

L
1

n
‖.‖

L
1

n
‖.‖

L
1

n
‖.‖

L
1

n

0
.4

6
.6
4
E
-0
0
5

—
5
.2
0
E
-0
0
5

—
1
.6
3
E
-0
0
4

—
1
.1
9
E
-0
0
4

—
6
.7
5
E
-0
0
5

—
P
1

0
.2

1
.4
7
E
-0
0
5

2.
1
7

1
.1
6
E
-0
0
5

2.
1
6

3
.6
5
E
-0
0
5

2
.1
5

2
.7
1
E
-0
0
5

2
.1
4

1
.5
0
E
-0
0
5

2.
1
7

0
.1

2
.9
0
E
-0
0
6

2.
3
5

2
.3
9
E
-0
0
6

2.
2
9

7
.4
4
E
-0
0
6

2
.3
0

5
.7
1
E
-0
0
6

2
.2
5

3
.0
3
E
-0
0
6

2.
3
1

0
.0
5

7
.1
1
E
-0
0
7

2.
0
3

5
.9
8
E
-0
0
7

2.
0
0

1
.8
4
E
-0
0
6

2
.0
1

1
.4
6
E
-0
0
6

1
.9
7

7
.5
8
E
-0
0
7

2.
0
0

0
.4

1
.5
6
E
-0
0
5

—
2
.3
3
E
-0
0
5

—
4
.9
9
E
-0
0
5

—
4
.1
0
E
-0
0
5

—
1
.4
5
E
-0
0
5

—
P
2

0
.2

4
.8
9
E
-0
0
6

1.
6
7

6
.2
4
E
-0
0
6

1.
9
0

1
.5
0
E
-0
0
5

1
.7
4

1
.2
0
E
-0
0
5

1
.7
7

4
.7
2
E
-0
0
6

1.
6
2

0
.1

1
.0
6
E
-0
0
6

2.
2
1

1
.4
9
E
-0
0
6

2.
0
7

3
.3
8
E
-0
0
6

2
.1
5

2
.9
0
E
-0
0
6

2
.0
5

1
.0
2
E
-0
0
6

2.
2
1

0
.0
5

2
.9
2
E
-0
0
7

1.
8
6

3
.8
4
E
-0
0
7

1.
9
6

9
.0
4
E
-0
0
7

1
.9
0

7
.3
1
E
-0
0
7

1
.9
9

2
.8
8
E
-0
0
7

1.
8
3

0
.4

2
.2
6
E
-0
0
4

—
4
.9
1
E
-0
0
3

—
3
.1
1
E
-0
0
1

—
4
.9
6
E
-0
0
3

—
1
.2
7
E
-0
0
1

—
P
3

0
.2

6
.0
5
E
-0
0
5

1.
9
0

1
.2
7
E
-0
0
3

1.
9
5

7
.4
9
E
-0
0
2

2
.0
5

1
.1
8
E
-0
0
3

2
.0
8

3
.0
1
E
-0
0
2

2.
0
7

0
.1

2
.0
7
E
-0
0
5

1.
5
5

3
.8
2
E
-0
0
4

1.
7
4

2
.1
0
E
-0
0
2

1
.8
4

3
.3
9
E
-0
0
4

1
.7
9

8
.3
0
E
-0
0
3

1.
8
6

0
.0
5

7
.3
2
E
-0
0
6

1.
5
0

1
.1
9
E
-0
0
4

1.
6
8

6
.8
0
E
-0
0
3

1
.6
3

1
.1
0
E
-0
0
4

1
.6
2

2
.8
8
E
-0
0
3

1.
5
3

0
.4

5
.9
9
E
-0
0
3

—
3
.3
8
E
-0
0
2

—
9
.2
7
E
-0
0
1

—
1
.8
8
E
-0
0
3

—
3
.9
3
E
-0
0
1

—
P
4

0
.2

1
.6
5
E
-0
0
3

1.
8
6

1
.0
8
E
-0
0
2

1.
6
5

2
.3
5
E
-0
0
1

1
.9
8

6
.4
2
E
-0
0
4

1
.5
5

1
.0
7
E
-0
0
1

1.
8
8

0
.1

6
.2
3
E
-0
0
4

1.
4
1

4
.2
5
E
-0
0
3

1.
3
5

0
.6
7
E
-0
0
1

1
.8
1

2
.5
6
E
-0
0
4

1
.3
2

4
.0
6
E
-0
0
2

1.
4
0

0
.0
5

2
.3
7
E
-0
0
4

1.
4
0

1
.5
5
E
-0
0
3

1.
4
6

2
.1
0
E
-0
0
2

1
.6
7

0
.9
3
E
-0
0
4

1
.4
6

1
.4
0
E
-0
0
2

1.
5
4

0
.4

3
.1
1
E
-0
0
5

—
5
.9
9
E
-0
0
5

—
2
.9
4
E
-0
0
4

—
8
.4
5
E
-0
0
5

—
1
.1
4
E
-0
0
4

—
P
5

0
.2

7
.0
0
E
-0
0
6

2.
1
5

1
.4
4
E
-0
0
5

2.
0
6

6
.6
9
E
-0
0
5

2
.1
3

2
.0
2
E
-0
0
5

2
.0
6

2
.6
2
E
-0
0
5

2.
1
3

0
.1

1
.9
1
E
-0
0
6

1.
8
7

3
.7
2
E
-0
0
6

1.
9
5

1
.8
4
E
-0
0
5

1
.8
6

5
.4
4
E
-0
0
6

1
.8
9

7
.1
9
E
-0
0
6

1.
8
7

0
.0
5

4
.5
4
E
-0
0
7

2.
0
8

8
.7
7
E
-0
0
7

2.
0
8

3
.9
6
E
-0
0
6

2
.2
2

1
.1
1
E
-0
0
6

2
.2
9

1
.5
2
E
-0
0
6

2.
2
5

103

Therefore, there are two existing extrapolated values at the cell boundary at xj+ 1
2
for the time

interval [tn, tn+1]. These values are denoted as Wn
j (xj+ 1

2
, t) and Wn

j+1(xj+ 1
2
, t), and one may

be chosen for the face-centered value based on the face-centered fluxing velocity at this cell

boundary. The value of the vector of primitive variables at face-center is determined using:

W(xj+ 1
2
, t) =

⎧⎨
⎩ Wn

j+1(xj+ 1
2
, t) if

(
u∗
j+ 1

2

< 0
)

Wn
j (xj+ 1

2
, t) otherwise.

(6.72)

Now, as the extrapolated primitive variables at the cell boundary at xj+ 1
2
are readily available,

we will show how to obtain the vector of advected quantities in (6.16). We derive the advected

quantities for the case u∗
j+ 1

2

> 0. The advected quantities for the case u∗
j+ 1

2

< 0 are derived

similarly. The vector of advected quantities 〈U〉n
j+ 1

2

includes 〈ρ〉n
j+ 1

2

, 〈ρu〉n
j+ 1

2

and 〈ρE〉n
j+ 1

2

.

Equation (6.68) is rewritten as follows:

∂ρ

∂t
= −u

∂ρ

∂x
− ρ

∂u

∂x
, (6.73)

∂u

∂t
= −u

∂u

∂x
, (6.74)

∂E

∂t
= −u

∂E

∂x
. (6.75)

Equations (6.71) and (6.73)–(6.75) are used to derive the mass advected quantity in Equation

(6.16); for the case of u∗
j+ 1

2

> 0, we have:

〈ρ〉n
j+ 1

2

=
1

Δt

∫ tn+1

tn

ρ(xj+ 1
2
, t)dt

=
1

Δt

∫ tn+1

tn

(
ρnj +

Δx

2

(
∂ρ

∂x

)n

j

+ (t− tn)

(
∂ρ

∂t

)n

j

)
dt+O(Δx2,Δt2)

= ρnj +
Δx

2

(
∂ρ

∂x

)n

j

+
Δt

2

(
∂ρ

∂t

)n

j

+O(Δx2,Δt2)

= ρnj +
Δx

2

(
∂ρ

∂x

)n

j

− Δt

2

(
unj

(
∂ρ

∂x

)n

j

+ ρnj

(
∂u

∂x

)n

j

)
+O(Δx2,Δt2).

Therefore:

〈ρ〉n
j+ 1

2

= ρnj +

(
Δx

2
− unj

Δt

2

)(
∂ρ

∂x

)n

j

− Δt

2
ρnj

(
∂u

∂x

)n

j

+O(Δx2,Δt2). (6.76)

104

ρu(xj+ 1
2
, t) =

(
ρnj +

Δx

2

(
∂ρ

∂x

)n

j

+ (t− tn)

(
∂ρ

∂t

)n

j

)

×
(
unj +

Δx

2

(
∂u

∂x

)n

j

+ (t− tn)

(
∂u

∂t

)n

j

)
+O(Δx2,Δt2)

=

(
ρnj +

Δx

2

(
∂ρ

∂x

)n

j

+ (t− tn)

(
∂ρ

∂t

)n

j

)
unj

+ρnj

(
Δx

2

(
∂u

∂x

)n

j

+ (t− tn)

(
∂u

∂t

)n

j

)

+

(
Δx

2

(
∂ρ

∂x

)n

j

+ (t− tn)

(
∂ρ

∂t

)n

j

)(
Δx

2

(
∂u

∂x

)n

j

+ (t− tn)

(
∂u

∂t

)n

j

)

+O(Δx2,Δt2).

The fluxed momentum at the face-center is then given by:

〈ρu〉n
j+ 1

2
=

1

Δt

∫ tn+1

tn

ρu(xj+ 1
2
, t)dt

= 〈ρ〉n
j+ 1

2
unj + ρnj

(
Δx

2
− unj

Δt

2

)(
∂u

∂x

)n

j

+
Δx

2

(
∂ρ

∂x

)n

j

(
Δx

2
− unj

Δt

2

)(
∂u

∂x

)n

j

+
Δx

2

Δt

2

(
∂u

∂x

)n

j

(
∂u

∂t

)n

j

+
Δt3

3

(
∂u

∂t

)n

j

(
∂u

∂t

)n

j

+O(Δx2,Δt2).

This gives us the approximation:

〈ρu〉n
j+ 1

2

= 〈ρ〉n
j+ 1

2

unj + ρn
j+ 1

2

(
Δx

2
− unj

Δt

2

)(
∂u

∂x

)n

j

+O(ΔxΔt) +O(Δx2,Δt2). (6.77)

With a similar derivation, we also have:

〈ρE〉n
j+ 1

2

= 〈ρ〉n
j+ 1

2

En
j + ρn

j+ 1
2

(
Δx

2
− unj

Δt

2

)(
∂E

∂x

)n

j

+O(ΔxΔt) +O(Δx2,Δt2). (6.78)

We thus obtain second-order accuracy in space if Ccfl remains contant. Equations (6.76), (6.77),

and (6.78) are used to calculate the face-centered fluxed quantities for the time step [tn, tn+1]

when the face-centered fluxing velocity, u∗
j+ 1

2

, is greater than 0. A set of similar equations can

be easily derived for the case when the fluxing velocity is less than 0. However, when using

these equations to estimate the face-centered advected quantities, we need to have numerical

estimations for

(
∂ρ

∂x

)n

j

,

(
∂u

∂x

)n

j

, and

(
∂E

∂x

)n

j

. These spatial numerical derivatives are limited

105

to eliminate artificial extrema and preserve monotonicity [127]. In this chapter, we choose one

limiter from one-parameter family of minmod limiters [54, 131],

(
∂W

∂x

)n

j

= minmod(θ
Wn

j −Wn
j−1

Δx
,
Wn

j+1 −Wn
j−1

2Δx
, θ

Wn
j+1 −Wn

j

Δx
), (6.79)

to estimate the spatial derivatives of primitive variables by setting θ = 1. Note that, the

minmod limiter in (6.79) is applied component-wise where the multivariable minmod limiter

for a scalar quantity is defined as:

minmod(z1, z2, z3, ...) =

⎧⎨
⎩

min(z1, z2, z3, ...) if (zj > 0 ∀j)
max(z1, z2, z3, ...) if (zj < 0 ∀j)
0 otherwise.

(6.80)

The numerical solution of Shu and Osher test problem in Figure 6.7 is obtained using the

second-order-in-space IMPICE method. Comparing to the numerical solution of this problem

in Figure 6.6, the solution using the second-order-in-space IMPICE method is less diffusive and

more accurate.

The spatial error norms and the orders of accuracy for the test cases in Table 6.1 using the

second-order-in-space IMPICE method are shown in Table 6.5. When calculating the spatial

errors, we use the converged numerical solutions of these test problems as described in Section

6.6.2 for the exact solutions.

The result in Table 6.5 shows that the second-order-in-space IMPICE method does reduce

the spatial errors and increase the orders of accuracy in both conserved and primitive variables.

However, the orders of spatial accuracy are not close to second-order as expected, but degenerate

into first-order and below. The observation concurs with those of Greenough and Rider [42] in

that when discontinuities are present high-order methods may not always deliver the expected

advantages and may reduce their order of accuracy to first-order. In addition, Berzins [12]

shows how unless there is sufficient resolution in terms of meshpoints in a front then the

positivity preservation will tend to favor the use of lower order methods. We also would like

to estimate the spatial error in the numerical solutions of the Shu and Osher test problem.

Since the analytic solution to the Shu and Osher test problem is not readily available, a highly

resolved numerical solution is used to estimate the integral term in Equation (4.27) when

calculating spatial errors. The highly resolved numerical solution is generated from running

the second-order-in-space IMPICE method with N = 25, 600 (cells) and Ccfl = 0.2. The exact

cell average in Equation (4.27), 1
Δx

∫ x
j+1

2
x
j− 1

2

U(x, tn)dx, is the numerical integration obtained from

the highly resolved solution while the exact solution of time integration, Uj

[
tn; t0, U

0
j

]
, is the

106

T
a
b
le

6
.5
.
S
p
a
ti
a
l
E
rr
o
r
u
si
n
g
th
e
se
co
n
d
-o
rd
er
-i
n
-s
p
a
ce

IM
P
IC

E
:
L
1
-n
o
rm

s
a
n
d
th
e
o
rd
er

o
f
a
cc
u
ra
cy

m
o
f
th
e
co
n
se
rv
ed

a
n
d
p
ri
m
it
iv
e

va
ri
a
b
le
s
fo
r
th
e
te
st

ca
se
s
in

T
ab

le
6.
1
.
T
h
e
ex
a
ct

so
lu
ti
o
n
s
U

j

[T
e
;t

0
,U

0 j

] a
re

th
e
co
n
ve
rg
ed

n
u
m
er
ic
a
l
so
lu
ti
o
n
s
a
s
d
es
cr
ib
ed

in
S
ec
ti
o
n

6
.6
.2
.

e
s
ρ
(T

e
)

e
s
ρ
u
(T

e
)

e
s
ρ
E
(T

e
)

e
s
u
(T

e
)

e
s
p
(T

e
)

N
‖.‖

L
1

m
‖.‖

L
1

m
‖.‖

L
1

m
‖.‖

L
1

m
‖.‖

L
1

m

10
0

7
.1
0
E
-0
0
3

—
5
.9
7
E
-0
0
3

—
1
.5
0
E
-0
0
2

—
1
.2
5
E
-0
0
2

—
5
.7
2
E
-0
0
3

—
20
0

4
.1
0
E
-0
0
3

0
.7
9

3
.5
1
E
-0
0
3

0.
7
7

7
.3
7
E
-0
0
3

1
.0
3

6
.0
2
E
-0
0
3

1
.0
5

2
.8
1
E
-0
0
3

1.
0
3

P
1

40
0

2
.2
3
E
-0
0
3

0
.8
8

1
.9
2
E
-0
0
3

0.
8
7

3
.7
0
E
-0
0
3

0
.9
9

2
.8
5
E
-0
0
3

1
.0
8

1
.3
6
E
-0
0
3

1
.0
5

80
0

1
.2
1
E
-0
0
3

0
.8
7

1
.0
5
E
-0
0
3

0.
8
7

1
.8
7
E
-0
0
3

0
.9
9

1
.3
1
E
-0
0
3

1
.1
2

6
.5
0
E
-0
0
4

1.
0
7

16
00

7
.2
1
E
-0
0
4

0
.7
5

6
.1
3
E
-0
0
4

0.
7
8

9
.3
3
E
-0
0
4

1
.0
0

5
.8
3
E
-0
0
4

1
.1
7

3
.1
4
E
-0
0
4

1
.0
5

10
0

9
.9
2
E
-0
0
3

—
9
.3
9
E
-0
0
3

—
2
.0
7
E
-0
0
2

—
1
.5
0
E
-0
0
2

—
7
.3
9
E
-0
0
3

—
20
0

5
.4
9
E
-0
0
3

0
.8
5

5
.3
4
E
-0
0
3

0.
8
1

1
.1
4
E
-0
0
2

0
.8
6

7
.2
8
E
-0
0
3

1
.0
4

3
.7
2
E
-0
0
3

0.
9
9

P
2

40
0

3
.3
9
E
-0
0
3

0
.6
9

3
.4
8
E
-0
0
3

0.
6
2

6
.1
8
E
-0
0
3

0
.8
8

3
.5
1
E
-0
0
3

1
.0
5

1
.8
5
E
-0
0
3

1
.0
0

80
0

1
.9
4
E
-0
0
3

0
.8
0

2
.0
1
E
-0
0
3

0.
7
9

3
.2
5
E
-0
0
3

0
.9
3

1
.6
3
E
-0
0
3

1
.1
1

9
.1
1
E
-0
0
4

1.
0
3

16
00

1
.1
5
E
-0
0
3

0
.7
5

1
.2
6
E
-0
0
3

0.
6
8

1
.9
4
E
-0
0
3

0
.7
5

9
.9
1
E
-0
0
4

0
.7
1

5
.1
5
E
-0
0
4

0
.8
2

10
0

8
.5
6
E
-0
0
2

—
1
.7
1
E
+
0
0
0

—
5
.3
4
E
+
0
0
1

—
3
.3
8
E
-0
0
1

—
8
.0
3
E
+
0
0
0

—
20
0

6
.3
5
E
-0
0
2

0
.4
3

1
.3
2
E
+
0
0
0

0.
3
7

2
.7
0
E
+
0
0
1

0.
9
8

2
.3
6
E
-0
0
1

0
.5
2

4
.4
7
E
+
0
0
0

0.
8
5

P
3

40
0

4
.0
1
E
-0
0
2

0
.6
6

8
.3
9
E
-0
0
1

0.
6
5

1
.8
3
E
+
0
0
1

0.
5
6

1
.3
6
E
-0
0
1

0
.7
9

2
.6
4
E
+
0
0
0

0.
7
6

80
0

2
.5
7
E
-0
0
2

0
.6
4

5
.0
5
E
-0
0
1

0.
7
3

1
.0
8
E
+
0
0
1

0.
7
6

6
.9
7
E
-0
0
2

0
.9
7

1
.3
9
E
+
0
0
0

0.
9
2

16
00

1
.7
6
E
-0
0
2

0
.5
4

3
.4
7
E
-0
0
1

0.
5
4

4
.6
6
E
+
0
0
0

1.
2
1

3
.5
0
E
-0
0
2

0
.9
9

7
.0
1
E
-0
0
1

0
.9
9

10
0

3
.5
7
E
-0
0
1

—
3
.6
1
E
+
0
0
0

—
4
.9
7
E
+
0
0
1

—
1
.1
7
E
-0
0
1

—
1
.3
3
E
+
0
0
1

—
20
0

2
.8
0
E
-0
0
1

0
.3
5

2
.8
9
E
+
0
0
0

0.
3
2

3
.6
2
E
+
0
0
1

0.
4
5

7
.8
5
E
-0
0
2

0
.5
7

9
.7
6
E
+
0
0
0

0.
4
5

P
4

40
0

1
.7
4
E
-0
0
1

0
.6
9

1
.8
3
E
+
0
0
0

0.
6
6

2
.2
5
E
+
0
0
1

0.
6
9

4
.1
2
E
-0
0
2

0
.9
3

5
.9
1
E
+
0
0
0

0.
7
2

80
0

1
.1
1
E
-0
0
1

0
.6
4

1
.2
2
E
+
0
0
0

0.
5
8

1
.6
7
E
+
0
0
1

0.
4
3

2
.8
7
E
-0
0
2

0
.5
2

4
.2
7
E
+
0
0
0

0.
4
7

16
00

7
.1
2
E
-0
0
2

0
.6
4

7
.9
7
E
-0
0
1

0.
6
1

1
.0
1
E
+
0
0
1

0.
7
2

1
.8
1
E
-0
0
2

0
.6
6

2
.6
2
E
+
0
0
0

0.
7
0

10
0

1
.6
3
E
-0
0
2

—
2
.7
8
E
-0
0
2

—
9
.5
4
E
-0
0
2

—
1
.9
0
E
-0
0
2

—
1
.9
9
E
-0
0
2

—
20
0

1
.2
5
E
-0
0
2

0
.3
8

2
.1
5
E
-0
0
2

0.
3
7

4
.1
4
E
-0
0
2

1
.2
0

1
.0
2
E
-0
0
2

0
.8
9

1
.0
8
E
-0
0
2

0.
8
8

P
5

40
0

7
.5
5
E
-0
0
3

0
.7
3

1
.2
3
E
-0
0
2

0.
8
0

2
.3
0
E
-0
0
2

0
.8
5

4
.8
2
E
-0
0
3

1
.0
9

5
.1
0
E
-0
0
3

1
.0
9

80
0

4
.6
3
E
-0
0
3

0
.7
0

7
.6
6
E
-0
0
3

0.
6
9

1
.4
8
E
-0
0
2

0
.6
3

2
.5
5
E
-0
0
3

0
.9
2

2
.7
2
E
-0
0
3

0.
9
1

16
00

2
.8
6
E
-0
0
3

0
.7
0

4
.5
6
E
-0
0
3

0.
7
5

8
.1
0
E
-0
0
3

0
.8
7

1
.2
0
E
-0
0
3

1
.0
8

1
.2
8
E
-0
0
3

1
.0
8

107

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

x

D
en

si
ty

(a)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

0

1

2

3

x

V
el

oc
ity

(b)

Second−order−in−space IMPICE
"Exact"

Second−order−in−space IMPICE
"Exact"

Figure 6.7. The second-order-in-space IMPICE numerical solution for Shu and Osher test
problem with N=1600 (cells) and Ccfl = 0.2: (a) density and (b) velocity.

converged numerical solutions as discussed earlier in Section 6.2.2. The spatial error norms and

the orders of accuracy of the Shu and Osher test problem are shown in Table 6.6.

As shown in Table 6.6, there is also a degeneration in the orders of accuracy for the result

of the Shu and Osher test problem when the mesh size N is below 1600 and an improvement in

its orders when the mesh size N is above 1600. This result is consistent with that of Greenough

and Rider [42]. The numerical results of the second-order-in-space IMPICE for inviscid and

viscous Burgers’ problem are included in Appendices A.1 and A.2. The spatial error norms and

the orders of accuracy for the numerical solutions of the inviscid Burgers’ problem obtained

from using the second-order-in-space IMPICE method included in Appendix A.1 show that the

orders of convergence are not very close to second-order. However, the orders of convergence

for the numerical solutions of the viscous Burgers’ problem using the second-order-in-space

IMPICE method included in Appendix A.2 are close to second-order for the cases of ε = 0.05

and ε = 0.01 as the solutions for these cases are smooth as shown in Appendix A.2. But the

orders degenerate into first-order for the case of ε = 0.0001. This is due to the development

of the smooth steep front that appears close to a discontinuity in the solution of the viscous

108

T
a
b
le

6
.6
.
S
p
a
ti
a
l
E
rr
o
r
u
si
n
g
th
e
se
co
n
d
-o
rd
er
-i
n
-s
p
a
ce

IM
P
IC

E
:
L
1
-n
o
rm

s
a
n
d
th
e
o
rd
er

o
f
a
cc
u
ra
cy

m
o
f
th
e
co
n
se
rv
ed

a
n
d
p
ri
m
it
iv
e

va
ri
a
b
le
s
fo
r
S
h
u
an

d
O
sh
er

te
st

p
ro
b
le
m
.
T
h
e
ex
a
ct

so
lu
ti
o
n
s
U

j

[T
e
;t

0
,U

0 j

] a
re

th
e
co
n
ve
rg
ed

n
u
m
er
ic
a
l
so
lu
ti
o
n
s.

e
s
ρ
(T

e
)

e
s
ρ
u
(T

e
)

e
s
ρ
E
(T

e
)

e
s
u
(T

e
)

e
s
p
(T

e
)

N
‖.‖

L
1

m
‖.‖

L
1

m
‖.‖

L
1

m
‖.‖

L
1

m
‖.‖

L
1

m

20
0

9
.4
1
E
-0
1

—
1
.9
5
E
+
0
0

—
4
.8
5
E
+
0
0

—
2
.4
5
E
-0
1

—
1
.4
4
E
+
0
0

—
40
0

7
.3
0
E
-0
1

0
.3
7

1
.6
5
E
+
0
0

0
.2
5

3
.2
8
E
+
0
0

0
.5
7

1
.1
9
E
-0
1

1.
0
5

7
.0
3
E
-0
1

1
.0
4

80
0

4
.6
0
E
-0
1

0
.6
7

1
.0
8
E
+
0
0

0
.6
1

1
.9
9
E
+
0
0

0
.7
2

6
.0
4
E
-0
2

0.
9
8

3
.4
2
E
-0
1

1
.0
4

1
60

0
2
.0
3
E
-0
1

1
.1
8

4
.7
9
E
-0
1

1
.1
8

8
.9
5
E
-0
1

1
.1
5

2
.8
5
E
-0
2

1.
0
8

1
.5
8
E
-0
1

1
.1
1

3
20

0
8
.1
2
E
-0
2

1
.3
2

1
.8
7
E
-0
1

1
.3
6

3
.5
0
E
-0
1

1
.3
6

1
.2
2
E
-0
2

1.
2
3

6
.7
1
E
-0
2

1
.2
4

109

Burgers’ problem when the viscosity ε becomes small.

6.9 Summary

We have presented IMPICE, an improved Production ICE method, that uses a conservative

scheme, slope limiters and a simple approximate Riemann solver to improve and eliminate

existing oscillations to numerical solutions of Production ICE which is currently implemented

in the UCF to simulate fluid flows. We have also examined how each of these different

implementations individually impacts the overall numerical solutions of IMPICE. The IMPICE

method with a linear spatial and temporal discretization is expected to be first-order accuracy

in time and space. However, for the cases with existing discontinuities in their solutions, the

order of accuracy in space is less than one as shown in Section 6.6. As it is important to have

the method of higher-order of accuracy in both time and space, we have presented the nonlinear

spatial and temporal discretization of the IMPICE method. These are the method of temporal

extrapolation and the higher-order advection. While the method of temporal extrapolation

successfully raises the order of accuracy to second-order-in-time, a less-than-expected order

of accuracy in space is obtained from using the higher-order advection for the problems with

discontinuities.

It has shown that the IMPICE method is capable of capturing shocks and contact surfaces.

The higher-order IMPICE method is even able to capture the detailed features and structures

of the flow with shock-turbulence interaction in Shu-Osher problem.

CHAPTER 7

THE IMPROVED PRODUCTION IMPLICIT

CONTINUOUS-FLUID EULERIAN METHOD

FOR COMPRESSIBLE FLOW PROBLEMS

IN MULTIDIMENSIONAL SPACE AND

ITS EMBEDDED BOUNDARY

TREATMENT

In this chapter, we extend the one-dimensional IMPICE method to solve multidimensional

nonlinear systems of conservation laws and particularly consider the problem of multidimen-

sional compressible Euler equations of gas dynamics which plays an important role in mechanics

and physics. The multidimensional IMPICE method is a finite-volume solver on a regular

Cartesian meshes. We present numerical results obtained using IMPICE with first and second

order of spatial accuracy to the compressible flow problems governed by the system of Euler

equations in multidimensional space.

The use of Cartesian grids in IMPICE has the advantage of ease of grid generation for simple

regular geometries, but has the disadvantage of being unable to deal with complex geometries.

In order to allow IMPICE solve complex geometries, we implement the method of cut cells to

handle the case when the computational boundary is not aligned with the cell edges. Small cut

cells on the embedded boundary cause time step restriction as the time step is proportional to

the size of a grid cell. We discuss in this chapter a new variation of the cell merging technique

used in IMPICE for merging cells to prevent time step restriction. This new variation of the cell

merging technique makes use of the magnitudes of surrounding face-centered fluxing velocities

and is described in Section 7.5.2.5.

The content of the chapter is organized as follows. Section 7.1 describes the spatial and

temporal discretization of the method. In Section 7.2, we discuss the dimensional-split Rie-

mann problem and its HLL approximate solver. In Section 7.3, a detailed description of the

multidimensional IMPICE method is given. In Section 7.4, we discuss how to increase the

order of accuracy in space to second order. The implementation of boundary conditions is

111

described in Section 7.5. For boundary conditions, we discuss the implementation of the Euler

Characteristic Boundary Condition and the embedded boundary technique. In Section 7.6, we

present the numerical results to a suite of test problems for the Euler equations which includes

the widely used double Mach reflection problem for testing the implementation of embedded

boundary. In Section 7.7, we assess the accuracy of the embedded boundary implementation

by investigating the convergent rate of the numerical solutions to the advection problem on a

bounded domain. Conclusions are drawn in Section 7.8.

7.1 Spatial Discretization, CFL Condition
and Adaptive Time Step

7.1.1 Spatial Discretization and Notations

We consider a Cartesian mesh in the computational domain Ω = [a1, b1] × [a2, b2] × ... ×
[ad, bd] ⊂ R

d in which a uniform spatial mesh divides the computational domain into N1 ×
N2 × ...×Nd equal cells where Ni is the number of cells in xi-dimension. The cell width in the

ith-dimension is then Δxi =
(bi−ai)

Ni
.

In each cell j, the state variables are located at the centroid, xj , of the control volume,

Vj , and represent the cell average values. The variables which represent the average values of

the cell j at time tn consist of the cell-centered density ρnj , the cell-centered velocity un
j , the

cell-centered total energy per unit mass En
j , the cell-centered pressure pnj , and the speed of

sound cnj . The time integration method in the ICE method calculates the cell average values

at discrete time levels t1, t2, t3, ..., tN from the initial cell average values at t0 = 0. The

cell average values at next time step are obtained from evaluating the changes in cell mass,

momentum, and energy via cell boundaries.

The cell boundaries are usually referred to as faces and the variables that are associated with

faces are referred to as face-centered variables. While the subscript j is used with cell-centered

variables, the subscript j + 1
2 is used in connection with face-centered variables.

7.1.2 CFL Condition and Adaptive Time Step

For the multidimensional system of Euler equations, the time step Δt is normally chosen to

satisfy the condition:

Δt = Ccfl ×
d

min
i=1

(
Δxi

Sn,i
max

)
, (7.1)

where Ccfl is a Courant or CFL coefficient satisfying 0 < Ccfl < 1 and Sn,i
max is the largest wave

speed present in the domain at time tn in xi-dimension. A reliable estimate for the largest wave

112

speed Sn,i
max has been known to be a critical part of maintaining the method stability. A simple

choice of Sn,i
max is given by:

Sn,i
max = max

j∈Ic

(
|(ui)nj |+ cnj

)
. (7.2)

In the IMPICE method for the one-dimensional sytem of Euler equations in Chapter 6, the

method which was proposed by Kwatra et al. [72] for alleviating the stringent CFL condition

imposed by the sound speed is used to determine the maximum speed. Though the method by

Kwatra et al. [72] is said to be well suited to semi-implicit solvers where only the advection

step is the implicit part, it appears not to be a good choice for the IMPICE method when it is

used for determining the time steps for some additional test cases to the test cases in Chapter

6 where instabilities develop for even small CFL numbers. For this reason, Equation (7.2) is

used to determine the maximum wave speeds in the IMPICE method for the multidimensional

system of Euler equations.

7.2 The HLL Solver for xk-split
Riemann Problem

The system of Euler equations in (3.1)–(3.3) can be written in the differential form as follows:

∂

∂t
U(x, t) +

d∑
i=1

∂

∂xi
Fi(U(x, t)) = 0, (7.3)

where U is the vector of conserved variables. Consider the special Initial Value Problem (IVP)

for the above system in which the initial data consist of two constant states separated by the

coordinate plane in the xk-direction. The IVP is given by:

Ut +
∂

∂xk
Fk(U(x, t)) = 0,

U(x, 0) =

{
UL if (xk < 0),

UR if (xk > 0).

⎫⎪⎪⎬
⎪⎪⎭ (7.4)

The solution to the above IVP problem (also known as the xk-split Riemann problem) is

extremely complicated. To many numerical methods in which the solution to the Riemann

problem is involved in some parts of the numerical procedure, the approximate solution of the

Riemann problem is often used. As mentioned in Toro [120], the approximate Riemann solvers

resulting from the combination of the HLL (Harten, Lax, and van Leer) approach in [53] and

several different wave speed estimates – such as the estimates by Davis [28], Einfeldt [33], and

113

Roe [103] – form the bases of efficient and robust approximate Godunov-type methods. The HLL

Riemann solver using the wave speed estimate by Davis [28] is simple, and it is also used in the

one-dimensional IMPICE method for compressible flow problems. This approximate Riemann

solver is also used in the multidimensional IMPICE method with the method description in

Section 7.3. The HLL Riemann solver [53] for the xk-split Riemann problem is given by:

U(xk/t;UL,UR) =

⎧⎪⎪⎨
⎪⎪⎩

UL if (xk/t ≤ aL) ,
aRUR − aLUL

aR − aL
− F(UR)− F(UL)

aR − aL
if (aL ≤ xk/t ≤ aR) ,

UR if (aR ≤ xk/t) ,

(7.5)

where aR and aL are wave speeds. In Davis [28], the wave speeds are estimated as follows:

aL = (uk)L − cL, aR = (uk)R + cR, (7.6)

where cL, (uk)L respectively are the wave speed and velocity in xk-direction obtained from UL

while the xk-directional velocity (uk)R and wave speed cR are obtained from UR.

For the case when two constant states UL and UR are separated by a plane that is not one

of the coordinate planes, we first need to rotate the coordinates so that the separating plane

becomes a coordinate plane. We then solve the split Riemann problem in the new coordinate.

Let two constant states UL and UR be separated by a plane whose normal vector is n which

points from UL to UR. Furthermore, let R = (rm,l) be the rotation matrix such that nk = Rn

where nk is the normal vector in the positive direction of the coordinate plane xk = 0. With

this rotation matrix, we obtain a new coordinate system (ξ, t) from the original coordinate

system (x, t). The ξk-split Riemann problem in new coordinate is then given by:

Ût +
∂

∂ξk
F̂k(Û(ξ, t)) = 0,

Û(ξ, 0) =

{
ÛL if (ξk < 0),

ÛR if (ξk > 0),

⎫⎪⎬
⎪⎭ (7.7)

where Û = [ρ, ρRu, ρE] and:

F̂k =

d∑
i=1

rk,iFi. (7.8)

From solving the ξk-split Riemann problem in (ξ, t) coordinates using the HLL Riemann solver,

we obtain the approximate Riemann solution Û(ξk/t; ÛL, ÛR). The solution to the problem of

114

two constant states that are separated by the plane whose normal vector is n is then given by:

U(xk/t;UL,UR) = R−1Û(ξk/t; ÛL, ÛR). (7.9)

The use of the above solver in the IMPICE method for multidimensional compressible flow

problems is discussed in detail in Section 7.3.

7.3 Method Description

Assume that the cell-centered state variables are available at time tn, the following steps

are used to obtain the cell-centered state variables at tn+1 = tn +Δt:

7.3.1 The Primary Phase

The exchanges of mass, momentum, and energy among cells at the cell surfaces are ap-

proximated based on the rates of volume fluxes at cell boundaries. So it is important to

determine the face-centered fluxing velocity for all the faces. The face-centered fluxing velocity

for the multidimensional IMPICE method is determined using a similar approach for the

one-dimensional IMPICE method. In this approach, the Riemann problem is constructed using

the face-centered extrapolated values of the left and right cell-centered data.

Consider evaluating the face-centered fluxing velocity of the face in xk-direction that sepa-

rates the cells located at xj and xj+1. This face’s center is located at xj+ 1
2
and its face-centered

fluxing velocity is denoted as u∗
j+ 1

2

. Let cell j− 1 be the left cell of j and cell j+2 be the right

cell of j+1 in xk-direction, in order to apply the limiting process using higher order polynomial

interpolation of Kim and Kim [71] the left and right extrapolated values at xj+ 1
2
are presented

in different forms from (6.44) and (6.45) as follows:

W
n(L)

j+ 1
2

= Wn
j + 0.5φ

(
r
n(L)

j+ 1
2

)
(Wn

j −Wn
j−1), (7.10)

W
n(R)

j+ 1
2

= Wn
j+1 − 0.5φ

(
r
n(R)

j+ 1
2

)
(Wn

j+2 −Wn
j+1), (7.11)

where:

r
n(L)

j+ 1
2

=
Wn

j+1 −Wn
j

Wn
j −Wn

j−1

, r
n(R)

j+ 1
2

=
Wn

j+1 −Wn
j

Wn
j+2 −Wn

j+1

, (7.12)

and φ is a limiting function which limits the local gradient of primitive variables to obtain

monotonic condition. Note that all vector divisions and multiplications in this section are

the component-wise operations. In order to control oscillations near shock discontinuity in

115

multidimensional space, Kim and Kim [71] developed the multidimensional limiting process

(MLP) which combines the multidimensional limiting function with a higher order polynomial

interpolation. A family of interpolation schemes with different interpolation orders is used

in MLP to control oscillations. We will use the MLP scheme with third order interpolation

(MLP3) to limit the local gradient. In MLP3, the left and right extrapolated values in (7.10)

and (7.11) are given in different forms as follows:

W
n(L)

j+ 1
2

= Wn
j + 0.5φ

(
rn
j+ 1

2

(L),α
n(L)

j+ 1
2

)
(Wn

j −Wn
j−1), (7.13)

W
n(R)

j+ 1
2

= Wn
j+1 − 0.5φ

(
rn
j+ 1

2

(R),α
n(R)

j+ 1
2

)
(Wn

j+2 −Wn
j+1), (7.14)

where φ(r,α) = max(0,min(αr,α,
1 + 2r

3
)); the values of rn

j+ 1
2

(L) and rn
j+ 1

2

(R) are defined

in (7.12); and the values of α
n(L)

j+ 1
2

and α
n(R)

j+ 1
2

are summarized as follows:

α
n(L)

j+ 1
2

= g

⎡
⎢⎢⎢⎢⎣
2max(1, r

n(L)

j+ 1
2

)

(
1 +max(0,

tanθkj+1

r
n(R)

j+1
2

)

1 + tanθkj

⎤
⎥⎥⎥⎥⎦ , (7.15)

α
n(R)

j+ 1
2

= g

⎡
⎢⎢⎢⎢⎣
2max(1, r

n(R)

j+ 1
2

)

(
1 +max(0,

tanθkj

r
n(L)

j+1
2

)

1 + tanθkj+1

⎤
⎥⎥⎥⎥⎦ , (7.16)

where g(x) = max(1,min(2,x)) and the calculation of tanθkj is dependent on the direction xk

which is defined as follows. Let ΔWk
j = (Wn

j+1 − Wn
j−1) where j − 1 and j + 1 are left and

right cell of j in xk-direction, tanθ
k
j is then given by:

tanθ0j =

∣∣∣∣∣ΔW0
j

ΔW1
j

∣∣∣∣∣ , tanθ1j =

∣∣∣∣∣ΔW1
j

ΔW0
j

∣∣∣∣∣ . (7.17)

After the face-centered extrapolated values of primitive variables, W
n(L)

j+ 1
2

and W
n(R)

j+ 1
2

, have been

obtained using (7.13) and (7.14), the left and right extrapolated conserved variables U
n(L)

j+ 1
2

and

U
n(R)

j+ 1
2

are also obtained. Consider the xk-split Generalized Riemann Problem (GRP) in which

two constant states are separated by the face centered at xj+ 1
2
as given:

116

Ut +
∂

∂xk
Fk(U(x, t)) = 0,

U(x, tn) =

⎧⎨
⎩
U

n(L)

j+ 1
2

if xk < (xj+ 1
2
)k,

U
n(R)

j+ 1
2

if xk > (xj+ 1
2
)k,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (7.18)

As usual, the exact solution of the above GRP is potentially complicated, but an approximate

solution may serve the purpose of evaluating the face-centered fluxing velocity. The approximate

solution of the above GRP is obtained by solving the conventional Riemann Problem with

piecewise constant data in the new coordinate (ξ, τ) where ξ = x− xj+ 1
2
and τ = t− tn given

by:

Ut +
∂

∂ξk
F(U(ξ, τ)) = 0,

U(ξ, 0) =

⎧⎨
⎩

U
n(L)

j+ 1
2

if (ξk < 0),

U
n(R)

j+ 1
2

if (ξk > 0),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (7.19)

The face-centered conserved variables at tn, U
n
j+ 1

2

, are defined as the value at the origin of new

coordinate immediately after the interaction of the piece-wise contant data U
n(L)

j+ 1
2

and U
n(R)

j+ 1
2

.

The value at the origin of the new coordinate (ξ, τ) is defined as:

U(0, 0) = lim
τ→0+

U(0, τ). (7.20)

The HLL approximate Riemann solver discussed in Section 7.2 is used to solve the problem

(7.19) and estimate the values of the conserved variables at the face-center at tn, U
n
j+ 1

2

, and:

Un
j+ 1

2
= U

(
0;U

n(L)

j+ 1
2

,U
n(R)

j+ 1
2

)
. (7.21)

Once Un
j+ 1

2

is approximated using (7.21), the vector of face-centered primitive variables at

tn, W
n
j+ 1

2

, is also known. The face-centered primitive variables used later on in this method

include the face-centered density, ρn
j+ 1

2

, the face-centered velocity, un
j+ 1

2

, and the face-centered

pressure, pn
j+ 1

2

.

The face-centered approximate velocity at tn+ 1
2
, ũ∗

j+ 1
2

, is calculated using an explicit Euler

step in the Lagrangian frame in (3.12) which is given by:

ũ∗
j+ 1

2

= un
j+ 1

2

− Δt

2

∇pn
j+ 1

2

ρn
j+ 1

2

, (7.22)

117

where ∇pn
j+ 1

2

is the numerical gradient of pressure at the face center which is approximated

using central differences. Figure 7.1 illustrates the point stencil being used for calculating

the face-centered pressure gradient. In this calculation, the i-component of gradient vector

is calculated using the cell-centered pressure of left and right cells and otherwise using the

face-centered pressure of left and right faces. Note that the face-centered pressure at tn is

obtained from numerically solving the GRP as discussed above. Since the pressure value at the

points in the point stencil for calculating face-centered pressure gradient is at tn, the calculated

face-centered fluxing velocity in (7.22) is denoted as approximate fluxing velocity, ũ∗
j+ 1

2

. In

Cell-centered ICE by Kashiwa et al. [68], the face-centered fluxing velocity u∗
j+ 1

2

is calculated

using a semi-implicit scheme of Equation (3.12) which is almost the same as the scheme in

(7.22) except for the pressure gradient is approximated using the pressure values at tn+ 1
2
, and

so their scheme is given as follows:

u∗
j+ 1

2

= un
j+ 1

2

− Δt

2

∇p
n+ 1

2

j+ 1
2

ρn
j+ 1

2

. (7.23)

In order to estimate the pressure gradient in the above scheme, we need to determine the

pressure values at tn+ 1
2
at the points in the stencil used to calculate numerical pressure gradient.

In other words, we need to determine the pressure at tn+ 1
2
for all face centers and cell centers.

The cell-centered pressure at tn+ 1
2
, p

n+ 1
2

j , is estimated using an explicit Euler step applied to

Equation (3.13), that is:

p
n+ 1

2
j = pnj − Δt

2

(
c2ρ

)n
j
∇ · un

j , (7.24)

Figure 7.1. Point stencil for calculating face-centered pressure gradient ∇pn
j+ 1

2

.

118

where ∇ · un
j is numerical velocity divergence at cell center which is approximated using the

limited cell-centered velocity gradient, ∇un
j . The face-centered pressure is then calculated by

a density weighted average:

p
n+ 1

2

j+ 1
2

=
ρnj p

n+ 1
2

j+1 + ρnj+1p
n+ 1

2
j

ρnj + ρnj+1

. (7.25)

The face-centered and cell-centered pressures calculated in (7.24) and (7.25) are used in the

calculations of ∇p
n+ 1

2

j+ 1
2

and then u∗
j+ 1

2

using Equation (7.23). As mentioned above, the super-

script ∗ is used to denote the face-centered variable at tn+ 1
2
, the face-centered pressure p

n+ 1
2

j+ 1
2

is

also denoted as p∗
j+ 1

2

.

7.3.2 The Lagrangian Phase

If we neglect the convective terms, the changes in cell-centered mass, momentum and

energy are governed by Equations (3.21)–(3.24). The volume integrals on the right side of

these equations are evaluated using the divergence theorem. Thus the changes in cell mass,

momentum, and energy along a path moving with fluid velocity u are given by:

(ρV)Lj = (ρV)nj , (7.26)

(ρuV)Lj = (ρuV)nj −Δt
∑

k∈I
j+1

2

p∗kSknk, (7.27)

(ρEV)Lj = (ρEV)nj −Δt
∑

k∈I
j+1

2

p∗kSknk · u∗
k, (7.28)

where Ij+ 1
2
is the set of indices of faces which form the boundary of cell j, Sk is the area of face

k, nk is the face’s outward surface normal, and V L
j is the new cell volume which is determined

using Equation (3.21), that is:

V L
j = V n

j +Δt
∑

k∈I
j+1

2

Sknk · u∗
k . (7.29)

The new cell volume, V L
j , is substituted into Equations (7.26) –(7.28) to determine the cell

density, ρLj ; the cell velocity, uL
j ; and the cell total energy per unit mass, EL

j .

7.3.3 The Eulerian Phase

In this phase, we will take into account the convective terms which were neglected during

the Lagrangian phase. The changes in solution values due to the advection of mass, momentum

119

and energy over the step [tn, tn+1] through the surrounding faces are evaluated. These changes

are governed by Equations (3.25)–(3.27). In order to approximate the integrals on the right

side of these equations, beside the rate of volume flux between the cells being determined in

the Primary Phase, we need to determine the advected quantities per unit volume at the faces.

If we assume that we are evaluating the advected quantities between the cells located at xj and

xj+1, the advected quantities include the face-centered advected density, 〈ρ〉n
j+ 1

2

, specific linear

momentum, 〈ρu〉n
j+ 1

2

, and specific total energy, 〈ρE〉n
j+ 1

2

, e.g.,

〈q〉n
j+ 1

2

=
1

Δt

∫ tn+1

tn

1

Sj+ 1
2

∫
S
j+1

2

q(x, t)dSdt. (7.30)

These quantities are determined using the following equation:

〈q〉n
j+ 1

2

=

{
qLj if

(
nj+ 1

2
· u∗

j+ 1
2

)
> 0,

qLj+1 otherwise,
(7.31)

where q = ρ,ρu, or ρE, and nj+ 1
2
is the surface normal of cell j, and qLj is determined using

Equations (7.26)–(7.29). The changes in mass, momentum and energy due to the advection are

then:

(ρV)n+1
j = (ρV)Lj −Δt

∑
k∈I

j+1
2

Sk (nk · u∗
k) 〈ρ〉nk , (7.32)

(ρuV)n+1
j = (ρuV)Lj −Δt

∑
k∈I

j+1
2

Sk (nk · u∗
k) 〈ρu〉nk , (7.33)

(ρEV)n+1
j = (ρEV)Lj −Δt

∑
k∈I

j+1
2

Sk (nk · u∗
k) 〈ρE〉nk . (7.34)

7.3.4 State Variables Update Phase

We update cell-centered pressure, pn+1
j using the equation of state (3.5).

7.4 High Order Extensions

In order to achieve a high order extension in space, the higher-order advection method of

Van Leer is used. The higher-order advection scheme is based on a higher-order approximation

of the advected quantities in (7.30). The advection equations of conserved variables in the

Eulerian phase in Section 7.3 are given by:

120

∂ρ

∂t
+∇ · (ρu) = 0, (7.35)

∂ρu

∂t
+∇ · (ρu⊗ u) = 0, (7.36)

∂ρE

∂t
+∇ · (ρEu) = 0. (7.37)

In order to determine q(x, t) with x ∈ Sj+ 1
2
, we will use Equations (7.35)–(7.37) and the

constructed values, Wn
j (x, t), of primitive variables in the control volume Vj×[tn, tn+1]. Within

this control volume, the constructed values, Wn
j (x, t), are obtained by using Taylor series:

Wn
j (x, t) = Wn

j +∇Wn
j (x− xj) + (t− tn)

(
∂W

∂t

)n

j

+O(Δx2,Δt2). (7.38)

In order to control oscillations, ∇Wn
j in the above equation is limited using limiter functions.

There are many choices to limit the values of ∇Wn
j , but we choose to limit ∇Wn

j with

dimensional splitting. To limit the gradient of Wn
j in xi-dimension, we apply the minmod

limiter as follows:

(
∂W

∂xi

)n

j

= minmod(θ
Wn

j −Wn
j−1

Δx
,
Wn

j+1 −Wn
j−1

2Δx
, θ

Wn
j+1 −Wn

j

Δx
), (7.39)

where j − 1 and j + 1 are indices of the left and right cells in xi-direction. The multivariable

minmod limiter in (7.39) is defined by Equation (6.80).

The extrapolated values at cell boundaries obtained by using the constructed values,Wn
j (x, t),

where:

Wn
j (x, t) = Wn

j −∇Wn
j (xj − x) + (t− tn)

(
∂W
∂t

)n
j
+O(Δx2,Δt2), x ∈ Sj− 1

2
, (7.40)

Wn
j (x, t) = Wn

j +∇Wn
j (x− xj) + (t− tn)

(
∂W
∂t

)n
j
+O(Δx2,Δt2), x ∈ Sj+ 1

2
. (7.41)

Therefore, there are two existing extrapolated values at the cell boundary at Sj+ 1
2
for the time

interval [tn, tn+1]. These values are denoted as Wn
j (x, t) and Wn

j+1(x, t) where x ∈ Sj+ 1
2
, and

one may be chosen for the face-centered value based on the face-centered fluxing velocity at

this cell boundary. The value of the vector of primitive variables at face-center x ∈ Sj+ 1
2
is

determined using:

W(x, t) =

⎧⎨
⎩Wn

j+1(x, t) if
(
nj+ 1

2
· u∗

j+ 1
2

< 0
)

Wn
j (x, t) otherwise,

(7.42)

121

where nj+ 1
2
is the outward normal of surface Sj+ 1

2
in cell j. Now, as the extrapolated primitive

variables at the cell boundary at Sj+ 1
2

are readily available, we will show how to obtain

the vector of advected quantities in (7.30). We derive the advected quantities for the case(
nj+ 1

2
· u∗

j+ 1
2

)
> 0. The advected quantities for the case

(
nj+ 1

2
· u∗

j+ 1
2

)
< 0 are derived

similarly. The vector of advected quantities 〈U〉j+ 1
2
includes 〈ρ〉j+ 1

2
, 〈ρu〉j+ 1

2
and 〈ρE〉j+ 1

2
.

Equations (7.35)–(7.37) are rewritten as follows:

∂ρ

∂t
= −∇ρ · u− ρ∇ · u, (7.43)

∂u

∂t
= −u · ∇u, (7.44)

∂E

∂t
= −u · ∇E. (7.45)

Equations (7.41) and (7.43)–(7.45) are used to derive the mass, momentum, and energy advected

quantities in Equation (7.30); for the case of
(
nj+ 1

2
· u∗

j+ 1
2

)
> 0, we have:

〈ρ〉j+ 1
2

=
1

Δt

∫ tn+1

tn

1

Sj+ 1
2

∫
S
j+1

2

ρ(x, t)dSdt

=
1

Δt

∫ tn+1

tn

1

Sj+ 1
2

∫
S
j+1

2

(
ρnj +∇ρnj (x− xj) + (t− tn)

(
∂ρ

∂t

)n

j

)
dSdt+O(Δx2,Δt2)

= ρnj +∇ρnj (xj+ 1
2
− xj) +

Δt

2

(
∂ρ

∂t

)n

j

+O(Δx2,Δt2)

= ρnj +∇ρnj (xj+ 1
2
− xj)− Δt

2

(∇ρnj · un
j + ρnj∇ · un

j

)
+O(Δx2,Δt2).

Let rnj = xj+ 1
2
− xj − Δt

2 un
j , we have:

〈ρ〉j+ 1
2
= ρnj +∇ρnj r

n
j − Δt

2
ρnj∇ · un

j +O(Δx2,Δt2). (7.46)

Let rj(x) = x− xj , we have:

122

ρu(x, t) =

(
ρnj +∇ρnj rj(x) + (t− tn)

(
∂ρ

∂t

)n

j

)

×
(
un
j +∇un

j rj(x) + (t− tn)

(
∂u

∂t

)n

j

)
+O(Δx2,Δt2)

=

(
ρnj +∇ρnj rj(x) + (t− tn)

(
∂ρ

∂t

)n

j

)
un
j + ρnj

(
∇un

j rj(x) + (t− tn)

(
∂u

∂t

)n

j

)

+

(
∇ρnj rj(x) + (t− tn)

(
∂ρ

∂t

)n

j

)(
∇un

j rj(x) + (t− tn)

(
∂u

∂t

)n

j

)

+O(Δx2,Δt2).

The fluxed momentum at the face-center is then given by:

〈ρu〉j+ 1
2

=
1

Δt

∫ tn+1

tn

∫
S
j+1

2

ρu(u, t)dSdt

= 〈ρ〉j+ 1
2
un
j + ρnj∇un

j r
n
j +

(
∇ρnj (xj+ 1

2
− xj)

) (∇un
j r

n
j

)
+
Δt

2
∇un

j

(
xj+ 1

2
− xj

)(∂u

∂t

)n

j

+
Δt3

3

(
∂u

∂t

)n

j

(
∂u

∂t

)n

j

+O(Δx2,Δt2).

This gives us the approximation:

〈ρu〉j+ 1
2
= 〈ρ〉j+ 1

2
un
j + ρn

j+ 1
2

∇un
j r

n
j +O(ΔxΔt) +O(Δx2,Δt2). (7.47)

With a similar derivation, we also have:

〈ρE〉j+ 1
2
= 〈ρ〉j+ 1

2
En

j + ρn
j+ 1

2
∇En

j r
n
j +O(ΔxΔt) +O(Δx2,Δt2). (7.48)

We thus obtain second-order accuracy in space for problems with smooth true solution if Ccfl

remains contant. Equations (7.46), (7.47), and (7.48) are used to calculate the face-centered

fluxed quantities for the time step [tn, tn+1] when the face-centered fluxing velocity in the

direction of outward surface normal , nj+ 1
2
u∗
j+ 1

2

, is greater than 0. A set of similar equations

can be easily derived for the case when the fluxing velocity is less than 0.

7.5 Boundary Conditions

It is well-known that a good implementation of boundary conditions is important to ensure

the stability of numerical methods whereas a not-well-chosen boundary condition might ad-

versely affect the accuracy and stability of the numerical solutions. There are several approaches

123

but the method of characteristic boundary conditions is often used; see [78] and references

within. In this section, we discuss the method of characteristic boundary conditions and the

method of cut cells to the multidimensional IMPICE method.

7.5.1 The Euler Characteristic Boundary
Condition Implementation

The implementation of the Euler Characteristic Boundary Condition (ECBC) discussed in

Section 3.3.2 involves the approximation of {Lj : j = 1, ..., (d+ 2)} crossing the boundary.

These wave amplitudes {Lj} at the boundary in xi-direction might be approximated using the

characteristic analysis of the xi-direction governing equations. The spatial derivatives in xi-

direction in Equations (3.56)-(3.58) are approximated based on the imposed physical conditions.

The approximation of the spatial derivatives in each wave amplitude is based on the sign

of the corresponding characteristic velocity; the corresponding characteristic velocity of wave

amplitude Lj is the leading term in its description as shown in Equations (3.56)–(3.58). As

mentioned in [78], the one-side difference method of the points inside the computational domain

is used to estimate the outward wave amplitudes, but additional physical considerations must

be made for the estimation of inward wave amplitudes. With the definitions of {Lj} in (3.56)–

(3.58), the following Local One Dimensional Inviscid (LODI) system of primitive variables is

obtained from Equations (3.53)–(3.55) in which the transverse terms are neglected:

∂ρ

∂t
= − 1

c2

[
L2 +

1

2
(L2+i + L1)

]
, (7.49)

∂p

∂t
= −1

2
(L2+i + L1), (7.50)

∂uk
∂t

=

⎧⎨
⎩

−L2+k if (k �= i)

− 1

2ρc
(L2+i − L1) otherwise,

(7.51)

for k = 1, ..., d. According to [78], the neglect of the transverse terms might cause numerical

instabilities and numerical reflections if the derivative of the physical quantity in the transverse

terms is large. In [78], it showed how to include these terms in the LODI system to avoid

the problem of numerical reflections. The LODI relations in Equations (7.49)–(7.51) are

used to estimate the temporal evolution of the primitive variables at the boundaries. The

implementation of characteristic boundary condition for several situations of Navier-Stokes

equations is discussed in [99] with the detail of how to calculate the amplitudes of characteristic

waves {Lj}. Among these situations, we are interested in the cases of subsonic inflow/outflow

and will discuss how to use the approach of characteristic boundary conditions for these cases

in the multidimensional IMPICE method. The calculation of Lj for the cases of subsonic

124

inflow/outflow in [99] in the xi-direction is redescribed below.

For the case of subsonic outflow, only L2+i is an inward wave at left boundary and only

L1 is an inward wave at right boundary in xi-direction. As mentioned in [78], the amplitudes

of the outward waves and estimated using interior points while the amplitudes of the inward

waves are addressed using additional physical considerations. The inward wave amplitudes for

the case of subsonic outflow are approximated as follows:

At the left boundary: L2+i = αp (p− p∞) .

At the right boundary: L1 = αp (p− p∞) ,

where αp is the relaxation coefficient of the pressure term.

For the case of subsonic inflow, all waves at left boundary except L1 and all waves at right

boundary except L2+i are inward waves. The inward wave amplitudes are approximated as

follows:

At the left boundary: L2 = αpρ

(
p

ρ
− pl

ρl

)
, L2+k = αuk

(uk − (uk)l) k = 1, ..., d.

At the right boundary: L1 = αui
(ui − (ui)r) , L2 = αpρ

(
p
ρ − pr

ρr

)
,

L2+k = αuk
(uk − (uk)r) k �= i,

where ρl, ul, and pl are physical values imposed on left boundary; ρr, ur, and pr are physical

values imposed on right boundary; αpρ and αuk
are the relaxation coefficients of the terms

following these coefficients in the above calculations.

In the IMPICE method, the values {Lj} are substituted into the LODI equations (7.49)–

(7.51). The LODI system is used to advance the velocities and pressures at the computational

boundary to obtain the face-centered fluxing velocities and pressures of the boundary faces

aligned with the computational boundary. We will discuss how to handle boundary faces which

are not aligned with the computational boundary next.

7.5.2 Embedded Boundary Method

A Cartesian grid approach is efficient for rectangular domain, but it is challenging to extend

the IMPICE approach to the case of an embedded boundary [55]. Embedded boundary grids

allow more automated grid generation procedures around complex objects, which is important

especially for multidimensional problems. Embedded boundaries not aligned with cell edges

cause cells that are cut. For these cut cells, there is a change in the cell boundary and the cell

center. Therefore, the cell center, which is the center of cell mass, need to be recalculated. The

change in cell boundary includes cut faces, like faces F1 and F2 in Figure 7.2, and boundary

faces, like faces F3 and F4 in Figure 7.2. The implementation of the Lagrangian and Euler

phases in Section 7.3 suggests that the face-centered velocity and pressure for the cut faces and

the boundary faces need to be rederived. In this section, we will discuss how to calculate the

125

Figure 7.2. Boundary of cut cells.

cell-centered gradient of cut cells, the face-centered fluxing velocity and pressure of cut faces

and boundary faces.

7.5.2.1 Limited Cell-Centered Gradients

As is well known, numerical results obtained from methods with the assumption that the

cell variables are constant within each cell are very diffusive; in order to increase the order of

accuracy for these methods, the distribution of cell variables is assumed to be varying within the

cell and is determined using the gradients of cell variables. This requires a reconstruction of cell

variables’ gradients for each control volume. Typical methods for gradient reconstruction either

use a least squares or a Gauss-Green formula approach. An in-depth study of computational

complexity, discretization accuracy, and convergence rates of some of these methods is con-

ducted in Diskin and Thomas [29]. In [29], the cell-centered node-averaging(CC-NA) schemes

for gradient reconstruction show that a first-order accurate gradient reconstruction is sufficient

for use with a second-order discretization scheme. The CC-NA gradient of the variable q in cell

j as defined in Dukowicz and Kodis [30] is:

〈∇qj〉 = 1

V NC
j

∫
V NC
j

∇qdV, (7.52)

where V NC
j is the volume defined by the centroids of all the neighbors of the cell j as shown in

Figure 7.3. The numerical value of the above integral is evaluated using the divergence theorem

as given by:

〈∇qj〉 = 1

V NC
j

∮
SNC
j

qndS, (7.53)

where SNC
j is the surface of volume V NC

j and n is the outward surface normal of SNC
j . Assume

that q varies linearly along the surface, then the approximation in (7.53) is a first-order

126

Figure 7.3. Cell-centered gradient of variables is approximated using values in the volume
defined by the centroids of the neighboring cells.

approximation of the cell-centered average gradient of q in (7.52). In order to evaluate the

integral over the face in (7.53), we sum up the products of the face directed area and the

solution at the face. However, using the gradient estimate in (7.53) for construction of cell

variables’ distribution in the surrounding area of steep gradients might produce undershoots

and/or overshoots when compared to neighboring data; limiting the gradient value has been

used in the literature to prevent this. The multidimensional Van Leer limiting method uses the

limiting coefficient αj(0 ≤ αj ≤ 1) for each cell j such that the limited cell-centered gradient is

defined as:

∇qj = αj〈∇qj〉, (7.54)

and coefficient αj is determined as:

αj = min (1, αmax, αmin), (7.55)

where:

αmax = max

(
0,

qmax − qj
qjmax − qj

)
, (7.56)

αmin = max

(
0,

qmin − qj
qjmin − qj

)
, (7.57)

and qmax, qmin are the maximum and minimum values of q in the neighboring cells, and qjmax,

qjmin are the maximum and minimum values of q in cell j. The maximum and minimum values

of q in cell j are the maximum and minimum values of q at cell vertices. The value of q at a cell

127

vertex, which is called the trial vertex value, is interpolated from the value at the cell center

using the cell-centered averaging gradient. The trial vertex value, qv, is then given as follows:

qv = qj + 〈∇qj〉(xv − xj), (7.58)

where xv is the position of the vertex. The above gradient limiting procedure is used to calculate

the limited cell-centered gradient of density and pressure. As mentioned in Vanderhayden and

Kashiwa [127], the gradient limiting procedure for mass-specific transport quantities such as

velocity, energy per unit mass, temperature, or species mass fraction needs to be implemented

differently in order to eliminate artificial extrema and preserving the monotone character of

the van Leer method. The formulation for the limited gradient of mass-specific transport

quantities that maintains the monotone character of the van Leer method is called compatible

by Vanderhayden and Kashiwa [127]. The compatible gradient limiting procedure proposed in

[127] is used to calculate the cell-centered gradient of velocity. In the procedure for calculating

the limited gradient of velocity of [127], the trial vertex value is:

uv = uj +
ρj〈∇uj〉(xv − xj)

ρj +∇ρj(xv − xj)
. (7.59)

After having determined the limited cell-centered gradient of density, pressure, and velocity

using the above procedure, the limited cell-centered gradient of total energy is given by:

∇Ej =
1

(γ − 1)ρj
∇pj −

(Ej − 1
2uj · uj)

ρj
∇ρj + uT

j ∇uj . (7.60)

The above equation is obtained from differentiating the equation of state in (3.5).

For the cells close to the embedded boundary, some neighboring cells are either cut or not

included in the computational domain. In order to approximate the cell-centered gradient of

cut cells, the divergence theorem is now applied to the volume defined by the centroids of the

neighbors of these cut cells and the embedded boundary as shown in Figure 7.4.

7.5.2.2 Face-centered Pressure Gradient
of Cut Faces

In order to estimate the pressure gradient at center F1 of cut face, see Figure 7.2, in its

normal direction xi, we first find the projection points P1 and P2 of cell centers C1 and C2 onto

the line that is perpendicular to the face and pass through the face center. The pressures at P1

128

Figure 7.4. Cell-centered gradient of cut cell.

and P2, p(P1) and p(P2), are obtained from interpolation the pressures at face centers C1 and

C2 using the cell-centered limited gradient. The pressure gradient at F1 is then estimated by:

∂

∂xi
pn
j+ 1

2

=
p(P2)− p(P1)

h1 + h2
. (7.61)

The pressure gradient estimated with the above equation is used in the right side of Equation

(7.22) when calculating the face-centered velocity.

7.5.2.3 Face-centered Fluxing Velocity and Pressure
of Cut Faces

For the cut face located at xj+ 1
2
, the left and right extrapolated values are defined as follows:

W
n(L)

j+ 1
2

= Wn
j +∇Wn

j (xj+ 1
2
− xj), (7.62)

W
n(R)

j+ 1
2

= Wn
j+1 +∇Wn

j+1(xj+ 1
2
− xj+1), (7.63)

where ∇Wn
j is the limited cell-centered gradient whose calculation is discussed in detail in

Section 7.5.2.1. The calculation of the face-centered fluxing velocity and pressure of the cut

face follows equations (7.21)–(7.25) with the face-centered pressure gradient of the cut face

calculated using (7.61).

7.5.2.4 Face-centered Fluxing Velocity and Pressure
of Boundary Faces

The face-centered fluxing velocity and pressure of boundary faces are used to evaluate

the changes in mass, momentum, and energy of cut cell that are described by Equations

(7.26)–(7.28). In IMPICE, the face-centered fluxing velocity and pressure are derived from

the numerical solution of the GRP problem constructed at the center of the face. A similar

129

approach is also used in the calculation of the face-centered fluxing velocity and pressure of

boundary faces. In this approach, in order to determine the fluxing velocity of the boundary

face of the cell whose center is located at xj , see Figure 7.5, we need to construct a GRP problem

at the center of the face, xj+ 1
2
. Consider the Riemann problem where two constant states are

separated at xj+ 1
2
: the left constant state U

n(L)

j+ 1
2

represents the value approaching xj+ 1
2
of the

cut cell which is obtained using (7.62); the right constant state U
n(R)

j+ 1
2

, however, can not be

determined using (7.63) since there is not a cell in the right side of the boundary. Alternatively,

the right constant state can be determined using reflected values of the conserved quantities

U
n(L)

j+ 1
2

. As mentioned in Helzel et al. [55], the method of reflecting the conserved quantities

is a widely used procedure for obtaining boundary fluxes that simulate a reflecting boundary.

With the method of reflecting of conserved quantities, first we have to rotate the coordinate so

that the boundary plane becomes a coordinate plane in xi-direction. With this rotation, the

conserved quantities of left constant state becomes Û
n(L)

j+ 1
2
. The conserved quantities of right

constant states Û
n(R)

j+ 1
2
is obtained from Û

n(L)

j+ 1
2
where:

ρ̂
n(R)

j+ 1
2

= ρ̂
n(L)

j+ 1
2

, (7.64)

û
n(R)

j+ 1
2

= Aû
n(L)

j+ 1
2

, (7.65)

p̂
n(R)

j+ 1
2

= p̂
n(L)

j+ 1
2

, (7.66)

and matrix A = (am,l) with entries:

am,l =

⎧⎪⎨
⎪⎩
1 if m = l && m �= i,

−1 if m = l && m = i,

0 otherwise.

(7.67)

In order to determine the fluxing velocity at xj+ 1
2
, we may consider the GRP problem either

in the original grid, the unrotated grid, or the rotated grid where the embedded boundary is

the coordinate plane in xi-direction. If the considered GRP problem is in the unrotated grid,

we need to obtain the boundary reflecting value Û
n(R)

j+ 1
2
in the original grid which is denoted as

U
n(R)

j+ 1
2

, and solve the GRP problem with two separated constant states

(
U

n(L)

j+ 1
2

and U
n(R)

j+ 1
2

)
to evaluate the approximate fluxing velocity at the face-center xj+ 1

2
of the boundary face.

If the considered GRP problem is in the rotated grid, the approximate fluxing velocity at the

face-center xj+ 1
2
is evaluated using the approach of Section 7.2 to find the approximate solution

of the Riemann problem where the two constant states are separated by a plane that is not a

coordinate plane.

130

Figure 7.5. GRP at face centerer of boundary face. (a) unrotated grid and (b) rotated grid.

The approximate fluxing velocity is then time-advanced using the cell-centered limited

gradient to obtain the face-centered fluxing velocity of the boundary face. The face-centered

pressure of boundary face is obtained from interpolating the pressure of the cut cell using the

cell-centered limited gradient.

7.5.2.5 Higher Order Advection

For the cut cells, the limited gradient used in Equation (7.38) is obtained using the limited

cell-centered gradient calculated in Section 7.5.2.1 instead of using Equation (7.39).

7.5.2.6 Merge Very Small Cells

The grid cells near the embedded boundary may be orders of magnitude smaller than the

regular Cartesian grid cells; it is then necessary to use a very small time step to maintain

the stability of the method. In order to overcome this time step restriction, the cell merging

technique is often used. Many cell merging techniques have been discussed in the literature, see

Helzel et al. [55] and the references within. In these cell merging techniques, small irregular

cut cells are merged together with a neighboring regular grid cell with several different variants

mentioned in Helzel et al. [55]. In order to handle small cells in IMPICE, we use a new variation

of the cell merging technique that makes use of the magnitudes of surrounding face-centered

fluxing velocities. In this approach, we treat the small cells as independent cells and merge

their values with neighbor cells at the end of integration step. At the end of the integration

step, we determine if a cut cell is a small cell based on the ratio between the volume of the cut

cell and the size of a regular grid cell. Let Vreg be the volume of regular cells and Vcut be the

volume of the cut cell; at each cut cell the following volume ratio is calculated:

rc =
Vcut

Vreg
. (7.68)

131

A cut cell is then identified as a small cell using the following criteria:

rc < a, (7.69)

for some constant a. The small cell is then merged with a cell selected from its neighbors. The

neighbor cell selected for merging is based on the face-centered fluxing velocity at the common

face. The small cell values are merged with the cell that has the greatest value of the fluxing

velocity at the common face. The values of the small cell and its selected merged cell at the

end of the time integration step are the volume averages of their combined values. If we assume

that we merge the small cell j with the merged neighbor cell, as denoted as Mj , then:

qn+1
j = qn+1

Mj
=

V n+1
j qn+1

j + V n+1
Mj

qn+1
Mj

V n+1
j + V n+1

Mj

, (7.70)

where q = ρ, ρu, ρE. We will use this approach to overcome the small cell problem in the

IMPICE method. In IMPICE, when calculating the face-centered fluxing velocity, we use the

time-advanced scheme shown in Equation (7.23). The face-centered fluxing velocity which is

obtained from Equation (7.23), where time step Δt is “too large” for the size of the small cell

(the time step should be proportional to the size of a grid cell to maintain stabilities), is “too

large” that causes “too much” mass, momentum and energy of the small cell are fluxed to

the neighbor cell. When this happens, these conserved quantities in some small cells become

negative and the method becomes unstable. So the merging technique with the merging values

determined using Equation (7.70) helps to redistribute mass, momentum, and energy to prevent

the negative values of these quantities in small cells.

7.6 Numerical Results

We apply the multidimensional IMPICE method to a set of problems that are usually used

for testing numerical methods for the system of Euler equations. For the performance of the

embedded boundary method, the problem of shock reflection from a wedge is used.

7.6.1 Testing Problems

7.6.1.1 Modified Shock Tube Problem

In Chapter 6, we presented the numerical solutions of the one-dimensional IMPICE method

to several classical one-dimensional shock tube problems. In order to check for the correctness

of multidimensional setting of the method, we now present the numerical solution to the one-

dimensional shock tube problem with a multidimensional extension. The computational domain

132

of the chosen shock tube problem is x ∈ [0.0, 1.0]× [0.0, 0.05] and t ∈ (0, Te) and two constant

states are sparated by a discontinuity at x0 = 0.3; the problem is governed by the system of

Euler equations in two-dimensional space with the given initial condition:

(ρ, u1, u2, p)(x, 0) =

{
(1.0, 0.75, 0.0, 1.0) if x0 < 0.3,

(0.125, 0.0, 0.0, 0.1) if x0 > 0.3.
(7.71)

This is a modified version of the standard shock tube problem, proposed in Toro [120].

7.6.1.2 Two-dimensional Explosion Problem

The two-dimensional explosion test problem in a rectangular domain x ∈ [−1.0, 1.0] ×
[−1.0, 1.0] and t ∈ (0, Te). The problem is governed by the system of the two-dimensional Euler

equations with the given initial condition:

(ρ, u1, u2, p)(x, 0) =

{
(1.0, 0, 0, 1.0) if r < 0.4,

(0.125, 0, 0, 0.1) if r > 0.4,
(7.72)

where r2 = x21 + x22. The detailed description of this problem can be found in Toro [120].

7.6.1.3 Two-dimensional Explosion Problem with
a Large Jump in Pressure

This problem has the same computational domain as the above two-dimensional explosion

problem, but it has a large jump in pressure which is over four orders of magnitude and thus

will produce a very strong outward traveling shock wave; see Toro [120] for problem details.

The initial condition is given by:

(ρ, u1, u2, p)(x, 0) =

{
(10.0, 0, 0, 0.0, 1000) if r < 0.4,

(1.0, 0, 0, 0.0, 0.1) if r > 0.4,
(7.73)

where r2 = x21 + x22.

7.6.1.4 Shock Reflection from a Wedge Problem

We study the approximation of a Mach 10 moving shock wave reflected from a 30-degree

wedge which is originally proposed by Woodward and Colella in [138]. The computational

domain of this problem is x ∈ [0, 3] × [0, 2]. The governing equations are the two-dimensional

133

Euler equations. The wedge is positioned at (0.5, 0) with the initial condition in front and back

of the shock is given by the Rankine-Hugnoniot conditions as follows:

(ρ, u1, u2, p)(x, 0) =

{
(8.0, 8.25, 0.0, 116.5) if x1 < 0.5,

(1.4, 0.0, 0.0, 1.0) if x1 ≥ 0.5,
(7.74)

The solution to this problem exhibits very strong discontinuities, wall-bounded flows and

furthermore develops rich small-scale structures in time, which are difficult to resolve.

7.6.2 Numerical Results of the Multidimensional
IMPICE Method with First-order Advection

The above test problems are now used to test the implementation of the multidimensional

IMPICE method with first-order advection. We apply the transmissive boundary condition in

all directions for all of the above problems except for the problem of shock reflection from a

wedge. For the wedge problem, the exact solution is imposed for the segment [0, 0.5] of the

bottom boundary and the top boundary, a reflective boundary condition is placed on the wedge,

the inflow boundary condition is applied on the left boundary, and the transmissive boundary

condition is used on the right boundary. The numerical results of the multidimensional IMPICE

method with first-order advection to these test problems are shown in Figures 7.6–7.9. The

embedded boundary method is implemented for the wedge problem. In these figures, the

numerical results of these problems (except for the shock reflection problem) are compared

against either their exact or “exact” solution. The “exact” solutions for the explosion problems

drawn in these figures are obtained from using the Random Choice Method (RCM) with the

parameters decribed in Toro [120]. In [120], these RCM solutions are also regarded as the

exact solutions since the RCM resolves discontinuities as true discontinuities and the errors are

only from the position of the waves. In Figure 7.6, the computed density ρ and velocity u1 in

x1-direction are plotted at Te = 0.2; a cut along the x1-axis of these quantities is plotted against

the exact solution, which is the exact solution of the one-dimensional modified shock tube

problem. In this figure, the result is oscillation-free and the solution profile of the modified shock

tube problem in x1-direction is in good agreement with the numerical solution obtained using

the one-dimensional IMPICE method. The computed density ρ and pressure p in the numerical

solutions to the two-dimensional explosion problems are plotted and compared against the

“exact” values in the Figures 7.7–7.8; the numerical solutions in these figures approach the

“exact” solutions and are mostly free of oscillations. The computed density ρ in the numerical

solution to the wedge problem is depicted with forty-eight contour lines from 0.45 to 21.6 in

Figure 7.9. There are very small cells resulting from the discretization of the computational

domain of the wedge problem; therefore, the cells with volume that is smaller than 0.05 times of

134

0 0.2 0.4 0.6 0.8 1

0

0.05
0

0.2

0.4

0.6

0.8

1

yx

(a)

de
ns

ity
(ρ

)

0 0.5 10

0.05
0

0.5

1

1.5
(b)

xy

pr
es

su
re

(p
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(c)

x

de
ns

ity
(ρ

)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

pr
es

su
re

(p
)

(d)IMPICE
"Exact"

IMPICE
"Exact"

Figure 7.6. Modified shock tube problem. Te = 0.2. IMPICE with first-order advection on
N1×N2 = 200×10 grid, Ccfl = 0.3. Two-dimensional distribution of (a)density and (b)velocity,
and a cut along the x1-axis of (c)density and (d)velocity.

the standard cell volume are merged with neighboring cells to overcome the time step restriction.

The analysis in Chapter 6 suggested that the IMPICE method – the analysis is done for the

case of one-dimensional space, but may be derived for the case of multidimensional space

– is first-order in space and time, so the numerical solutions are highly smeared at contact

discontinuities as they appear in these figures; for instance, the numerical solution to the shock

reflection from a wedge problem can not capture the detail in the close-up region in Figure 7.9.

7.6.3 Numerical Results of the Multidimensional
IMPICE Method with Second-order Advection

The second-order extension of the method in space in Section 7.4 increases the order of

accuracy in space using the second-order advection. In the second-order advection approach,

the advected quantities at cell intefaces are interpolated from the cell-centered data. The

135

−1
0

1

−1
0

1
0

0.5

1

x

(a)

y

de
ns

ity
(ρ

)

−1
0

1

−1
0

1
0

0.5

1

x

(b)

y

pr
es

su
re

(p
)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
(c)

x

de
ns

ity
(ρ

)

IMPICE
"Exact"

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

pr
es

su
re

(p
)

(d)

IMPICE
"Exact"

Figure 7.7. Two-dimensional explosion problem. Te = 0.25. IMPICE with first-order
advection on N1×N2 = 100× 100 grid, Ccfl = 0.3. Two-dimensional distribution of (a)density
and (b)pressure, and a cut along the x1-axis of (c)density and (d)pressure.

numerical results of this multidimensional IMPICE method with the discussed second-order

advection are shown in Figures 7.10–7.14. As seen in these figures, we obtain more accurate

numerical solutions when using the second-order advection. Especially for the wedge problem,

the numerical solution resolves the detail in the close-up region of Figure 7.13, and the contour

lines of the density ρ for the obtained result using the method described in this chapter is

similar to the contour line plot of the results from previous publications for this problem; for

example, see [55, 61, 100, 119].

136

Figure 7.8. Two-dimensional explosion problem with large jump in pressure. Te = 0.03.
IMPICE with first-order advection on N1 ×N2 = 300× 300 grid, Ccfl = 0.3. Two-dimensional
distribution of (a)density and (b)pressure, and a cut along the x1-axis of (c)density and
(d)pressure.

x

y

(a)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

x

y

(b)

2 2.2 2.4 2.6 2.8
0.8

1

1.2

1.4

1.6

1.8

Figure 7.9. Shock reflection from a wedge problem. Te = 0.2. IMPICE with first-order
advection on N1×N2 = 900× 600 grid, Ccfl = 0.3. A cut cell is merged if the volume ratio, rc,
is less than 0.05. Forty-eight density contour lines from 0.45 to 21.6. (b) is zoomed area of (a).

137

0 0.5 1 0

0.05

0

0.5

1

y
x

(a)

de
ns

ity
(ρ

)

0 0.5 10

0.05
0

0.5

1

1.5
(b)

xy

pr
es

su
re

(p
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(c)

x

de
ns

ity
(ρ

)

IMPICE
"Exact"

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

x

pr
es

su
re

(p
)

(d) IMPICE
"Exact"

Figure 7.10. Modified shock tube problem. Te = 0.2. IMPICE with second-order advection
on N1 × N2 = 200 × 10 grid, Ccfl = 0.3. Two-dimensional distribution of (a)density and
(b)velocity, and a cut along the x1-axis of (c)density and (d)velocity.

7.7 Accuracy of the IMPICE Method for
Solving the Advection Equation on

an Embedded Boundary

Consider the following advection equation:

∂ρ

∂t
+∇ · (ρu) = 0, (7.75)

where u(x, t) is given advection velocity and ρ(x, Te) is solved from initial condition ρ(x, 0).

The IMPICE method in Section 7.3 with the embedded boundary treatment in Section 7.5.2

is used to solve Equation (7.75) on the same computational domain for the wedge problem given

in Section 7.6.1.5. We consider a constant advection velocity given by u = [cos(θ), sin(θ)]T

where θ is the angle between the wedge and the horizontal axis. In order to use the IMPICE

method for this advection problem, we assign a constant to the initial pressure on the compu-

tational domain. Two different initial conditions of ρ(x, 0), one without a jump and one with

a jump in density, of the advection equation are considered as follows:

138

−1
0

1

−1
0

1
0

0.5

1

x

(a)

y

de
ns

ity
(ρ

)

−1
0

1

−1
0

1
0

0.5

1

x

(b)

y

pr
es

su
re

(p
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(c)

x

de
ns

ity
(ρ

)

IMPICE
"Exact"

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

pr
es

su
re

(p
)

(d)

IMPICE
"Exact"

Figure 7.11. Two-dimensional explosion problem. Te = 0.25. IMPICE with second-order
advection on N1×N2 = 100× 100 grid, Ccfl = 0.3. Two-dimensional distribution of (a)density
and (b)pressure, and a cut along the x1-axis of (c)density and (d)pressure.

7.7.1 Advection 1

The initial value ρ(x, 0) is given by:

ρ(x, 0) =

⎧⎨
⎩

2.0 if x1 ≤ a,
2.0 + sin (10(x1 − a)) if a < x1 < a+ π

5 ,
2.0 if a+ π

5 ≤ x1.
(7.76)

where a = 0.6.

7.7.2 Advection 2

The initial value ρ(x, 0) is given by:

ρ(x, 0) =

⎧⎨
⎩

2.0 if x1 ≤ 0.6,
10.0 if 0.6 < x1 < 1.2,
2.0 if 1.2 ≤ x1.

(7.77)

139

Figure 7.12. Two-dimensional explosion problem with large jump in pressure. Tend = 0.03.
IMPICE with second-order advection on N1×N2 = 300×300 grid, Ccfl = 0.3. Two-dimensional
distribution of (a)density and (b)pressure, and a cut along the x1-axis of (c)density and
(d)pressure.

7.7.3 Numerical Results

The numerical solutions to the advection problems in Sections 7.7.1 and 7.7.2 at Te = 0.5

using IMPICE with second-order advection are shown in Figure 7.15. The overall error norms

and the orders of accuracy for these problems with several different mesh sizes are summarized

in Table 7.1. For problem in Section 7.7.1 in which there is no jump in density, the orders of

accuracy for first-order and second-order advection are as expected. For problem in Section

7.7.2 in which there is a jump in density, there is a degeneration in accuracies.

7.8 Conclusions

We have presented a generalization of the one-dimensional IMPICE method for solving mul-

tidimensional compressible flow problems. In order to prevent the oscillations in the IMPICE’s

numerical solutions to the multidimensional system of Euler equations, it is necessary to apply

a multidimensional limiting process to limit the gradients. We tested the implementation of

the multidimensional IMPICE method on a suite of test problems for the system of Euler

140

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 7.13. Shock reflection from a wedge problem. Te = 0.2. IMPICE with second-order
advection on N1 × N2 = 900 × 600 grid, Ccfl = 0.3. A cut cell is merged if the volume ratio,
rc, is less than 0.05. Sixty density contour lines from 0.4 to 23.5.

Table 7.1. L1-norms and the order of accuracym of the overall errors in the numerical solutions
to the advection problem at Te = 0.5.

first-order second-order
N1 ×N2 ‖geρ(Te)‖L1 m ‖geρ(Te)‖L1 m

60× 40 4.28E-01 — 9.06E-02 —
Advection 1 120× 80 2.74E-01 0.64 2.88E-02 1.65

240× 160 1.64E-01 0.74 8.91E-03 1.69
480× 320 9.55E-02 0.78 2.52E-03 1.82

60× 40 2.69E-00 — 1.08E-00 —
Advection 2 120× 80 1.90E-00 0.50 6.32E-01 0.77

240× 160 1.33E-00 0.51 3.62E-01 0.80
480× 320 9.32E-01 0.51 2.11E-01 0.78

equations in multidimensional space where the obtained numerical solutions have shown the

ability to capture shock waves. We implemented the method of cut cells to allow IMPICE

to solve problems in complex geometries. The implementation of the method of cut cells was

tested on the problem of shock reflection from a wedge. In this chapter, we have shown the

idea of using linear spatial distribution of cell variables for the multidimensional case makes it

possible to raise the order of accuracy in space.

141

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Figure 7.14. Shock reflection from a wedge problem. Te = 0.2. IMPICE with second-order
advection on N1 ×N2 = 900× 600 grid, Ccfl = 0.3. This is a zoomed part of Figure 7.13 with
three hundred density contour lines to show the solution detail in the interested area.

Figure 7.15. Numerical solutions to the advection problem at Te = 0.5 using IMPICE with
second-order advection on N1 × N2 = 240 × 160 grid, Ccfl = 0.3: (a) Advection 1 and (b)
Advection 2.

CHAPTER 8

ADJOINT ERROR ESTIMATE FOR THE

IMPROVED PRODUCTION IMPLICIT

CONTINUOUS-FLUID EULERIAN

METHOD

We have discussed in Chapter 4 the importance of being able to estimate the errors in a

numerical solution and the increased use of adjoint-based error estimates in the error anal-

ysis of applications in Computational Fluid Dynamics (CFD). In this chapter, we propose a

discrete adjoint approach for estimating the overall error in the numerical solutions of the

one-dimensional IMPICE method.

8.1 Introduction

The IMPICEmethod discussed in Section 6.4 approximates the solution of the one-dimensional

Euler equations in the conservation law form (6.22) at the set of discrete points {xj : j =

1, ..., N} which are the centers of the spatial mesh cells. The approximate solution at (xj , tn)

is the average value of cell j, Un
j =

[
ρnj , (ρu)

n
j , (ρE)nj

]T
.

Let:

Y = [U1,U2,U3, ...,UN]T , (8.1)

where:

Uj = [ρj , (ρu)j , (ρE)j]
T . (8.2)

Consider the following ODE system:

{
Ẏ(t) = G (t,Y(t))

Y(0) = Y0,
(8.3)

143

where:

G = [G1,G2,G3, ...,GN]T (8.4)

and Gj (t,Y(t)) is defined at discrete points in time as follows:

Gj(tn, Ỹ
n
) =

1

Δx

(
FIMPICE
j+ 1

2

(tn)− FIMPICE
j− 1

2

(tn)
)
, (8.5)

where FIMPICE
j+ 1

2

(tn) is given by Equation (6.58) and Ỹ
n
= [Un

1 ,U
n
2 , ...,U

n
N]T .

If we are about to numerically solve the system in (6.22) on the computational domain at

the discrete points {xj : j = 1, ..., N} by solving the ODE system in Equation (8.3), then

the overall errors at these discrete points, as derived in Chapter 4, can be estimated using the

following equation:

lTge(Te) ≈
m∑
j=1

λT (tj)
(
le
(
tj+1; tj , Ỹ

j
)
+ (tj+1 − tj)TE(tj)

)
+ λT (0)r0, (8.6)

where a set of vector l is chosen such that all components of vector ge(Te) can be revealed;

such set of vector l is discussed in Section 4.2. In Equation (8.6), le
(
tj+1; tj , Ỹ

j
)
is the local

error from solving the ODE system (8.3) on [tj , tj+1], TE(tj) is the spatial truncation error,

and λ is the solution to the following adjoint system:

{
λ̇(t) = −JT (t, Ỹ)λ(t), 0 ≤ t ≤ Te

λ(Te) = l,
(8.7)

where J(t, Ỹ) is the Jacobian of G (t,Y(t)) in Equation (8.3) with respect to Y evaluated at

Ỹ.

In the overall error given by Equation (8.6), the contributions of the temporal error and

spatial error are given as follows:

lTet(Te) ≈
m∑
j=1

λT (tj)le
(
tj+1; tj , Ỹ

j
)
+ λT (0)r0, (8.8)

lTes(Te) ≈
m∑
j=1

(tj+1 − tj)λ
T (tj)TE(tj), (8.9)

144

8.2 Adjoint Problem Formulation for the
One-dimensional IMPICE Method

The formulation of the adjoint problem for IMPICE involves the determination of J(t,Y)

which is the Jacobian of G (t,Y(t)) with respect to Y. For the purpose of error estimation,

the adjoint system in (8.7) is solved backward in time at tm = Te, tm−1, ..., t1 = 0 using the

discrete values {J(tn, Ỹn
) : n = m, ..., 0}. From the definitions of G given by (8.4) and Y

given by (8.1), we have:

J(tn, Ỹ
n
) =

∂G

∂Y

(
tn, Ỹ

n
)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂G1

∂U1
(tn, Ỹ

n
)

∂G1

∂U2
(tn, Ỹ

n
) . . .

∂G1

∂UN
(tn, Ỹ

n
)

∂G2

∂U1
(tn, Ỹ

n
)

∂G2

∂U2
(tn, Ỹ

n
) . . .

∂G2

∂UN
(tn, Ỹ

n
)

...
. . .

∂GN

∂U1
(tn, Ỹ

n
)

∂GN

∂U2
(tn, Ỹ

n
) . . .

∂GN

∂UN
(tn, Ỹ

n
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8.10)

In Equation (8.5), we do not define the function Gj , but only provide the evaluated values of this

function at
(
tn, Ỹ

n
)
. Based on the construction of the face-centered fluxes FIMPICE

j+ 1
2

for the

IMPICE method as described by Equation (8.5), we will approximate the value of
∂Gj

∂Uk
(tn, Ỹ

n
)

using the following equation:

∂Gj

∂Uk
(tn, Ỹ

n
) =

1

Δx

⎛
⎝∂FIMPICE

j+ 1
2

∂Uk
(tn, Ỹ

n
)−

∂FIMPICE
j− 1

2

∂Uk
(tn, Ỹ

n
)

⎞
⎠ , (8.11)

where the approximation of
∂FIMPICE

j+ 1
2

∂Uk
(tn, Ỹ

n
) is discussed next.

Based on Equation (6.58), we approximate
∂FIMPICE

j+ 1
2

∂Uk
(tn, Ỹ

n
) using the following equation:

∂FIMPICE
j+ 1

2

∂Uk

(
tn, Ỹ

n
)
≈ u∗

j+ 1
2

∂〈U〉n
j+ 1

2

∂Uk
+〈U〉n

j+ 1
2

∂u∗
j+ 1

2

∂Uk
+

⎡
⎢⎢⎢⎢⎢⎣

0
∂p∗

j+ 1
2

∂Uk
∂p∗

j+ 1
2

∂Uk
u∗
j+ 1

2

+ p∗
j+ 1

2

∂u∗
j+ 1

2

∂Uk

⎤
⎥⎥⎥⎥⎥⎦ , (8.12)

where the partial derivative terms on the right side of Equation (8.12) will be described below.

These partial derivatives terms approximate the change in the corresponding quantities with

respect to the change in the cell-centered conserved variables. We will discuss the approxima-

tions to the partial derivatives
∂〈U〉n

j+1
2

∂Uk
,
∂u∗

j+ 1
2

∂Uk
, and

∂p∗
j+ 1

2

∂Uk
in Equation (8.12) by following the

steps in the IMPICE method next.

145

8.2.1 Partial Derivatives of Variables at Cell-centers

The vector of cell-centered variables W of cell j is given by:

Wj = [ρj , uj , Ej , pj]
T . (8.13)

With Uj defined by Equation (8.2), the partial derivatives of Wj with respect to Uk where

k �= j are zero vectors. For the case of k = j, the partial derivatives of Wj is given by:

∂Wj

∂Uj
=

[
∂ (ρj)

∂Uj
,
∂ (uj)

∂Uj
,
∂ (Ej)

∂Uj
,
∂ (pj)

∂Uj

]T
, (8.14)

where the elements in the above vector are shown in the following equations:

∂ρj
∂Uj

= [1, 0, 0] , (8.15)

∂uj
∂Uj

=

[−uj
ρj

,
1

ρj
, 0

]
, (8.16)

∂Ej

∂Uj
=

[−Ej

ρj
, 0,

1

ρj

]
, (8.17)

∂pj
∂Uj

=

[
1

2
(γ − 1) (uj)

2 , − (γ − 1)uj , (γ − 1)

]
. (8.18)

We introduce the partial derivative notation
∂Wn

j

∂Uj
which is defined as follows:

∂Wn
j

∂Uj
=

∂Wj

∂Uj
(tn). (8.19)

We approximate the partial derivatives
∂Wj

∂Uj
at tn by evaluating the right side of Equations

(8.16)–(8.18) using the cell-centered numerical solution Ỹ
n
.

8.2.2 Partial Derivatives of Limited Local Reconstructed
Variables at Face-centers

In the time integration of the IMPICE method, we first have the two states constructed at

each face-center. These constructed states are used in the calculation of the face-centered fluxing

velocity u∗
j+ 1

2

. In order to approximate the change in fluxing velocity with respect to the change

cell-centered conserved variables,
∂u∗

j+ 1
2

∂Uk
, we first approximate the change in the constructed

states with respect to these variables, denoted as
∂W

n(L)

j+ 1
2

∂Uk
and

∂W
n(R)

j+ 1
2

∂Uk
. In this dissertation,

146

there have been two different forms of the face-centered constructed states introduced by

Equations (6.44)–(6.45) and (7.10)–(7.11) based on the use of the different limiting processes.

We will approximate
∂W

n(L)

j+ 1
2

∂Uk
and

∂W
n(R)

j+ 1
2

∂Uk
based on the MLP limiting process, in which the

reconstructed left and right states are given by Equations (7.10)–(7.11); a similar derivation

can be applied to the reconstructed states are given by Equations (6.44)–(6.45).

From Equation (7.10), we have:

∂W
n(L)

j+ 1
2

∂Uj−1
= 0.5φr

(
r
n(L)

W+ 1
2

) ∂r
n(L)

W+ 1
2

∂Uj−1

(
Wn

j −Wn
j−1

)
−0.5φ

(
r
n(L)

W+ 1
2

)
∂Wn

j−1

∂Uj−1

, (8.20)

∂W
n(L)

j+ 1
2

∂Uj
= 0.5φr

(
r
n(L)

W+ 1
2

) ∂r
n(L)

W+ 1
2

∂Uj

(
Wn

j −Wn
j−1

)
+

[
1+ 0.5φ

(
r
n(L)

W+ 1
2

)]
∂Wn

j

∂Uj
, (8.21)

∂W
n(L)

j+ 1
2

∂Uj+1
= 0.5φr

(
r
n(L)

W+ 1
2

) ∂r
n(L)

W+ 1
2

∂Uj+1

(
Wn

j −Wn
j−1

)
, (8.22)

where:

r
n(L)
W

j+1
2

=
Wn

j+1 −Wn
j

Wn
j −Wn

j−1

(8.23)

and φ(r) is defined in [71] as follows:

φ(r) = max(0,min(2, 2r,
1+ 2r

3
)). (8.24)

In the same way as in previous chapters, the vector multiplications and divisions in the above

equations, and also for the rest of this chapter, are component-wise operations. The max and

min functions in Equation (8.24) and the derivative of function φ with respect to r in Equations

(8.20)–(8.22) are also performed on each component of the vector. The derivative of function

φ with respect to r evaluated at a scalar quantity r is given by:

φr(r) =
∂φ(r)

∂r
, (8.25)

where φ(r) = max(0,min(2, 2r, (1+2r)
3)). As shown in Figure 8.1, the limiting function φ(r) in

147

−0.5 0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

r

φ(
r)

Figure 8.1. MLP3 limiting function φ(r).

Equation (8.25)is not differentiable everywhere. In particular, function φ(r) is not differentiable

at r = 0, 0.25, and 2.5. However, φ(r) is both left and right differentiable at these points. The

derivative of function φ(r) with respect to r at these values is chosen either the left derivative

or the right derivative. Therefore, we have the following approximation:

φr(r) =

⎧⎪⎨
⎪⎩
0 if (r ≤ 0 || 2.5 ≤ r),

2 if (0 < r < 0.25).

2/3 if (0.25 ≤ r < 2.5).

(8.26)

We tested the IMPICE method with several differentiable limiters; the resulting method was

nonmonotone when used with these tested differentiable limiters.

From Equation (8.23), we define the following partial derivatives:

∂r
n(L)
W

j+1
2

∂Uj−1
=

(
Wn

j+1 −Wn
j

(Wn
j −Wn

j−1)
2

)
∂Wn

j−1

∂Uj−1
, (8.27)

∂r
n(L)
W

j+1
2

∂Uj
=

(
Wn

j+1 −Wn
j−1

(Wn
j −Wn

j−1)
2

)
∂Wn

j

∂Uj
, (8.28)

∂r
n(L)
W

j+1
2

∂Uj+1
=

(
1

Wn
j −Wn

j−1

)
∂Wn

j+1

∂Uj+1
. (8.29)

With the partial derivatives defined in Equations (8.26)–(8.29), we now can approximate the

partial derivatives
∂W

n(L)

j+ 1
2

∂Uk
in Equations (8.20) – (8.22) for W

n(L)

j+ 1
2

defined by Equation (7.10).

A similar derivation can be applied to the approximation of
∂W

n(R)

j+ 1
2

∂Uk
for W

n(R)

j+ 1
2

defined by

148

Equation (7.11). The partial derivatives of the constructed values of the speed of sound are

defined using the partial derivatives of other constructed variables as follows:

∂c
n(L)

j+ 1
2

∂Uk
=

γ
1
2

2

⎡
⎢⎢⎢⎣
ρ
n(L)

j+ 1
2

∂p
n(L)

j+1
2

∂Uk
− p

n(L)

j+ 1
2

∂ρ
n(L)

j+1
2

∂Uk

ρ
n(L)

j+ 1
2

√
ρ
n(L)

j+ 1
2

p
n(L)

j+ 1
2

⎤
⎥⎥⎥⎦ ,

∂c
n(R)

j+ 1
2

∂Uk
=

γ
1
2

2

⎡
⎢⎢⎢⎣
ρ
n(R)

j+ 1
2

∂p
n(R)

j+1
2

∂Uk
− p

n(R)

j+ 1
2

∂ρ
n(R)

j+1
2

∂Uk

ρ
n(R)

j+ 1
2

√
ρ
n(R)

j+ 1
2

p
n(R)

j+ 1
2

⎤
⎥⎥⎥⎦ .

(8.30)

The above derivation is based on the equation of speed of sound in Equation (3.6). The

constructed face-centered values are then used to construct the generalized Riemann problem

(6.49) with the initial condition given by Equation (6.50). The partial derivatives of the HLL

Riemann solution at face-centers are approximated next.

8.2.3 Partial Derivatives of the HLL Riemann
Solution at Face-centers

The value of variables located at face-center is approximated using the HLL Riemann solver

described by Equation (6.51). From Equation (6.51), we will approximate the change in the

value of variables at face-center with respect to Y. In particular, the change in the face-

centered velocity at tn,
∂un

j+ 1
2

∂Uk
, and the face-centered density at tn,

∂ρn
j+ 1

2

∂Uk
. The changes in the

face-centered density and velocity corresponding to three different cases of the HLL Riemann

solution are given as follows:

Case (i): a
n(L)

j+ 1
2

> 0.

As shown in Equation (6.51), the face-centered velocity and density for this case are given

by:

un
j+ 1

2
= u

n(L)

j+ 1
2

, ρn
j+ 1

2
= ρ

n(L)

j+ 1
2

. (8.31)

The partial derivatives of the face-centered velocity and density are then given by:

∂un
j+ 1

2

∂Uk
=

∂u
n(L)

j+ 1
2

∂Uk
,

∂ρn
j+ 1

2

∂Uk
=

∂ρ
n(L)

j+ 1
2

∂Uk
, (8.32)

where
∂u

n(L)

j+ 1
2

∂Uk
and

∂ρ
n(L)

j+ 1
2

∂Uk
are approximated using Equations (8.20) – (8.22).

Case (ii): a
n(R)

j+ 1
2

< 0.

149

Similarly as in the previous case, the partial derivatives of the face-centered velocity and

density for this case are approximated using the partial derivatives of the right constructed

state as follows:

∂un
j+ 1

2

∂Uk
=

∂u
n(R)

j+ 1
2

∂Uk
,

∂ρn
j+ 1

2

∂Uk
=

∂ρ
n(R)

j+ 1
2

∂Uk
. (8.33)

Case (iii): a
n(L)

j+ 1
2

< 0 < a
n(R)

j+ 1
2

.

For this case, the face-centered velocity and density are defined using both the left and right

constructed states. From Equation (6.51), we have:

ρn
j+ 1

2

=
(aRρR − aLρL)− (ρRuR − ρLuL)

aR − aL
, (8.34)

(ρu)n
j+ 1

2
=

(aRρRuR − aLρLuL)−
(
ρR(uR)

2 + pR − ρL(uL)
2 − pL

)
aR − aL

. (8.35)

In the above equations, the variables are written in abbreviated forms where ρL and ρR represent

ρ
n(L)

j+ 1
2

and ρ
n(R)

j+ 1
2

respectively, and also the same for all other face-centered variables at tn. With

aL and aR are defined by Equation (6.53), we can simplify Equation (8.34) as follows:

ρn
j+ 1

2

=
(cRρR + cLρL)

(aR − aL)
. (8.36)

The face-centered velocity at tn is obtained from Equations (8.34) and (8.35) as follows:

un
j+ 1

2

=
(ρu)n

j+ 1
2

ρn
j+ 1

2

=
(cRρRuR + cLρLuL − pR + pL)

(cRρR + cLρL)
. (8.37)

As the partial derivatives with respect to Y of the terms on the right side of Equations (8.36)

and (8.37) are previously defined in Equations (8.20)–(8.22), and Equation (8.30), we can

determine the approximation to the partial derivatives of ρn
j+ 1

2

in Equation (8.36) and un
j+ 1

2

in

Equation (8.37). These partial derivatives are denoted as
∂ρn

j+ 1
2

∂Uk
and

∂un
j+ 1

2

∂Uk
.

8.2.4 Partial Derivatives of Fluxing
Velocities at Face-centers

From Equation (6.30), we approximate the partial derivatives of the face-centered fluxing

velocity using the following equation:

150

∂u∗
j+ 1

2

∂Uk
=

∂un
j+ 1

2

∂Uk
− σ

⎡
⎢⎢⎢⎣ 1

ρn
j+ 1

2

∂

(
p
n+ 1

2
j+1 − p

n+ 1
2

j

)
∂Uk

−

(
p
n+ 1

2
j+1 − p

n+ 1
2

j

)
(
ρn
j+ 1

2

)2

∂ρn
j+ 1

2

∂Uk

⎤
⎥⎥⎥⎦ , (8.38)

where σ =
Δt

2Δx
. In Equation (8.38), p

n+ 1
2

j is the cell-centered pressure at tn+ 1
2
. Following

the calculation of the explicit “pressure corrector” discussed in Section 6.4.2, the cell-centered

pressure p
n+ 1

2
j is approximated using the following equation:

p
n+ 1

2
j = pnj − σ

(
c2ρ

)n
j

(
un
j+ 1

2

− un
j− 1

2

)
. (8.39)

From Equation (8.39) and the equation of state, we have:

p
n+ 1

2
j = pnj − σγpnj

(
un
j+ 1

2

− un
j− 1

2

)
= pnj

[
1− σγ

(
un
j+ 1

2

− un
j− 1

2

)]
. (8.40)

The partial derivatives of p
n+ 1

2
j with respect to Y are then approximated as follows:

∂p
n+ 1

2
j

∂Uk
=

∂pnj
∂Uk

[
1− σγ

(
un
j+ 1

2

− un
j− 1

2

)]
− σγpnj

(
∂un

j+ 1
2

∂Uk
−

∂un
j− 1

2

∂Uk

)
. (8.41)

Since the partial derivatives on the right side of the above equation are previously defined in

Sections 8.2.1 and 8.2.3, the partial derivatives of the cell-centered pressure,
∂p

n+ 1
2

j

∂Uk
, are also

now defined.

8.2.5 Partial Derivatives of Pressures at Face-centers

From Equation (6.9), the partial derivatives with respect to Y of the face-centered pressure

∂p∗
j+ 1

2

may be approximated using the following equation:

∂p∗
j+ 1

2

∂Uk
=

1(
ρnj + ρnj+1

)
⎡
⎣ρnj ∂p

n+ 1
2

j+1

∂Uk
+ ρnj+1

∂p
n+ 1

2
j

∂Uk
+ p

n+ 1
2

j+1

∂ρnj
∂Uk

+ p
n+ 1

2
j

∂ρnj+1

∂Uk

⎤
⎦

−

(
ρnj p

n+ 1
2

j+1 + ρnj+1p
n+ 1

2
j

)
(
ρnj + ρnj+1

)2
[
∂ρnj
∂Uk

+
∂ρnj+1

∂Uk

]
, (8.42)

where
∂p

n+ 1
2

j

∂Uk
,
∂p

n+ 1
2

j+1

∂Uk
,
∂ρnj
∂Uk

, and
∂ρnj+1

∂Uk
are approximated using Equations (8.16) and (8.41).

151

8.2.6 Partial Derivatives of Advected
Quantities at Face-centers

For IMPICE with first-order advection as defined in Chapter 6, the advected quantities

〈U〉n
j+ 1

2

are defined by Equation (6.17). The partial derivatives of the advected quantities with

respect to Y are then approximated using the following equation:

∂〈U〉n
j+ 1

2

∂Uk
=

⎧⎪⎪⎨
⎪⎪⎩

I if
(
u∗
j+ 1

2

< 0
)

and (k = j + 1)

I if
(
u∗
j+ 1

2

≥ 0
)

and (k = j)

0 otherwise,

(8.43)

where 0 is 3× 3 zero matrix and I is 3× 3 identity matrix.

For IMPICE with second-order advection discussed in Section 6.8, we need to approximate

the following partial derivatives:

∂〈U〉n
j+ 1

2

∂Uk
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂〈ρ〉n
j+ 1

2

∂Uk
∂〈ρu〉n

j+ 1
2

∂Uk
∂〈ρE〉n

j+ 1
2

∂Uk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (8.44)

where 〈ρ〉n
j+ 1

2

, 〈ρu〉n
j+ 1

2

, and 〈ρ〉n
j+ 1

2

are defined by Equations (6.76)–(6.78).

From Equation (6.76), we have:

∂〈ρ〉n
j+ 1

2

∂Uk
=

∂ρnj
∂Uk

[
1− Δt

2

(
∂u

∂x

)n

j

]
+

(
Δx

2
− unj

Δt

2

) ∂

(
∂ρ

∂x

)n

j

∂Uk

−Δt

2

(
∂ρ

∂x

)n

j

∂unj
∂Uk

− Δt

2
ρnj

∂

(
∂u

∂x

)n

j

∂Uk
. (8.45)

Since

(
∂ρ

∂x

)n

j

and

(
∂u

∂x

)n

j

in Equation (8.45) are calculated using Equation (6.79), the partial

derivatives with respect to Y of these terms are approximated using the following equation:

∂

(
∂W

∂x

)n

j

∂Uk
= minmod(z1, z2, z3) =

⎧⎨
⎩

∂zj
∂Uk

if minmod(z1, z2, z3) = zj

0 otherwise
. (8.46)

152

Equations (8.16), (8.17), and (8.46) are used to approximate the partial derivatives of
∂〈ρ〉n

j+ 1
2

∂Uk
in Equation (8.45). From Equation (6.77), we have:

∂〈ρu〉n
j+ 1

2

∂Uk
= unj

∂〈ρ〉n
j+ 1

2

∂Uk
+ 〈ρ〉n

j+ 1
2

∂unj
∂Uk

+

(
Δx

2
− unj

Δt

2

)(
∂u

∂x

)n

j

∂ρn
j+ 1

2

∂Uk

−Δt

2
ρn
j+ 1

2

⎛
⎜⎜⎜⎝unj

∂

(
∂u

∂x

)n

j

∂Uk
+

(
∂u

∂x

)n

j

∂ρn
j+ 1

2

∂Uk

⎞
⎟⎟⎟⎠ . (8.47)

Note that all the partial derivative terms on the right side of Equation (8.47) have all been

derived in this section.

Similarly, we can derive the partial derivatives of 〈ρE〉n
j+ 1

2

in Equation (6.78), as denoted

as
∂〈ρE〉n

j+ 1
2

∂Uk
. We are now able to estimate

∂FIMPICE
j+ 1

2

∂Uk

(
tn, Ỹ

n
)

in Equation (8.12) using

the proposed approximations to the partial derivatives
∂〈U〉n

j+ 1
2

∂Uk
,
∂u∗

j+ 1
2

∂Uk
, and

∂p∗
j+ 1

2

∂Uk
in this

section. Therefore, the approximation to partial derivatives
∂Gj

∂Uk
(tn, Ỹ

n
) in Equation (8.11) is

also defined. This approximation completes the definition of J(tn, Ỹ
n
) in Equation (8.10) and

therefore the definition of the adjoint problem (8.7).

8.3 Local Error and Truncation
Error Estimation

8.3.1 Local Error

The local ODE problem corresponding to the ODE system given by Equation (8.3) is as

follows:

{
Żn+1(t) = G(t, Ỹ

n
), t ∈ [tn, tn+1],

Zn+1(tn) = Ỹ
n
,

(8.48)

where Ỹ
n
= [Un

1 ,U
n
2 ,U

n
3 , ...,U

n
N ,]T , and G(t, Ỹ

n
) is defined by Equations (8.4) and (8.5).

From Equations (6.57) and (8.5), the time integration solution of the local problem in (8.48) is

given by:

Ỹ
n+1

= Ỹ
n −ΔtG(t, Ỹ

n
). (8.49)

From Equations (8.48) and (8.49), the ODE local error is second-order in Δt. The local error can

be then estimated using Richardson’s extrapolation. The Richardson’s extrapolation method

153

for estimating the local error of order p on the single time step [tn, tn+1] includes the following

steps:

• Perform one step of the IMPICE method with stepsize Δt = tn+1 − tn to obtain the

solution Ỹ
n+1

at tn+1.

• Perform two consecutive steps of the IMPICE method with stepsize of Δt
2 to obtain the

solution Ŷ
n+1

at tn+1.

• Estimate the local error for the local solution Ỹ
n+1

using the following equation:

le
(
tn+1; tn, Ỹ

n
)
= Zn+1(tn+1)− Ỹ

n+1
=

2p

2p − 1

(
Ŷ

n+1 − Ỹ
n+1

)
. (8.50)

The above estimate of the local time integration error is used in the adjoint-based error

estimation of the one-dimensional IMPICE method discussed in Section 8.1.

8.3.2 Truncation Error

Richardson extrapolation has long been used to estimate the spatial truncation error in the

method of lines for PDEs. The method was used by many different authors, e.g., Berzins [13].

In this approach, the spatial truncation error is estimated based on the obtained numerical

solutions on coexisting different meshes. Assume that the system of Euler equations is also

solved on the “coarse” mesh defined at points {xj : j = 1, 3, 5...} and p is the order of the

spatial discretization. In order to distinguish the meshes, we use Ωh to denote the “fine” mesh

and ΩH to denote the “coarse” mesh. In Section 4.5.3.2, we summarized the steps to estimate

the spatial truncation error discussed in Berzins [13] for the method of lines with second-order

spatial discretization (p = 2).

For the case the spatial discretization is order of p in general, let Yh
H(t) and Ẏ

h
H(t) be the

restriction of the numerical solution Yh(t) and the numerical derivative Ẏh(t) from the “fine”

mesh to the “coarse” mesh. The truncation error for the “coarse” mesh is then obtained by

evaluating the following equation as proposed in Berzins [13]:

TEH(t) =
2p

2p − 1

[
ẎH(t)−GH(t, Uh

H(t))
]
+

2p

2p − 1

[
ėtH(t)− ∂GH

∂YH(t)
etH(t)

]
(8.51)

The trunction error at the grid nodes that belong to both “fine” mesh and “coarse” mesh is

then given by:

[TEh(t)]2i−1 =
1

2p
[TEH(t)]i. (8.52)

154

The truncation error at grid nodes that are in “fine” mesh but not in “coarse” mesh is then

obtained by extrapolating using the following equation:

[TEh(t)]2i =
1

2p+1
([TEH(t]i + [TEH(t)]i+1). (8.53)

The calculation given by Equation (8.51) could yield a better estimation of the spatial truncation

error if the time integration error etH(t) is available. For the spatial error-dominated problems,

we may simplify the estimation of the spatial truncation error as follows:

TEH(t) =
2p

2p − 1

[
ẎH(t)−GH(t, Uh

H(t))
]
. (8.54)

It is worth mentioning the observation of Debrabant and Lang [27] that, based on experiments,

even in the case when the time integration error was not small, using a time error estimate does

not yield a significantly better approximation of the spatial truncation error.

8.4 Numerical Results

8.4.1 Numerical Results of Adjoint-based Error
Estimate for the One-dimensional IMPICE

Method with First-order Advection

We applied the adjoint-based error approach discussed in Chapter 4 and this chapter to

estimate the temporal error, the spatial error, and the overall error in the numerical solutions

of the IMPICE method with first-order advection to the advection problems in Section 7.7 and

the test problems in Table 6.1 in Section 6.5. The overall error, the temporal error, and the

spatial are estimated using Equations (8.6), (8.8), and (8.9) respectively where the estimate of

the local error and the spatial truncation error in these equations are discussed in Section 8.3.

The spatial truncation error is assumed to be first-order. In Figures 8.2–8.8, the adjoint-based

estimate of the overall error in density of a particular numerical solution to each test problem

is compared against the true overall error. Figure 8.2 shows an accurate estimate of the overall

error in the region with smooth true solution. Figure 8.3 shows a less accurate estimate of

the overall error in the region with discontinuous true solution. It is known that the order of

spatial discretization decreases at discontinuities, but we did not consider this in the estimation

of the spatial truncation error. This is not an easy problem to address, but we will look into

the problem in future work. The same problem with estimating the error in the region with

discontinuous true solution for the numerical solutions of test problems P1–P5 is shown in

Figures 8.4–8.8. In Figure 8.4, we also included the error estimate for the specific momentum

and specific total energy to show how the adjoint-based error estimate works for these quantities.

155

0 1 2 3 4 5
−0.4

−0.2

0

0.2

0.4

x

E
rr

or
Exact geρ(Te)

Estimate geρ(Te)

Figure 8.2. The adjoint-based estimate of the overall error in density of a numerical solution to
test problem in Section 7.7.1 is compared against its true overall error. This numerical solution
is obtained using the IMPICE method with first-order advection, Ccfl = 0.2, and N = 300
(cells).

0 1 2 3 4 5
−2

−1

0

1

2

x

E
rr

or

Exact geρ(Te)

Estimate geρ(Te)

Figure 8.3. The adjoint-based estimate of the overall error in density of a numerical solution to
test problem in Section 7.7.2 is compared against its true overall error. This numerical solution
is obtained using the IMPICE method with first-order advection, Ccfl = 0.2, and N = 300
(cells).

156

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.1
−0.05

0
0.05

0.1

x

E
rr

or

(a) Error in ρ
Exact geρ(Te)

Estimate geρ(Te)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.1

0

0.1

0.2

x

E
rr

or

(b) Error in ρu
Exact geρu(Te)

Estimate geρu(Te)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.2
0

0.2
0.4
0.6

x

E
rr

or

(c) Error in ρE
Exact geρE(Te)

Estimate geρE(Te)

Figure 8.4. The adjoint-based estimate of the overall error in (a) density; (b) specific
momentum; and (c) specific total energy of a numerical solution to test problem P1 is compared
against the true overall error. This numerical solution is obtained using the IMPICE method
with first-order advection, Ccfl = 0.2, and N = 200 (cells).

157

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

−0.05

0

0.05

0.1

x

E
rr

or
Exact geρ(Te)

Estimate geρ(Te)

Figure 8.5. The adjoint-based estimate of the overall error in density of a numerical solution to
test problem P2 is compared against its true overall error. This numerical solution is obtained
using the IMPICE method with first-order advection, Ccfl = 0.2, and N = 200 (cells).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−4

−2

0

2

4

x

E
rr

or

Exact geρ(Te)

Estimate geρ(Te)

Figure 8.6. The adjoint-based estimate of the overall error in density of a numerical solution to
test problem P3 is compared against its true overall error. This numerical solution is obtained
using the IMPICE method with first-order advection, Ccfl = 0.2, and N = 200 (cells).

158

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

x

E
rr

or
Exact geρ(Te)

Estimate geρ(Te)

Figure 8.7. The adjoint-based estimate of the overall error in density of a numerical solution to
test problem P4 is compared against its true overall error. This numerical solution is obtained
using the IMPICE method with first-order advection, Ccfl = 0.2, and N = 200 (cells).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

x

E
rr

or

Exact geρ(Te)

Estimate geρ(Te)

Figure 8.8. The adjoint-based estimate of the overall error in density of a numerical solution to
test problem P5 is compared against its true overall error. This numerical solution is obtained
using the IMPICE method with first-order advection, Ccfl = 0.2, and N = 300 (cells).

159

We show in Table 8.1 the error indices when estimating the time integration error, the

spatial error, and the overall error of the aforementioned tested problems. The results in Table

8.1 show that the error indices for the time integration error approach the value of one. The

results in this table also show that an acceptable estimate of the spatial error is provided for

all the tested problems. However, the error indices of the spatial error estimate for these tested

problems are not so close to one due to the existence of discontinuities in the solution of these

problems.

Table 8.1. Error indices eindex(et(Te)), eindex(et(Te)), and eindex(ge(Te)) of the estimated
adjoint-based global errors for numerical solutions to test problems discussed in Section 7.7 and
Section 6.5. The numerical solutions to these problems are obtained from the one-dimensional
IMPICE method with first-order advection and Ccfl = 0.2.

eindex(etU(Te)) eindex(esU(Te)) eindex(geU(Te))
N ρ ρu ρE ρ ρu ρE ρ ρu ρE

100 1.03 1.03 1.03 0.68 0.68 0.68 0.76 0.76 0.76
Advection1 200 1.03 1.03 1.03 0.87 0.87 0.87 0.85 0.85 0.85

300 1.02 1.02 1.02 0.96 0.96 0.96 0.96 0.96 0.96
400 1.02 1.02 1.02 1.01 1.01 1.01 1.01 1.01 1.01

100 1.02 1.02 1.02 0.70 0.70 0.70 0.77 0.77 0.77
Advection2 200 1.02 1.02 1.02 0.68 0.68 0.68 0.75 0.75 0.75

300 1.02 1.02 1.02 0.67 0.67 0.67 0.74 0.74 0.74
400 1.02 1.02 1.02 0.67 0.67 0.67 0.74 0.74 0.74

100 0.92 0.91 0.88 0.68 0.83 0.87 0.68 0.87 0.86
P1 200 0.95 0.94 0.91 0.70 0.77 0.82 0.70 0.77 0.82

300 0.96 0.95 0.93 0.71 0.79 0.86 0.71 0.78 0.86
400 0.96 0.96 0.96 0.70 0.75 0.81 0.70 0.74 0.81

100 0.93 0.93 0.93 0.80 0.98 1.02 0.81 0.97 1.01
P2 200 0.94 0.95 0.93 0.79 0.93 0.99 0.79 0.92 0.98

300 0.95 0.95 0.94 0.81 0.94 1.02 0.81 0.93 1.01
400 0.95 0.96 0.94 0.79 0.90 0.98 0.79 0.90 0.98

100 0.94 0.96 0.93 0.94 0.85 1.32 0.96 0.88 1.29
P3 200 0.96 0.97 0.94 0.77 0.73 1.08 0.78 0.75 1.10

300 0.96 0.97 0.95 0.70 0.68 0.99 0.71 0.69 1.01
400 0.97 0.98 0.95 0.69 0.66 0.95 0.69 0.67 0.96

200 0.99 0.85 0.89 0.63 0.69 0.93 0.63 0.68 0.93
P4 400 0.91 0.89 0.86 0.65 0.73 1.02 0.68 0.76 1.02

600 0.89 0.87 0.85 0.65 0.72 0.94 0.67 0.75 0.95
800 0.90 0.90 0.84 0.66 0.75 0.98 0.68 0.77 0.98

100 0.90 0.89 0.87 0.65 0.70 0.77 0.64 0.68 0.76
P5 200 0.92 0.94 0.90 0.68 0.76 0.97 0.68 0.76 0.97

300 0.94 0.94 0.92 0.68 0.73 0.94 0.68 0.73 0.94
400 0.94 0.94 0.92 0.65 0.68 0.86 0.65 0.67 0.86

160

8.4.2 Numerical Results of Adjoint-based Error
Estimate for the One-dimensional IMPICE

Method with Second-order Advection

We applied the adjoint-based error approach discussed in Chapter 4 and this chapter to

estimate the temporal error, the spatial error, and the overall error in the numerical solutions

of the IMPICE method with second-order advection to the advection problems in Section 7.7

and the test problems in Table 6.1 in Section 6.5. The overall error, the temporal error, and

the spatial are estimated using Equations (8.6), (8.8), and (8.9) respectively where the estimate

of the local error and the spatial truncation error in these equations are discussed in Section

8.3. The spatial truncation error is assumed to be second-order. Figure 8.9 shows an accurate

estimate of the overall error in the region with smooth true solution. Figure 8.10 shows a less

accurate estimate of the overall error in the region with discontinuous true solution.

We show the error indices of the estimates of the time integration error, the spatial error, and

the overall error in Table 8.2. This table shows an accurate estimate of the time integration

error when the error indices for the time integration error approach the value of one. The

error indices of the spatial error for the second-order advection method are further from one

compared to the error indices of the spatial error for the first-order advection method. As stated

in Section 8.4.1, there is a drop in the order of the spatial discretization at discontinuities. For

the first-order advection, the order of the spatial discretization drops from one to zero. For the

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.1

−0.05

0

0.05

0.1

x

E
rr

or

Exact geρ(Te)

Estimate geρ(Te)

Figure 8.9. The adjoint-based estimate of the overall error in density of a numerical solution
to test problem in Section 7.7.1 is compared against its true overall error. This numerical
solution is obtained using the IMPICE method with second-order advection, Ccfl = 0.2, and
N = 300 (cells).

161

0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

x

E
rr

or

Exact geρ(Te)

Estimate geρ(Te)

Figure 8.10. The adjoint-based estimate of the overall error in density of a numerical solution
to test problem in Section 7.7.2 is compared against its true overall error. This numerical
solution is obtained using the IMPICE method with second-order advection, Ccfl = 0.2, and
N = 300 (cells).

second-order advection, the order of the spatial discretization may drop from two to zero. This

results in an underestimation of the spatial truncation error in the region with discontinuous

true solution in the IMPICE method with second-order advection. This explains why the error

indices of the spatial error for the second-order advection method are further from one compared

to the error indices of the spatial error for the first-order advection method.

We also applied the adjoint-based error estimate to the numerical solution of the Shu and

Osher problem discussed in Section 6.5. We attempted to obtain the projected exact solution

for the Shu and Osher problem using the numerical solution and the estimated overall error

and compared to the “exact solution” as discussed in Section 6.5. We show this comparison in

Figure 8.11. In order to see the error estimate more clearly we show in Figure 8.12 a close-up

picture of Figure 8.11 for the region where the numerical solution has a significant error. As

shown in Figure 8.12, the adjoint-based error estimate discussed in this chapter has provided

a projected exact solution for the Shu and Osher problem which is very close to the “exact

solution”.

8.5 Summary

We have presented in this chapter a computable error estimate for the numerical solutions

of the system of Euler equations solved with the one-dimensional IMPICE method using the

discrete adjoint-based approach discussed in Chapter 4. In this discrete adjoint-based approach

162

Table 8.2. Error indices eindex(et(Te)), eindex(et(Te)), and eindex(ge(Te)) of the estimated
adjoint-based global errors for numerical solutions to test problems discussed in Section 7.7 and
Section 6.5. The numerical solutions to these problems are obtained from the one-dimensional
IMPICE method with second-order advection and Ccfl = 0.2.

eindex(etU(Te)) eindex(esU(Te)) eindex(geU(Te))
N ρ ρu ρE ρ ρu ρE ρ ρu ρE

100 1.01 1.01 1.00 0.71 0.70 0.68 0.70 0.68 0.66
Advection1 200 1.01 1.01 1.01 1.16 1.12 1.07 1.17 1.13 1.08

300 1.01 1.01 1.03 1.37 1.35 1.31 1.39 1.37 1.32
400 1.01 1.01 1.01 1.31 1.31 1.28 1.32 1.31 1.28

100 1.03 1.03 1.03 0.53 0.53 0.52 0.57 0.56 0.56
Advection2 200 1.02 1.03 1.03 0.54 0.54 0.55 0.53 0.53 0.54

300 1.02 1.03 1.04 0.55 0.55 0.56 0.54 0.54 0.55
400 1.03 1.03 1.05 0.56 0.57 0.54 0.60 0.60 0.62

100 0.93 0.92 0.94 0.44 0.52 0.56 0.48 0.52 0.52
P1 200 0.96 0.94 0.95 0.43 0.50 0.48 0.47 0.50 0.52

300 0.96 0.95 0.96 0.45 0.54 0.55 0.50 0.55 0.58
400 0.97 0.96 0.96 0.43 0.53 0.48 0.49 0.52 0.53

100 0.89 0.92 0.92 0.48 0.53 0.57 0.51 0.53 0.57
P2 200 0.90 0.91 0.91 0.49 0.53 0.56 0.51 0.53 0.56

300 0.91 0.92 0.92 0.53 0.58 0.62 0.55 0.57 0.61
400 0.91 0.92 0.92 0.51 0.56 0.59 0.52 0.55 0.59

100 0.97 0.98 0.95 0.99 1.24 1.18 1.02 1.27 1.12
P3 200 0.99 0.97 0.95 1.24 1.31 1.69 1.27 1.36 1.65

300 0.95 0.94 0.94 0.88 0.89 1.29 0.94 0.95 1.29
400 0.93 0.94 0.93 0.87 1.09 1.48 0.88 1.13 1.46

200 1.12 1.07 1.04 0.47 0.57 0.67 0.49 0.50 0.75
P4 400 1.25 1.45 1.35 0.57 0.67 0.80 0.58 0.62 0.93

600 1.32 1.47 1.52 0.61 0.63 0.65 0.64 0.58 0.76
800 1.30 1.50 1.51 0.64 0.74 0.84 0.66 0.69 0.97

100 0.87 0.89 0.90 0.45 0.47 0.51 0.43 0.45 0.50
P5 200 0.90 0.92 0.91 0.54 0.60 0.73 0.53 0.59 0.63

300 0.90 0.91 0.91 0.57 0.58 0.59 0.56 0.57 0.61
400 0.90 0.91 0.91 0.52 0.51 0.58 0.52 0.51 0.61

for estimating the error for a numerical solution of a PDE problem, it is necessary to obtain

the adjoint problem of the spatial discretized problem, the local time integration error, and the

spatial truncation error. We have also shown in this chapter how to derive the adjoint problem

by following closely the steps in the IMPICE method as well as how to apply the method of

Richardson extrapolation to estimate the local time integration error and the spatial truncation

error.

We tested the proposed error estimate to a set of test problems with known exact solution

to assess the performance of the estimate method. The results have shown that the estimate

163

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

ρ

IMPICE solution
Projected Exact Solution
"Exact Solution"

Figure 8.11. The numerical solution for Shu and Osher test problem obtained from the
IMPICE method with second-order advection, N = 1600 (cells), and Ccfl=0.2; the “exact
solution” of Shu and Osher test problem as discussed in Section 6.5; the projected exact solution
obtained from adding the adjoint-based error estimate of the overall error to the numerical
solution.

0 0.5 1 1.5 2 2.5
3

3.5

4

4.5

5

x

ρ

IMPICE solution
Projected Exact Solution
"Exact Solution"

Figure 8.12. A close-up picture of Figure 8.11 for the region where the numerical solution has
a significant error.

164

errors of the numerical solutions to the problems with smooth exact solutions are close to the

true errors. For the case when the exact solution is discontinuous, the estimate of the error at

the discontinuous region become less accurate due to the less accurate estimation of the spatial

truncation error in this region. The less accurate estimation of the spatial truncation error

at discontinuities results from the assumption that the order of the spatial discretization at

discontinuities is the same as the order of the spatial discretization on smooth regions. In fact,

the order of the spatial discretization at discontinuities is commonly less than its on smooth

regions. In future, we may look into determining the order of spatial discretization at each grid

point using numerical extrapolation to obtain a better estimate of the spatial truncation error

and therefore a better error estimate for the numerical solutions.

As shown in this chapter, in order to estimate the global error on the spatial domain

using the adjoint-based approach, we need to solve the adjoint system for every grid point on

the domain. As mentioned in [21], this is the limitation with the adjoint-based global error

estimation. However, the adjoint problem at each grid point can be solved independently; we

can therefore take advantage of the availability of parallel computing to overcome this mentioned

limitation.

CHAPTER 9

CONCLUSIONS AND FUTURE WORK

The Material Point Method (MPM) and the Implicit Coninuous-fluid Eulerian Method

(ICE) make possible the simulation of a wide range of engineering applications. MPM, ICE,

and the integrated combination of MPM and ICE (MPMICE) were implemented in the Uintah

Computational Framework (UCF) at the Center for the Simulation of Accidental Fires and

Explosions (C-SAFE) at the University of Utah to simulate accidental fires, explosions, and

other multiphysics computational problems. This dissertation has provided an in-depth analysis

and a possible improvement to some variation of MPM and ICE to better understand them.

In particular, we have made several contributions to the study of these methods. First, we

provide a study of various sources of time integration errors and spatial discretization errors

in a variation of MPM proposed for gas dynamics. Though the MPM in UCF designed for

solid dynamics, the analysis of this variation of MPM for gas dynamics in this dissertation is

described in a way that can be applied to other versions of MPM. Second, we proposed an

improvement to a version of ICE that is currently implemented in UCF. This improved version,

is referred to as the Improved Production Implicit Continuous-fluid Eulerian Method (IMPICE),

removes the discrepancies and eliminates the unphysical oscillations in the numerical solutions

to the one-dimensional system of Euler equations for compressible flow problems. Third, we

extended IMPICE to enable the solution of multidimensional compressible flow problems with

potentially more complex geometries than just those consisting of hexahedral elements. Finally,

we presented an adjoint-based approach to estimate errors in numerical solutions to partial

differential equations and particularly we applied this approach to estimate errors in numerical

solutions of IMPICE.

An error analysis for a variation of MPM proposed for gas dynamics is presented in Chapter

5. In order to maintain the stability of the method, we explored algorithms to ensure the

positivity of the method’s numerical approximations and prevent the creation of local extrema in

various quantities. We investigated the relationship between the numerical errors and numbers

of particles assigned to each cell. We analyzed errors in this numerical method including

the time integration errors and the space discretization errors. These various error sources are

166

introduced from projecting information from the particles onto the grid, mapping the movement

at the grid points back onto the particles, and crossing the grid points of the particles.

The IMPICE method for compressible flow problems governed by the one-dimensional

system of Euler equations is presented in Chapter 6. The use of a conservative scheme, slope

limiters, and a simple approximate HLL Riemann solver all contributed to the elimination of

oscillations in the numerical solutions of IMPICE. We have shown that the IMPICE method

with a linear spatial and temporal discretization is expected to be first-order accurate in time

and space. However, for the cases with discontinuities in their solutions, the order of accuracy

in space is less than one. We have also shown in Chapter 6 how to use the method of temporal

extrapolation and the higher-order advection in IMPICE to obtain a higher-order of accuracy

in both time and space. While the method of temporal extrapolation successfully raises the

order of accuracy to be second order in time, a less-than-expected order of accuracy in space is

obtained from using the higher-order advection for the problems with discontinuities.

In Chapter 7, we extended the IMPICE method to solve the multidimensional system

of Euler equations. In order to prevent the oscillations in the numerical solutions of the

multidimensional system of Euler equations, it is necessary to apply a multidimensional limiting

process to limit the gradients. We tested the implementation of the multidimensional IMPICE

method on a suite of test problems for the system of Euler equations in multidimensional space

where the obtained numerical solutions have shown the ability to capture shock waves. In

order to allow IMPICE to solve problems in complex geometries, we implemented the method

of cut cells which employes a new variation of the cell merging technique to overcome the “small

cell problem” with the embedded boundary. The implementation of the method of cut cells is

tested on the problem of shock reflection from a wedge. The contour lines of the IMPICE’s

numerical solution of the shock reflection problem are similar to the contour lines of numerical

solutions of this problem obtained from many numerical methods in previous publications . In

order to assess the accuracy of the embedded boundary implementation, we obtained the order

of accuracy for the advection problem on the same bounded domain as the shock reflection

problem.

In Chapter 4, we have presented the discrete adjoint-based approach for estimating spatial

and temporal errors for the method-of-lines PDEs. We tested this approach on the numerical

solutions of several ODE and PDE problems using the Backward Differentiation Formula (BDF)

method implemented in DASSL DAL solver. These results showed that the adjoint-based

approach accurately estimates both the temporal and spatial errors. Once more, this discrete

adjoint-based error estimate was applied to estimate the errors in the numerical solutions

obtained from the one-dimensional IMPICE method in Chapter 8. The challenging part in

167

the application of the adjoint-based error estimate to the IMPICE method is the derivation

of the adjoint problem. The derivation of the adjoint problem in this dissertation and the

estimate of local error and truncation error using Richardson extrapolation have also yielded

an accurate error estimation of the spatial error and temporal error for the numerical solutions

obtained from the one-dimensional IMPICE method, especially for numerical solutions to the

problems with smooth exact solutions. For the case when the exact solution is discontinuous,

the estimate of the error at the discontinuous region become less accurate due to the less

accurate estimation of the spatial truncation error in this region. In future, we will look into a

more accurate estimation of the spatial truncation error at discontinuous region.

Overall, this dissertation has provided a comprehensive study of a variation of MPM for

gas dynamics and an improved version of the Production ICE Method. The MPM method and

the Production ICE method are two main numerical methods implemented in the UCF. The

comprehensive analysis in this dissertation in combined with many current studies of MPM and

ICE at C-SAFE would help to fully understand these two methods. The detailed analysis in

this dissertation of different sources of errors in the numerical solutions of the proposed MPM

version for gas dynamics allows it to be extended to other versions of MPM. The error estimate

for the IMPICE method presented in this dissertation will help us to adaptively refine meshes

to obtain more accurate solutions for the method or to keep the error in its numerical solutions

under control. In the future, it will be necessary to extend the error estimate to work with

the multidimensional IMPICE method. The critical part of this extension is to estimate the

error on the embedded boundary. As the ICE method has also been proposed to simulate the

multiphase flow problems, we would like to have extended the IMPICE method to solve these

problems also, but again this is work for the future.

APPENDIX

A.1 IMPICE Method for Inviscid
Burgers’ Equation

Consider the one-dimensional Burgers’ equation in the inviscid limit:

∂u

∂t
+

∂f(u)

∂x
= 0, (A.1)

with f(u) = 1
2u

2 and initial data u(x, 0) = u0(x), where u0(x) is a given function, x ∈ R and

0 < t ≤ Te. The solution, u(x/t;u
n(L)

j+ 1
2

, u
n(R)

j+ 1
2

), to the Riemann problem of the Burgers’ equation

(A.1) with initial data:

u(x, tn) =

⎧⎨
⎩

u
n(L)

j+ 1
2

if
(
x < xj+ 1

2

)
u
n(R)

j+ 1
2

if
(
x > xj+ 1

2

)
,

(A.2)

at x/t = 0 is used in the IMPICE method. The approximate solution u(0;u
n(L)

j+ 1
2

, u
n(R)

j+ 1
2

) is given

by:

u(0;u
n(L)

j+ 1
2

, u
n(R)

j+ 1
2

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
n(L)

j+ 1
2

if

(
0 < u

n(L)

j+ 1
2

< u
n(R)

j+ 1
2

)

0 if

(
u
n(L)

j+ 1
2

≤ 0 ≤ u
n(R)

j+ 1
2

)

u
n(R)

j+ 1
2

if

(
u
n(L)

j+ 1
2

< u
n(R)

j+ 1
2

< 0

)

u
n(L)

j+ 1
2

if

(
u
n(R)

j+ 1
2

< u
n(L)

j+ 1
2

and S > 0

)

u
n(R)

j+ 1
2

if

(
u
n(R)

j+ 1
2

< u
n(L)

j+ 1
2

and S < 0

)
,

(A.3)

where S =

(
u
n(L)

j+ 1
2

+ u
n(R)

j+ 1
2

)
/2.

With the same spatial and temporal discretizations as in Section 6.1.1 and known cell

averages at time tn, the steps to obtain cell averages at time tn+1 are as follows.

169

A.1.1 IMPICE Method Description

A.1.1.1 The Primary Phase

At face center, a data reconstruction is done as follows:

u
n(L)

j+ 1
2

= unj +
Δx

2
Δ̄unj , u

n(R)

j+ 1
2

= unj+1 −
Δx

2
Δ̄unj+1, (A.4)

where Δ̄unj is the limited slope of u using van Leer limiter in Equation (6.41). The face-centered

velocity, un
j+ 1

2

, at tn is determined using the approximate solution of Riemann problem where

un
j+ 1

2

= u(0;u
n(L)

j+ 1
2

, u
n(R)

j+ 1
2

). The equation of velocity evolution:

ut + uux = 0, (A.5)

is written in Lagrangian form as:

Du

Dt
= 0. (A.6)

The face-centered fluxing velocity, u∗
j+ 1

2

, is then given by:

u∗
j+ 1

2
= un

j+ 1
2
. (A.7)

In order to apply the Lagrangian and Eulerian phases, we rewrite equation (A.1) as:

(ρu)t +
(
ρu2

)
x
=

1

2

(
u2
)
x

(A.8)

where ρ is a constant and equal to one.

A.1.1.2 The Lagrangian Phase

The change in cell mass along a path moving with fluid velocity u is given by:

V L
j (ρu)Lj = V n

j (ρu)nj +Δt

(
1

2

(
u∗
j+ 1

2

)2
− 1

2

(
u∗
j− 1

2

)2)
, (A.9)

where V n
j = Δx and V L

j = Δx + Δt(u∗
j+ 1

2

− u∗
j− 1

2

). As ρ is a constant and equal to one, the

above equation may be rewritten as follows:

V L
j uLj = V n

j unj +Δt

(
1

2

(
u∗
j+ 1

2

)2
− 1

2

(
u∗
j− 1

2

)2)
(A.10)

170

A.1.1.3 The Eulerian Phase

The change in mass due to the advection is given by:

V n+1
j (ρu)n+1

j = V L
j (ρu)Lj −Δt

(
u∗
j+ 1

2

〈ρu〉j+ 1
2
− u∗

j− 1
2

〈ρu〉j− 1
2

)
(A.11)

where V n+1
j = Δx. As ρ is a constant and equal to one, the above equation may be rewritten

as follows:

V n+1
j un+1

j = V L
j uLj −Δt

(
u∗
j+ 1

2

〈u〉j+ 1
2
− u∗

j− 1
2

〈u〉j− 1
2

)
. (A.12)

For first-order advection, 〈u〉j+ 1
2
is approximated using (6.17) and for second-order advection,

it is approximated using (6.77).

A.1.2 Numerical Results and Accuracy
in Space and Time

The initial condition used is given by:

u0(x) =

{
1.0 if

(|x| < 1
3

)
0.0 otherwise.

(A.13)

The numerical solution of the inviscid Burgers’ problem using the second-order-in-space and

second-order-in-time IMPICE method is shown in Figure A.1. The spatial and temporal error

norms and the orders of accuracy for this problem are summarized in Table A.1. For temporal

errors, the orders of accuracy are as expected whereas the orders of accuracy are around one

for the first-order method and very close to two for the second-order method. However, there

is a degeneration in the spatial orders of accuracy as happened for the above test problems.

A.2 IMPICE Method for Viscous
Burgers’ Equation

The viscous form of Burgers’ Equation:

∂u

∂t
+

∂f(u)

∂x
= ε

∂2u

∂x2
, (A.14)

with f(u) = 1
2u

2 and initial data u(x, 0) = u0(x), where u0(x) is a given function and ε is a

constant, x ∈ R and 0 < t < Te.

With the same spatial and temporal discretization as in Section 6.1.1 and known cell averages

at time tn, the steps to obtain cell averages at time tn+1 are as follows.

171

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

u

 IMPICE

Exact

Figure A.1. The second-order (second-order-in-space and second-order-in-time) IMPICE
numerical solutions for the inviscid Burgers’ problem at Te = 0.5 and on the spatial domain
[−1.0, 1.0] with N=200 (cells) and Ccfl = 0.2.

Table A.1. Spatial and Temporal Errors: L1-norms and the order of accuracy for the inviscid
Burgers’ problem at Te = 0.5 on the spatial domain [−1.0, 1.0]. The temporal errors are
calculated for the grid using N=200 (cells) and the time-integrated exact solutions are the
converged numerical solutions.

etu(Te) esu(Te)
first-order second-order first-order second-order

Ccfl ‖.‖L1 n ‖.‖L1 n N ‖.‖L1 m ‖.‖L1 m

0.2 3.53E-03 — 6.89E-05 — 100 5.14E-02 — 1.86E-02 —
0.1 1.75E-03 1.02 1.67E-05 2.05 200 2.52E-02 1.03 6.08E-03 1.61
0.05 8.67E-04 1.01 4.22E-06 1.98 400 1.62E-02 0.64 3.27E-03 0.90
0.025 4.31E-04 1.01 1.05E-06 2.01 800 8.48E-03 0.93 1.52E-03 1.11
0.0125 2.15E-04 1.01 2.61E-07 2.01 1600 5.27E-03 0.69 8.16E-04 0.90

A.2.1 IMPICE Method Description

A.2.1.1 The Primary Phase

The equation of velocity evolution:

ut + uux = εuxx, (A.15)

is written in Lagrangian form as:

Du

Dt
= εuxx. (A.16)

172

The face-centered fluxing velocity, u∗
j+ 1

2

, is approximated using an explicit scheme in the

Lagrangian frame as:

u∗
j+ 1

2

= un
j+ 1

2

+
Δt

2
ε

[
un
j+ 3

2

− 2un
j+ 1

2

+ un
j− 1

2

Δx2

]
, (A.17)

where the calculation of un
j+ 1

2

has already been discussed in Appendix A.1. In order to apply

the Lagrangian and Eulerian phases, we rewrite equation (A.14) as:

(ρu)t +
(
ρu2

)
x
=

[
1

2
u2 + εux

]
x

(A.18)

where ρ is a constant and equal to one.

A.2.1.2 The Lagrangian Phase

The discrete form of the Lagrangian part of equation (A.18) is as follows:

V L
j (ρu)Lj = V n

j (ρu)Lj +Δt

[(
1

2

(
u∗
j+ 1

2

)2
+ ε

u∗
j+ 3

2

− u∗
j− 1

2

2Δx

)
−
(
1

2

(
u∗
j− 1

2

)2
+ ε

u∗
j+ 1

2

− u∗
j− 3

2

2Δx

)]

(A.19)

where V n
j = Δx and V n

j = Δx+Δt
(
u∗
j+ 1

2

− u∗
j− 1

2

)
and ρ is a constant and equal to one.

A.2.1.3 The Eulerian Phase

The Eulerian Phase for the viscous Burgers’ Equation is the same as the Eulerian Phase for

the inviscid Burgers’ problem in Appendix A.1.

A.2.2 Numerical Results and Accuracy
in Space and Time

The initial condition for the viscous Burgers’ problem satisfies the below analytical solution:

u(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0.5 + 0.1e
c
ε + e

−a
ε)

(1 + e
c
ε + e

−a
ε)

if (a > 0) and (a > b)

(0.1 + 0.5e
−c
ε + e

−b
ε)

(1 + e
−c
ε + e

−b
ε)

if (b > 0) and (b > a)

(1 + 0.5e
a
ε + 0.1e

b
ε)

(1 + e
a
ε + e

b
ε)

otherwise

(A.20)

where:

a =
x− 0.25− 0.75t

4
, b =

0.9x− 0.325− 0.495t

2
, and c =

0.8x− 0.4− 0.24t

4
. (A.21)

173

The numerical solutions of the viscous Burgers’ problem at Te = 0.5 on the spatial domain

[−2.0, 4.0] using the second-order-in-space and second-order-in-time IMPICE method with 200

(cells) and Ccfl = 0.2 for various values of ε are shown in Figures A.2 and A.3. In Figures A.2

and A.3, the plotted initial cell averages are obtained from numerical integrations of the initial

condition in Equation (A.20) for these given values of ε. When ε is small, there exists a steep

front in the solution of the viscous Burgers’ problem.

−2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

u

(a)

−2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

u

(b)

Initial Cell Averages
Second−order IMPICE
Exact

Initial Cell Averages
Second−order IMPICE
Exact

Figure A.2. The second-order (second-order-in-space and second-order-in-time) IMPICE
numerical solutions for the viscous Burgers’ problem at Te = 0.5 from the plotted initial cell
averages with N=200 (cells) and Ccfl = 0.2: (a)ε = 0.05 and (b)ε = 0.01.

−2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

x

u

 Initial Cell Averages
Second−order IMPICE
Exact

Figure A.3. The second-order (second-order-in-space and second-order-in-time) IMPICE
numerical solutions for the viscous Burgers’ problem at Te = 0.5 from the plotted initial cell
averages with N=200 (cells) and Ccfl = 0.2 and ε = 0.0001.

174

The spatial and temporal error norms and orders of accuracy for the viscous Burgers’

problem with these values of ε are summarized in Table A.2. The orders of accuracy for temporal

errors are consistently around one for first-order method and around two for second-order

method. The convergence rates of spatial errors for the viscous Burgers’ problem improve for

larger values of ε, and get close to one for the first-order method and two for the second-order

method. However, there is a degeneration in accuracies for small ε. When ε = 0.0001, the

order is below one for the first-order method and approaching one for the second-order method.

This is due to the development of the steep front that appears close to a discontinuity in the

numerical solution of the viscous Burgers’ problem when ε approaches zero.

A.3 IMPICE versus Conservative
Cell-centered ICE

The results in Figures A.4–A.8 show the improvement obtained from the application of slope

limiters in the data resconstruction of the Riemann problem. In Figures A.4–A.8, the numerical

results of the IMPICE method are compared against the numerical results of the conservative

cell-centered ICE method, which is implemented using Kashiwa et al. [68] and chooses to

conserve mass, linear momentum and total energy as discussed in Section 6.4. Problems P1–P5

are from Table 6.1. We use first-order advection for both of these methods. As seen in A.4–A.8,

the IMPICE method helps to eliminate the nonphysical oscillations in the implementation of

the conservative cell-centered ICE method.

A.4 Different Calculations of the
Face-centered Pressure

When discussing how to calculate the face-centered pressure, p∗
j+ 1

2

, in the implementation of

the IMPICE method in Section 6.4, we mentioned that there were two other ways to calculate

this quantity in Kashiwa et al. [68]. We will present in this section the proposed methods of

[68] and see how these methods will change the results if implemented in the IMPICE method.

The following derivation is extracted from Kashiwa et al. [68]. The first step in calculating

the face-centered pressure p∗
j+ 1

2

is to differentiate the momentum equation.

The one-dimensional form of equation (3.8) is given by:

ut + uux = −px
ρ
. (A.22)

Taking the partial derivative of (A.22) in space, the obtained equation is:

(ut + uux)x = −
(
px
ρ

)
x

. (A.23)

175

T
a
b
le

A
.2
.
S
p
a
ti
a
l
a
n
d
T
em

p
or
a
l
E
rr
o
rs
:
L
1
-n
o
rm

s
a
n
d
th
e
o
rd
er

of
ac
cu
ra
cy

fo
r
th
e
v
is
co
u
s
B
u
rg
er
s’

p
ro
b
le
m

at
T
e
=

0.
5
on

th
e
sp
a
ti
a
l

d
o
m
a
in

[−
2.
0,
4.
0
].

T
h
e
te
m
p
o
ra
l
er
ro
rs

a
re

ca
lc
u
la
te
d
fo
r
th
e
gr
id

u
si
n
g
N
=
2
0
0
(c
el
ls
)
an

d
th
e
ti
m
e-
in
te
g
ra
te
d
ex
a
ct

so
lu
ti
o
n
s
a
re

th
e

co
n
ve
rg
ed

n
u
m
er
ic
a
l
so
lu
ti
o
n
s.

e
tu
(T

e
)

e
s
u
(T

e
)

fi
rs
t-
o
rd
er

se
co
n
d
-o
rd
er

fi
rs
t-
o
rd
er

se
co
n
d
-o
rd
er

ε
C
cf

l
‖.‖

L
1

n
‖.‖

L
1

n
N

‖.‖
L
1

m
‖.‖

L
1

m

0
.2

1
.0
4
E
-0
3

—
5
.1
3
E
-0
6

—
10
0

1
.7
3
E
-0
2

—
5
.0
1
E
-0
4

—
0
.1

5
.1
7
E
-0
4

1
.0
0

1
.2
8
E
-0
6

2
.0
0

20
0

9
.0
0
E
-0
3

0.
9
4

1
.4
3
E
-0
4

1
.8
1

0
.0
5

0
.0
5

2
.5
8
E
-0
4

1
.0
0

3
.2
1
E
-0
7

2
.0
0

40
0

4
.6
0
E
-0
3

0.
9
7

4
.1
1
E
-0
5

1
.8
0

0
.0
2
5

1
.2
9
E
-0
4

1
.0
0

8
.0
1
E
-0
8

2
.0
0

80
0

2
.3
2
E
-0
3

0.
9
8

1
.2
4
E
-0
5

1
.7
3

0
.0
1
2
5

6
.4
1
E
-0
5

1
.0
1

2
.0
0
E
-0
8

2
.0
0

16
00

1
.1
7
E
-0
3

0.
9
9

3
.5
3
E
-0
6

1
.8
0

0
.2

2
.1
8
E
-0
3

—
2
.4
8
E
-0
5

—
10
0

3
.5
4
E
-0
2

—
4
.4
3
E
-0
3

—
0
.1

1
.0
8
E
-0
3

1
.0
1

6
.1
7
E
-0
6

2
.0
1

20
0

2
.0
4
E
-0
2

0.
8
0

1
.0
8
E
-0
3

2
.0
4

0
.0
1

0
.0
5

5
.3
8
E
-0
4

1
.0
1

1
.5
4
E
-0
6

2
.0
0

40
0

1
.1
0
E
-0
2

0.
8
9

3
.1
5
E
-0
4

1
.7
7

0
.0
2
5

2
.6
8
E
-0
4

1
.0
1

3
.8
4
E
-0
7

2
.0
0

80
0

5
.7
8
E
-0
3

0.
9
3

8
.5
0
E
-0
5

1
.8
9

0
.0
1
2
5

1
.3
3
E
-0
4

1
.0
1

9
.6
1
E
-0
8

2
.0
0

16
00

2
.9
7
E
-0
3

0.
9
6

2
.2
3
E
-0
5

1
.9
3

0
.2

2
.9
1
E
-0
3

—
5
.1
7
E
-0
5

—
10
0

5
.7
8
E
-0
2

—
2
.3
8
E
-0
2

—
0
.1

1
.4
3
E
-0
3

1
.0
2

1
.2
7
E
-0
5

2
.0
3

20
0

2
.3
6
E
-0
2

1.
2
9

1
.2
0
E
-0
2

0
.9
9

0
.0
0
0
1

0
.0
5

7
.1
1
E
-0
4

1
.0
1

3
.1
6
E
-0
6

2
.0
0

40
0

1
.4
6
E
-0
2

0.
6
9

6
.5
2
E
-0
3

0
.8
8

0
.0
2
5

3
.5
4
E
-0
4

1
.0
1

7
.8
4
E
-0
7

2
.0
1

80
0

8
.2
8
E
-0
3

0.
8
2

3
.2
6
E
-0
3

1
.0
0

0
.0
1
2
5

1
.7
6
E
-0
4

1
.0
1

1
.9
6
E
-0
7

2
.0
0

16
00

4
.9
4
E
-0
3

0.
7
5

1
.4
6
E
-0
3

1
.1
6

176

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

D
en

si
ty

(a)

cell−centered ICE
IMPICE
Exact

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

V
el

oc
ity

(b)

cell−centered ICE
IMPICE
Exact

0 0.2 0.4 0.6 0.8 1
1.5

2

2.5

3

x

In
te

rn
al
−E

ne
rg

y

(c)

cell−centered ICE
IMPICE
Exact

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

P
re

ss
ur

e

(d)

cell−centered ICE
IMPICE
Exact

Figure A.4. Conservative cell-centered ICE and IMPICE numerical solutions for test P1 with
N=200 (cells) and Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.

The one-dimensional form of Equation (3.10) is given by:

pt + upx = −c2ρux. (A.24)

The time dependent quantity utx is eliminated using the partial time derivative of the pressure

equation (A.24) which is given by:

(pt + upx)t = − (
c2ρux

)
t
. (A.25)

From these equations Kashiwa et al. [68] state without derivation that linearization produces:

uxt = − u

c2ρ

(
Dp

Dt

)
x

, (A.26)

and so derive the potential equation for face-centered pressure:

177

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

D
en

si
ty

(a)

cell−centered ICE
IMPICE
Exact

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

x

V
el

oc
ity

(b)

cell−centered ICE
IMPICE
Exact

0 0.2 0.4 0.6 0.8 1
2

2.5

3

3.5

x

In
te

rn
al
−E

ne
rg

y

(c)

cell−centered ICE
IMPICE
Exact

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

P
re

ss
ur

e

(d)

cell−centered ICE
IMPICE
Exact

Figure A.5. Conservative cell-centered ICE and IMPICE numerical solutions for test P2 with
N=200 (cells) and Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.

(
px
ρ

)
x

=
u

c2ρ

(
Dp

Dt

)
x

− (uux)x . (A.27)

One discrete form of this is:

1

Δx2

⎡
⎢⎣p

n+ 1
2

j+1 − p∗
j+ 1

2

ρnj+1

−
p∗
j+ 1

2

− p
n+ 1

2
j

ρnj

⎤
⎥⎦ =

(
u

c2ρ

)n

j+ 1
2

1

ΔtΔx

(
δpnj+1 − δpnj

)

− 1

Δx2

[
unj+1(u

n
j+1 − u∗

j+ 1
2

)− unj (u
∗
j+ 1

2

− unj)
]
.

The face-centered pressure is then defined by:

p∗
j+ 1

2

=

(
ρnj p

n+1
2

j+1 +ρnj+1p
n+1

2
j

ρnj+1+ρnj

)
(A.28)

+Δx
Δt

(
u
c2ρ

)n
j+ 1

2

(
ρnj+1ρ

n
j

ρnj+1+ρnj

)(
δpnj+1 − δpnj

)
−
(

ρnj+1ρ
n
j

ρnj+1+ρnj

) [
unj+1(u

n
j+1 − u∗

j+ 1
2

)− unj (u
∗
j+ 1

2

− unj)
]
.

178

0 0.2 0.4 0.6 0.8 1
0

2

4

6

x

D
en

si
ty

(a)

cell−centered ICE
IMPICE
Exact

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

x

V
el

oc
ity

(b)

cell−centered ICE
IMPICE
Exact

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

x

In
te

rn
al
−E

ne
rg

y

(c)

cell−centered ICE
IMPICE
Exact

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

x

P
re

ss
ur

e

(d)

cell−centered ICE
IMPICE
Exact

Figure A.6. Conservative cell-centered ICE and IMPICE numerical solutions for test P3 with
N=800 (cells) and Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.

The above equation is used to estimate the face-centered pressure , p∗
j+ 1

2

, that will be used

in the Lagrangian phase. It is recognized in [68] that the second term in Equation (A.29) is

important in high-speed problems and the third term looks somewhat like a bulk viscosity.

These terms help to remove numerical noise, but introduces a diffusive effect in the method. A

limited version of (A.29) is given by:

p∗
j+ 1

2

=

⎛
⎝ρnj p

n+ 1
2

j+1 + ρnj+1p
n+ 1

2
j

ρnj+1 + ρnj

⎞
⎠ (A.29)

+ψ
Δx

Δt

(
u

c2ρ

)n

j+ 1
2

(
ρnj+1ρ

n
j

ρnj+1 + ρnj

)(
δpnj+1 − δpnj

)

−ψ

(
ρnj+1ρ

n
j

ρnj+1 + ρnj

)[
unj+1(u

n
j+1 − u∗

j+ 1
2

)− unj (u
∗
j+ 1

2

− unj)
]
,

where ψ is a “limiter” that is designed such that 0 ≤ ψ ≤ 1, with values tending towards zero

if the velocity field is smooth to remove numerical noise in the velocity. The DIVU limiter

179

0 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

35

x

D
en

si
ty

(a)

cell−centered ICE
IMPICE
Exact

0 0.2 0.4 0.6 0.8 1
−10

0

10

20

x

V
el

oc
ity

(b)

cell−centered ICE
IMPICE
Exact

0 0.2 0.4 0.6 0.8 1
0

100

200

300

x

In
te

rn
al
−E

ne
rg

y

(c)

cell−centered ICE
IMPICE
Exact

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

x

P
re

ss
ur

e

(d)

cell−centered ICE
IMPICE
Exact

Figure A.7. Conservative cell-centered ICE and IMPICE numerical solutions for test P4 with
N=200 (cells) and Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.

is introduced by Kashiwa and Lee in [67] is used for the purpose of limiting the velocity field

in calculating limited face-centered pressure p∗
j+ 1

2

. The limiter is required at the cell interface

and is a function of the face-centered velocity divergence Dn
j+ 1

2

and the face-centered velocity

divergences on either side of the face, D
n(+)

j+ 1
2

and D
n(−)

j+ 1
2

. We define these face-centered velocity

divergences as

Dn
j+ 1

2

= unj+1 − unj ; D
n(+)

j+ 1
2

= unj+2 − unj+1; D
n(−)

j+ 1
2

= unj − unj−1. (A.30)

Then the limiter is given by:

ψ =

⎧⎪⎨
⎪⎩

1−max

[
0,min

(
Dn

j+1
2

D
n(−)

j+1
2

,
Dn

j+1
2

D
n(+)

j+1
2

,
D

n(−)

j+1
2

Dn

j+1
2

,
D

n(+)

j+1
2

Dn

j+1
2

)]
if Dn

j+ 1
2

≤ 0.

0 otherwise.

(A.31)

In order to make sure the calculated face-centered pressure, p∗
j+ 1

2

, is bounded by the surrounding

cell-centered pressures at tn+ 1
2
, p

n+ 1
2

j and p
n+ 1

2
j+1 , its calculated value is clamped with respect to

180

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x

D
en

si
ty

(a)

cell−centered ICE
IMPICE
Exact

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

x

V
el

oc
ity

(b)

cell−centered ICE
IMPICE
Exact

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

x

In
te

rn
al
−E

ne
rg

y

(c)

cell−centered ICE
IMPICE
Exact

0 0.2 0.4 0.6 0.8 1
0

1

2

3

x

P
re

ss
ur

e

(d)

cell−centered ICE
IMPICE
Exact

Figure A.8. Conservative cell-centered ICE and IMPICE numerical solutions for test P5 with
N=200 (cells) and Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.

[pmin, pmax] where:

pmin = min(p
n+ 1

2
j , p

n+ 1
2

j+1); pmax = max(p
n+ 1

2
j , p

n+ 1
2

j+1). (A.32)

This means the face-centered pressure, p∗
j+ 1

2

, is set to pmin if
(
p∗
j+ 1

2

< pmin

)
and is set to pmax

if
(
p∗
j+ 1

2

> pmax

)
.

We compare the numerical results obtained from the IMPICE method and the pressure-

limited IMPICE method (PL-IMPICE) for the test cases in Table 6.1 in Figures A.9–A.12. The

PL-IMPICE method uses the implementation of the IMPICE method in Section 6.4 except that

the face-centered pressure, p∗
j+ 1

2

, is calculated using the limited version in (A.29). As shown

in Figures A.9–A.12, there is a slight difference in the numerical solutions of these methods

at the discontinuous regions. However, there are no nonphysical oscillations presented in the

numerical solutions of these two methods.

181

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

D
en

si
ty

(a)

IMPICE
PL−IMPICE
Exact

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

V
el

oc
ity

(b)

IMPICE
PL−IMPICE
Exact

0 0.2 0.4 0.6 0.8 1
1.5

2

2.5

3

x

In
te

rn
al
−E

ne
rg

y

(c)

IMPICE
PL−IMPICE
Exact

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

P
re

ss
ur

e

(d)

IMPICE
PL−IMPICE
Exact

Figure A.9. PL-IMPICE and IMPICE numerical solutions for test P1 with N=200 (cells)
and Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.

182

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

D
en

si
ty

(a)

IMPICE
PL−IMPICE
Exact

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

x

V
el

oc
ity

(b)

IMPICE
PL−IMPICE
Exact

0 0.2 0.4 0.6 0.8 1
2

2.5

3

3.5

x

In
te

rn
al
−E

ne
rg

y

(c)

IMPICE
PL−IMPICE
Exact

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

P
re

ss
ur

e

(d)

IMPICE
PL−IMPICE
Exact

Figure A.10. PL-IMPICE and IMPICE numerical solutions for test P2 with N=200 (cells)
and Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.

183

0 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

35

x

D
en

si
ty

(a)

IMPICE
PL−IMPICE
Exact

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

x

V
el

oc
ity

(b)

IMPICE
PL−IMPICE
Exact

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

x

In
te

rn
al
−E

ne
rg

y

(c)

IMPICE
PL−IMPICE
Exact

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

x

P
re

ss
ur

e

(d)

IMPICE
PL−IMPICE
Exact

Figure A.11. PL-IMPICE and IMPICE numerical solutions for test P4 with N=200 (cells)
and Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.

184

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

x

D
en

si
ty

(a)

IMPICE
PL−IMPICE
Exact

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

x

V
el

oc
ity

(b)

IMPICE
PL−IMPICE
Exact

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

x

In
te

rn
al
−E

ne
rg

y

(c)

IMPICE
PL−IMPICE
Exact

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

x

P
re

ss
ur

e

(d)

IMPICE
PL−IMPICE
Exact

Figure A.12. PL-IMPICE and IMPICE numerical solutions for test P5 with N=200 (cells)
and Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.

REFERENCES

[1] Acheson, D. J. Elementary fluid dynamics. Oxford Applied Mathematics and Computing
Science Series. Oxford: Clarendon Press 1990.

[2] Anderson, W. K., and Venkatakrishnan, V. Aerodynamic design optimization on
unstructured grids with a continous adjoint formulation. AIAA Paper, 97-0643, 1997.

[3] Ascher, U. M, and Petzold, L. R. Computer methods for ordinary differential equations
and differential algebraic equations. SIAM 1998.

[4] Bardenhagen, S. G. Energy conservation error in the material point method for solid
mechanics. Journal of Computational Physics 180 (2002), 383–403.

[5] Bardenhagen, S. G., and Kober, E. M. The Generalized Interpolation Material Point
Method. Computer Modeling in Engineering and Sciences 5 (2004), 477–495.

[6] Bardenhagen, S. G., Brydon, A. D., and Guilkey, J. E. Insight into the physics of
foam densification via numerical simulation. Journal of the Mechanics and Physics of Solids
53, 3 (2005), 597–617.

[7] Barth, T. Numerical methods and error estimation for conservation laws on structured
and unstructured meshes. Lecture notes, von Karman Institute for Fluid Dynamics, Series:
2003-04, Brussels, Belgium, March 2003.

[8] Becker, R., and Rannacher., R. An optimal control approach to a posteriori error
estimation in finite element methods. Acta Numerica 2001 10 (2001), 1-102.

[9] Benson, D. J. Eulerian finite element methods for the micromechanics of hetheterogeneous
materials: Dynamic prioritization of material interfaces. Comput. Methods Appl. Mech. Eng.
151 (1998), 343–360.

[10] Ben-Artzi, M., and Falcovitz., J. A second order Godunov-Type scheme for com-
pressible fluid dynamics. J. Comput. Phys. 55 (1984), 1–32.

[11] Ben-Artzi, M. Application of the Generalised Riemann Problem Method to 1-D com-
pressible flows with interfaces. J. Comput. Phys. 65 (1986), 170–178.

[12] Berzins, M. Nonlinear data-bounded polynomial approximations and their applications
in ENO methods. Numerical Algorithms 55, 2 (2010), 171–188.

[13] Berzins, M. Global error estimation in the method of lines for parabolic equations. SIAM
J. Sci. Statist. Comput. 9, 4 (1988), 687–703.

[14] Bouma, R. H. B., van der Heijden, A. E. D. M., Sewell, T. D., and Thompson,

D. L. (2011). Simulations of deformation processes in energetic materials, numerical simula-
tions of physical and engineering processes, Jan Awrejcewicz (Ed.), ISBN: 978-953-307-620-
1, InTech, Available from: http://www.intechopen.com/articles/show/title/simulations-of-
deformation-processes-in-energetic-materials.

186

[15] Brackbill, J. U., and Ruppel, H. M. FLIP: A method for adaptively zoned, particle-
in-cell calculations of fluid flow in two dimensions. Journal of Computational Physics 65
(1986), 314–343.

[16] Brackbill, J. U. The ringing instability in particle in cell calculations of low-speed flow.
Journal of Computational Physics 75 (1988), 469–492.

[17] Brackbill, J. U. Particle methods. International Journal for Numerical Metheds in
Fluids 47 (2005), 693–705.

[18] Brownlee, J., Levesley, J., Houston, P., and Rosswog., S. Enhancing SPH
using moving least-squares and radial basis functions. In Proc. A4A5 (Algorithms for
Approximation) , Chester UK, Jul. 18-22 2005, Springer, 2007.

[19] Brydon, A. D., Bardenhagen, S. G., Miller, E. A., and Seidler, G. T. Simula-
tion of the densification of real open-celled foam microstructures. Journal of the Mechanics
and Physics of Solids 53 (2005), 2638-2660.

[20] Burgess, D., Sulsky, D., and Brackbill, J. U. Mass matrix formulation of the FLIP
Particle in Cell method. Journal of Computational Physics 103 (1992), 1-15.

[21] Cao, Y., and Petzold, L. A posteriori error estimation and global error control for
ordinary differential equations by the adjoint method. SIAM J. Sci. Comput. 26, 2 (2004),
359–374.

[22] Casulli, V., and Greenspan, D. Pressure method for the numerical solution of
transient, compressible fluid flows. Int. J. Num. Meth. Fluids 4 (1984), 1001-1012.

[23] Chawla, M. M., and Subramanian, R. Regions of absolute stability of explicit Runge
Kutta Nystrom methods for y00 = f(x; y; y0). Journal of Computational and Applied
Mathematics 11 (1984), 259–266.

[24] Colella, P., Graves, D. T., Keen, B. J., and Modiano, D. A Cartesian Grid
Embedded Boundary Method for hyperbolic conservation laws. Tech. report LBNL-56420,
Lawrence Berkeley National Laboratory, Berkeley, CA 2004.

[25] Colella, P. A Direct Eulerian MUSCL Scheme for gas dynamics. SIAM J. Sci. Stat.
Comput. 6 (1985), 104–117.

[26] Coirier, W., and Powell, K. An accuracy assessment of Cartesian-mesh approaches
for the Euler equations. J. Comput. Phys. 117 (1995), 121–131.

[27] Debrabant, K., and Lang, J. On global error estimation and control for parabolic
equations. Report No. 2512 (2007), Technische Universitt Darmstadt, Department of Math-
ematics.

[28] Davis, S. F. Simplified Second-order Godunov-Type methods. SIAM J. Sci. Stat. Comput.
9, 3 (1988), 445-473.

[29] Diskin, B., and Thomas, J. L. Comparision of Node-Centered and Cell-Centered
Unstructured Finite-Volume Discretizations: Inviscid Fluxed 48th AIAA Aerospace Sciences
Meeting Including the New Horizons Forum and Aerospace Exposition 4 - 7 January 2010,
Orlando, Florida.

[30] Dukowicz, J. K., and Kodis, J. W. Accurate Conservative Remapping (Rezoning)
for Arbitrary Lagrangian-Eulerian Computations. SIAM J. Sci. Stat. Comput. 8, 3 (1987),
305-321.

187

[31] Duncan, C., Harman, T., and Guilkey, J. Aerodynamics of Vocal Fold Movement: A
Novel Fluid-Structure Interaction Model. Proceedings 60th Annual Meeting of the Division
of Fluid Dynamics Volume 52 Number 12, Salt Lake City, UT, 18-20 Nov 2007.

[32] Enright, W. H., A New Error-Control for Initial Value Solvers. Appl. Math. Comput. 31
(1989), 588–599.

[33] Einfeldt, B. On Godunov-Type Methods for Gas Dynamics. SIAM J. Numer. Anal. 25,
2 (1988), 294-318.

[34] Estep, D. J., Larson, M. G., and Williams, R. D. Estimating the Error of Numerical
Solutions of Systems of Reaction-Diffusion Equations. Mem. Amer. Math. Soc 696 (2000),
1–109.

[35] Evans, M. W., and Harlow, F. H. The Particle-in-Cell Method for Hydrodynamic
Calculations. Los Alamos Scientific Laboratory report LA-2139 (November 1957).

[36] Falcovitz, J., Alfandary, G., and Hanoch, G. A two-dimensional conservation laws
scheme for compressible flows with moving boundaries. J. Comput. Phys. 138 (1997), 83-102.

[37] Forrer, H., and Jeltsch, R. A high-order boundary treatment for Cartesian-grid
methods. J. Comput. Phys. 140 (1998), 259–277.

[38] Gao, T., Tseng, Y.-H., and Lu, X.-Y. An improved hybrid Cartesian/immersed
boundary method for fluid-solid flows. Int. J. Numer. Meth. Fluids 55 (2007), 1189-1211.

[39] Gaskell, P. H., and Lau, A. K. C. Curvature-Compensated Convective Transport:
SMART, a New Boundedness-Preserving Transport Algorithm. Int. J. Num. Meth. Fluids
8, 6 (1988), 617–641.

[40] Germain, J. D. d. S., McCorquodale, J., Parker, S. G., and Johnson, C. R. Uin-
tah: A massively parallel problem solving environment. In HPDC ’00: Proceedings of the 9th
IEEE International Symposium on High Performance Distributed Computing(Washington,
DC, USA). IEEE Computer Society (2000), 33-42.

[41] Giles, M. B., and Pierce, N. A. Adjoint error correction for integral outputs. Error
Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics, edited
by T. Barth and H. Deconinck, Vol. 25 of Lecture Notes in Computational Science and
Engineering, Springer-Verlag, 2002.

[42] Greenough, J. A., and Rider, W. J. A quantitative comparison of numerical methods
for the compressible Euler equations: fifth-order WENO and piecewise-linear Godunov.
Journal of Computational Physics 196 (2004), 259–281.

[43] Grigoryev, Y. N., Vshivkov, V. A., and Fedoruk, M. P. Numerical Particle in Cell
Methods Theory and Applications. VSP, Utrecht, Boston, 2002.

[44] Guilkey, J. E., Harman, T., Xia, A., Kashiwa, B., and McMurtry, P.A. An
Eulerian-Lagrangian Approach for Large Deformation Fluid Structure Interaction Problems,
Part 1: Algorithm Development. WIT Press (2003), 143-156.

[45] Guilkey, J. E., Harman, T., and Banerjee, B. An Eulerian-Lagrangian Approach for
Simulating Explosions of Energetic Devices. Computers and Structures 85 (2007), 660–674.

[46] Harlow F. H. A Machine Calculation Method for Hydrodynamic Problems. Los Alamos
Scientific Laboratory report LAMS-1956 (November 1955).

188

[47] Harlow, F. H., and Welch, J. E. Numerical Calculation of Time-Dependent Viscous
Incompressible Flow. Phys. Fluids 8, 2182 (1965); Selected Papers in Physics,” Vol. VI
(The Physical Society of Japan, Tokyo, 1971).

[48] Harlow, F. H., and Welch, J. E. Numerical Study of Large Amplitude Free Surface
Motions. Phys. Fluids 9 (1966), 842–851.

[49] Harlow, F. H., and Amsden, A. A. Numerical Calculation of Almost Incompressible
Flow. Journal of Computational Physics 3 (1968), 80–93.

[50] Harlow, F. H., and Amsden, A. A. A Numerical Fluid Dynamics Calculation Method
for All Flow Speeds. Journal of Computational Physics 8 (1971), 197-213.

[51] Harlow, F. H., and Amsden, A. A. Numerical Calculation of Multiple Fluid Flow.
Journal of Computational Physics 17 (1975), 19–52.

[52] Harman, T., Guilkey, J. E., Schmidt, J., Kashiwa, B. A., and McMurtry, P.

An Eulerian-Lagrangian approach for large deformation fluid structure interaction problems,
part 2: Multi-physics simulations. Proceedings of the Second International Conference on
Fluid Structure Interaction, Cadiz, Spain 2003.

[53] Harten, A., Lax, P. D., and van Leer, B. On Upstream Differencing and Godunov-
Type Schemes for Hyperbolic Conservation Laws. SIAM Rev. 25 (1983), 35–61.

[54] Harten, A., and Osher, S. Uniformly High-Order Accurate Nonoscillatory Schemes I.
SIAM J. Numer. Anal. 24 (1987), 279–309.

[55] Helzel, C., Berger, M. J., and Leveque, R. J. A High-Resolution Rotated Grid
Method for Conservation Laws with Embedded Geometries. SIAM J. Sci. Comput 26, 3
(2005), 785-809.

[56] Henderson, T., McMurtry, P., Smith, P., Voth, G., Wright, C., and Pershing,

D. Simulating accidental fires and explosions. Computing in Science and Engineering 2
(1994), 64–76.

[57] Hickernel, F. J. A Generalized Discrepancy and Quadrature Bound. Mathematics of
Computation 67 (1998), 299–322.

[58] Higham, D. J. Global Error versus Tolerance for Explicit Runga-Kutta Methods. IMA
Journal of Numerical Analysis 11 (1991), 457–480.

[59] Horley, P., Vieira, V., Gonzalez-Hernandez, J., Dugaev, V., and Barnas, J.

(2011). Numerical Simulations of Nano-Scale Magnetization Dynamics, Numerical Simula-
tions of Physical and Engineering Processes, Jan Awrejcewicz (Ed.), ISBN: 978-953-307-
620-1, InTech, Available from: http://www.intechopen.com/articles/show/title/numerical-
simulations-of-nano-scale-magnetization-dynamics

[60] Hou, T. Y., and LeFloch, P. G. Why Nonconservative Schemes Converge to Wrong
solutions: Error Analysis. Mathematics of Computation 62 (1994), 497–530.

[61] Hu, C., and Shu, C.-W. Weighted essentially non-oscillatory schemes on triangular
meshes. Journal of Computational Physics 150 (1999), 97–127.

[62] Issa, R. I., Gosman, A. D, and Watkins, A. P. The Computation of Compressible
and Incompressible Flow of Fluid with a Free Surface. Phys. Fluids 8, 12 (1965), 2182–2189.

189

[63] Issa, R. I. Solution of the Implicitly Discretised Fluid Flow Equations by Operator-
Splitting. Journal of Computational Physics 62 (1986), 40–65.

[64] Jameson, A., Pierce, N. A., and Martinelli, L. Optimum aerodynamic design using
the Navier-Stokes equations. AIAA Paper, 97-0101, 1997.

[65] Jameson, A. Aerodynamic design via control theory. J.Sci.Comput. 3 (1988), 233–260.

[66] Jameson, A., and Reuther, J. Control theory based airfoil design using the Euler
equation. AIAA Paper, 94-4272-CP, 1994.

[67] Kashiwa B. A., and Lee W. H. Comparisons between the Cell-Centered and Staggered
Mesh Lagrangian Hydrodynamics. In Advances in the Free Lagrange Method, Trease HE,
Fritz MJ, Crowley WP (eds), Springer Verlag, Berlin 1991; 277-288

[68] Kashiwa, B. A., Padial, N. T., Rauenzahn, R. M., and Vanderheyden, W. B. A
Cell-Centered ICE Method for Multiphase Flow Simulations. Proceedings ASME Symposium
on Numerical Methods for Multiphase Flows, Lake Tahoe, NV, 19-23 June 1994.

[69] Kashiwa, B. A. AMultified Model and Method for Fluid-Structure Interaction Dynamics.
Los Alamos National Laboratory, Los Alamos 2001; Technical Report LA-UR-01-1136.

[70] Kim, J. MPM Masters Project report unpublished. 2004

[71] Kim, K. H., and Kim, C. Accurate, efficient and monotonic numerical methods for multi-
dimensional compressible flows. Part II: Multi-dimensional limiting process. J. Comput.
Phys. 208 (2005), 570–615.

[72] Kwatra, N., Su, J., Gretarsson, J., and Fedkiw, R. A method for avoiding the
acoustic time step restriction in compressible flow. Preprint submitted to JCP.

[73] Lang, J., and Verwer, J. G. On global error estimation and control for initial value
problems. SIAM J. Sci. Comput. 29 (2007), 1460–1475.

[74] Lax, P. D. Weak Solutions of Nonlinear Hyperbolic Equations and their Numerical
Computation. Commun. Pure Appl. Math. 7 (1954), 159–193.

[75] Lax, P. D., and Wendroff, B. Systems of Conservation Laws. Communications in
Pure and Applied Mathematics 13 (1960), 217–237.

[76] Li, S., and Petzold, L. Adjoint Sensitivity Analysis for time-dependent Partial Differ-
ential Equations with Adaptive Mesh Refinement. J. Comput. Phys. 198 (2004), 310–325.

[77] Li, S., and Liu, W. K. Meshfree particle methods and their applications. Applied
Mechanics Review 54 (2002), 1–34.

[78] Lin, C., and Dengbin, T. Navier-Stokes Characteristic Boundary Conditions for Simu-
lations of Some Typical Flows. Applied Mathematical Sciences 18, 4 (2010), 879-893.

[79] Livne, O. E. ICE Algorithm and the Davis Advection Scheme. SCI Institute, University
of Utah 2006; Technical Report No. UUSCI-2006-006.

[80] Livne, O. E. ICE Algorithm for the Shocktube Problem. SCI Institute, University of
Utah 2006; Technical Report No. UUSCI-2006-007.

[81] Logg, A. Multi-Adaptive Error Control for ODEs. Technical Report 98/20(1998), Oxford
University, England.

190

[82] Luitjens, J., Guilkey, J., Harman, T., Worthen, B., and Parker, S. G. Adaptive
Computations in the Uintah Framework. In Advanced Computational Infastructures for
Parallel/Distributed Adapative Applications, Ch. 1, Wiley Press, 2010.

[83] Ma, S., Zhang, X., and Qiui, X. M. Comparison study of MPM and SPH in modeling
hypervelocity impact problems. International Journal of Impact Engineering 36 (2009),
272–282.

[84] MacCormack, R. W. The Effect of viscosity in hypervelocity impact cratering. AIAA
Paper (1969), 69–354.

[85] MAcNeice, P. Particle mesh techniques. NASA Contractor Report 4666, Hughes STX,
Goddard Space Center, Greenbelt MD 20771. 1995

[86] Martín, M. P., Taylor, E. M., Wu, M., and Weirs, V. G. A Bandwidth-optimized
WENO Scheme for the Effective Direct Numerical Simulation of Compressible Turbulence.
Journal of Computational Physics 220 (2006), 270–289.

[87] Mehdizadeh Khalsaraei, M. An Improvement on the Positivity Results for 2-stage
Explicit Runge-Kutta Methods. Journal of Computational and Applied Mathematics 235
(2010), 137–143.

[88] Meng, Q., Luitjens, J., and Berzins, M. Dynamic task scheduling for the uintah
framework. In Proceedings of the 3rd IEEE Workshop on Many-Task Computing on Grids
and Supercomputers (MTAGS10) (Washington DC, USA,2010), IEEE Computer Society.

[89] Monaghan, J. J., and Gingold, R. A. Shock Simulation by the Particle Method SPH.
Journal of Computational Physics 52 (1983), 374–389.

[90] Monaghan, J. J., and Pongracic, H. Artificial Viscosity for Particle Methods. Applied
Numerical Mathematics 1 (1985), 187–194.

[91] Moon, K.-S., Szepessy, A., Tempone, R., and Zouraris, G. E. Adaptive Ap-
proximation of Differential Equations Based on Global and Local Errors. TRITA-NA-0006
(2000), NADA, KTH, Sweden.

[92] Moon, K.-S., Szepessy, A., Tempone, R., and Zouraris, G. E. A Variational Princi-
ple for Adaptive Approximation of ordinary Differential Equations. Numerische Mathematik
93 (2003), 131–152.

[93] Moon, K.-S., Szepessy, A., Tempone, R., and Zouraris, G. E. Convergence Rates
for Adaptive Approximation of ordinary Differential Equations. Numerische Mathematik 93
(2003), 99–129.

[94] Nairn, J. A. Numerical simulations of transverse compression and densification in wood.
Wood and Fiber Science 38, 4 (2006), 576–591.

[95] Parker, S. G. A component-based architecture for parallel multi-physics pde simulation.
Future Generation Computer Systems 22, 1 (2006), 204–216.

[96] Parker, S. G., Guilkey, J., and Harman, T. A component-based parallel infrastruc-
ture for the simulation of fluid structure interaction. Engineering with Computers 22, 3-4
(2006), 277–292.

191

[97] Parker S. G. A Component-Based Architecture for Parallel Multi-physics PDE Simu-
lation. In International Conference on Computational Science (ICCS2002) Workshop on
PDE Software April 21-24 2002. The Netherlands. Proceedings, Part III MA. Sloot, CJ
Kenneth Tan, JJ Dongarra, AG Hoekstra(Eds). Lecture Notes in Computer Science 2002;
2331 Springer-Verlag GmbH, ISSN: 0302-9743.

[98] Pember, R., Bell, J., Colella, P., Crutchfield, W., and Welcome, M. L.

An adaptive Cartesian grid method for unsteady compressible flow in irregular regions. J.
Comput. Phys. 120 (1995), 278–304.

[99] Poinsot, T. J., and Veynante, D. Theoretical and Numerical Combustion. Edwards,
2001; ISBN 1-930217-05-6.

[100] Qiu, J., and Shu, C.-W. A Comparision of Troubled-Cell Indicators for Runge-Kutta
Discontinuous Galerkin Methods using Weighted Essentially Nonoscillaroty Limiters. SIAM
J. Sci. Comput. 27, 3 (2005), 995–1013.

[101] Quirk, J. An alternative to unstructured grids for computing gas dynamic flows around
arbitrarily complex twodimensional bodies. Comput. & Fluids 23 (1994), 125–142.

[102] Reinelt, D., Laurs, A., and Adomeit, G. Ignition and Combustion of a packed bed
in a Stagnation Point Flow. Combustion and Flame 99, 2 (1994), 395–403.

[103] Roe, P. L. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes.
J. Comput. Phys. 43 (1981), 357-372.

[104] Shampine, L. F. Error Estimation and control for ODEs. Journal of Sci. Comput. 25, 1
(2005), 3–16.

[105] Shampine, L. F. Local Error Estimation by Doubling. Computing 34 (1985), 179–190.

[106] Shu, C.-W., and Osher, S. J. Efficient Implementation of Essentially Non-Oscillatory
Shock Capturing Schemes. J. Comput. Phys. 77 (1988), 439–471.

[107] Shu, C.-W., and Osher, S. J. Efficient Implementation of Essentially Nonoscillatory
Shock Capturing Schemes II. J. Comp. Phys. 83 (1989), 32–78.

[108] Sod, G. A. A survey of several difference methods for systems of nonlinear hyperbolic
conservation laws. Journal of Computational Physics 27 (1978), 1–31.

[109] Steffen, M. Analysis-guided Improvements of the Material Point Method. PhD disser-
tation, University of Utah, 2008.

[110] Steffen, M., Kirby, R. M., and Berzins, M. Analysis and reduction of quadrature
errors in the material point method (MPM). International Journal for Numerical Methods
in Engineering 76, 6 (2008), 922–948. DOI:10.1002/nme.2360.

[111] Steffen, M., Wallstedt, P. C., Guilkey, J. E., Kirby, R. M., and Berzins, M.

Examination and Analysis of Implementation Choices within the Material Point Method
(MPM). In Computer Modeling in Engineering and Sciences 32 (2008), 107–127.

[112] Steffen, M., Kirby, R. M., and Berzins, M. Decoupling and Balancing of Space
and Time Errors in the Material Point Method (MPM). International Journal for Numerical
Methods in Engineering 82, 10 (2010), 1207–1243.

[113] Sulsky, D., Chen, Z., and Schreyer, H. L. A particle method for history-dependent
materials. Computer Methods in Applied Mechanics and Engineering 118 (1994), 179-196.

192

[114] Sulsky, D., Zhou, S.-J., and Schreyer, H. L.Application of a particle-in-cell method
to solid mechanics. Computer Physics Communications 87 (1995), 236–252.

[115] Sulsky, D., Schreyer, H., Peterson, K., Kwok, R., and Coon, M. Using the
material point method to model sea ice dynamics. J. Geophys. Res. 112 (2007). C02S90.
DOI:10.1029/2005JC003329.

[116] Sweby, P. K. High Resolution Schemes using Flux-Limiters for Hyperbolic Conservation
Laws. SIAM J. Num. Anal. 21 (1984), 995–1011.

[117] Swensen, D. A., Denison, M. K., Harman, T., Guilkey, J., and Goetz, R. A
Software Framework for Blast Event Simulation. Reaction Engineering International, Salt
Lake City, UT.

[118] Thompson, K. W. Time Dependent Boundary Conditions for Hyperbolic Systems. J.
Comput. Phys. 68, 1 (1987), 1–24.

[119] Titarev, V. A., and Toro, E. F. ADER schemes for three-dimensional nonlinear
hyperbolic systems. Journal of Computational Physics 204 (2005), 715–736.

[120] Toro, E. F. Riemann Solvers and Numerical Methods for Fluids Dynamics: A Practical
Introduction, third ed. Springer, 2008; ISBN 978-3-540-25202-3.

[121] Toro, E. F., Hidalgo, A., and Dumbser, M. FORCE schemes on unstructured
meshes I: Conservative Hyperbolic Systems. Journal of Computational physics 228 (2009),
3368-3389.

[122] Tran, L.-T., and Berzins, M. Improved Production Implicit Continuous-fluid Eulerian
Method for Compressible Flow Problems in Uintah. International Journal For Numerical
Methods In Fluids 69, 5 (2012), 926–965.

[123] Tran, L.-T., Kim, J., and Berzins, M. Solving Time-Dependent PDEs using the
Material Point Method, A Case Study from Gas Dynamics. International Journal for
Numerical Methods in Fluids 62, 7 (2009), 709–732.

[124] Tucker, P. G., and Pan, Z. A Cartesian Cut Cell Method for Incompressible Viscous
Flow. Applied Mathematics Modelling 24 (2000), 591-606.

[125] Vallis, G. K. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale
Circulation. Cambridge University Press 2006; ISBN 978-0-521-84969-2.

[126] Van Albada, G. D., Van Leer, B., and Roberts, W. W. A Comparative Study of
Computational Methods in Cosmic Gas Dynamics. Astron. Astrophysics 108 (1982), 76–84.

[127] VanderHeyden, W. B., and Kashiwa, B. A. Compatible Fluxes for Van Leer
Advection. Journal of Computational Physics 146 (1998), 1–28.

[128] van der Heul, D. R., Vuik, C., and Wesseling, P. A Conservative Pressure-
Correction Method for Flow at All Speeds. Computers and Fluids 3 (2003), 1113–1132.

[129] Van Leer, B. Towards the Ultimate Conservative Difference Scheme II. Monotonicity
and Conservation Combined in a Second Order Scheme. J. Comp. Phys. 14 (1974), 361–370.

[130] Van Leer, B. Towards the Ultimate Conservative Difference Scheme III. Upstream-
Centered Finite-Difference Schemes for Ideal Compressible Flow. J. Comp. Phys. 23 (1977),
263–275.

193

[131] Van Leer, B. Towards the Ultimate Conservative Difference Scheme V. A Second Order
Sequel to Godunov’s Method. J. Comp. Phys. 32 (1979), 101–136.

[132] Van Leer, B. On the Relation Between the Upwind-Differencing Schemes of Godunov,
Enguist-Osher and Roe. SIAM J. Sci. Stat. Comput. 5 (1985), 1–20.

[133] Venditti, D. A, and Darmofal, D. L. Adjoint Error Estimation and Grid Adaptation
for Functional Outputs: Application to Quasi-One-Dimensional Flow. J. Comput. Phys. 164
(2000), 204–227.

[134] Versteeg, H., and Malalasekera, W. An introduction to Computational Fluid
Dynamics: The Finite Volume Method, second ed. Prentice-Hall, 2007.

[135] Vshivkov, V. A. The approximation properties of the particles-in-cells method. Com-
putational Mathematics and Mathematical Physics 36, 4 (1996), 509–515.

[136] Waterson, N. P., and Deconinck, H. A Unified Approach to the Design and Appli-
cation of Bounded Higher-Order Convection Schemes. In Numerical Methods in Laminar
and Turbulent Flows, Proceedings of the Ninth International Conference 1995; 9(1):203-214.

[137] White, F. M. Fluid Mechanics, fifth ed. McGraw-Hill, 2003; ISBN 0-07-119911-X.

[138] Woodward, P., and Colella, P. The Numerical Simulations of Two-Dimensional
Fluid Flow with Strong Shocks. J. Comput. Phys. 54 (1984), 115–173.

[139] Ye., T., Mittal, R., Udaykumar, H. S., and Shyyy., W. An Accurate Cartesian
Grid Method for Viscous Incompressible Flows with Complex Immersed Boundaries. Journal
of Computational Physics 156 (1999), 209–240.

[140] York, A. R., Sulsky, D., and Schreyer, H. L. Fluid-membrane interaction based
on the material point method. International Journal for Numerical Methods in Engineering
48 (2000), 901–924.

