NUMERICAL STUDY AND IMPROVEMENT
OF THE METHODS IN UINTAH
FRAMEWORK: THE MATERIAL

POINT METHOD AND THE
IMPLICIT CONTINUOUS-
FLUID EULERIAN
METHOD

by

Lethuy Thi Tran

A dissertation submitted to the faculty of
The University of Utah
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computing

School of Computing
The University of Utah

December 2012

Copyright (© Lethuy Thi Tran 2012

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Lethuy Thi Tran

has been approved by -the following supervisory committee members:

Martin Berzins , Chair 10/08/2012
Date Approved
Robert M. Kirby , Member 10/04/2012
Date Approved
Christopher R. Johnson , Member 10/04/2012
Date Approved
Todd Harman , Member 10/05/2012
Date Approved
Andrej V. Cherkaev , Member 10/04/2012
Date Approved
and by Alan Davis , Chair of
the Department of School of Computing

and by Charles A. Wight, Dean of The Graduate School.

ABSTRACT

The Material Point Method (MPM) and the Implicit Continuous-fluid Eulerian method
(ICE) have been used to simulate and solve many challenging problems in engineering applica-
tions, especially those involving large deformations in materials and multimaterial interactions.
These methods were implemented within the Uintah Computational Framework (UCF) to
simulate explosions, fires, and other fluids and fluid-structure interaction. For the purpose
of knowing if the simulations represent the solutions of the actual mathematical models, it
is important to fully understand the accuracy of these methods. At the time this research
was initiated, there were hardly any error analysis being done on these two methods, though
the range of their applications was impressive. This dissertation undertakes an analysis of
the errors in computational properties of MPM and ICE in the context of model problems
from compressible gas dynamics which are governed by the one-dimensional Euler system. The
analysis for MPM includes the analysis of errors introduced when the information is projected
from particles onto the grid and when the particles cross the grid cells. The analysis for ICE
includes the analysis of spatial and temporal errors in the method, which can then be used to
improve the method’s accuracy in both space and time. The implementation of ICE in UCF,
which is referred to as Production ICE, does not perform as well as many current methods for
compressible flow problems governed by the one-dimensional Euler equations — which we know
because the obtained numerical solutions exhibit unphysical oscillations and discrepancies in the
shock speeds. By examining different choices in the implementation of ICE in this dissertation,
we propose a method to eliminate the discrepancies and suppress the nonphysical oscillations in
the numerical solutions of Production ICE — this improved Production ICE method (IMPICE) is
extended to solve the multidimensional Euler equations. The discussion of the IMPICE method
for multidimensional compressible flow problems includes the method’s detailed implementation
and embedded boundary implementation. Finally, we propose a discrete adjoint-based approach

to estimate the spatial and temporal errors in the numerical solutions obtained from IMPICE.

CONTENTS

ABST RACT . .. iii
LIST OF FIGURES e ix
LIST OF TABLES e xiii
ACKNOWLEDGEMENTS e XV
CHAPTERS
1. INTRODUCTION e e 1
1.1 Contributions 2
1.2 Contento 4
2. BACKGROUND AND RELEVANT WORK 5
3. COMPRESSIBLE FLOW PROBLEMS 10
3.1 The Multidimensional Euler Equations. 11
3.2 The One-Dimensional Euler Equations 14
3.3 Boundary Conditions 16
3.3.1 Examples of Numerical Boundary Conditions 16
3.3.2 Euler Characteristic Boundary Condition (ECBC) 17
4. ADJOINT-BASED ERROR ESTIMATION

FOR NUMERICAL SOLUTIONS OF
PARTIAL DIFFERENTIAL

EQUATIONS .. 20
4.1 Errors in Numerical Solutions to Partial
Differential Equations 22
4.2 Adjoint-based Error Estimation for ODEs 23
4.3 Adjoint-based Error Estimation for
Numerical Solutions of PDEs 26
4.4 Error Norms, Error Indices,
and Error Notations 28
4.4.1 Error NOTISot 28
4.4.2 Error Indices 29
4.4.3 Error Notations for System of Fuler Equations 29
4.5 Examples of the Adjoint-based Approach
to the Global Error Estimate 29
4.5.1 Backward Differentiation Formula Method for
Method-of-lines PDEs 29

4.5.2 Residual Error and Global Error Estimation using
Approach of Cao and Petzold [21] 31

4.5.3 Estimation of the Local Error

and the Truncation Error 34

4.5.3.1 Estimation of the Local Error using
Residual Error Sampling. 34

4.5.3.2 Truncation Error Estimation by

Richardson Extrapolation............ 35
4.5.4 Numerical Results 36
4.5.4.1 Adjoint-based Global Error Estimate for ODEs.................. 36
4.5.4.2 Adjoint-based Global Error Estimate for PDEs 39
4.6 SUMIMATY .« © © ottt ettt e e e e e e e e e e 40

SOLVING TIME-DEPENDENT PDES
USING THE MATERIAL POINT

METHOD . .. 41
5.1 MPM Spatial Discretization 42
5.1.1 Particle Basis Functions 42
5.1.2 Grid Basis Functions. 43
5.1.3 Mapping from Particles to Grid 44
5.2 MPM Computational Method 45
5.2.1 Mesh and Particle Movement per Time Step 46
5.3 Application to Gas Dynamics 47
5.3.1 Particle Energy, Density and Pressure Update 48
5.3.2 Positivity, Overshoots and Stability 50
5.3.3 Particle Redistribution 51
5.4 Gas Dynamics Computational Experiments 51
5.4.1 Problem Description 51
5.4.2 Initial Uniform Particle Distribution 52
5.4.3 Alternative Particle Distribution 55
5.5 Time Integration Error and
Grid Crossing by Particles 56
5.5.1 Time Integration Discontinuities
Arising from Grid Crossing 56
5.5.2 Time Integration Errors in Velocity 58
5.5.3 Time Integration Errors in Spatial Position 59
5.6 Spatial Error Estimation 60
5.6.1 Hickernell’s Quadrature Error Bound 61
5.6.2 Ringing Instability 63
5.6.3 Mass Projection Error. 63
5.6.4 Momentum Projection Error. 64
5.6.5 Velocity Projection Error 65
5.6.6 Acceleration Projection Error 68
5.6.7 Velocity Gradient Error 70
5.7 Combining the Error Estimate Results 70
5.8 SUIMIMNATY . . oo vttt e e e e e 72

THE IMPROVED PRODUCTION IMPLICIT
CONTINUOUS-FLUID EULERIAN METHOD

FOR COMPRESSIBLE FLOW PROBLEMS 73
6.1 Cell-centered ICE by Kashiwa et al. [68] 75
6.1.1 General Cell-centered ICE 75
6.1.1.1 The Primary Phase. i 76

6.1.1.2 The Lagrangian Phase 76

6.1.1.3 The Eulerian Phase i 76
6.1.1.4 State Variables Update Phase 76
6.1.2 The Implementation of Cell-centered ICE
by Kashiwa et al. [68] 7
6.2 Production ICE in the Uintah
Computational Framework 79
6.2.1 The Primary Phase 79
6.2.2 The Lagrangian Phase 80
6.2.3 The Eulerian Phase. 80
6.2.4 State Variables Update Phase........... 81
6.3 CFL Condition e 81
6.4 IMPICE Method e 82
6.4.1 Numerical Discussion 82
6.4.2 IMPICE Implementation, 84
6.4.3 Application of Slope Limiters
in the IMPICE Method 86
6.5 Numerical Results and Comparisons 89
6.6 Accuracy in Space and Time. 93
6.6.1 Temporal Error 93
6.6.2 Spatial Error 97
6.7 Higher-order Accuracy in Time. 99
6.8 Higher-order Advection 101
6.9 SUMMATY . . . o ottt 109

THE IMPROVED PRODUCTION IMPLICIT
CONTINUOUS-FLUID EULERIAN METHOD
FOR COMPRESSIBLE FLOW PROBLEMS
IN MULTIDIMENSIONAL SPACE AND

ITS EMBEDDED BOUNDARY

TREATMENT . .. e e 110
7.1 Spatial Discretization, CFL Condition
and Adaptive Time Step 111
7.1.1 Spatial Discretization and Notations 111
7.1.2 CFL Condition and Adaptive Time Step 111
7.2 The HLL Solver for x-split
Riemann Problem 112
7.3 Method Description. 114
7.3.1 The Primary Phase 114
7.3.2 The Lagrangian Phase 118
7.3.3 The Eulerian Phase. 118
7.3.4 State Variables Update Phase. 119
7.4 High Order EXtensions 119
7.5 Boundary Conditions 122
7.5.1 The Euler Characteristic Boundary
Condition Implementation 123
7.5.2 Embedded Boundary Method 124
7.5.2.1 Limited Cell-Centered Gradients 125
7.5.2.2 Face-centered Pressure Gradient
of Cut Faces 127

vi

7.5.2.3 Face-centered Fluxing Velocity and Pressure

of Cut Faces 128
7.5.2.4 Face-centered Fluxing Velocity and Pressure
of Boundary Faces 128
7.5.2.5 Higher Order Advection 130
7.5.2.6 Merge Very Small Cells 130
7.6 Numerical Results 131
7.6.1 Testing Problems 131
7.6.1.1 Modified Shock Tube Problem 131
7.6.1.2 Two-dimensional Explosion Problem 132
7.6.1.3 Two-dimensional Explosion Problem with
a Large Jump in Pressure 132
7.6.1.4 Shock Reflection from a Wedge Problem 132
7.6.2 Numerical Results of the Multidimensional
IMPICE Method with First-order Advection 133
7.6.3 Numerical Results of the Multidimensional
IMPICE Method with Second-order Advection 134

7.7 Accuracy of the IMPICE Method for
Solving the Advection Equation on

an Embedded Boundary 137
T.7.1 Advection 1. e 138
T.7.2 Advection 2. e 138
7.7.3 Numerical Results e 139

7.8 ConcCluSiOnS oo e 139

ADJOINT ERROR ESTIMATE FOR THE
IMPROVED PRODUCTION IMPLICIT
CONTINUOUS-FLUID EULERIAN

METHOD ... 142
8.1 Imtroduction e 142
8.2 Adjoint Problem Formulation for the
One-dimensional IMPICE Method 144
8.2.1 Partial Derivatives of Variables at Cell-centers. 145
8.2.2 Partial Derivatives of Limited Local Reconstructed
Variables at Face-centers. e 145
8.2.3 Partial Derivatives of the HLL Riemann
Solution at Face-centers 148
8.2.4 Partial Derivatives of Fluxing
Velocities at Face-centers e 149
8.2.5 Partial Derivatives of Pressures at Face-centers 150
8.2.6 Partial Derivatives of Advected
Quantities at Face-centers. 151
8.3 Local Error and Truncation
Error Estimation e 152
8.3.1 Local Error e 152
8.3.2 Truncation Error. e 153
8.4 Numerical Results 154

8.4.1 Numerical Results of Adjoint-based Error
Estimate for the One-dimensional IMPICE
Method with First-order Advection 154

vii

8.4.2 Numerical Results of Adjoint-based Error
Estimate for the One-dimensional IMPICE

Method with Second-order Advection. 160

8.5 SUMIMATY . . .o oo 161

9. CONCLUSIONS AND FUTURE WORK 165
APPENDIX .. 168
REFERENCES . .. 185

viii

5.1
5.2
5.3

5.4

5.5

5.6

5.7

5.8

5.9
6.1

6.2

6.3

6.4

LIST OF FIGURES

MPM spatial discretization in one-dimensional space.
Piecewise-linear basis functions.

Numerical solutions for Sod’s problem in Section 5.4.1 using our variation of MPM
for gas dynamics at T, = 0.2 with 200 cells;
(a)density: ||ge?(T)||r, = 6.4 x 1073, ||ge”(T)||L, = 1.52 x 1072
(b)velocity: |lge*(T)|r, = 1.85 x 1072, ||ge“(T)||L, =580 x 1072

Numerical solutions for Sod’s problem in Section 5.4.1 using our variation of MPM
for gas dynamics at T, = 0.2 with the smoothing process applied by adding
viscosity-like terms described in Section 5.3.2;
(a)density: ||ge’(T)||L, = 4.3 x 1073, |ge”(T)||1, = 1.05 x 102
(b)velocity: ||ge®(T)||r, = 1.47 x 1072, ||ge*(T)||z, = 5.07 x 1072

Examination of the relationship between ||ge”(T)|| 1, and the number of particles
for our variation of MPM for gas dynamics showing errors versus the number of
particles for various choices of mesh spacing (h) and CFL number.

Numerical solutions for the Sod’s shocktube problem in Section 5.4.1 using our

variation of MPM for gas dynamics at T.=0.2 with nonuniform initial particle

distribution discussed in Section 5.4.3 and application of the smoothing process;
(a)density: ||ge”(T)|r, =5.4x 1073, | ge’(T)||L, = 1.38 x 102
(b)velocity: ||ge“(T)|lr, = 1.49 x 1072, ||ge™(T)||z, =5.65 x 1072

Mesh Crossing Diagram.
Mass projection error in Li-norm, |lep™(t,)||r,, for different mesh spacings, h. ..

L;-Norm of density global error, ||ge”(T¢)||z,, in time for different mesh sizes. . . .

Production ICE and IMPICE numerical solutions for test P1 with N=200 (cells),
Cepi = 0.2, and first-order advection: (a) density; (b) velocity; (d) internal-energy;
AN (C) PIESSUTE. . . o vttt ettt e et e

Production ICE and IMPICE numerical solutions for test P2 with N=200 (cells),
Cepi = 0.2, and first-order advection: (a) density; (b) velocity; (d) internal-energy;
AN (C) PIESSUTE. . .t vttt et et e

Production ICE and IMPICE numerical solutions for test P3 with N=800 (cells),
Ces1 = 0.2, and first-order advection: (a) density; (b) velocity; (d) internal-energy;
and (C) PrESSUIE.ttt ittt et e

Production ICE and IMPICE numerical solutions for test P4 with N=200 (cells),
Cepi = 0.2, and first-order advection: (a) density; (b) velocity; (d) internal-energy;
and (C) PrESSUIE.ttt ittt

o4

60
65
71

91

92

93

94

6.5

6.6

6.7

7.1

7.2
7.3

7.4
7.5
7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

Production ICE and IMPICE numerical solutions for test P5 with N=200 (cells),
Cepi = 0.2, and first-order advection: (a) density; (b) velocity; (d) internal-energy;
And (C) PIESSUTE. . ..ottt ittt e e e 95

Production ICE and IMPICE numerical solutions for Shu and Osher test problem
with N=1600 (cells), C.f; = 0.2, and first-order advection: (a) density and (b)

VelOCIty. 96
The second-order-in-space IMPICE numerical solution for Shu and Osher test
problem with N=1600 (cells) and C.f; = 0.2: (a) density and (b) velocity. 107
Point stencil for calculating face-centered pressure gradient Vp;?Jr Lo e 117
2
Boundary of cut cells. 125
Cell-centered gradient of variables is approximated using values in the volume
defined by the centroids of the neighboring cells. 126
Cell-centered gradient of cut cell. 128

GRP at face centerer of boundary face. (a) unrotated grid and (b) rotated grid. . 130

Modified shock tube problem. T, = 0.2. IMPICE with first-order advection on
N1 x Ny =200 x 10 grid, C.5; = 0.3. Two-dimensional distribution of (a)density
and (b)velocity, and a cut along the x;-axis of (c)density and (d)velocity. 134

Two-dimensional explosion problem. T, = 0.25. IMPICE with first-order advec-
tion on N1 X Np = 100 x 100 grid, C.p; = 0.3. Two-dimensional distribution of
(a)density and (b)pressure, and a cut along the z-axis of (c)density and (d)pressure.135

Two-dimensional explosion problem with large jump in pressure. 7T, = 0.03.
IMPICE with first-order advection on Ny x Ny = 300 x 300 grid, C.p; = 0.3.
Two-dimensional distribution of (a)density and (b)pressure, and a cut along the
x1-axis of (c)density and (d)pressure. 136

Shock reflection from a wedge problem. 7, = 0.2. IMPICE with first-order
advection on N7 x Np = 900 x 600 grid, C.p; = 0.3. A cut cell is merged if the
volume ratio, 7., is less than 0.05. Forty-eight density contour lines from 0.45 to
21.6. (b) is zoomed area of (a). 136

Modified shock tube problem. T, = 0.2. IMPICE with second-order advection on
N1 x Ny =200 x 10 grid, C.5; = 0.3. Two-dimensional distribution of (a)density
and (b)velocity, and a cut along the x;-axis of (c)density and (d)velocity. 137

Two-dimensional explosion problem. 7, = 0.25. IMPICE with second-order
advection on N1 X N = 100 x 100 grid, C..f; = 0.3. Two-dimensional distribution
of (a)density and (b)pressure, and a cut along the xj-axis of (c)density and
(A)Pressure. 138

Two-dimensional explosion problem with large jump in pressure. T¢,q = 0.03.
IMPICE with second-order advection on Ny x Np = 300 x 300 grid, C.py = 0.3.
Two-dimensional distribution of (a)density and (b)pressure, and a cut along the
x1-axis of (c)density and (d)pressure. 139

Shock reflection from a wedge problem. T, = 0.2. IMPICE with second-order
advection on N1 x Na = 900 x 600 grid, C.py; = 0.3. A cut cell is merged if the
volume ratio, 7., is less than 0.05. Sixty density contour lines from 0.4 to 23.5.... 140

7.14

7.15

8.1
8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

Shock reflection from a wedge problem. T, = 0.2. IMPICE with second-order
advection on N x Np = 900 x 600 grid, C.r; = 0.3. This is a zoomed part of
Figure 7.13 with three hundred density contour lines to show the solution detail
in the interested area. 141

Numerical solutions to the advection problem at T, = 0.5 using IMPICE with
second-order advection on Ny x Ny = 240 x 160 grid, C.5; = 0.3: (a) Advection 1

and (b) Advection 2. 141
MLP3 limiting function ¢ (7). 147
The adjoint-based estimate of the overall error in density of a numerical solution

to test problem in Section 7.7.1 is compared against its true overall error. This nu-
merical solution is obtained using the IMPICE method with first-order advection,
Cept =0.2,and N =300 (cells). 155

The adjoint-based estimate of the overall error in density of a numerical solution
to test problem in Section 7.7.2 is compared against its true overall error. This nu-
merical solution is obtained using the IMPICE method with first-order advection,
Cepr =0.2,and N =300 (cells). 155

The adjoint-based estimate of the overall error in (a) density; (b) specific momen-
tum; and (c) specific total energy of a numerical solution to test problem P1 is
compared against the true overall error. This numerical solution is obtained using
the IMPICE method with first-order advection, Cer; = 0.2, and N = 200 (cells). . 156

The adjoint-based estimate of the overall error in density of a numerical solution to
test problem P2 is compared against its true overall error. This numerical solution
is obtained using the IMPICE method with first-order advection, C.f; = 0.2, and
N =200 (Cells). ..o 157

The adjoint-based estimate of the overall error in density of a numerical solution to
test problem P3 is compared against its true overall error. This numerical solution
is obtained using the IMPICE method with first-order advection, C.z; = 0.2, and
N =200 (CellS). ..ot 157

The adjoint-based estimate of the overall error in density of a numerical solution to
test problem P4 is compared against its true overall error. This numerical solution
is obtained using the IMPICE method with first-order advection, C.z = 0.2, and
N =200 (Cells). ..o 158

The adjoint-based estimate of the overall error in density of a numerical solution to
test problem P5 is compared against its true overall error. This numerical solution
is obtained using the IMPICE method with first-order advection, C.z = 0.2, and
N =300 (Cells). ..o 158

The adjoint-based estimate of the overall error in density of a numerical solu-
tion to test problem in Section 7.7.1 is compared against its true overall error.
This numerical solution is obtained using the IMPICE method with second-order
advection, Cep; = 0.2, and N =300 (cells). 160

The adjoint-based estimate of the overall error in density of a numerical solu-
tion to test problem in Section 7.7.2 is compared against its true overall error.
This numerical solution is obtained using the IMPICE method with second-order
advection, Cep; = 0.2, and N =300 (cells). 161

xi

8.11

8.12

Al

A2

A3

A4

A5

A.6

A7

A8

A9

A.10

A1l

A.12

The numerical solution for Shu and Osher test problem obtained from the IMPICE
method with second-order advection, N = 1600 (cells), and C.z=0.2; the “exact
solution” of Shu and Osher test problem as discussed in Section 6.5; the projected
exact solution obtained from adding the adjoint-based error estimate of the overall
error to the numerical solution. 163

A close-up picture of Figure 8.11 for the region where the numerical solution has
a significant error. 163

The second-order (second-order-in-space and second-order-in-time) IMPICE nu-
merical solutions for the inviscid Burgers’ problem at T, = 0.5 and on the spatial
domain [—1.0, 1.0] with N=200 (cells) and Cepy =0.2. 171

The second-order (second-order-in-space and second-order-in-time) IMPICE nu-
merical solutions for the viscous Burgers’ problem at T, = 0.5 from the plotted
initial cell averages with N=200 (cells) and C.y; = 0.2: (a)e = 0.05 and (b)e = 0.01.173

The second-order (second-order-in-space and second-order-in-time) IMPICE nu-
merical solutions for the viscous Burgers’ problem at 7, = 0.5 from the plotted
initial cell averages with N=200 (cells) and C.f; = 0.2 and € = 0.0001. 173

Conservative cell-centered ICE and IMPICE numerical solutions for test P1 with
N=200 (cells) and C.5; = 0.2: (a) density; (b) velocity; (d) internal-energy; and
(€) PIESSUTE. .« .. oottt e e e e 176

Conservative cell-centered ICE and IMPICE numerical solutions for test P2 with
N=200 (cells) and C.5; = 0.2: (a) density; (b) velocity; (d) internal-energy; and
(€) PIESSUTE. .« ..ottt 177

Conservative cell-centered ICE and IMPICE numerical solutions for test P3 with
N=800 (cells) and C.p; = 0.2: (a) density; (b) velocity; (d) internal-energy; and
(€) PIOSSUTE. .« o\ttt ettt e e e e e e 178

Conservative cell-centered ICE and IMPICE numerical solutions for test P4 with
N=200 (cells) and C.5; = 0.2: (a) density; (b) velocity; (d) internal-energy; and
(€) PIESSUTE. . o ot ettt e e e e e e e 179

Conservative cell-centered ICE and IMPICE numerical solutions for test P5 with
N=200 (cells) and C.5; = 0.2: (a) density; (b) velocity; (d) internal-energy; and

(€) PIESSUTE. .« o .ttt e e e e e 180
PL-IMPICE and IMPICE numerical solutions for test P1 with N=200 (cells) and
Cepi = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure. 181
PL-IMPICE and IMPICE numerical solutions for test P2 with N=200 (cells) and
Cepr = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure. 182
PL-IMPICE and IMPICE numerical solutions for test P4 with N=200 (cells) and
Cep1 = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure. 183
PL-IMPICE and IMPICE numerical solutions for test P5 with N=200 (cells) and
Cepi = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure. 184

xii

4.1

4.2

4.3

5.1
5.2

6.1

6.2

6.3

6.4

6.5

LIST OF TABLES

Error indices eindex(et(T.)) of the estimated adjoint-based global errors for nu-
merical solutions to Examples 1-6 using DASSL DAE Solver and the residual error
sampling technique in Section 4.5.3.1 with different values of local error tolerance

Error indices eindex(et(Te)) of the estimated adjoint-based global errors for nu-
merical solutions to Examples 1-6 using DASSL DAE Solver and Cao and Pet-
zold’s approach described in Section 4.5.2 with different values of local error
tolerance (TOL).

Error indices eindex(ge(Te)) of the estimated adjoint-based global errors for nu-
merical solutions to the PDE problem discussed in Section 4.5.4.2. The numerical
solutions to this problem are obtained for different number of mesh points (NPTS)
of spatial discretization. The discretized ODEs are solved with DASSL DAE solver
using different values of local error tolerance (TOL).

Values of Stable Time Step..

The density errors at 7" = 0.2 in Li-Norm, ||ge”(T)||z,, L2-Norm, ||ge”(T)|z,,
and Loo-Norm, ||ge”(T)| .. for the Sod’s shocktube problem discussed in Section
DA .

Data for one-dimensional test problems with known exact solutions, for the time-
dependent, one-dimensional Euler equations

Temporal Error: Li-norms and the order of accuracy n of the conserved and
primitive variables for the test cases in Table 6.1 using N=200 (cells). The time-
integrated exact solutions U [Te; to, U]0} for the discretized problems of these test
cases are obtained by using C.z = 0.0001. The notation aE-b used here stands
for a x 1070,

Spatial Error: Li-norms and the order of accuracy m of the conserved and prim-
itive variables for the test cases in Table 6.1. The exact solutions U} [T e; to, U?]

39

40
55

are the converged numerical solutions discussed in Section 6.6.1. 100

Temporal Error using the second-order-in-time IMPICE: Li-norms and the order
of accuracy n of the conserved and primitive variables for the test cases in Table

6.1 using N=200 (cells). The exact solutions Uj [T e to, U]Q} for the discretized

problems of these test cases are obtained by using C.z; = 0.0001. 102

Spatial Error using the second-order-in-space IMPICE: Li-norms and the order
of accuracy m of the conserved and primitive variables for the test cases in Table

6.1. The exact solutions Uj [Te; to, U ﬂ are the converged numerical solutions as

described in Section 6.6.2. 106

6.6

7.1

8.1

8.2

Al

A2

Spatial Error using the second-order-in-space IMPICE: Li-norms and the order
of accuracy m of the conserved and primitive variables for Shu and Osher test

problem. The exact solutions Uj [T eito, U]0] are the converged numerical solutions.108

Li-norms and the order of accuracy m of the overall errors in the numerical
solutions to the advection problem at T, =0.5. 140

Error indices eindex(et(Te)), eindex(et(Te)), and eindex(ge(Te)) of the esti-
mated adjoint-based global errors for numerical solutions to test problems dis-
cussed in Section 7.7 and Section 6.5. The numerical solutions to these problems

are obtained from the one-dimensional IMPICE method with first-order advection
and Cepp = 0.2.. 0o 159

Error indices eindex(et(Te)), eindex(et(Te)), and eindex(ge(Te)) of the esti-
mated adjoint-based global errors for numerical solutions to test problems dis-
cussed in Section 7.7 and Section 6.5. The numerical solutions to these problems
are obtained from the one-dimensional IMPICE method with second-order advec-
tionand Cepp =0.2. ... o 162

Spatial and Temporal Errors: Li-norms and the order of accuracy for the inviscid
Burgers’ problem at 7, = 0.5 on the spatial domain [—1.0,1.0]. The temporal
errors are calculated for the grid using N=200 (cells) and the time-integrated
exact solutions are the converged numerical solutions. 171

Spatial and Temporal Errors: Li-norms and the order of accuracy for the viscous
Burgers’ problem at 7, = 0.5 on the spatial domain [—2.0,4.0]. The temporal
errors are calculated for the grid using N=200 (cells) and the time-integrated
exact solutions are the converged numerical solutions. 175

xiv

ACKNOWLEDGEMENTS

This dissertation would not have been possible without the help from many people on the
path to where I am today. I may not individually thank many of you in the following note, but
I will always remember your support.

First and foremost, I would like to express my deepest gratitude to my advisor, Prof. Martin
Berzins, whose supervision, advice, and guidance helped me to have a thorough understanding
of the subject. In so doing, he still left room for my own ideas and let me grow to be an
independent researcher. He has given me a number of valuable insights which are useful for not
only my graduate school but also my future career. In various ways, he provided me necessary
encouragement and support in overcoming obstacles. I am truly inspired by his intuition and
passion for science which have made a huge impact on the decisions of my future career. Above
all and the most needed, he always showed sympathy for all the life events that happened to
me outside school that needed my immediate attention. I consider myself very fortunate to be
his student.

My deepest gratitude is also due to the members of the supervisory committee: Prof.
Mike Kirby, Prof. Christopher Johnson, Prof. Todd Harman, and Prof. Andrej Cherkaev. 1
especially thank Prof. Harman for many helpful discussions.

I would like to thank my parents, Le Hung Tran and Huong Tran, for their unending love,
trust, and support. My parents hardly had any opportunities to go to school, but they always
reminded me how important education is. I would not have made it to this far if it were not
for them. T would also like to thank my parents-in-law, Vo Luong and Muoi Nguyen, for giving
me help when needed. Without their support and understanding, it would be hard for me to
pursue my graduate studies. I would also like to thank my uncle and aunt Alex and Jeanette
Tam. For what they have done for me, I am forever indebted. I also thank my sister and
brother for their caring and loving support.

Most importantly, I would like to thank my husband, Phong, and my children, Kha and
San, for being by my side for this long journey to share the joys and happinesses and to endure
the hardships. They have sacrified much for my success. To my beloved husband and children:
“You all are far more important to me than any success and have made my life much more

complete.”

Lastly, I would like to thank all of my friends and relatives — the list is too numerous to
mention all by name — who have supported me throughout the years. I can not imagine how
stressful my life would be without them.

This work was supported by the U.S. Department of Energy through the Center for the
Simulation of Accidental Fires and Explosions (C-SAFE) under grant W-7405-ENG-48.

xvi

CHAPTER 1

INTRODUCTION

The last few decades have seen a significant increase in the use of numerical methods
in many research areas. Numerical methods are no longer merely simulation tools; they
are now used to study and understand phenomena represented as mathematical models. A
broad range of physical processes in engineering applications are simulated and studied using
numerical methods; for example, micromechanics of heterogeneous materials [9]; deformation
processes in energetic materials [14]; large deformation fluid-structure interaction [52, 44];
aerodynamics of vocal fold movement [31]; explosions of energetic devices [45]; nano-scale
magnetization dynamics [59]; accidental fires and explosions [56] and densification of real
open-celled foam microstructures [19], to name just a few. These examples clearly demonstrate
the need to use numerical methods to solve increasingly complex problems. At the Center
for the Simulation of Accidental Fires and Explosions (C-SAFE) at the University of Utah
— created through the Advanced Simulation and Computing Program of the Department of
Energy — numerical methods were used to provide state-of-the-art, science-based tools for the
numerical simulation of accidental fires and explosions [56]; methods included in the Uintah
Computational Framework (UCF) [40, 56, 95, 96]. These methods are the product of more
than a decade of cutting-edge research.

The UCF was developed by a number of highly skilled researchers to provide a software
system for simulating complex physical phenomena [88], such as reacting flows, material proper-
ties, and multimaterial interactions. There are four main simulation slgorithms in the UCF: the
ARCHES simulation code, the Implicit Continuous-fluid Eulerian method (ICE), the Material
Point Method (MPM), and an integrated combination of MPM and ICE (MPMICE). Each
simulation component facilitates the solution of partial differential equations on structured
adaptive mesh refinement grids using hundreds to thousands of processors. Each component
is specifically designed for solving certain types of problems. Specifically, the ARCHES com-
ponent, a finite-volume incompressible flow C.F.D solver, was initially designed for predicting
the heat flux from large buoyant pool fires, and then later was extended for solving many

industrial relevant problems. ICE is for compressible flows; MPM is for solids; MPMICE is

for fluid-structure. These methods have been used to simulate a wide range of applications.
Examples of simulated applications using MPM include biomechanics of microvessels, effects of
wounding on heart tissue, and the properties of foam under large deformation [19]; densification
of foam [6]; compression of wood [94]; large-scale complex fluid-structure interactions arising
from the modeling of safety studies involving explosions [56, 97]; sea ice dynamics [115]; and
energetic device explosions [45]. Examples of simulated applications using ICE include fluidized
dust beds, the flow of a liquid with entrained bubbles, atmospheric condensation with the fall
of precipitation, the expansion and compression of a bubble formed by highly explosive gases
under water, dynamics resulting from intense atmospheric explosions from the early time highly
compressible flow [51, 68]; and explosions, fires, and other fluid and fluid-structure interaction
phenomena [45]. Finally, examples of simulated applications using MPMICE include modeling
of explosives and their interaction with solid structures, modeling of blast and soil [117], and
modeling of the material dynamics and aerodynamics of phonation [31].

Given that MPM, ICE, and MPMICE are used on such challenging problems, it is important
to fully understand the accuracy of these methods and to have these methods accurately
simulate the solutions of the actual mathematical models. At the time this research was initiated
in 2005, there were hardly any error analyses being done on any of these methods. Thus our
aim in this dissertation is to provide a numerical study of some variation of these methods.
In addition, we propose an improvement to the version of ICE that is currently implemented
in the Uintah Computational Framework, including an estimate of the errors in the improved
version. Several other researchers at C-SAFE were working simultaneously on MPM and ICE,

and this dissertation both builds upon and complements their work.

1.1 Contributions
By providing a numerical study of and improvement to the MPM and ICE algorithms, this

dissertation makes the following contributions:

e A study of errors in numerical solutions that are obtained from a wvariation of MPM
which we specifically proposed for gas dynamics. We undertake an analysis of MPM in
modeling compressible flow problems governed by the one-dimensional Euler equations.
Though this analysis is done for a specific variation of MPM, it is described in a way
that can be applied to other versions of MPM. In this analysis, we focus on two sources
of error: errors introduced when information from particles is projected onto the grid,
as well as errors introduced when particles cross grid cells. In addition to the analysis
obtained from studying the algorithm of the method, we include results obtained from

observing the method’s performance on the Sod’s shocktube problem. These aforemen-

tioned contributions are presented in Chapter 5 and were reported in the published article:
“Solving Time-Dependent PDEs using the Material Point Method, A Case Study from
Gas Dynamics,” L.-T. Tran, J. Kim, and M. Berzins, International Journal for Numerical
Methods in Fluids, Volume 62, Issue 7, pages 709-732, Copyright (©2009 John Wiley &
Sons, Ltd. [123].

An improvement to the Production Implicit Continuous-fluid Eulerian Method (Produc-
tion ICE) in the Uintah Computational Framework for the case of one-dimensional com-
pressible flows, including an error study of this improved version. The implementation of
Production ICE depends upon choosing among several different implementation choices
of the cell-centered ICE method proposed by Kashiwa et al. [68]. We will explore such
different implementation choices of the cell-centered ICE method of Kashiwa et al. [68] in
order to propose an improved version of Production ICE. This Improved Production ICE
method (IMPICE) aims to eliminate the unphysical oscillations in the numerical solutions
to the one-dimensional compressible flow problems. Of comparable importance to having
a nonoscillating numerical solution is determining the accuracy of the IMPICE method
in time and space — which we study both theoretically and numerically. We can increase
the orders of accuracy in time and space by applying a high order time discretization
and a nonlinear spatial discretization respectively. These aforementioned contributions
are presented in Chapter 6 and were also reported in the published article: “Improved
Production Implicit Continuous-fluid Eulerian Method for Compressible Flow Problems
in Uintah,” L.-T. Tran, and M. Berzins, International Journal for Numerical Methods in
Fluids, Volume 69, Issue 5, pages 926-965, Copyright (©2012 John Wiley & Sons, Ltd.
[122].

An extension of IMPICE to solve multidimensional compressible flow problems, including
the implementation of boundary conditions. The IMPICE method shows great improve-
ment in its accuracy and ability to capture discontinuities when solving one-dimensional
compressible flow problems. We propose the extension of IMPICE to solve the compress-
ible problems governed by the system of Euler equations in multidimensional space. In
this proposed IMPICE method’s detail implementation is the implementation of boundary
conditions, including the embedded boundary treatment which enables the solution of
problems with potentially complex geometries. These aforementioned contributions are
presented in Chapter 7 and will be submitted for publication in the future.

An error estimate of the IMPICE Method for one-dimensional compressible flow problems.
We formulate a discrete adjoint-based approach for estimating spatial and temporal

errors in the numerical solutions of the time-dependent partial differential equations

(PDEs). We appropriate and modify the adjoint global error estimate discussed in Cao
and Petzold [21] to formulate our adjoint-based approach, which is then tested against
the numerical solutions obtained via the Backward Differentiation method (BDF) of the
ordinary differential equations (ODEs) and PDEs defined in this dissertation. Finally, we
apply our adjoint-based error estimate to the estimation of the temporal and spatial errors
in the IMPICE’s numerical solutions for one-dimensional compressible flow problems.
These aforementioned contributions are presented in Chapter 4 and Chapter 8 and will

be submitted for publication in the future.

1.2 Content

This dissertation is organized as follows. Chapter 2 reviews the background and relevant
work supporting the MPM and ICE methods used in the Uintah Computational Framework.
Chapter 3 provides an overview of the compressible flow problems which includes the necessary
mathematical formula and physical quantities for the discussion of MPM and ICE. In Chapter
4, we include the discrete adjoint-based approach for estimating spatial and temporal errors
for the method-of-lines PDEs. In Chapter 5, we introduce a variation of the MPM developed
for gas dynamics and provide an in-depth study of the method’s accuracy properties on a
well-known test problem in one dimensional space. In Chapter 6, we examine the different
implementation choices in the cell-centered ICE method and propose the IMPICE method,
which is an improvement to Production ICE for one-dimensional compressible flow problems.
We also include in Chapter 6 an error analysis of IMPICE. Chapter 7 discusses a generalization
of this method to work with the multidimensional compressible flow problems including the
implementation of boundary conditions is presented. In Chapter 8, we estimate the errors
in IMPICE’s numerical solutions for one-dimensional compressible flow problems using the
discrete adjoint-based approach. Chapter 9 summarizes the work presented in this dissertation

and conclusions are discussed.

CHAPTER 2

BACKGROUND AND RELEVANT WORK

Computational Fluid Dynamics (CFD) is an area of computational science that uses nu-
merical methods and algorithms to solve a broad range of physical processes in engineering ap-
plications involving the motion of liquids and gases. Several examples of physical processes and
engineering applications which are solved by CFD include simulating flows around automobile
surfaces and airplane wings; simulating fluid-structure interaction; simulating manufacturing
processes; calculating forces and moments on aircraft; determining the mass flow rate of
petroleum through pipelines; predicting weather patterns; understanding nebulae in interstellar
space; and reportedly modeling fission weapon detonation [1]. Much current research in
CFD is devoted to improving upon early (and still fundamental) methods developed by the
Fluid Dynamics Group (T-3) at Los Alamos National Laboratory (LANL). For example, the
Material Point Method (MPM) and the Implicit Continuous Eulerian (ICE) method used in
modern simulation were adopted from the early CFD methods of T-3 at LANL. The early
precursors of MPM and ICE include the Particle-In-Cell (PIC) method of Harlow and Evans
[46, 35], the Marker-And-Cell (MAC) method of Harlow and Welch [47, 48], and the Implicit
Continuous-fluid Eulerian (ICE) method of Harlow and Amsden [49, 50, 51]. While these early
precursors are used in the field of computational fluid dynamics, the MPM method, which
resulted from reformulating and modifying PIC, is for use in computational solid dynamics.

MPM is one of the fairly new computational methods — among these new computational
methods are meshfree and particle methods as surveyed by Li and Liu [77] — that solve problems
involving large deformations in materials. For a comprehensive history of MPM, see the doctoral
dissertation of Steffen [109]. Here we list only a selection relevant developments of MPM to
provide the necessary background for our current MPM work. The first variation of MPM, is
also referred to as the original MPM, introduced by Sulsky et al., [113, 114], may, perhaps, be
described as a quasi-meshless method. This MPM'’s variation has evolved from the Particle-In-
Cell (PIC) and Fluid-Implicit-Particle (FLIP) methods [15] originally developed by Brackbill
et al.; see [17] and the references within. These two methods and their important theoretical

results are discussed by Grigoryev et al. [43]. One of the fundamental aspects of PIC methods is

a discretization of a material into particles, and the interpolation of information from particles
to grids and vice-versa. Evolving from PIC, MPM is a mixed Lagrangian-Eulerian method with
moving particles on a background grid. The particles are used to represent the Lagrangian state
of a material, and the equations of motion are solved on the background grid. In MPM, the
Lagrangian particles (or points) are used to discretize the volume of the fluid or solid. These
material points carry with them properties such as mass, velocity, stress, strain, and so on.
The background grid in MPM is used as a scratchpad for calculations; hence, MPM has a
quasi-meshless characterization. An important feature of MPM is its capability to model solid
materials undergoing large deformation. Bardenhagen et al. [5] later proposed their variation of
MPM which is referred to as the Generalized Interpolation Material Point method (GIMP) to
provide a general formulation covering MPM methods. These previously mentioned methods -
PIC, MPM, and GIMP - use similar approaches to Smoothed Particle Hydrodynamics (SPH) to
solve the governing equations [109]. A comparison between MPM and SPH has been undertaken
by Ma et al. [83].

MPM has not yet been subjected to as much analysis as many of the methods surveyed by
Li and Liu [77]. Prior to our research, the significant contribution to the analysis of MPM
was the analysis of time integration errors of Bardenhagen [4]. Still, projection errors of
MPM remained to be addressed. Though Vshivkov [135] provided a detailed analysis of the
projection errors for PIC, the difference between shape functions in PIC and MPM makes the
straightforward application of these results to MPM difficult [109]. In 2008, while we were
working on our analysis of MPM, Steffen et al. [110, 111] published an analysis on quadrature
errors and some of the spatial integration errors of the original MPM method. Their analysis
studied different contributing factors in the errors introduced by the quadrature employed in the
method’s algorithm, and examined the spatial integration errors in internal force due to these
quadrature errors. Although the original MPM was designed for solid mechanics problems,
we were performing our analysis on a variation of the method proposed for gas dynamics in
the context of a shock propagation problem. The shock propagation problem for compressible
gas dynamics has the advantage of being sufficiently simple to allow analysis of the method.
This problem has also been studied by Brackbill [20], Sulsky [113], York et al. [140], and
very recently in the context of SPH methods by Brown et al. [18]. Furthermore, the shock
propagation problem’s analytical solution makes it possible to evaluate the various sources of
error in our variation of MPM. In the present analysis of our MPM’s variation, we focused on two
sources of error: errors introduced when information from particles is projected onto the grid,
as well as errors introduced when particles cross grid cells. With the aforementioned advantages

of the settings for our study of MPM, we aimed to provide an analysis of all error sources in

our variation of the method and would later apply them to other variations. The result of this
analysis was published in 2009 by Tran et al. [123]. Then again in 2010, Steffen et al. [112]
published another analysis of MPM in which they considered our analysis of temporal errors
when integrating past a jump in continuity of the velocity field for their analysis on the impact
of spatial quadrature errors on time stepping.

With the availability of several analyses for MPM as mentioned above, we turned our
focus on the analysis of ICE when looking at the potential combination of MPM and ICE
in simulation; see [31, 117] for this potential combination of these two methods in simulation.
At the time, the analysis of ICE also had not received much attention.

While MPM is often used in computational solid dynamics, ICE is often used to simulate
fluid dynamics. The ICE method was developed by Harlow and Amsden in 1968 [49] with the
aim of calculating the compressible flows in all velocity ranges. With the use of semi-implicit
time discretization, in which the acoustic waves are treated implicitly while the advection terms
are treated explicitly, the method can remove the Courant stability limitation based on the
speed of sound in the fluid. According to Harlow and Amsden [49], this is a numerically stable
and efficient method for calculating transient, viscous fluid flows in several space dimensions.
In 1971, Harlow and Amsden [50] simplified the method and also greatly extended its scope of
applicability. There are several improved versions of the ICE method using a pressure-correction
solution procedure as seen in [22, 63, 62, 102, 128], and one typical pressure-correction method
is referred as PISO (Pressure Implicit with Splitting of Operations). ICE was first developed to
simulate single-phase fluid dynamics problems. It was later extended by Harlow and Amsden
in 1975 [51] and Kashiwa et al. in 1994 [68] to work with multiphase flow simulations. The
ICE method by Harlow and Amsden used a staggered grid with normal velocity components
at cell faces and all other variables at cell centers. The cell-centered ICE method by Kashiwa
et al. [68] uses a different approach from the previous ICE method proposed by Harlow and
Amsden. As mentioned in Kashiwa and Lee [67], Kashiwa et al. [68] uses a nonstaggered
grid in an ongoing effort to deal with the difficulties of the ICE method with staggered grid.
The main difficulties in the use of the staggered mesh include the addition of the artificial
terms corresponding to a bulk viscosity to the equations in order to obtain reasonably smooth
variation in density near shock waves and the development of spurious fluid as a result of a
purely nonphysical circumstance. In the nonstaggered approach in Kashiwa et al. [68], all
variables including velocity are located at the cell-center. In this approach, the velocity at cell
faces is not computed directly, but is defined using the flow field or other dependent variables.
The definition of the face-centered velocity is a crucial matter for the robustness of the method

as mentioned in Kashiwa and Lee [67].

With its ability to handle complex flow problems, the ICE method for multiphase flows is
utilized by UCF to simulate explosions, fires, and other fluid and fluid-structure interaction
phenomena [45]. The ICE method in UCF is designed to solve “full physics” simulations of
fluid-structure interactions involving large deformations and phase change [82]. As mentioned
in Luitjens et al. [82], “full physics” refers to problems involving strong coupling between the
fluid and solid phases with a full Navier Stokes representation of fluid phase materials and the
transient, nonlinear response of solid phase materials, which may include chemical or phase
transformation between the solid and fluid phases.

The implemented ICE method in the Uintah Computational Framework is referred to as
Production ICE in Tran and Berzins [122]. The implementation of Production ICE is based on
the cell-centered ICE method by Kashiwa et al. [68] with several exceptions that are discussed
in detail in Chapter 5. The implementation of the cell-centered ICE method by Kashiwa et al.
[68] uses a regular Cartesian grid to divide the computational domain into cells and to evaluate
the changes in mass, momentum, and energy in each cell with two stages: the Lagrangian Stage
and the Fulerian Stage. For the Lagrangian Stage, the advection changes in mass, momentum,
and energy along a path moving with fluid velocity are evaluated by neglecting the convective
terms. For the Eulerian Stage, the changes in mass, momentum, and energy in each cell due to
advection are calculated. The fully cell-centered ICE method of Kashiwa et al. [68] defines the
face-centered velocity, the rate of volume flux at cell boundary, and leaves a degree of freedom
in the choice of conservation variables. The numerical scheme used in Production ICE [44, 45,
52, 79, 80] solves the conservation of mass, linear momentum and internal energy. However,
the Lagrangian part of Production ICE is defined in a nonconservative form which appears to
be an exception to the standard ICE method. While this may not be a problem for some cases,
it appears to be a problem when applying this Production ICE code to single-fluid cases that
are governed by the Euler equations in which the obtained numerical solutions exhibit some
discrepancies in the shock speeds and they additionally show unphysical oscillations. Several
researchers have investigated the effect of nonconservative schemes approximating hyperbolic
conservation laws; for example, see [60, 75, 121]. In these investigations, they found that the
numerical solutions obtained from nonconservative schemes might converge to wrong solutions.

Because of the importance of having a numerical solution that does not have spurious
oscillations, we propose improvements to Production ICE in order to eliminate unphysical
oscillations in its numerical solutions to compressible flow problems. We first focus on the
improvements to Production ICE in one-dimensional space and then later extend these im-
provements to this method in multidimensional space. The cause of oscillations in numerical

solutions of Production ICE is the lack of a special treatment for data discontinuities. When

dealing with discontinuities in data, the idea of using a nonoscillatory piecewise linear recon-
struction is typically used. This data discontinuity treatment originates from the technique
used in second-order Godunov-type methods for solving numerically hyperbolic conservation
laws; for some examples, see see [120] and the references within. In this approach, the value at
the discontinuous point is the solution of the Generalized Riemann Problem whose piecewise
constant data are obtained from a piecewise linear reconstruction. We used this treatment of
data discontinuity in our improvement of Production ICE.

To enable this improved Production ICE method (IMPICE) the capability to solve signif-
icant problems, it is necessary to extend IMPICE to solve multidimensional flows in complex
geometries. The use of Cartesian grids in IMPICE has the advantage of seamless grid generation
for simple regular geometries, but the disadvantage of being unable to deal with complex ones.
To solve complex geometries, we used in IMPICE the method of cut cells to handle the case
when the computational boundary is not aligned with the cell edges; several implementations
of cut cells are found in [38, 55, 124, 139]. In these implementations, there are several
techniques that have previously been proposed, but the trimming of cell surfaces has mostly
been used for compressible inviscid flows; see [124] and the references within. We will discuss
the implementation of this technique as well as how to overcome the “small cell problem” in
the IMPICE’s method of cut cells; for explanations of “small cell problem,” see [55] and its
references. To address the “small cell problem,” cell merging techniques were used by many
authors; for example, see [24, 26, 36, 37, 98, 101]. We derived a new variant of the cell merging
technique for merging small cells in IMPICE.

Since IMPICE is used to solve a wide range of important applications, its error analysis is
necessary. In this dissertation, we determine both theoretically and numerically the accuracy
of the temporal and spatial errors in the IMPICE method. The orders of accuracy in time and
space can be increased by applying a high order time discretization and a nonlinear spatial
discretization, respectively. We will use this error analysis of ICE to estimate the errors in this
method.

As mentioned above, in addition to the use of MPM and ICE as independent simulation
tools, an advanced new simulation tool is being developed that uses the combination of these
two methods to simulate multimaterial and fluid-structure interactions. The combined tool,
MPMICE, uses MPM to model the materials and uses ICE to model aerodynamics. As discussed
in [117], the modeling techniques used by MPMICE differ from traditional methods and hold
promise for increased accuracy. Basic analysis of MPM and ICE presented in this dissertation

may help to understand the fluid-structure interaction modeling MPMICE in the future.

CHAPTER 3

COMPRESSIBLE FLOW PROBLEMS

Compressible flows appear in many processes in nature and technology, so the study of
these flows is very important. Compressible flows model the fluids in which the fluid density
varies significantly in response to a change in pressure. Such flows are obtained in gases, and
they are referred to as compressible gas flows. Compressible gas flows are the subjects in the
study of gas dynamics. T'wo of the most distinctive phenomena which occur in compressible flow
problems are shock waves and choked flows [137]. Shock waves occur when there is a very sharp
discontinuity in the fluid properties such as velocity, pressure, and temperature and choked flows
are phenomena in which the flow rate and the velocity remain the same after the downstream
change in pressure has reached a certain point. However, many of the numerical methods
developed for compressible flow problems consider only the ability to accurately capture shock
waves, but not choked flow; shock capturing schemes can be found in many papers such as
[84, 75, 54, 61, 106, 107, 138]. The ability to capture the sharp changes in the fluid properties
is essential in numerical methods for compressible flow problems in order to deal with shock
waves.

The Navier-Stokes equations for compressible flow problems are time-dependent and consist
of a set of nonlinear partial differential equations that describe the flow of fluids. These
equations are obtained from the principles of conservation of mass, conservation of momentum,
and conservation of energy with the assumption that the fluid is a continuum. In allowing
shock waves to be treated as discontinuities, the system of Fuler equations are usually utilized.
As mentioned in Toro [120], the system of Euler equations is derived from the Navier-Stokes
equations by neglecting the effects of body forces, viscous stresses and heat flux.

In this chapter, we provide a summary of the Euler equations for compressible flow problems.
Here we study the system of time-dependent Euler equations in one-dimensional and multidi-
mensional space with several important derived equations and boundary conditions. Though
there are many different forms of the Euler equations along with basic physical quantities and
thermodynamics relations, we include here only the forms which are useful to the discussion

of the numerical methods included in this dissertation, namely the Material Point Method

11

(MPM) and the Improved Production Implicit Continuous-fluid Eulerian method (IMPICE).
Many forms and equations in the discussion of the Euler equations in this chapter are obtained

from Toro [120].

3.1 The Multidimensional Euler Equations
The system of time-dependent Euler equations of nonlinear hyperbolic conservation laws
that governs the compressible flow problems in d-dimensional space can be written in the

following compact form:

dp B
0
§+V-(pu®u)+Vp:0, (3.2)
opE
% YV (pEu) + V- (pu) =0, (3.3)

where p(x,t) is the density function, u(x,t) = (u1, ua, ..., uq)? (x,t) is the vector of the velocity
functions, p(x,t) is the pressure function, and E(x,t) is the function of specific total energy on
the problem domain x = (z1, 7, ...,24) € R? and t € RT. In Equation (3.2), ® denotes the

tensor product. The tensor product of u and u is defined as:

U12 uiu2 ... UlUq
u2U1 U22 ... UgUyg
u®u= ,) . (3.4)
2
uquyp uUqu2 ... Ud

An equation of state is required to close the system given by Equations (3.1)-(3.3); the

commonly used equation of state derived from the ideal gas law is as follows:

p=r-1p (B~ ju-u). (3.5)

where 7 is the specific heat ratio with the value of 1.4 for ideal gas.

The speed of sound, which is the transmission speed of a small disturbance through a
medium, is a variable of interest. This variable is often used in controlling the time integration
step in numerical methods for the system of Euler equations. The speed of sound, ¢(x,), in an

ideal gas is approximately given by:

12

There are two different sets of variables often used to describe the flow of compressible fluids
governed by the system of Euler equations. The first set of variables called the set of conserved
variables includes the mass density p, the momentum pu, and the total energy per unit mass
pE. The time derivatives of the conserved variables are directly obtained from conservation
laws and shown in Equations (3.1)-(3.3). Hereafter, the vector of conserved variables is denoted
using the column vector U. The second set of variables called the set of primitive variables or
physical variables includes the mass density p, the velocity u, and the pressure p. The time
]T

derivatives of variables in vector W = [p,u, F,p|" are shown as follows:

dp
N + V- (pu) =0, (3.7)
ou 1
n +u-Vu+ ;Vp— 0, (3.8)
oF 1
VE+ -V — .
5 +u-V —i—pV (pu) =0, (3.9)
%-I—u-Vp—i—c%V-uzO. (3.10)

These equations are useful for the discussion of the numerical methods in Chapters 5, 6, 7, and
8. It is also useful for the discussion of the IMPICE method in these chapters if we know about
material derivatives. The material derivative of a quantity is a derivative taken along a moving
path with the moving velocity u. The material derivative of a scalar field ¢(x,t) and a vector

field b(x, t) are defined respectively as:

Do _ 9¢
Dt ot

Db 0b
. — = -V)b. 3.11
Using these definitions, the material derivatives of the velocity vector u in Equation (3.8) and

pressure p in Equation (3.10) are respectively given by:

Du 1

o 3.12
Di pr, (3.12)
Dp

These equations are also called the Lagrangian forms of Equations (3.8) and (3.10). We also
use the definitions in Equation (3.11) to rewrite (3.1), (3.8), and (3.9) as follows:

13

Dp
- _ . .14
= —pV -, (3.14)
Du
- _ 1
DFE
— =-V-) 1
P Dy V- (pu) (3.16)

In order to obtain the changes in mass, momentum, and energy along the path moving with
the fluid velocity, we need to derive the equations of material derivatives for a fluid volume
corresponding to the system in Equations (3.1)—(3.3). In Vallis [125], the material derivative of
a finite fluid volume V for fluid density is given by:

D
d =L d 1
Dt J, PV = /(+pV - u)V (3.17)

Also in Vallis [125], the material derivative of a finite fluid volume V' for the multiplication of

some fluid property ¢ and the fluid density p is given by:

D [D¢
Dt/vpgde—/VthdV. (3.18)

As mentioned in Vallis [125], the above formula also holds if ¢ is a vector. Applying Equation
(3.18) to fluid velocity u and fluid specific total energy E, we have the following equations:

D
Dt/pudV /pdV (3.19)
D
= / pEAV = / 2Cav. (3.20)

In these equations, the volume V' changes due to the movement of the bounding surface. Let
S be the bounding surface of the volume V', then the change in volume is described by the

following equation:
dv = / u - dS. (3.21)
S
From Equations (3.14)—(3.20), the following equations are obtained:

D
Dt/ pdV =0, (3.22)

gt/pudv— /VpdV (3.23)

D
Dt/pEdV_ /V (pu)dV. (3.24)

14

Equations (3.22)—(3.24) are used to evaluate the changes in mass, momentum, and energy
along a path moving with fluid velocity u neglect the convective terms. In the other hand, the

changes in mass, momentum, and energy due to the convective terms are governed by:

d

G [pav=- / V- (pu)dV, (3.25)
pn pudV— /V (pu®u)dVv, (3.26)
o7 pEdV— /V (pEu)dV. (3.27)

The concepts of material derivatives introduced above are used to explain the implementation of
numerical methods for the system of Euler equations with a separate Lagrangian Phase and an
Fulerian Phase; for example, the implementation of the cell-centered ICE method of Kashiwa
et al. [68], the Production ICE method, and the improved Production ICE method which will
be discussed in detail in Chapter 6 and Chapter 7.

3.2 The One-Dimensional Euler Equations
In the case of one-dimensional space (d = 1), the system of Euler equations in conservation

form given by Equations (3.1)—(3.3) is now simplified as follows:

Op | Opu
= 2
ot + = or =0, (3.28)
dpu 0 (pu® +p)
— 2
ot + oz 0, (3.29)
OpE O (puE +pu)
T + o =0, (3.30)

where u(z,t) is the velocity in the one-dimensional space and z € R. The equation of state

(3.5) becomes:

p=(y—1)p <E — ;u2> . (3.31)

One nonconservative form of the one-dimensional system of Euler equation is given by

dp Opu

5T =0 (3.32)
dpu 9 (pu®) Ap
T + o + 97 =0, (3.33)
Ope | Olpue) | Ou (3.34)

ot or Yo

15

where e(x,t) is the specific internal energy and its relationship with the total energy per unit

mass, E(z,t), is given by:
1
E=e+ §u2. (3.35)

In an ideal gas, the internal energy is a function of temperature. The equation of state in (3.31)

is rewritten in terms of the density and the internal energy as follows:

p=(y—1)pe. (3.36)

The material derivatives of velocity in Equation (3.12) and pressure in Equation (3.13) for the

one-dimensional space are written as follows:

Du 10p

=_-2F 3.37
Dt p Oz’ (3:37)
Dp 5 Ou
Dt = ¢ Pay (3.38)

The one-dimensional forms of material derivatives in Equations (3.22)—(3.24) are now given by:

D

= dV = 3.39
bt), " V=0, (3.39)
D dp
— av =— [—d 3.40
mev qu (3.40)
D/ pEdV = —/ oww) 4y (3.41)
Dt 1 \4 81’
where the volume change is governed by the following equation:
D
/ dV = / u dS. (3.42)
Dt Jy, g

The changes in mass, momentum, and energy due to the convective terms described by Equa-

tions (3.25)—(3.27) are rewritten for the one-dimensional space as follows:

d d(pu)

- /V pdV /V AV, (3.43)
d d(puu)
—_— = — -4
p VpudV /V 9 av, (3.44)

d d(pEu)
— E = — . 4
s /V pEAV /V 22 gy (3.45)

16

Another form of Equations (3.32)—(3.34) is used in the discussion of the Material Point Method
in Chapter 5 as given by Sulsky et al. [113] as follows:

ap ap ou

Oe de poaou
== Z 4 B2 . 4
8t+u8x+p8x 0 (3.47)

The equations of material derivatives corresponding to Equations (3.46) and (3.47) are given

by:

Dp ou

“F 2 4
De pou

A il 4
Dt p Ox (3.49)

3.3 Boundary Conditions

We have, so far, presented the fluid flows in R?. If the fluid flows are bounded in a spatial
region 0 C R?, then it is necessary to impose conditions on the boundary 9. Different bound-
ary conditions associated with partial differential equations include the Neumann boundary
condition, the Dirichlet boundary condition, and the mixed boundary condition which is a
combination of the Dirichlet and Neumann boundary conditions [134]. In a Dirichlet boundary
condition, the value of a variable at the boundary is prescribed; in a Neumann boundary
condition, the derivative of a variable at the boundary is prescribed; in a mixed boundary
condition, a linear combination of the Dirichlet and Neumann boundary conditions at the
boundary is prescribed. At a given boundary, different types of boundary conditions can be
used for different variables.

The commonly used boundary conditions for the system of Euler equations are discussed in
Sod [108]. Great care is necessary in the implementation of the numerical boundary conditions
for numerical simulations of the compressible flow problems. At a computational boundary, a
boundary condition is used to direct the flow between the boundary inlet and outlet. This flow
is specified by a wide range of boundary condition types.

In the following sections, we will describe several examples of numerical boundary conditions

and the Euler characteristic boundary conditions.

3.3.1 Examples of Numerical Boundary Conditions
The following is the list of the most often implemented numerical boundary conditions for

the Euler equations. These numerical boundary conditions are discussed in [99, 120].

17

Periodic Boundary. As mentioned in Poinsot and Veynante [99], the computation domain
is folded on itself for the case of periodic boundary. In the treatment of periodic boundary
conditions, the value of a variable at the inlet boundary is set to the value of that variable at
the outlet boundary.

Transmissive Boundary. As mentioned in Toro [120], transmissive boundaries arise from
the need to define finite (or sufficiently small) computational domains. At a transmissive
boundary, the waves are allowed to pass without any change being made to the waves. In the
treatment of the transmissive boundary condition, the value of a variable at the boundary is
defined using the value of this variable inside the computational domain.

Reflective Boundary. At a reflective boundary, the waves reflect and move in the inverse
direction. In the treatment of the reflective boundary condition, the value of all variables
at the boundary except for velocity is defined using the value of these variables inside the
computational domain; the normal component of the velocity at boundary is the negation of
the normal component of the velocity inside the computational domain.

Solid Boundary. At a solid boundary, the fluid flow will have zero velocity relative to the
boundary. This result is derived from the no-slip condition for viscous fluids in fluid dynamics.
Generally this boundary condition implies that the fluid in contact with a solid wall will have
the same velocity as the velocity of the solid wall.

Nonreflecting Inflow Boundary. At the inflow boundary, the fluid enters the compu-
tational domain. In the treatment of the nonreflecting inflow boundary, the inlet values of
the flow velocity vector and temperature are imposed. The pressure gradient will again be
given by momentum considerations under the assumption that the flow is fully developed at
the entrance.

Outflow Boundary. At the outflow boundary, the fluid leaves the computational domain.
In order to maintain the smoothness of the flow through the boundary, the normal derivative

of velocity at the boundary is set to zero.

3.3.2 Euler Characteristic Boundary Condition (ECBC)

There are two classes of boundary conditions used to specify dependent variables at the
boundaries: physical boundary conditions — using known physical behaviors, and numerical
boundary conditions — using numerical descriptions. Physical boundary conditions are in-
dependent of the method used to solve the relevant equations; on the contrary, numerical
boundary conditions are dependent of the method used. For the case of system of Euler
equations, when the number of physical boundary conditions is lower than the number of
primitive variables, then the variables which are not specified using physical attributes must

be obtained using numerical boundary conditions. The numerical boundary conditions of these

18

variables may be obtained from extrapolation or the set of characteristic relations. However, it
seems reasonable to obtain the numerical boundary conditions using characteristic relations and
so to avoid extrapolations. The method of Euler Characteristic Boundary Conditions (ECBC)
uses characteristic relations based on the analysis of the different waves crossing the boundary
to specify boundary conditions for the system of Euler equations. In ECBC methods, some of
the variables on the boundaries may be obtained from extrapolations while some others may
be obtained using characteristic relations.

The following derivation of the ECBCs in x;-direction of the multidimensional space is

shown in [99]. Using a wave analysis of the Euler equations, the decomposition of the normal

terms in x;-direction into vector h = [hy, ha, ..., hqyo]? as given by:
opu;
B — 3.50
ou; op
hy = pc?—* + u; 3.51
2= Ox; +ul&m’ (3:51)
1

ulgul (;9]9. if (k=1)
hoty = éﬁ;{ p ot (3.52)

U otherwise,

8:@

where k = 1, ...,d and d is the dimension of the multidimensional space. An explanation of how
these terms are decomposed as shown can be found in [118]. The system of Euler equations in

(3.1)—(3.3) is now rewritten as follows:

8t p 8$j
J#i
ot 2T TR T L gy or; |
J# JF
d 0 if (k=1)
0 (pug) d (puruj)
ot +ukhy+ phoyk + Z ij - —l@ otherwise, (3.55)
i p Oy,
VESD

for k = 1,...,d. Define the vector L = [L1, Lo, ..., Lg;2]” of the amplitudes of characteristic
waves associated with the characteristic velocities in x;-direction. These characteristic wave

amplitudes are specified as follows:

19

- 6p 6u,
L= (u-o) (52 - peg). (3.56)
ap op
Lo = u; (c oz, a$i> , (3.57)
ui% if (k% 1)
Loy — S e o . (3.58)
(u; +¢) (8@ + pC&m) otherwise,

for £ = 1,...,d. The ECBC defines {L; : j=1,...,d + 2}, which are the amplitudes of the

waves crossing the boundary, by imposing the physical conditions.

CHAPTER 4

ADJOINT-BASED ERROR ESTIMATION
FOR NUMERICAL SOLUTIONS OF
PARTIAL DIFFERENTIAL
EQUATIONS

The importance of obtaining a reliable error estimate for numerical solutions to time-
dependent ordinary differential equations (ODEs) and partial differential equations (PDEs)
is well understood, see [21, 34, 58, 81, 91, 92, 93]. As mentioned in Cao and Petzold [21], many
methods of global error estimation have been proposed, studied carefully, and implemented in
several ODE solvers. These error estimators either use residual errors for the error indicators
or error recovery techniques. Residual errors are the errors resulting from failing to satisfy
exactly the differential equations of numerical solutions. The estimate of residual error is also
sometimes used to gain confidence in a numerical solution. The global error estimates that use
error recovery techniques often solve the problem a second time with a reduced step size or
tolerance and assume the second integration is more accurate; the error in the first integration
is then recovered by the difference between the two numerical solutions. These estimates may
sometimes be inaccurate since the second integration may not yield a more accurate solution
[21, 104]. As a consequence, there have been many error estimates that use residual errors and
multipliers obtained from the solution of the adjoint problem [21].

There are two different approaches for ODE global error estimates: the classical approach
(based on the forward integration of an error equation) and the adjoint-based approach (based
on residual errors and the backward integration of the adjoint problem). These approaches
are compared by Lang and Verwer [73] for their reliability and efficiency. One disadvantage
of adjoint-based methods is the need to store the forward solution that is required during the
backward time integration. Lang and Verwer [73] suggested that the adjoint-based approach
may not be competitive against the classical approach due to its huge storage demand for large
problems, even though both approaches work well in terms of reliability. On the other hand,

Cao and Petzold [21] suggested that the adjoint-based approach was an attractive choice and

21

proposed a novel approach to reduce the number of backward time integrations using the small
sample statistical method. Furthermore, adjoint systems are linear, so they can be solved in
parallel. Even though solving the adjoint system requires extra work and storage, the adjoint
solutions are useful for adaptively control the global error as they are the appropriate weighting
cofficients of local errors contributed to the global error.

Adjoint-based error estimates have also been used and become increasingly important in
the error analysis of applications in Computational Fluid Dynamics (CFD). The use of adjoint
methods in CFD error analysis has been discussed in many papers; for example, see [8, 41,
7, 133, 2, 64, 65, 66]. The main factor that contributes to the growing interest in adjoint
methods is their application towards sensitivity analysis for large-scale systems governed by
PDEs. Sensitivity analysis is applied in a wide range of applications in science and engineering
that involve optimal design problems and error control problems. In these applications, the
impact of input parameters on the errors in functional outputs is determined using sensitivity
analysis. As mentioned in Venditti and Darmofal [133] and the references within, invoking the
adjoint problem has the primary advantage of directly relating the error in a chosen functional
output to the local residual errors. We show in this chapter that if the initial condition in
the adjoint problem is properly set then the global error of the numerical solutions to systems
of PDEs can be formulated using the local errors (the sum of ODE local error and the PDE
truncation error) and the solutions of the adjoint problems. The proper initial condition for
the adjoint problem was discussed in Cao and Petzold [21].

The adjoint problem when solving a system of PDEs can be formulated using either the
continuous approach or the discrete approach. In the continuous approach, the adjoint problem
is obtained from discretizing the analytic adjoint PDE. In the discrete approach, the adjoint
problem is obtained from the system of ODEs approximating the PDEs. As mentioned in Li
and Petzold [76], the system resulting from the continuous approach is much simpler than the
system obtaining from the discrete approach. However, the discrete approach has the advantage
of not requiring the explicit derivation and the discretization of the adjoint equations and
corresponding boundary conditions as mentioned in Venditti and Darmofal [133].

In this chapter, we discuss our discrete adjoint-based approach for estimating spatial and
temporal errors for the method-of-lines PDEs. We also test this approach on numerical solutions
to several ODE and PDE problems using the Backward Differentiation Formula (BDF) method
implemented in the DASSL DAL solver described in Ascher and Petzold [3]. In order to use
our adjoint-based approach for numerical solutions obtained via the BDF method, we derive a
technique for estimating the local error by sampling the integration residual error at two points

per time interval.

22

4.1 Errors in Numerical Solutions to Partial
Differential Equations

Consider the following class of time-dependent PDEs:

% = G(t,Y,VY), (4.1)

where x € Q ¢ R? and ¢ € (0,7.]. Boundary conditions are imposed on 92, and the initial

condition has the form:
Y(x,0) =Yo(x), Vxe. (4.2)

The system of Euler equations discussed in Chapter 3 is an instance of the above class of PDEs.
Let Qp be some space discretization of 2. In Q, the solution to the PDE system in (4.1)

is numerically computed at the discrete points xg, X1, X2, ..., Xy . Let
YH(t) = [YH(XCH t)? YH(X17 t)u YH(X27 t)? ey YH(XN7 t)]T) (43)

where Y 7 (¢) is the solution to the following ODE system:

{YH(t) =Gp (t,Yn(t)) (4.4)

Yu(0) =You,

and vector Gy (t, Y g(t)) approximates the column vector of values of G at discrete points
G (t,Y(x0),VY(x0)), G(t,Y(x1),VY(x1)), ..., G(t,Y(xn), VY (xx)). The initial condition
in Equation (4.4) is given by:

YOH = [YQ(XQ),Yo(Xl),YQ(Xg), ...,Y()(XN)] . (4.5)

Let Y (t) be a perturbed solution of Y (t). The temporal error (also known as the time

integration error), ety (t), is defined as:

ety(t) =Ynut)—Yu(t). (4.6)

Let Y(x,t) be the exact solution of the system in (4.1). The restriction of this exact solution

to the discretized mesh is denoted as:

Y[H](t) = [Y (x0,2), Y (x1,1), Y(x2,), ... Y (x, 1)] . (4.7)

23

The error introduced by the space discretization, also known as the spatial error, is denoted as
esy(t) = Y[H|(t) — Yg(t). The overall error in numerical solutions of PDEs, ge(t), is then

written as:

gey(t) = YIH]() ~ Yu(t) = (YIHI®) = Y50) + (Ya () - Ya(®)
=esy(t) +ety(t), (4.8)

thus showing that there are two parts of errors in the numerical solutions to PDEs: the spatial
error and the temporal error. The spatial error comes from the spatial discretization of the

PDEs and the temporal error comes from the time integration of the discretized ODZEs.

4.2 Adjoint-based Error Estimation for ODEs

The adjoint-based global error estimate of Cao and Petzold given in [21] is described here

in a slightly modified form. We consider the class of ODEs given by:

Y() =G(Y,t 0<t<T,
() =G(Y.t) 0<is< (1.9
Y(0) =Yy,
where Y € R%. The numerical solution Y € R? satisfies the following perturbed system:
Y() =G(Y.t t 0<t<T,
Y(O) = YO + ro,

where r(¢) denotes the pertubation of the numerical solution at time ¢ and the initial pertubation
r(0) = ro. The pertubation function r(¢) is also referred to as the residual error.

Let et(t) be defined by et(t) = Y (t) — Y(t), which is the error in the numerical solution Y
of Y at time ¢t. Then et(t) approximately satisfies the following ODE system:

otl0) o (4.11)

{ét(t) = J(Y,t)et(t) + r1(Y,Y,t) +r(t)
where J(Y,t) is the Jacobian of G at Y. The residual r1(Y,Y,t) is an approximation to
the quadratic and subsequent Taylor series terms given by r1(Y,Y,t) = G(Y,t) — G(Y,t) —
J(Y,t)(Y —Y) with |[r1(Y,Y,t)||e is assumed to be small when Y (¢) is close to Y(t). The
adjoint-based global error estimate of Cao and Petzold [21] was derived with the assumption

that the term ||ri(Y,Y,t)|s was small enough to be neglected. Therefore, the approach of

24

global error estimate described in this section cannot be trusted if the system of ODEs in
(4.9) is not solved to a sufficient accuracy. With the assumption that ||r1(Y,Y,)]s may be

neglected, we have:

t(t) ~J(Y,t)et(t) +r(t
et(0) =ryp.
Let A(t) be some vector in R? that solves the following system:
) =-=JT(Y,)¢ 0<t<T,
ATe) =1,

for some vector 1in R Multiplying both sides of first equation in (4.12) by AT (t) gives:

Q

AT (t)et(t) AT ()I(Y, 1) et(t) + AT (t)r(t) (4.14)
= (JTY,OA)T et(t) + AT (t)r(t)

= (FAm)" ett) + X (0x(0)

Rearranging this yields:

AT (et (t) + (A(t))T et(t) ~ AT()r(t), (4.15)
and, in turn, gives:
%(AT(t) et(t)) ~ AL (t)r(t). (4.16)

Integrating both sides of the above equation gives:

Te Te
0 %(AT(t) et(t))dt ~ /0 AT () (t)dt,
AT, et(T,) — AT(0) et(0) =~ / " A (t)r(t)dt,
OTE
17 et(T,) — AT(0)ry ~ / AT (#)r(#)dt.
0

17 et(T,) =~ " AT(t)r(t)dt + AT(0)ro. (4.17)
0

25

It is perhaps worth remarking that if we replace r(t) by r(t) + r1(Y,Y,t), then this equation
is exact. To estimate the ith-component of error vector et(7.), we solve system in (4.13) with
initial condition 1 = e; = [0,0,...,0,1,0,...0]7 with a value of 1 at the i**-component and 0
elsewhere. So in order to estimate the global error vector et(7:), we have to solve the system
in (4.13) d times (d: number of ODE equations) with d different values of vector 1: ey, ea, ...,
or eq, where eq,es, ..., and e4 are the standard basis for R%. Since the value of A(t) can only
be obtained numerically, the adjoint-based global error estimate cannot be trusted either if the
adjoint system in (4.13) is not solved to a sufficient accuracy.

The global error estimate using Equation (4.17) requires the estimate of the residual error
r(¢) in addition to the solution of the adjoint system in (4.13). The residual error defined by
Equation (4.10) is as follows:

r(t) = Y(t) — G(Y, 1), (4.18)

where Y(t) is some approximation of function Y (¢) obtained from interpolating the temporal
discrete numerical solutions.

Assume that some time integration procedure is used and the discrete temporal numerical
solutions, {S?n : m=1,...,m}, are obtained at t; = 0, to, t3, ..., t;, = T.. We then approximate

the left side of Equation (4.17) as follows:

m

1"et(T.) =~ > / o A (®)re(t)dt + AT(0)rg (4.19)

j=1"7%

At t = t,, define the following local problem:

. (4.20)

Zn—l—l(t) = G(Zn+1(t)>t)v le [tn,tn—&-l],
Zni1(tn) =Y.

The error for this local problem is given by:
le (t; t, Y”) = Zoa(t) — Y (1), (4.21)

The local error per time step, le (tn+1; tn, Yn>, is then defined by:

~n+1

le (tn+1; th, 3?”) = Zni(tn1) — Y (4.22)

26

The residual error, r(t), in Equation (4.18) is then estimated by:

r(t) = Y(t) = G(Y(£),8) = Y(t) = Zns1(t) + G(Znsi (1), 1) — G(Y (1), 1)
Y(t) = Znia () = X (),)(Y () = Zusa (). (4.23)

%

Using a similar derivation as given by Equations (4.15)—(4.16), we have:

N (De(t) ~ 5 (AT (1)(Y (1) ~ Za (1)) (424
Therefore:
/t ATt ~ / & (N~ Zuga 1)) d

iy 0

= X(tu) (Y< wt1) = Zoa (b)) = AT () (Y = Zoa (1))

= A(thy1)le (t”“;t"’Yn) '

Equation (4.19) is then given by:
Tet(T.) ~ Z (tj+1)le (j+1;tj,Yj) + AT (0)ro. (4.25)

The global error (also time integration error et(7,) of numerical solutions to ODEs) in the
adjoint-based approach is then calculated by the summation of products of the discrete adjoint

solution and the local error.

4.3 Adjoint-based Error Estimation for
Numerical Solutions of PDEs

From Equations (4.6) and (4.12), the temporal error ety (¢) in the numerical solution to

PDEs (4.1) approximately satisfies the following system:

{étH(t) = Ju(t,Yu)ety +ru(t) (4.26)

etH(O) =Toy,

where Jp(t, Y) is Jacobian of G (t,Y r(t)) with respect to Yy (t) and ry(t) = Y(t) -

27

According to Berzins [13], the approximate equation for spatial error esg(t) is given by:

{ésH(t) = Iy (t,Yp)esy(t) + TEp(t) (4.27)

where TE(t) = Y[H](t) — G (t, Y[H](t)).
From Equations (4.8), (4.26) and (4.27), we have:
{g'eH<t> = I (t,Y m)gen (1) + vu(t) + TEx (1) (4.28)
ger(0) =ro,.

Consider the following adjoint system:

{i(t) = —JL(tLYmA®), 0<t<T, (4.29)

(Te) = 17

for some vector 1 in R? where d is the number of ODEs in system in (4.4) . Given the similar
form of Equations (4.12) and (4.27), the adjoint-based spatial error estimate is then given as

follows:
Te
Tesy(T,) = / A ($)TEg(s)ds + AT (0)ro,,. (4.30)
0

With the assumption that A(t; + 7) = A(t;) for 0 < 7 < (tj41 —t;), Equation (4.30) now

becomes:

tit1
1 esy (T ZAT / " TEL(0)dt + AT (0)ro,,. (4.31)

J

The combination of spatial and temporal error for numerical solutions of time-dependent

PDEs is then approximated using:

gep(T,) = / " eu(t) + TEg(6) dt + AT(0) (xo +10,,) (4.32)

tj

%

i Mg I Mg

(leH (tj+1; tj, ﬁq) + (41 — tj)TEH(tj)> +AT(0) (ro + roy)

where leg (tj+1; t;, Y%) is the local integration error.

28

Exactly as in Section 4.2, once the vector 1is chosen, the value in each component of error
vector gey(T¢) is estimated using the solution to the adjoint system in (4.29), the ODE local
error, and the PDE truncation error.

The subscript H in above notations is called the mesh characteristic length. Hereafter, the
mesh characteristic length H is used within these notations only if different meshes simulta-
neously exist and there is a need to specify which mesh is being referred to; otherwise, this

subscript is omitted.

4.4 FError Norms, Error Indices,
and Error Notations

It is important to seek quantitative information on the error of the obtained numerical
solutions to decide if the numerical solutions can be trusted. In order to make an assessment of
error in the numerical solutions obtained with different numerical methods discussed later on
in this dissertation, we consider several definitions of error norms, definition of error indices,
and several error notations for the variables in the system of Euler equations. In the following
discussion, the error vector e can be replaced by the vector of global error ge, the vector of

spatial error es, or the vector of temporal error et.

4.4.1 FError Norms

Let e(t) be some vector of errors defined at discrete points z; € R (j = 1,...,N) at time ¢,

e(t) = [e1(t), ea(t), ...,en(®)]", (4.33)

we consider the following approximations to standard error norms:

L1-norm:
N-1 ' ..
el ~ Y (g — ay) 1 6 E)), (434)
j=1
Lo-norm:
phiy (ej1(£)” + (e;())?
le(®)lL. = (@j+1 — z;) (" 5 !) (4.35)
j=1
Loo-norm:

()] z.. = e (1) (4:36)

29

Depending on the property of the problem we are interested in, one norm may be more favored

than others.

4.4.2 FError Indices
For the case that the exact error is available, it is reasonable to know how the estimate value
of error is compared to the exact value. In order to know how reliable is the error estimate
method, we compute the error index which is the ratio of the estimate error and the exact
error. Let e;c(t) be the exact error and e(t) be the estimate value of e4,¢(t). The error index

eindez(e(t)) is then defined as follows:

eindex(e(t)) = %. (4.37)

The error norms in the above equation can be Li-norm, Lo-norm, or L.,-norm.

4.4.3 Error Notations for System of Euler Equations
In order to distinguish the errors for different interested quantities in the numerical solutions
of the system of Euler equations, we use the superscript that represents the quantity of interest
along with the error notations. More specifically, the notation e () is used to denote the error
in numerical solutions of quantity ¢ at t where ¢ = p,u,p, E, pu, or pE. Also we consider the

following error notations:
eV (t) = [e” (1), e" (1), e" (1), e" ()], (4.38)

where W = [p,u, E, p], and:

eV (t) = [(1), e (1), e’E (1)] ", (4.39)

where U is the vector of conserved variables in the system of Euler equations.

4.5 Examples of the Adjoint-based Approach
to the Global Error Estimate

4.5.1 Backward Differentiation Formula Method for
Method-of-lines PDEs

The Backward Differentiation Formula (BDF) methods as described in Ascher and Petzold
[3] are widely used for obtaining solutions to stiff differential equations and differential algebraic

equations. The fixed leading coefficient BDF method is implemented in the DASSL DAE Solver.

30

The DASSL DAE Solver uses divided formulae to represent the numerial solution to DAEs. The
divided difference Y [t,,, t—1, ..., tn—g] on the nodal values Y (t,,), Y (tn-1), ..., Y (tn—k) is defined
by:

Y[tru tn—l, ceey tn—k—l—l] - Y[tn—lu tn—2---a tn—k]

Yitn,tnt, s tni] = , (4.40)

tn — tn—k
Ytn] — Y[tn—1]
where Y[t,] = Y (t,) and Y[t,, tn—1] = .
tn 1_ tn—12 i
Suppose that numerical solutions Yn, Y ,Yni S eees Y" " are given at time levels ¢,,,t,_1,

tn—2, ..., tn_k, then the standard Newton divided difference form of the interpolating polynomial

used by the DASSL DAE Solver to predict the numerical solution at any point in the interval

[tn—k, tnt1] is given by:

YO () = by (1) Yltn] + 01 (t) Yt tn1] + ban(t) Yltns tn1,tna] + ..
+bk7n(t) ?[tthn—htn—Q; --wtn—k], (441)

where:

bom(t) = L,byn(t) = (t —tn), ban(t) = (t — tn)(t — tn 1), . . (4.42)

The predicted derivative may be similarly written as:

dY" @) @) dby () dby.p(t) -
— L Nt UASAR Vo P O A I
dt dt [i+ dt [btn-a] +
dbgn(t) -
+ kélt() Y tns taets tn-2, s tni]. (4.43)

BDF codes such as the DASSL DAE Solver also make use of these polynomials to predict the
numerical solution at the next time step. The system of equations solved for the new solution

at time ¢, is given by:

dY" 1@ o o ntl o+l
T(tnﬂ) - (tﬂis_“ (Yn - Yy"ti® (tn+1)) = G(tnr1, Y), (4.44)
n n
"1
where a; = — Z — for a method of order k. Substituting Equations (4.41)—(4.43) into Equation
i
i=1

t —t
(4.44) and multiplying Equation (4.44) by (tni1 = tn) enables Equation (4.44) to be written in
Os

31

a more recognizable BDF form as:

%)

k
Jj=

(tn+1 - tn) db] n |~ (thrl - tn) Y
bin P Tty ty] = LT) e),
- |: s + Qs dt [J] (_as) f(+1 +1)

(4.45)
The above equation is solved to obtain the numerical solution Ynﬂ at t,4+1. The numerical
solution at any point ¢ that lies between ¢, and t,y1 is obtained using the interpolating
polynomial defined as in (4.41) but with a different set of nodal values f{nﬂ, Y", .., Y

This polynomial may be rewritten in Lagrange form as:

- _ k (t— tn+1_j) o n+l—i
Y (1) Z 11 0 Y : (4.46)

k
i — b1
=0 j=0,j#i n+1—12 n+1])

ko

t—tpt1—5
We use a shorthand notation Hfl“k’? (t) for H (ntiy) for convenience of exposi-
ks ot (tng1—i — tnti—j)

tion. Using this shorthand notation in the Lagrange form of Y(t) gives:

k
V()= me Y™

=0

(4.47)

Equation (4.47) is used to evaluate the numerical solution at any point t € [t,, t,+1] using the

discrete numerical solutions at t,41, tn, vy tnt1—k-

4.5.2 Residual Error and Global Error Estimation using
Approach of Cao and Petzold [21]

Cao and Petzold [21] give way to estimate the global error of the numerical solutions obtained
with BDF method implemented in the DASSL DAE solver using the adjoint-based approach.
The global error estimate in Cao and Petzold [21] will be reiterated as follows. The local

solution on the interval [t,,t,+1] used in [21] satisfies:

(4.48)

Vo1 (t) = G(Vig1(t),t) 1t € [tnpi—ks tnsa,
Vor1(tnri—k) = Yog1-k-

This local problem is different from the local problem defined in Equation (4.20). Let S;4+1(¢) be
the polynomial that interpolates k + 1 points (41, S04 1), (tny Shit)s vy (tn—kt1, Sk 1) Where

Si .4 is the notation for Sy41(tnt1-) and 8% = Vi1 (tnt1—;) for i = 0, ..., k. The polynomial

32

Sn+1(t) is then written in Lagrange form using the shorthand notation as in Equation (4.47)

as follows:

k
Spa1(t) = 3 TOF(1)S0, . (4.49)
i=0
Then for any t in [t,, tp+1], we have:
Vi1 (t) = Spat(t) + IE(t) (4.50)

where TE(t) is interpolation error at t, and is defined as:

(k+1)
IE(t) = (t — ty1)(t — tn)..(t — tn_kH)V”“ (7)

AR (4.51)

for some value 7 that lies in the interval [¢t,,_g+1, tn+1]. For any tin [t,, t,,41], the time derivative

- a..b
Hi

of Hf"b is given by:

b b

=3 ! 11 (= tur1) (4.52)

j=a,j#i (tn—i—l—i - tn—f—l—j) I=a.li,j (tn-i—l—i — tn+1fl) ’

Differentiating Equation (4.50) gives:

V(1) = Y10 ()8 + 1B(). (4.53)

We now rewrite the residual error, r(t), for the perturbed system in (4.10) on the interval

[tn, tn+1] using the definition of local solution in Equation (4.48) as:

r(t) = Y(t) — G(Y, 1) = Y(t) — Vi1 () + G(Visr (1), 1) — G(Y (1), 1). (4.54)

Cao and Petzold [21] assume that the function G(Y,) is sufficiently smooth and satisfies the
Lipschitz condition, |G(Vy1(t),t) — G(Y(t),t)|| < L||Vps1(t) — Y ()| for some constant L.
It is pointed out in [21] that if |At L| < 1 then V,1(t) — Y (t) = O(At*1) while V1 (t) —
Y(t) = O(At%). Consequently, the term G(V,41(t),t) — G(Y(t),t) may be disregarded as not

making a significant contribution to the residual error. The idea of disregarding G(V,,41(¢),t)—

33

G(Y(t),t) from the residual error is also used in Enright [32]. The residual error in Equation

(4.54) is thus given by:

- V”H‘l (t)a

=
2
<.

L) (Ynr1-i — Shp) — IE(1). (4.55)

Q
=
LS
B

r(t) ~ Zu (td',, — TE(), (4.56)

where d, | = Y, 11-i—Si; fori =0,...,k. Cao and Petzold [21] state that d’,; = O((tn+1—

tn)*t1) and so:

k
r(t) & > (tugs —)1 Co - IE(), (4.57)
=0

where Cy = CkHY(kH) with Cg41 estimated using the DASSL DAE Solver and

Y D) (7 k

k k
IE(t) ~ ——* Z Il ¢—tepi) = ZZ YED (1) (g — ta)F. (4.58)

k T 1 1=0 j=0,j#1 =0

The calculation of the above term requires the estimation of Y (*+1) (t) which is available within
the DASSL DAE Solver. In the DASSL DAE Solver, the estimation of Y*1(¢) is obtained
from the divided difference representation of the numerical solution. The residual error may

then be written as:

I'(t) ~ C(tn—i-l - tn)(tn—I—l - tn)ka (4-59)

where C(tp41 — t,) is calculated using Equations (24) and (26) of Cao and Petzold [21] as
follows:

k

: 0..k
Cltpi1 —tn) ~ Cpy YEHD Z ;" (tng1 — tn)
=0 z:O

=

y (D), (4.60)

34

Cao and Petzold [21] use residual error r(t) defined in Equation (4.59) to rewrite Equation
(4.19) as follows:

1Tet(T.) ~ Y AT () C(tj1 — 1) (ti41 — 1) + AT (0)ro. (4.61)
j=1

This equation is used by Cao and Petzold [21] to estimate the global error. Therefore, in
order to estimate the global error using Cao and Petzold’s approach in [21] with the DASSL
DAE Solver, we need to solve the ODE system in (4.9), solve the adjoint system in (4.13), and
evaluate the residual error using the available data given by DASSL DAE Solver when solved for
the ODE system in (4.9). For the global error estimate using our approach as using Equation
(4.25), we need also to evaluate the local error le (th; tj, Yj) for each time integration step.
We will discuss how to evaluate the local error using residual error sampling in the following

section.

4.5.3 Estimation of the Local Error
and the Truncation Error

4.5.3.1 Estimation of the Local Error using
Residual Error Sampling

Consider the local problem given by Equation (4.20) and the local error given by Equation
(4.22). Define, P(t), a polynomial of degree k on [t 11—k, tn+1], that satisfies:

Pltyi) =Y, j=1,..
{ (thrl]))) 7ka (462)

P(thrl) = Zn+1(tn+1)7

where Z,41(tn+1) is the solution to the system in (4.20). Then P(¢) is an interpolation
polynomial of degree k that interpolates k + 1 known points on the interval [t,i1_k, tnt1]
and approximates Zj,41(t) on the interval [t,,¢,+1]. The interpolation polynomial P(¢) may

also be written in Lagrange form:
k i
<, —1
P(t) =Y TI)*(t)Y + 119K () Z s 1 (b 1) (4.63)
i=1

Since P(t) approximates the local solution on the interval [t,, t,+1], we have:

Z,1(t) = P() + QD). (4.64)

35
where the term Q may be written as a divided difference term as follows:

n n—1 ~ n—k

Q(t) ~ 7"-(75)[Zn+1 (tn+1)v ? aY LR Y]7 (4'65)

and 7(t) = (t — tp41)(t — tn)...(t — tp41-k). As mentioned in Section 4.5.2, Cao and Petzold
[21] assume the term G(Zy41(t),t) — G(Y (1), t) may be disregarded as not making a significant
contribution to the overall residual error. The residual error, r(¢), in Equation (4.23) may be

then estimated as follows:
r(t) ~ Y(t) — Znyi(t). (4.66)

From Equations (4.47), (4.63), (4.64), and (4.65), we have:

-1 ~n—k
yeeny

Y(t) = Zpr () =~ — 13 *le(tyyritn, Y) — 7(8)[Zns1 (tng1), Y, Y Y. (4.67)

Therefore:

n n—1 n—k

- 0.k - . SN S
r(t) ~ =11y le(tpr1itn, Y) — 7#(8)[Zns1(tn), Y YY) (4.68)
Two quantities that determine the form of the estimated residual over a step are le(t,,41; ty, Yn)

and [Zps1 (tnen), YY", LY

—k
"]. So with two samples of the residual error at ¢1, and ¢2

in the interval [t,, t,+1], we form the system:

HONk(tl) fr(tl) _le(tn—i-l; tn, ?n) . r(tl)
0 ,Yn_k] [] . (4.69)

: ~n omn—1
11" (t) 7(ts) ANZr (), YY" r(ts)

Solve the above system with two samples of the residual error for the time interval [t,, t,4+1],

we obtain the local error le(t,,.1;tn,, Y" per time step.
+

4.5.3.2 Truncation Error Estimation by
Richardson Extrapolation

Berzins [13] proposed a method to estimate the spatial truncation error by Richardson
extrapolation. We will reiterate the method here and use it in the global error estimation for
the numerical solutions of PDEs proposed in this chapter.

Consider two different discretized meshes €2, and Qg of the PDE system in (4.1) where

H

h and H represent the mesh characteristic length and h = 5. The mesh Q, is the actual

36

mesh used to compute the numerical solution to the PDEs and also be the “fine” mesh in the
Richardson extrapolation; the mesh 2y is the “coarse” mesh. The truncation error for the

mesh €}, as defined in Section 4.3 is:
TE(t) = Y[h](t) — Gu(Y[h](1),). (4.70)

- h C
Let Y% (t) and Y (t) be the restriction of the numerical solution Y, () and the numerical
derivative Y, (t) from the “fine” mesh to the “coarse” mesh. The truncation error for the
“coarse” mesh is then obtained by evaluating the following equation as proposed in Berzins
[13]:
4

Yiu(t) = Gu(t, Ul ()] + 5letu(t) -

oGy

TEa(t) = Y (D)

ety (t)]. (4.71)

QO i~

The trunction error at the grid nodes that belong to both “fine” mesh and “coarse” mesh is
then given by:

[TEA(O)]25-1 = 4]

TEg(t)];. (4.72)
The truncation error at grid nodes that are in “fine” mesh, but not in “coarse” mesh is then

obtained by extrapolating using the following equation:
1
[TEn()]2s = G ((TER(t]; + [TE#(t)]i+1). (4.73)

This method of Richardson extrapolation for truncation error estimation as discussed above is
based on the assumption that the spatial discretization error is second order in space in terms

of the mesh characteristic length.

4.5.4 Numerical Results
4.5.4.1 Adjoint-based Global Error Estimate for ODEs
We consider six examples below for testing of the adjoint-based global error estimate. In
these examples: Examples 1-4 are from [21] and Examples 5-6 are from [81].

Example 1.

(4.74)

37

This problem is solved with three different cases:

a =1, Yo=[10""], T.=100,
a =-1, Yo =[1.0], T, = 1.0,
a =-20, Yo=][1.0], T, = 1.0.
Example 2.
Y = —(025+sin7t)Y - Y, 0<t<T,, (4.75)
Y(0) =[1.0].

The analytical solution at t is Y (¢t) = [v/(7m + 1 4 0.25nt — cos7t)] and we consider the time
integration at T, = 1.0.

Example 3.
1
. — =2t
Y = | 2(1+1) Y 0<t<T,
9t 1 (4.76)

2(1+0)
Y(0) =[10 0.0]".

T
The analytical solution at ¢ is Y (t) = [(1 + t)% cos(t?), (1+ t)% sin(t2)] and we consider the
time integration at 7T, = 10.0.

Example 4.

: -1

Y = 0 Y 0<t<T,
10 (4.77)

Y(0) =[2x10* 0.0]".

The analytical solution at ¢ is Y (¢) = [10_4(et +e7),1074 et - et)]T and we consider the
time integration at 7T, = 10.0.

Example 5.

: 0 1
Y = Y 0<t<T,

Y(0) =[0.0 1.0".

(4.78)

The analytical solution at ¢ is Y (¢) = [sin(¢), cos(t)]” and we consider the time integration at

T, = 50.0.

38

Example 6. Let Y = [y1, Y2, Y3, Y4, y5]T. Consider the ODE system:

n
Y2 + Y1y1
Y = Y3+ y1y2 0<t<T,
Y4 + 9193 + Y2Y2
| Y5 +y1ys + Y2y3 |
Y(0) =[10, 1.0, 0.5, 0.5, 0.25]".

(4.79)

The analytical solution at ¢ is Y = [ef, e, 1e3, 1et’ le

T and we consider the time
integration at T, = 50.0.

The ODE systems of Examples 1-6 are solved using DASSL DAE Solver with local error
tolerances of 1074, 1075, 1075, 1077, 1078, 1077, and 10~'°. Applying the adjoint global error
estimate given by Equation (4.25) where the local error is determined by sampling the residual
error at two points per time interval as mentioned in Section 4.5.3.1, we obtain the error indices
(the ratio of estimated global error and exact global error Lo-norms) in Table 4.1. As shown
in Table 4.1, our approach of adjoint global error estimate is reliable when the obtained error
indices are very close to one (the ideal value of error indices) in most cases. For the result of
Example 1 with A = —20, the obtained error indices for large TOL (such as 10~% and 107°)
are not close to one as the term G(Zy,,1(t),t) — G(Y(t),t) makes a significant contribution to
the residual error but being disregarded from the estimation of the residual error as mentioned
in Section 4.5.2.

In order to compare the obtained results using our approach and Cao and Petzold’s approach

in [21], we include in Table 4.2 the error indices of Cao and Petzold’s global error estimate for

Table 4.1. Error indices eindex(et(1.)) of the estimated adjoint-based global errors for
numerical solutions to Examples 1-6 using DASSL DAE Solver and the residual error sampling
technique in Section 4.5.3.1 with different values of local error tolerance (TOL).

TOL

Example |[10~* [107® [107° [1077 [107® [1077 [107"
1A=1) 0.95 [0.95 [0.95 096 [0.96 [0.96 |0.95

IA=—-1) [096 |097 |0.99 |0.96 |0.96 |0.96 |0.98

1(A=-20) | 271 | 263 | 1.80 |1.07 |1.05 |0.96 | 1.03

0.97 | 098 [0.98 |1.07 |1.00 |0.99 |0.99

0.96 | 095 |0.97 [098 |098 |0.97 |0.97

0.95 | 095 [0.95 |095 |0.97 |0.96 |0.98

0.96 | 097 |0.97 |097 |0.97 |0.96 |0.98

0.96 | 097 097 |097 |0.97 |0.98 |0.98

SO W N

39

Table 4.2. Error indices eindex(et(1.)) of the estimated adjoint-based global errors for
numerical solutions to Examples 1-6 using DASSL DAE Solver and Cao and Petzold’s approach
described in Section 4.5.2 with different values of local error tolerance (TOL).

TOL
Ezxample | 107* [107> [107 [1077 [1078 [1077 [10710
IA=1) [723 [709 |[9.12 [895 |854 |16.72]9.18
I(A=-1) | 3.22 | 296 |129.2 | 6.74 | 245 | 867 |5.73
1I(A=-20) | 1.59 |0.46 |0.45 |2.08 |7.63 |10.12 | 10.36
9.27 | 106.9 | 19.36 | 72.67 | 13.98 | 16.38 | 0.31
13.02 | 13.66 | 13.00 | 11.59 | 10.92 | 10.77 | 11.35
725 | 7.08 |6.45 | 868 |12.10 | 15.70 | 12.45
8.89 | 15.04 | 7.98 | 145 |7.63 |8.64 | 4.16
10.54 | 14.31 | 8.09 | 12.94 | 4.62 | 8.35 | 13.86

S T = W N

numerical solutions to Examples 1-6 using DASSL DAE Solver. When comparing the data
shown in Table 4.1 and Table 4.2, here are some comments that we have. Though we need
an extra of two residual error samplings (this is equivalent to two evaluations of the system
in (4.9)) per time step; the result shown in Table 4.1 is much more accurate than the result
shown in Table 4.2. As shown in Table 4.2, the global error estimate gives a wide range of
error indices, and often the global error estimate for Examples 1-6 is overestimated. Although
the error is sometimes overestimated using the approach of Cao and Petzold [21], it helps to

control well the global error in [21].

4.5.4.2 Adjoint-based Global Error Estimate for PDEs
We consider here a PDE problem in one-dimensional space with a nonlinear source term
and a reaction diffusion equation:
@:@er?u—y) (z,t) € (0,10) x (0, T.] (4.80)
8t 8{,52 Y I 9 & .
with Dirichlet boundary conditions and initial conditions consistent with the analytic solution

of:

1

Py e=— (4.81)

y(z,t) =
where p = 0.5v/2. We consider the numerical solution at 7, = 1.0.
When solving the above problem, we discretize this PDE with different numbers of mesh

points (NPTS) and approximate the spatial derivatives with a second order central finite

40

difference. The discretized ODEs are then solved using DASSL DAE solver with different
values of TOL. Applying the adjoint-based global error estimate given by Equation (4.32)
where the trunction error is obtained via Richardson extrapolation discussed in Section 4.5.3.2
and the local error is determined by sampling the residual error at two points per time interval
as mentioned in Section 4.5.3.1, the obtained error indices are shown in Table 4.3. As shown in
Table 4.3, our approach of adjoint-based global error estimate gives a good approximation to
the overall error in the numerical solutions of PDEs when the obtained error indices are very

close to the ideal value of one.

4.6 Summary

Spatial and temporal errors are the error sources associated with the discretization of time-
dependent PDEs when using the method of lines. We have presented in this chapter the adjoint-
based approach for estimating both temporal and spatial errors in the numerical solutions of
time-dependent PDEs. Our adjoint-based temporal error estimate is based upon the adjoint
ODE error estimate proposed by Cao and Petzold [21], but improved with the addition of
the residual error sampling technique presented in this chapter. Making use of the similarity
between the systems of spatial and temporal error evolution, we derived the discrete adjoint-
based approach for spatial error estimate in which the PDE trunction error obtained from
Richardson extrapolation is being used. Numerical results presented in this chapter have shown
that our adjoint-based error estimate gives a reliable and close estimate of the true global error.
We will use this approach towards the global error estimation of the numerical solutions obtained

from the Improved Production Implicit-Continuous Eulerian (IMPICE) method in Chapter 8.

Table 4.3. Error indices eindex(ge(T.)) of the estimated adjoint-based global errors for
numerical solutions to the PDE problem discussed in Section 4.5.4.2. The numerical solutions to
this problem are obtained for different number of mesh points (NPTS) of spatial discretization.
The discretized ODEs are solved with DASSL DAE solver using different values of local error
tolerance (TOL).

TOL

NPTS 107" [10™® [107°® [1077 [107® [107 [107™"
11 [090 [089 [088 [088 [087 [0.87 [0.87
21 {098 [097 |095 |097 |097 |097 |0.97
41 | 1.01 | 101 |096 [099 |0.99 |0.99 |0.99
81 099 |100 |08 |[100 |1.00 |10l |1.01
161|098 |0.99 |0.92 |1.01 |1.01 |1.01 |1.01
3211097 098 098 |102 |101 |101 |101

CHAPTER 5

SOLVING TIME-DEPENDENT PDES
USING THE MATERIAL POINT
METHOD

The Material Point Method is a particle method [109]. It is used in computational solid
dynamics to simulate large material deformations as the spatial mesh in MPM remains fixed
throughout the calculation. As mentioned in Steffen [109], the method is a mixed Lagrangian
and Eulerian method with particles representing the discrete Lagrangian state of a material.
Though the method is widely used in many applications in the field of solid dynamics, there
is not much analysis of the method. In this chapter, we will study in depth the accuracy of a
variation of MPM proposed for gas dynamics on a well-known test problem in one-dimensional
space. The test problem is Sod’s shocktube problem presented in Sod [108] where the motion of
the compressible and inviscid fluid is governed by the one-dimensional system of Euler equations.
Though this analysis is done for a specific variation of MPM, it is described in a way that
can be applied to other versions of MPM. We will perform analysis on two sources of error:
errors introduced when information from particles is projected onto the grid, as well as errors
introduced when particles cross grid cells.

The content of this chapter is organized as follows. Section 5.1 includes the spatial dis-
cretization of MPM. In Section 5.2, we describe an abbreviated form of the computational
method of MPM discussed in Steffen et al. [111]. The application to gas dynamics of MPM
is carried out in Section 5.3. In Section 5.4, we will experiment with numerical solutions of
Sod’s shocktube problem corresponding to different cases of particles’ distribution and different
initial numbers of particles per cell used in this variation of MPM. We will analyze the method’s
time integration error and space discretization error in Section 5.5 and Section 5.6 respectively.
The discussion on the combined error for numerical solutions of Sod’s shocktube problem is

presented in Section 5.7. Finally, Section 5.8 is a summary of this chapter.

42

5.1 MPM Spatial Discretization

MPM is a particle method based on the Finite Element Method in which the computational
domain Q = [a1,b1] C R is discretized into a mesh on which a set of particles are placed;
see Figure 5.1. Let NN, be the number of particles in the computational domain 2, p be the
subscript index of the particle where p = 1,.., V,,, and €, be the particle domain of particle
p. Each particle p (referred to as the material point) is associated with the particle volume,
V), the particle position, x,, the particle mass, m,, and the particle momentum, F,. In MPM,
the motion of these particles is solved on a background grid. The background grid is a set of
points (referred to as nodes or grid nodes) that divides the computational domain into cells.
Let N be the number of nodes in the computational domain 2, and j be the subscript index of
the nodes where j = 1,.., V. Unlike particles, the position of nodes is fixed at x;. The spatial
domain of a cell j where j =1,.., N — 1 is denoted as ; where Q; = [z, z;11]. We consider a
uniform background grid with the mesh spacing of A and the same initial number of particles
in each cell. The movement of particles between cells is based on the nodal velocity and the
nodal acceleration whose calculation will be discussed in detail in Section 5.2. The following
discussion will explain how to approximate a function value using particles’ values, how to
represent a continuous function using discrete nodal data, and how to map from particles to

grid nodes.

5.1.1 Particle Basis Functions
Let f(z) be a function defined on the computational domain z € © and f, be the value of
function f at particle p. The approximation to the function f(z) in terms of particle values is

written as:

F@) = foxp(@) Va € [ay, b, (5.1)

Figure 5.1. MPM spatial discretization in one-dimensional space.

43

where x,(x) is the basis function associated with particle p. In the original form of the MPM,
Delta functions are used for the particle basis functions and the basis function for particle p is

defined by:
Xp(@) =0(x —zp)Vp, p=1,...,Np, (5.2)

where:

5(:6):{ 1 it =0, (5.3)

0 otherwise,

and the paticle volume, V), will be defined later in this section. Bardenhagen and Kober [5]

use the piecewise constant form for the particle basis function which is given by:

(5.4)

1 if e,
Xp(x):{ ¢

0 otherwise

where Q,, is the interval [z, — hp/2, 2, + hp/2] and h,, is the particle width. This has the

advantage that the functions form a partition of unity on the interval [a;, b;]:

Np
d xpl@) =1 Va € lar,b. (5.5)
p=1

For the case when the particle basis function is defined in Equation (5.4), the particle volume

is then defined by:

V; :/pr(x)dx. (5.6)

5.1.2 Grid Basis Functions
Let g(x) be a function defined on the computational domain z € Q and g; be the value of
function g at node j. The continuous representation function g(x) using discrete data g; (j =

0,...,N) is given by:

N
glx) =" g;S;(=), (5.7)
j=1

44

where S;(x) is a grid basis function at node j and these basis functions form a partition of unity
on the interval [a1,b;]. The most commonly used grid basis functions are the piecewise-linear

basis functions; see Figure 5.2. The piecewise-linear grid basis function for node j is given by:

|z —) : A
0 otherwise

where h is mesh spacing.

5.1.3 Mapping from Particles to Grid

Let define Sjp and C_;'jp as follows:

_ 1
Sip = V/ Si(z)xp(z)dx, (5.9)
p JQ
and
_ 1 dsS;
G-—/Jxx x)dzx. 5.10
=7 [) (510)

In the case of the standard MPM when Delta functions are used for the particle basis functions

and the linear basis functions are used for the grid basis functions, then, according to [5],

Sip = Sj(zp), (5.11)
and

_dS,;

Gip = 2i(ay). (5.12)

Figure 5.2. Piecewise-linear basis functions.

45

Consider the particle basis functions x,(z) that form a partition of unity on the domain (2 as
shown in Equation (5.5) and function S;j, which is defined in Equation (5.9). We define two

different mappings as given by:

Np
Fag) =" flap) Sp, (5.13)
p=1
and
Np
Gy ==) Gali (5.14)
p=1

These mappings are used to map particle values onto a value at node j.

5.2 MPM Computational Method

Given an initial distribution of particles on the domain at time ¢t = tg, each particle p is

assigned a point mass, mg, which is defined in terms of density as given by:

mgz/ p(z,0)xp(x)dz. (5.15)

P

The initial particle density average, pg, may also be defined by:

0 =md/vyP, (5.16)

where V;;O is the initial particle volume. The particle p is also initially assigned a momentum,

P]? , which is defined in terms of density and velocity by:

PI? = /Q p(x,0)u(z, 0)xp(z)d. (5.17)
P
The Cauchy stresses are:
— o(x,0) Xp(x)dx (5.18)
P Q) VO Y :
P p

where o(x,0) is continuum bodies initial Cauchy stress. In the most general case, the stress

tensor is given by ¢ = —pl + T, where p is the pressure, 1" denotes the viscous stress tensor

46

and I is an identity tensor whose size is same as the modeling dimension. In a perfect fluid
model such as the gas dynamics problem considered here, the stress at a particle is equal to

the pressure:

Op = —Dp. (5.19)

5.2.1 Mesh and Particle Movement per Time Step
This subsection describes an abbreviated form of the original MPM; a detail description of
this method can be found in Steffen et al. [111]. This abbreviated description includes the
steps to advance the numerical solution from time level ¢,, to t,41. Since the motion of the

particles is solved on a background grid, the particle data (the particle mass and the particle

n

momentum) are projected onto the nodes at the start of the time step. The nodal mass, my,

is approximated using the mass of the particles via the lumped mass matrix form of MPM in

[113]. As given by Equation (5.13), the nodal mass is as follows:

Np

mi=>"Sjpmy, j=1,..,N. (5.20)
p=1

Similarly, the nodal momemtum, P}, is given by:
NP
P =Y "Spmpur, j=1,.,N. (5.21)
p=1

where wu,, is the particle velocity at t,,. The movement of the particles is determined by the

velocity and the acceleration at the nodes on the background grid. The nodal velocity, u7, is

calculated from the nodal mass, mj, and the nodal momentum, P}*, which is given by:

pn
J

n
70

Assuming that the nodal internal force, Fint”, is defined, then the nodal acceleration, a;‘, is

given by:

a’ = . (5.23)

47

dFint

Since o = , the following equation is derived from Equations (5.14) and (5.19):

NP
Fint} = ppGipVy, (5.24)
=1

where py; is the particle pressure at ¢,. The relationship between the acceleration, the velocity,

and the displacement of the material is given by kinematics:

w(z,t) =a(z,t), (5.25)
(x,t) =u(z,t). (5.26)

The nodal velocity at the end of Lagrangian step is calculated using the Euler method for the

time derivative of velocity in Equation (5.25) as follows:

U?H =uj +aiAt, (5.27)

where At = t,11 — t,. The particle velocity and location are time-advanced using the Euler
method for the ODEs (5.25) and (5.26) where the function on the right side of these ODEs is
evaluated using the projection of nodal values. The updated particle velocity and location are

then given by:

N
uptt =y 4+ SjalAt, (5.28)
j=1
N
n+1 Q 1
aptt = ol 43 " Sul AL, (5.29)
j=1

Remark If u;H'l was used to replace the sum in the right side of Equation (5.29), the time
integration method could be viewed as a first-order Runge-Kutta-Nystrom method, Chawla

and Subramanian [23].

5.3 Application to Gas Dynamics
At the start of the time step t,, the approximate particle volume for particle p can be

calculated using the number of particles in the cell that contains the particle, NV 7 by:

V’I’l

h
;= (5.30)

48

where h is mesh spacing. While this is a reasonable approximation for compressible flows,
and was first used by [70], it represents a departure from the standard MPM approach for
solid mechanics, in which the volumes associated with particles are tracked; see Steffen et al.
[110, 111, 112] for an analysis of this case. The particle’s mass is calculated from the density

and the volume of the particle as:

my, = p, V" (5.31)

The nodal mass is calculated from the projection of the particle properties as shown in (5.20)
and nodal momentum is given by Equation (5.21). The nodal velocity is calculated from the
mass and the momentum of the node as given by Equation(5.22). The nodal force may be

written as the jump on the averaged particle pressures:

Fint] = p?(_) — p?(H, (5.32)
where
n(— n 1

=y Py (5.33)

p1$g’€Qj_1 Jj—1

n(+) _ n_1
pj = Z Pp N (5.34)

pry €LY J

The internal force at a node is thus equal to the averaged pressure drop around that node. The

nodal acceleration is calculated from the nodal force and the nodal mass as follows:
a? == (5.35)

The particle velocity and location are then updated using Equations (5.27)—(5.29). This method
of force calculation has been developed here as being more appropriate for compressible gas

dynamics as it assumes that the particles within a cell have the same volume.

5.3.1 Particle Energy, Density and Pressure Update

Once the nodal velocity has been determined using (5.28), it is possible to update the

n+1

velocity gradient and hence calculate the particle density, pg“, and the particle energy, ;™ ",

for the next time step following Equations (3.48) and (3.49) by:

49

aun+1
et = en a0 (5.36)
Jok 8x
and
. 8un+1
p;)H_ - pp Atpp a) (537)
n+1
where the particle velocity gradient, %, is calculated using nodal velocities and the gradi-
x

ents of the nodal basis functions as given by:

8u”+1

Z Gpul ™, (5.38)

where G, is defined by Equation (5.10). Note that all particles in the same cell have the same
velocity gradient as calculated using Equation (5.38). The updated particle pressure is then

calculated using equation of state (3.36) and an added viscosity term as follows:
pptt = (v = Dpptleptt 4t (5.39)

where the term ™! is a standard artificial viscosity term which is defined by:

p

2
a n+1 a n+1
el _ C?da?pp (Q;I;;) if 1;1; <0

0 otherwise,

where C' = 2.5. This form of artificial viscosity was used by Monaghan and Gingold [89, 90] to
reduce oscillations in the numerical solutions of the SPH methods. This formula exploits the
property of shock front that the gradient of velocity is less than zero. Using Equation (5.39)
to obtain the value of the pressure/density ratio and substitute into Equation (5.36), we then

have:

aunJrl Vn+1 8un+1
emtl=er [1—(y—1)—2—At]| -2 P2 A¢ A4

(5.41)

b) n+1 o n+1
pit! = [(pg—ag—l) (1— 2 At) +ag+1] [1—(7—1) 2 At

50

Using Equation (5.40), Equation (5.39) is rewritten as follows:

1 1 “;Hl 1 “gﬂ
oyt =y -yt |1 - 5 At)+ 1= (y—1) . At (5.42)

5.3.2 Positivity, Overshoots and Stability
Since the values of density, energy, and pressure are positive, their numerical approximations
should also be positive. From Equations (5.36)-(5.37), it may be seen that this occurs for the

discrete density and energy equations under a Courant-like condition:

n+1

Up
0< I —At<1. (5.43)

Although this ensures the values of density and energy remain positive; local extrema may be
caused by the use of the velocity gradient from “old” cell when cell crossing occurs. Suppose
that there are two adjacent particles in different cells whose densities satisfy the following

equation:

Py < Ppiis (5.44)

and whose velocity gradients satisfy the following equation:

aun—‘rl 8’U,n+1)
_ P i p+1
<1 At o >>> (1 At o , (5.45)

then it is possible that one particle will over take the other in magnitude:

pptt > prts (5.46)

this may result in a new extremal value. A similar argument may be developed for the creation
of new extrema in energy. When extrema occur in the velocity, it is necessary to apply the
artificial diffusion to the calculation of the nodal velocity. An extremum occurs in the velocity

at node j if the following condition is met:

(ufy —ul) (ufy —uf) > 0. (5.47)

51

The new value of velocity is then calculated by the addition of an artificial viscosity-like term

that approximates — —— which gives:
3 0x?

n o n n
ui_y —2uy +ui,

(5.48)

The same approach is applied if extrema are detected in density.

5.3.3 Particle Redistribution

When the particles move among the cells, the number of particles in a cell is changed. The
number of particles in a cell is used in the calculation of particle volume in Equation (5.30),
and therefore the calculation of particle mass in Equation (5.31). If there were too few particles
per cell and some of these particles move from one cell to another, it is possible for a cell not to
have any particles. This may cause stability problems. To prevent this situation, care must be
taken in the initial assignment of particles; see Section 5.4.2 and Section 5.4.3. The main idea
is to ensure that there is always sufficient number of particles per cell. This may be obtained by
redistributing particles or by ensuring that particles are placed where they will move into cells
with fewer particles. It may also be necessary to create new particles in the empty cells with
the particles’ properties obtained by interpolating the particles’ properties in the adjacent cells.
We have not experienced the idea of creating new particles in the empty cells in our variation

of MPM for gas dynamics.

5.4 Gas Dynamics Computational Experiments
5.4.1 Problem Description

The model problem used here is that of Sod [108] who used a simple gas dynamics problem
to investigate finite difference schemes for shock propagation type problems. This problem
has an analytical solution and may be used in the comparison against the numerical solution
obtained from the variation of MPM for gas dynamics. This problem has often been used as a
test problem for PIC and MPM methods; see [140]. Sod’s shocktube problem consists of a shock
tube, where a diaphragm is located in the middle of the tube. Two sides of the diaphragm have
different pressures and densities, which make the fluids flow when the diaphragm is broken.
At time t = 0, the diaphragm is removed and the motion of the compressible and inviscid
fluid is governed by the one-dimensional system of Euler equations in (3.28)—(3.31). The initial

condition at t = 0 of this problem is defined as:

(1.0, 0.0, 1.0) if x<05

(p,u, p)(x,0) :{ (0.125, 0.0, 0.1) otherwise, (5-49)

52

on spatial domain Q = [0.0, 1.0] and the diaphragm is placed at xg = 0.5. The final time for
this problem is T, = 0.2.

5.4.2 Initial Uniform Particle Distribution

As particles can move from one cell to another, the number of particles in a cell varies,
and so does their volume according to Equation (5.30). Since we assume each material point
is part of a perfect compressible gas, changing the particle’s volume is a reasonable modeling
assumption. In solving the Sod’s shocktube problem using our variation of MPM, we initially
assign the same number of particles for each cell. The result in Figure 5.3 is obtained when the
initial number of particles in each cell is 8, the cell size (h) is 0.005, and the time step (At) is
0.00025. In this figure, each dot represents a material point and the solid line is the analytical
solution. As seen in Figure 5.3, the obtained numerical result shows large errors behind the
shock front. In order to reduce the error in this numerical solution, the smoothing process
described in Section 5.3.2 was applied. The solution of the Sod’s shocktube problem after
the smoothing process was applied is shown in Figure 5.4. The error norms in the obtained
numerical solution with smoothing process is about 67 to 90% of that when the smoothing
process is not applied.

To investigate the relationship between the global error and the initial number of particles
assigned to each cell, we examine the errors in the numerical solutions of the Sod’s shocktube
problem obtained from our variation of MPM with various choices of initial number of particles.
In these numerical solutions, we either vary the size of mesh spacing h and keep the time step
At fixed or vary the time step At and keep the mesh spacing h fixed. Figure 5.5(a) shows the

change of errors in density when the size of mesh spacing h changes and the time step At is

(a) (b)

0.8}

0.6}

0.4}

0.2}

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 5.3. Numerical solutions for Sod’s problem in Section 5.4.1 using our variation of MPM
for gas dynamics at T, = 0.2 with 200 cells;

(a)density: ||ge?(T)||r, = 6.4 x 1073, ||ge”(T)||L, = 1.52 x 1072

(b)velocity: |lge*(T)|r, = 1.85 x 1072, ||ge*(T)||r, = 5.80 x 102

53

1 1
0.8}

0.5}
0.6}
0.4

01
0.2} ‘ —
0 ‘ ‘ ‘ ‘ -0.5 ‘ ‘ ‘ ‘
0 02 04 06 08 0O 02 04 06 08 1

Figure 5.4. Numerical solutions for Sod’s problem in Section 5.4.1 using our variation of MPM
for gas dynamics at T, = 0.2 with the smoothing process applied by adding viscosity-like terms
described in Section 5.3.2;

(a)density: ||ge?(T)||r, = 4.3 x 1073, |ge”’(T)||L, = 1.05 x 1072

(b)velocity: |lge*(T)|r, = 1.47 x 1072, ||ge*(T)||r, = 5.07 x 1072

fixed. As seen in Figure 5.5(a), smaller mesh spacing generates more accurate results. It is
also seen in Figure 5.5(a) that the computation is inaccurate or unstable when the number of
particles is too small (less than 3). For the Sod’s shocktube problem, the numerical result is at
best if the number of particles in a cell is between 4 to 8 and the mesh spacing is sufficiently
small. It is interesting to see that the smaller mesh spacing does not reduce the need for a
certain number of particles in a cell in order to obtain a stable and accurate result. In Section
5.4.3, we will show the result for the case when the initial particle distribution is not uniform.
The initital particle distribution in Section 5.4.3 is based on the difference of density in various
spatial regions. Figure 5.5(b) shows the change of errors in density when the time step At
changes and the size of mesh spacing h is fixed. It also means that the results obtained in
Figure 5.5(b) are from fixed mesh spacing h and varied CFL <Aht> Figure 5.5(b) shows that
the error does not change much for the numerical results obtained with the same mesh spacing
but different time steps which satisfy the condition CFL < 0.1. Figure 5.5(b) also shows that
there is a slight increase in error as the time step decreases; perhaps it is due to the buildup of
the global error over the larger number of steps, but the global error is still dominated by the
spatial error. To investigate the choice of CFL number to maintain the stability of the discussed
MPM method for gas dynamics, we keep the mesh spacing and number of particles per cell
fixed and vary the time step. Table 5.1 shows the allowed maximum time step to keep the
method stable for three different values of mesh spacing: A = 0.005, h = 0.01, and h = 0.015.
As seen in Table 5.1, the method is unstable if the time step is bigger than 0.00057 when the
mesh spacing is 0.005. The meaning of “unstable” is that the particle velocity is so large that

the particle leaves the spatial domain. Table 5.1 shows that the method generates stable results

54

(a) Errors for various choices of h.

0.25 T T T T T T T
—&—h =0.005
—*—h=0.01
| —%—h=0.02
0.2 —+—h=0.04 1
0.15f b
S
i
01r E
0.05 } } f—t— f f } }]
K KX
O 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18
Number of particles
(b) Errors for various choices of CFL.
0-04 T T T T T T T
—&— CFL=0.04
—%— CFL=0.05
0.035 —— CFL=0.06 ||
—+— CFL=0.08
0.03}) —o— CFL=0.1 |
0.025} | -
S
w 0.02r i
0.015f b
0.01r E
0.005 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18

Number of particles

Figure 5.5. Examination of the relationship between ||ge”(T")||z, and the number of particles
for our variation of MPM for gas dynamics showing errors versus the number of particles for
various choices of mesh spacing (h) and CFL number.

55

Table 5.1. Values of Stable Time Step.

Mesh Spacing (h) 0.005 0.01 0.015

N.Ss* | ¥ NS. | S NS. | S

Max stable time step (At) | 0.00057 | 0.0006 | 0.00114 | 0.00124 | 0.00171 | 0.00185
Max stable CFL(At/h) 0.114 0.124 0.114 0.124 0.114 0.123

*(N.S.: Nonsmoothing Process, S: Smoothing Process Applied)

only if the CFL number is smaller than about 0.11 ~ 0.12. If the smoothing process is applied,
the maximum CFL number to maintain the stability of the method is slightly larger.

5.4.3 Alternative Particle Distribution

Although the smoothing process reduced much of instability of the particles, there are still
remaining spurious oscillations in the solution. Brackbill [16] showed that the ringing instability
in the PIC method was reduced with smaller number of particles per cell; see Section 5.6 below.
However, the result in Section 5.4.2 shows that the use of 2 ~ 3 particles increases the error
and the use of one particle may generate unstable results. We would like to experiment with an
alternative initial particle distribution by noting that, based on the given initial condition, the
gas to the right of the diaphragm has a lower density. Hence we consider the initial distribution
of particles based on the density of the gas on the computational domain in which the number
of particles per cell is in proportion to the density of gas in that cell. Since the density of gas
on the left side of the computational domain is 1.0 and on the right side is 0.125, eight particles
are assigned to each cell on the left and one particle is assigned to each cell on the right.
This nonuniform particle distribution gives a stable result as shown in Figure 5.6, although the
number of particles on the right side is only one per cell. This is due to the particles on the left
side of the computational domain move rightwards during the time integration process. Because
there are enough particles on the left side of the computational domain and these particles move
to the right, the solution process remains stable as we are constantly introducing particles into
the cells on the right. Figure 5.6 shows the numerical solution of the Sod’s shocktube problem
obtained from our variation of MPM with fewer particles on the right hand side of the diaphram
and application of the smoothing process discussed in Section 5.3.2. Comparing the result in
Figure 5.6 to the result in Figure 5.4, the result in Figure 5.6 has fewer oscillations, but has a

similar error norm to the previous cases.

56

1 1
0.8} 0.8
0.6} 0.6
0.4} 0.4
0.2} 0.2
% 05 1 % 05 I

Figure 5.6. Numerical solutions for the Sod’s shocktube problem in Section 5.4.1 using our
variation of MPM for gas dynamics at T,=0.2 with nonuniform initial particle distribution
discussed in Section 5.4.3 and application of the smoothing process;

(a)density: ||ge”(T)|r, =5.4x 1073, | ge’(T)||L, = 1.38 x 102

(b)velocity: ||ge“(T)||L, = 1.49 x 1072, ||ge*(T)||z, = 5.65 x 1072

5.5 Time Integration Error and
Grid Crossing by Particles

5.5.1 Time Integration Discontinuities
Arising from Grid Crossing

The comparative lack of smoothness of the spatial basis grid functions used in the MPM
translates into a lack of smoothness in time when particles cross grid points and then have
properties that are redefined in terms of the basis functions of the cell into which the particles
move.

Since the updated particle velocity is calculated using Equation (5.28), it means that the
higher time derivatives of the particle velocity are discontinuous when a particle crosses a
grid point. This may be illustrated by considering Equation (5.27) which is a forward Euler

discretization of:

N
=" Sjpal. (5.50)
j

ug(—) =aofa} +(1—a})a}, of =L (5.51)

whereas if the point x} is in the cell domain €2; then Equation (5.50) may be written as:

n __ .
i) Tp it

P O‘?Ha? +(1- a,?Jrl)a,?Jrl’ Ol?ﬂ = (5.52)

Tj— Tjt1

57

The second derivative of uy; when the point z; is in the cell domain €2;_; is given by:

a?_l — a?
or if the point z} is in the cell domain §2; then:
a — a”
i) = o a1 all)aly + il (5.54)

Prj— i

The jump in the second derivative of particle velocity as the particle crosses the point z; is
given by:
a — a}ﬁrl B a}lfl —a?

J | (5.55)
Tj—=Tjy1 Tj-1 = Tj

[ag(ﬂ _ ag(—)] = iy
The local error at particle p associated with one step of the forward Euler method applied to

Equation (5.28) is given by:

At?

ley(tni1;tn, uy) = — U (5.56)

This formula does not apply if i, is discontinuous with “left” and “right” values denoted by
ilg(f) and ﬁZ(H respectively. One standard ODE method for crossing a discontinuity is to
march up to it with one step of size A¢; and one step from it of size Aty. The local error for
an Euler time step in region one may be estimated by:

i

At
le(tn + Aty ty, ult) & Tug(ﬂ, (5.57)

and the local error for an Euler time step in region two is estimated by:

At3

led (tng1itn + Aty ulpT21) & 5

inth, (5.58)
by assuming that the second derivatives may be regarded as constant on a step. It may be
shown by using techniques such as those used by Shampine [105] that the error introduced

over one time step that crosses the discontinuity is then the sum of the local errors of the two

58

substeps and the difference between the solutions obtained using one big step and two substeps,

ie.,

le;‘(tnﬂ) = le;‘(tn + Aty ty, ug) + le”;(tn+1; tn + Atq, u;""’ml) + (ﬁ;“ — U;H_l), (5.59)

where u;”rl is the solution computed using one Euler step of size At and where ﬁ;”rl is the
solution computed using two Euler steps of size Aty and Ats. The next two sub-sections will
show that the gap between the two Euler solutions (@t — ut1) is one power of At less than

the local errors for both velocity and position errors.

5.5.2 Time Integration Errors in Velocity
Having determined the nature of the discontinuity, it now remains to determine the error
introduced by stepping over it. It is worth noting that with a standard PDE method, dis-
continuities in time derivatives do not occur in the same way as when material point method
particles cross cells. In the case when a particle x;; lies in the cell [zj_1,x;] and passes over
a grid node and moves into the cell [z;,2;41] then the particle velocity is updated using the

following equation:
(@ —a”_y)| At. (5.60)

Alternatively, the forward Euler method may be applied to march up to the grid node at z; in

one step and then take another step to bring the particle to the spatial position ;. For the
first substep of length At; the particle velocity is given by:
=" n n l‘g B xj*l n n
'I,Lp = Up + aj*l + m(aj — ajfl) Atl (561)
For the second substep of length Ats, the particle velocity is as follows:
_n41 _ .
upy ™t = ay + [af + Atya}] Aty, (5.62)

where At = At1+Aty. Hence the difference in the velocities calculated using the two approaches
is given by:

n

i —
”] Aty + Aty Atyal, (5.63)
ij — :L'j_l

59

and so may be written as:

At~ ut T x At (al — a?) + hoot, (5.64)

T —xp
]p] and where 0 < C' < 1. For the Euler equations considered here the
Tj—Tj-1

values of (a} —aj_;) may be as large as 103. This dictates the use of a time step of the order

where C = [

of that used in Section 5.4. 1

5.5.3 Time Integration Errors in Spatial Position
We are now determine the error introduced in spatial position when the particle z, lies in
the cell domain €2;_; and crosses the grid node at z; and moves into the cell €2; using the same
approach of time integration errors in velocity. In the variation of MPM discussed above, the

particle position is updated as follows:

Xr, —Ti_1
wptt = ap + |+ (W =t | At (5.65)
Tj = Tj-1
which may be written as:
n+1 n n 1’; —Tj-1 n n n xg —Tj-1 n n 2
" =ap At ufg + —————(u] —ujq)| At+ |aj_ + ———(a] —aj_y)| At". (5.66)
l‘J — xrl :EJ — l'jfl

As stated above, consider using the forward Euler method to march up to the edge of the cell
in one step and then in another step to step to the same point in time. For the first step, the

particle position is calculated as follows:

= 2" 4 |, xg_xj‘l(uﬂ—uﬂ)| Aty + |a” +M(aﬂ—an)| AL (5.67)
p p J—1 xj—xjq Y J—1 J-1 zj—ajq1 J—1 Lo A=
For the second step, the particle position is given by:
=z U Al (5.68)
and so:
Tt =20 + ul Aty + af At Aty (5.69)

!The reader should note that throughout C' will be used as a generic constant whose value may be different
each time it is used.

60

where At = At + Aty. Hence the difference between the positions calculated by the two

approaches is:

bl ntl ol oy | BT T At n Tp =Tl n_n Aty Aty (5.70
T, —ay T = (uf uity) P—— 2— aj_1+m~—:v~ 1(%“%-1) 1 Aty (5.70)
i Tj— J -

Figure 5.7 illustrates the different values of spatial position that may result when the discon-
tinuity is and is not considered.

Dividing both sides of Equation (5.70) by (x; — x;_1) gives:

+1 +1 n+1 n+1
At AU G R AEY) AtiAty [, Ty~ Ti-1o,
Tj = Tj-1 (zj —j-1) Tj = Tj-1 Tj — Tj-1
Tj— :L‘g
where C' = | ————| and where 0 < C < 1.
xj — iL'j_l

5.6 Spatial Error Estimation

There are several sources of error that contribute to the overall spatial error at grid nodes
in the variant of MPM for gas dynamics. These error sources includes the error from mapping
the particle values onto grid nodes, the error from crossing particles cells boundaries, and the
error from projecting the material movement at grid nodes onto particles. In this section,
we consider the estimation of error from mapping the values of particles onto the value of a
grid node. In particular, we evaluate the mass mapping error introduced by Equation (5.20),
the momentum mapping error introduced by Equation (5.21), and the force mapping error
introduced by Equation (5.24). In order to distinguish between the mapping spatial error and
the overall spatial error, we use ep for mapping spatial error instead of using es for the overall

spatial error. The vector of mapping spatial errors of grid nodes is denoted as:

n+1 7

n
X, X

Figure 5.7. Mesh Crossing Diagram.

61
ep?(t) = [ep{(t), epd(t), (1), ... epk ()], (5.72)

where ¢ is the quantity that error is being measured and N is the number of grid nodes. In
the following analysis, we consider ¢ = m (for mass), P (for momentum), F' (for force), u (for
velocity), a (for acceleration), and Vu (for velocity gradient). Before estimating errors in these
quantities, it is helpful to establish some notation relating to an important result of quadrature

error bound result by Hickernell [57].

5.6.1 Hickernell’s Quadrature Error Bound

Theorem 2.3 of Hickernell [57] on quadrature error bound proves that for any function

f(x)GXQE{f:ZZZ

in [0, 1], then the following inequality holds:

€ L*([0,1]) ¢ and some random or deterministic sample Q of N, points

1 d
| s dy—fozp < >‘dfc - (5.73)
where:
DyQ) = | — s 2 1) 5.74
Z(Q) - 12N:3 +J\7pp2:;<zp_ 2Np >) (:)
and:
of of 1/2
‘dw - /0 <dw) I (5:75)

and {z,} is an ordered set of the points of sample). Although Hickernell proves the result for
more general norms, the above result is sufficient for this analysis.

It is important to map Hickernell’s result to a cell domain used in the discussed variant
of MPM. Let {z, : p=1,...,Nj;1} be an ordered set of N;i; points in [0,1] of sample Q.
When mapping this set of points into the cell domain €2;, we obtain the set of points as given
by {hz,+x; : p=1,..,Nj;1}. The set of Nj;1 equidistant points in the cell domain Q; is
{a:j + M : p=1,...,Nj11 . A similar inequality to the inequality in Equation (5.73)

2Njn
when we integrate the function f over the cell length h is given as follows:

af
dx

Njt1
‘ , (5.76)

[s
L
h oy Nj+1

J 279]

62

where:
1/2
d df \ 2
'f _ / <f> | (5.77)
dx 2,0, o, \dz
and:
Niiq 2
1 1 & (2p — Dh
2() 12N.72+1 Nj+1h2 ; ((P J) < J 2Ng+1 ()

It should also be noted that from the mean value theorem for integration, we then have:

1

! arN® |7 |df
h [/Q (dm) dm] G (5.79)
for some £ € ;. Hence:
) Nji1
[w53 st)| < Da@ 12 L e (5.50)
T vy Nji1 P i =2 dx ' '

J p:]_

The values of D2(Q) clearly depend on the point distribution of sample @ and thus in turn on
the problem being solved. Considering the worst case of particles’ negligible distances apart at
the end of an interval, it is straightforward to show that:

! < Di(Q) < L (5.81)
23N 41 V3
This result has a similar form to the results of Vshivkov [135] (as quoted by Brackbill, [17])

except that the key difference here lies in the choice of quadrature rule. Vshivkov calculates

the error, dx, in the charge density at node k as computed with the PIC. His result states that:

) 1 +h2
max/) N2 12

where N is the average number of particles in a cell.

dp

ox

o
Ox?

: (5.82)

max

5k < (3p§V 4 hpgvpmax
~ \ 2Pmin 6P§nin

63

5.6.2 Ringing Instability
It is also important to remark that, as with any quadrature rule, there exist values of x;
such that f(z;) = 0. For example if:

Ny

f@) =] —=)), (5.83)

i=1

then the integral approximation is zero and the error is the value of the integral. Furthermore

there are functions that are nonzero at the particle points such as:
fla) = (=1)", (5.84)

which in the case of even numbers of mesh points will give a zero contribution to the integral.
The problem is made worse by the fact that the quadrature rule is essentially using a piecewise
constant approximation to function in forming the integral in the most general case. This loss
of information due to quadrature is known as the “Ringing Instability” and is a well-known
feature of particle methods that is attributed to the under-representation of particle data on

the grid. Brackbill [16] and MacNeice [85] explain this instability in terms of Fourier analysis.

5.6.3 Mass Projection Error

The mass projection error at node j at time ¢,, is denoted as ep;»”(tn) and is defined by:

b (tn) = [plata)Sy(o)de — (5.85)

where m is nodal mass defined in Equation (5.20). From Equations (5.20), (5.11), and (5.31),

the nodal mass is given by:
NP
mi =" Sj(xp)ppVir. (5.86)
p=1

With the piecewise-linear grid basis function for node j defined in Equation (5.8), the contribu-
tion to the nodal mass at node j is from the particles in cell £2,_1 and €2;. With the definition

of particle volume in (5.30), Equation (5.85) is then rewritten as:

64

m . h
i) = [ol t)S@dn - 3 Sy
Qj*l p:w;EQj,1 J-1
h
+ / pla,tn)S;()de — Y S5(wp) Py - (5.87)
J prpEQ; J

The mass projection error in (5.87) is thus composed of two terms each of which is similar to
the right side of Equation (5.80). Using the result in Equation (5.80), we obtain the following

bound of mass projection error:

d(p(z,tn)S;(x))

) d(p(a,t,),(@))

o (G)| . (5.89)

|ep] (tn)| < Da(Qj-1)h? + Da(Qj)h°

for some &1 € Q1 and & € ;. In Equation (5.88), sample Q; is a set of N7 points in
cell €; which is the ordered set of particle positions, {x;j :p=1,..,Np and x, € Qj}, in this
cell. As the basis grid function, Sj(x), is defined using (5.8), the first-order spatial derivative
of S;(x) depends on % This results in the mass projection error ep'(,) being first-order in h.
In order to approximate the mass projection error in Equation (5.87), we use the trapezoidal
quadrature rule to approximate the integrals in this equation.

The result in Figure 5.8 shows how the mass projection error in Li-norm, |ep™(t,)|z,,
grows for different mesh sizes and is first-order of mesh size as expected. The errors grow in

time in a way that is consistent with first time integration using the forward Euler method.

5.6.4 Momentum Projection Error
The momentum projection error at node j at ¢, associated with Equation (5.35) is denoted
as ep§D (t). Using a similar derivation to the derivation of the mass projection error in Section

5.6.3, the bound of momentum projection error, epj-D (tn), is given by:

en? (t)] < Da(@n?| LB S)

for some §;—1 € ;1 and & € Q;. In Equation (5.89), sample @, is a set of N} points in
cell €; which is the ordered set of particle positions, {x;l :p=1,..,Np and x, € Qj}, in this
cell. As the first-order spatial derivative of S;(x) depends on %, it follows that the momentum

projection error is also first-order in h.

65

-4

x 10
45
— h=002
4| n=001 |
— h=0.005
, h=0.0025
S| h=0.00125
h=0.000625
3 .
25} 1
2, .
_ 15} §
5
L
1, .
05} 4
/ St
0 ‘ ‘ ‘ ‘
0 002 004 006 008 01 012 014 016 018 02

Time

Figure 5.8. Mass projection error in Li-norm, ||ep™(ty)]|z,, for different mesh spacings, h.

5.6.5 Velocity Projection Error
Consider the exact nodal projected velocity, u;(t,), which is the ratio of the exact nodal

projected momentum and the exact nodal projected mass as given by:

_ Jor@ ta)u(@, ta)Sj (@) dz

Ui (tn 5.90
) = e 1) S5 @) (540)

The error in the velocity projection, ep?(tn), is defined by:
ep?(tn) = w;(tn) — uj, (5.91)

where u} is given by Equation (5.28). Let u(x;,t,) be the exact nodal velocity at node j at ¢,.

Define the error from projection in the exact value as:
ep? (tn) = w(zj, t) — uj(tn). (5.92)
Then overall error in velocity projection may be split into two parts:

ep§(tn) = u(wj, ty) —uj = ep?(tn) + ep?(tn). (5.93)

Let:

52U

W(xﬂf) = p(x,t)u(x,t))

and:

52V
w(‘ra t) = p(m7 t)‘

Then the exact velocity is defined by:

o hEE @)
Sx2 ’

Using integration by parts, the projection of the velocity is then given by:

Jo Si(@)p(a, ty)u(z, t,)dx
o 8 @)pl ta)da

uj(t,) =

(U(zj — h,ty) —2U(xj,t,) + U(z; + h, ty))

Define two projection errors epg-] (t,) and ep}/ (tn) by:

52U

epy(t) = W (@iota) = [Sy(@hplo.to)u. t)da,

and:

ep; (tn) = h l‘j,tn / Si(x)p(z,t,)d

Using standard finite difference analysis, we have epgj = O(h3) + h.o.t, and and ep}/

h.o.t. From Equations (5.92), (5.90), and (5.96), we have:

1
n
F(V (2 — hytn) =2V (25, t0) + V(zj + hity))

i hEE@t) [oS ><xt>dx
P =) fQ P

- eU_ux' nev.
— JaSi(@)e(a tn)dx(pj — ul(zj,ta)epy)

66

(5.94)

(5.95)

(5.96)

(5.97)

(5.98)

= O(r*) +

As epg»] and ep}/ are third-order in h and [, Sj(x)p(z,t,)dz is first-order in h, it follows that

ep;:»‘(tn) is second-order in h.

67

From Equations (5.91), (5.90), and (5.28), we have:

o _ fQ i xtn) (It)dx_ﬁ
2 (tn) fQ)da: m;b
_ m; (epj (tn) — u(xj,tn)ep?(tn))a

J

where:

h n n_n
Z Sj(@y)ppuy,

wf)= [Si@ptetaute e
J—1 p'z"EQj 1

/ Sj(@)p(, tn)ula, ty)de — — > S (5.99)
j prry €LY
Using a Taylors series expansion of velocity about x; gives
U zz(Lj, tn U
epf(tn) = u(xj, tn)ep] (tn) + uz(zj, tn)ep]pl(tn) + u(a;)epjm(tn) + .t (5.100)
where:
upk k h ny n(,.n k
ep; (tn) = Sj()p(z, tn)(z — 25)"de — - Y. Siap)eplay —a))
J-1 pap el
h n n n
+/ Si(z)p(z,tn)(z — a:j)kda: ~Nn Z Sj(xp)pp (xp - xj)k‘ (5.101)
Q; J papeQ;
Therefore:
U o) 1 U Uz (Tj, Ty u
ep}(tn) = epf (ta) + —— (uxm,t JepP(t) + U2 istn) gy,) . (5102)
J
Using Hickernell’s result from Equation (5.76) to Equation (5.101) gives
U, d S T T,y — T k
‘epjpk(tn)‘ < DZ(QJ 1)h2 (()10(dx)(J))(é_]fl)
d(S;(x)p(z, tn)(z — x;)F

for some §;_1 € ;1 and some &; € ;. For the lowest order term k£ = 1 this is second-order

68

5.6.6 Acceleration Projection Error

We define the projection error in acceleration, epf(ty), as:
epj(tn) = alw;, tn) — aj, (5.104)

where a(xj, t,) is the exact acceleration at node x; at time ¢,,. Same as for the velocity projection

error, the acceleration projection error may be split into two parts:

ep?(tn) = (alzj, tn) — aj(ta)) + (a;j(tn) — a) = epf(ty) + ep(ty) | (5.105)

where a’ is calculated nodal acceleration from (5.29) and a;(t,) is exact nodal acceleration

obtained by projecting the exact pressure and density onto the mesh points as given by:

_ i Uq, pla ta)de — o p(z,t

fQ p(z,t,)S;(z)dx

(5.106)

The error ep?(tn) may be shown to be second-order in h using the same approach as in

Equation (5.90)—(5.101). In the other hand, we have:

_ %(IQFI p(z,tn)dz — fQj p(z,tn)dz) 1

#itn) = Jo pz, tn)Sj(x)dx - NE pxgj 1pp B JWZEQ py - (5.107)
Then:
ep(tn) = Ti?(epf (tn) — alzj. t)ep (tn), (5.108)
where:

1 1
6p]”_h/ﬂ _]\m ZPZ
J

-1 Py €Qy_1

1 1 .
h/prtn)dachN > oo (5.109)

J J papeQ;

69

Expanding the values of pressure about x; gives:

1 1 T+ xi_q 1
h/g p(x, t,)dr — N0 Z pp = px(7}) J . -1 N Z T,

j—1 -771 p:xZEQj_l]71 piw;LEQj—1
pxm(l‘?) (l‘ — .Tj)2 h (xg - xj)z
+ dx — R Sk
2 0., h N7 h
j— J=4 papeQ;a

and similarly for the interval €2;. The lowest order term in the error is then:

1 1
epl’ = po(xy) [h - i dSooap+ i > a2y | +hot. (5.110)
Jj—1 Py €1 J pTpEQ;

In order to investigate the order of this term, it is necessary to consider the evolution of the
points that contribute to the calculation of acceleration at the point x; at time ¢,,. Let means

of particle positions and velocities be defined by:

n 1
$j+1(t)zﬁ Z xp(t), (5.111)
J prxp €Q
n 1
Wiy = S > up(t). (5.112)
J+1 e
Furthermore define:
du” a, . (t u” (t
&= S m e

From Equations (5.111),(5.112) and (5.113) it follows that:

n

du
Fhealtnin) = T (tni) = 1+ A2 1) (1) = 230, (5.114)

and hence that the gap between the means may be related back to the initial mesh distribution

as given by:

i) ~ 25(00) = [|1+ 82 0] @t -). 1)
k

Suppose that initially all the points are evenly distributed at time ¢ with spacing h,,, then:

(#}11(to) — 7} (to)) = hp(Nj\y + NJ') /2, (5.116)

70

where the interval spacing h is connected to the initial particle spacing h, through:
h = hy(N° +1) (5.117)
where NV is the total number of points in every interval at to. Hence:

da” N7 + N7
7 _Zn - 7 Sl Ty
altar) =) = H]] el o] |G (5.118)

Using the CFL condition as defined by % then gives:

n

(1 " (thi1) = h[1 hC’FLKNfHJFNj h.o.t 5.119
$j+1(n+1)_33j(n+1)— 1+]m+ 0.1, (5.119)

where:

K= ; [daj(tk)} . (5.120)

This result shows that the acceleration order may be first-order if local velocity gradients are

“small” if particles are rezoned as to be closer to evenly spaced as in Section 5.3.3.

5.6.7 Velocity Gradient Error
The accuracy of the equations used to update energy and density in Section 5.3.1 depends

on the accuracy of the velocity gradient, and the velocity gradient at any particle zj; € §; is

defined as:

0wy _ Ui~ (mpatay) O,
— = — - — h.o.t . 5.121
ox (l’p LTjt1 — Ty 2 p dx? (:Ep) o ()
The velocity gradient error at particles is rewritten as:
ept. ., —epd At Tir1 + T 5
\% +1 +1
ep; " = % + - lep$ iy — epf] — <12Z -z, @(a:g) . (5.122)

Thus the velocity gradient error depends on the first-order interpolation error.

5.7 Combining the Error Estimate Results
The density errors, ge”(T'), at T, = 0.2 in L;-Norm, Ly-Norm, and L..-Norm for the Sod’s

shocktube problem discussed in Section 5.4.1 with different sizes of mesh spacing are shown

71

in Table 5.2. These results are obtained for the case CFL = 0.1 and the initial number of
particles per cell is 8. The numbers in Table 5.2 indicate that the density error is order of h
in L1-Norm, order of h3 in Ly-Norm, and order of hY in Lo.-Norm. In order to understand
the orders of these norms, a detailed inspection of the order of accuracy in each part of the
spatial domain was made. In the regions around the contact discontinuity and the shock, the
maximum pointwise error does not decrease as the size of mesh spacing decreases. The error in
Loo-Norm is therefore order of h°. The density error in L;-Norm, ||ge”(T)||L,, is proportional
to h|ge”(T)||L.. while the approximate Lo-Norm is v/h| ge?(T)||r.., thus giving rise to the
observed orders of convergence. Figure 5.9 shows the evolution in time of the L;-Norm of the

density error, ||ge”(t)||r,, for different mesh sizes. This error is first-order in mesh spacing h.

Table 5.2. The density errors at T'= 0.2 in L;-Norm, ||ge”(T")||z,, L2-Norm, ||ge”(T)||r,, and
Loo-Norm, ||ge”(T)||1. for the Sod’s shocktube problem discussed in Section 5.4.1.

B | lge’(D)llz, | llge’ (D), | lge’ (D)1, |
0.02 0.00161 0.02484 0.1051
0.01 0.00831 0.01587 0.0812
0.005 0.00434 0.01046 0.1139
0.0025 0.00231 0.00759 0.1063
0.00125 0.00136 0.00626 0.1002
0.018
——— h=0.02
0.016 h=0.01
——— h=0.005
0.014| — h=0.0025 i
€
5 0.012
T
- 001
S
@ 0.008
=
£ 0.006
(m]
0.004
0.002

0 0.02 0.04 0.06 0.08 0.1 012 0.14 0.16 0.18 0.2
Time

Figure 5.9. L;-Norm of density global error, ||ge”(T¢)||,, in time for different mesh sizes.

72

5.8 Summary

In this chapter, we have presented a numerical analysis of our variation of MPM proposed
for gas dynamics. In this study, we consider the global errors resulting from different particle
distributions, the errors in time integration, and the mapping errors in spatial discretization.
The analyses of these errors are obtained numerically and experimentally on the well-known
Sod’s shocktube test problem in one-dimensional space. Analysis shows that the accuracy of the
method depends on a sufficiently well-behaved point distribution. For time integration errors,
we consider time integration error in velocity and spatial position when particles cross cells.
These integration errors are first-order in time. For mapping errors in spatial discretization,
we consider the estimation of errors from mapping the values of particles onto the values of
grid nodes; these mapping errors include the errors in mapping mass, momentum, velocity,
acceleration, and velocity gradient. The importance of this analysis is that it provides a way

to make a more formal assessment of many of the errors in MPM type methods.

CHAPTER 6

THE IMPROVED PRODUCTION IMPLICIT
CONTINUOUS-FLUID EULERIAN METHOD
FOR COMPRESSIBLE FLOW PROBLEMS

The Implicit Continuous-fluid Eulerian method (ICE) for multiphase flows is utilized by
the Uintah Computational Framework (UCF) to simulate explosions, fires and other fluid and
fluid-structure interaction phenomena [44]. The ICE code in UCF is referred to as Production
ICE. The implementation of Production ICE is based on the fully cell-centered implementation
of the ICE method (cell-centered ICE) by Kashiwa et al. [68, 69] with a few exceptions that
are discussed in detail in Section 6.2. Cell-centered ICE of Kashiwa et al. [68] employs a
conservative advection operator and a Lagrangian part which leaves a degree of freedom in the
choice of conservation variables. The conservation laws used include at least those of mass, linear
momentum, and internal energy (or alternatively the total energy). The Lagrangian method in
most standard ICE implementations is fully conservative and it usually conserves the internal
energy rather than the total energy. The numerical scheme used in Production ICE [44, 45,
52, 79, 80] solves the conservation of mass, linear momentum and internal energy. However,
the Lagrangian method of Production ICE is a nonconservative form. While this may not be
a problem for some cases, it appears to be a problem when applying this Production ICE code
to single-fluid cases that are governed by the Euler equations in which the obtained numerical
solutions exhibit some discrepancies in the shock speeds and they additionally show unphysical
oscillations. With the need to improve the implementation of the Production ICE method, we
start the improvement of Production ICE in the one-dimensional case. In order to improve
Production ICE for the numerical solutions of compressible flow problems, we will explore the
various choices in the implementation of cell-centered ICE and discuss how various choices affect
the obtained numerical solutions. By exploring the various choices in the implementation of cell-
centered ICE and by proposing an improvement of Production ICE for the one-dimensional case,
we will provide some insights into the improvement of Production ICE for the multidimensional

case.

74

The one-dimensional Production ICE method solves the time-dependent Euler equations of
gas dynamics described by Equations (3.32)-(3.34) and the equation of state (3.36). It has been
mentioned in [60, 75, 121] that nonconservative schemes approximating hyperbolic conservation
laws do not converge to the correct solution in general. So the existence of discrepancies
in the numerical solutions for nonlinear hyperbolic systems using Production ICE is quite
understandable. Therefore, in order to improve the Production ICE method, we first must
change the method to solve the system of one-dimensional Euler equations in conservative form
where the total energy instead of the internal energy is conserved. The Improved Production
ICE method, that will be referred to hereafter as IMPICE, is a cell-centered ICE method
which solves the system of one-dimensional Euler equations in conservation form described by
governing Equations (3.28)-(3.30) and the equation of state (3.31). As a result of changing
the Production ICE method to solve the system of Euler equations in conservative form, the
computational results show the disappearance of the discrepancies in the obtained numerical
solutions. However, cell-centered ICE suffers from unphysical oscillations when there are moving
contact discontinuities. Typically, methods in the literature use a variety of techniques such as
constrained data reconstruction so as to avoid spurious oscillations; for example, [10, 11, 25,
129, 130, 131, 132]. To suppress oscillations, we will use a similar approach in which the data
at the cell interface are the approximate Riemann solution to the local Riemann problem that
is constructed by using slope-limited interpolation of the left and right cell-centered data. The
approximate Riemann solver which was proposed by Harten et al. [53] and used by Davis [28§]
to satisfy consistency with the integral forms of the conservation law and entropy condition
will be used to solve the local Riemann problem. The slope limiter used is selected from
the extensive literature on the functions for slope limiters in the last few decades; see, for
example, [39, 54, 116, 126, 129, 130, 131, 136]. The IMPICE method is cell-centered ICE with
the oscillations being suppressed using the aforementioned technique. In effect, although the
original ICE method is a Von Neumann type method in which the fluxes are fully dependent
on the time increment, we have now introduced a ICE method with Riemann solver approach
in which the fluxes depend directly on the approximate solution to the Riemann problem.

As for many numerical methods for the solution of PDEs, the IMPICE method approximates
the Euler equations by a finite volume method using a spatial discretization of the problem and
a time integration technique. Of comparable importance to having a nonoscillating numerical
solution is determining the accuracy of the IMPICE method in time and space. cell-centered
ICE with first-order advection is first-order in space and time. However, first-order methods are
known to be not accurate enough to be used for large problems on relatively coarse grids. We can

increase the orders of accuracy in time and space by applying a high order time discretization

75

and a nonlinear spatial discretization, respectively. The goal is to obtain an IMPICE method
with second-order accuracies in both time and space.

The content of this chapter is organized as follows. In Section 6.1, we recap the cell-centered
ICE method by Kashiwa et al. [68] which includes the spatial discretization and essential steps
in the time integration. In Section 6.2, we present the detail implementation of the Production
ICE method and describe how the Production ICE method is different from the cell-centered
ICE method by Kashiwa et al. [68]. In Section 6.3, we discuss the proposed method by Kwatra
et al. [72] that can be applied to calculate the time integration step of the semi-implicit ICE
method. This method removes the restriction of sound speed in calculating the time step,
but still maintains stability. In Section 6.4, we propose a modification to the Production
ICE method to remove the unphysical oscillations in the numerical solutions. The numerical
solutions of the IMPICE method are presented and compared to the numerical solutions of the
Production ICE method in Section 6.5. The spatial and temporal accuracies of the IMPICE
method are shown in Section 6.6. We discuss in Section 6.7 and Section 6.8 how to obtain
second-order accuracy in time and space, respectively. The conclusions are drawn in Section

6.9.

6.1 Cell-centered ICE by Kashiwa et al. [68]
6.1.1 General Cell-centered ICE

Cell-centered ICE for the one-dimensional space, which is described in detail in [68], is a
finite-volume solver in which the computational domain Q = [a1,b;] € R is discretized into N
uniform cells of width Az = (by — a1)/N. The cells are centered at z; = a1 + (j — 3)Az where
j=1,...,N. The boundaries of these cells are located at Tjp1=a1 + jAx where j = 0,..., N
and are called face-centers or cell interfaces. With this discretization, the domain boundaries
are aligned with the first and last cell edges.

A time integration method is used to estimate the averages of cell variables at some time
t = T, from the averages of cell variables at t = 0. For each time integration step, assuming that
the cell averages at time t,, are known, the goal is to compute the averages of cell variables at
the next time step t,+1. The time integration step of ICE invokes operator splitting in which
the solution consists of a Lagrangian phase and an Eulerian phase. The Lagrangian phase
advances cell values without advection and maps new values to cell variables and the Eulerian
phase advects the cell variables. The essential point that makes the ICE method an all-speed
scheme is to use an implicit scheme for the Lagrangian phase and an explicit scheme for the

Eulerian phase. The time integration of cell-centered ICE comprises the following phases:

76

6.1.1.1 The Primary Phase
With the spatial discretization as discussed above, the spatial derivatives in the governed
equations are approximated using finite differences of quantities at face-centers. Since an
implicit scheme is used for the Lagrangian phase, the variables involved in the Lagrangian
phase are those evaluated at face-centers at t,, + % and are determined in the Primary phase.
It is also necessary in the Primary phase to estimate the fluxing velocity which is going to be
sk
J
interface. In order to make clear which variables are defined at face center, the superscript * is

used in the Fulerian phase. The fluxing velocity, U, is the flux of volume across the cell
2

used here for these variables as required.

6.1.1.2 The Lagrangian Phase

Let V" be the volume of cell j and U’ be the vector of averaging cell conserved variables
at ¢,. In particular, V" is equal to Az for the above discretization. Assume that the cell
volume is changed during the Lagrangian phase to V]L and VjL =V'+ At(u;*.Jr 1
u* | and u* ; are fluxing velocities at cell interfaces. There is also a change in the vector of

—u*) where
J72

2 JT3
averaging cell variables to UJL after the Lagrangian phase has been completed. A numerical

scheme obtained from neglecting the convective effects is used to evaluate the change in the

material state and in turn evaluate Uf.

6.1.1.3 The Eulerian Phase
For this phase, we have to evaluate the change in the solution due to advection. Let V}"H
be the cell volume at ¢,y and assume that the mesh is stationary, then ij'1 = Ax. The

change in the solution due to advection is as follows:

+lyn+l _ 1/ Ly7L X .
vViIHuEt = ViU - At(ujJr%(U);.‘Jr% — uj_%<U);‘_%), (6.1)
1 tn41
where <U>?+ 1 = At U(x jIne t)dt is the vector of advected quantities and is numerically
tn

determined. As suggested by [68], this numerical value may be determined using U’ or UJL ;

however, how to numerically determine these values is not described.

6.1.1.4 State Variables Update Phase
In this phase, we update the primitive cell variables W?H using the values of conserved
variables U?H and their satisfaction of the equation of state. The value of W?H is then used

in the following time integration step.

7

6.1.2 The Implementation of Cell-centered ICE
by Kashiwa et al. [68]

Above is the general description of the ICE method. Kashiwa et al. [68] have made
some improvements to the ICE method by changing the implementation of the Primary and
Lagrangian phase. T'wo important quantities used in these phases are the face-centered velocity

and pressure as denoted by uj ; and p;‘.Jr 1. The face-centered velocity, u;er 1, is also the advected
2 2 2

+

speed for the Eulerian phase, so [68] refers this as the fluxing velociy. The face-centered fluxing

velocity, u;f+ 1, is calculated based on the time-advanced equation for velocity as given by
2

Equation (3.37). The fluxing velocity in cell-centered ICE of Kashiwa et al. [68] is obtained

using the semi-implicit Euler scheme in the Lagrangian frame of Equation (3.37) as given by:

nt i n—+
At P —D;
* _ n P Jj+1 J
O I v (7
2

1
2

(6.2)

1
2 is the cell-centered pressure at t, + %, ({(u"

i+
face-centered velocity, and <<p;1 1)) is the average face-centered density at time t,. The mass-
2

where py-l+ P is the mass-weighted average
J

weighted average velocity, <<u;‘ i)7, of left and right states at face-center is given by:

<<un 1>>p _ p?u? + p?+1U§L+1
J+5

; 6.3)
2 Pyt P (

and the average face-centered density, <<p;.l+ 1)), of left and right cell-centered densities is given
2

by:

P;'L + p?+1

5 (6.4)

(o)) =

1
As the cell-centered pressure at ¢, + %, p?+2, is not readily available, it needs to be obtained

1
from correcting the cell-centered pressure at t,, p;. Let 5p§” = p?+2 — pj be the difference

between the cell-centered pressures at these two time levels and which is referred to in Kashiwa
et al. [68] as the “pressure corrector”; Equation (6.2) is then rewritten by using these values

as:

At 0pjy, — opf

I TR N

(6.5)

78

where:

At P — DY

it = p_ =2 4L 75

R I TN
2

(6.6)

In order to determine the face-centered fluxing velocity, u;" L the “pressure corrector” values,
2

6p}y1 and dpj, need to be determined using Equation (3.38). In [68], two different ways to

determine the “pressure corrector” values are discussed. The explicit “pressure corrector” uses

the explicit discrete form and the implicit “pressure corrector” uses the semi-implicit discrete

form of (3.38). The explicit form of “pressure corrector” is given by:

)°)- (6.7)

op} = —

At n p?+1 _p;;l At 9 \n .) .

The implicit “pressure corrector” is obtained using;:

At o, (p?H —p?_1> At Jn) 6.8)

orj = _7% 2Ax 2Am(

The implicit “pressure corrector” is complicated since Equations (6.5) and (6.8) show that the
face-centered fluxing velocities and the “pressure corrector” values are interrelated, so there is
a need to calculate the fluxing velocities using these two equations and this is not explicitly
discussed in [68]. After having determined the “pressure corrector” values at the cell centers, the
face-centered fluxing velocity, u;‘ e is determined using Equation (6.5) where &;k L1 is defined
in (6.6).

There are several suggested choices for calculating the face-centered pressure, p; Y in [68]
and [69]. Two of these choices, which are derived from the pressure equation in Kashiwa et al
in 1994 [68], will be discussed in Appendix A.4. In this chapter, we employ the choice that is
mentioned in Kashiwa in 2001 [69]. This choice aims to satisfy continuity of acceleration by
equating acceleration increments for the left /right half spaces. The equation as specified in [69]

is:

1 1
1 nty 1 ntg
* o p?+1pj+1 + p?p] 6 9
=T | (69
P P

In the above equation, the face-centered pressure is thus calculated using specific volumes-

weighted of the left and right time-advanced cell-centered pressures.

79

The Primary phase is executed after the face-centered velocity and pressure, u;k N

are calculated. The choice of the vector of conserved variables, U, and the numerical procedure

and p*
1 15
2 its

to determine the vector of the face-centered advected quantities, (U) are neccessary for the

i+
implementation of the Lagrangian phase and the Eulerian phase.

6.2 Production ICE in the Uintah
Computational Framework

The term Production ICE is used to denote the ICE method as implemented in the Uintah
Computational Framework (UCF) by [44, 45, 52, 79, 80] to simulate fluid flows that are
governed by the FEuler and Navier Stokes equations. Production ICE solves the Euler system

in nonconservative form described by Equations (3.32)-(3.34) with the vector of variables
U = [p, pu,pe]T The detail implementation of the phases in Production ICE follows the

description given in Kashiwa et al. [68] with some exceptions that will be pointed out explicitly

in the following discussion.

6.2.1 The Primary Phase
The first exception is that the face-centered quantities in Production ICE are not time-

centered. The face-centered fluxing velocity, u;r 1, and pressure, p;er 1, for the time step
2 2
[tn, tn+1] are approximated at the face-center at time ¢,1. For this reason, we use the notations

uji ; and p;‘i ; for the face-centered fluxing velocity and pressure in Production ICE. Using a
2 2
different approach from Equation (6.2), the face-centered fluxing velocity in Production ICE,

u;: 1, is approximated as:
2

At P — DY
w1 = ((ul ;>>p—f7ﬁi -
It3 It3 Az <<pj+;>>

2

(6.10)

where the mass-weighted average velocity, <(u;I 1))P, is defined in (6.3) and the average face-
2

centered density, ((p" ,)), is defined as follows:

it3

PNy = . 6.11
() = — e (.11

So another exception in calculating the fluxing velocity in Production ICE is that the scheme
in (6.10) is not semi-implicit when the pressures used are defined at t,,.
The face-centered pressure, p’;.il /2 in Production ICE is calculated using the following

equation:

80

1 n—+1 1, n+1
*k p;'LHijrl i p;pj 12
Pjri= 11 ‘ (6.12)
Py P

This is similar to Equation (6.9), but with the cell-centered pressures at time ¢, 1, p}‘“, where
p?“ is evaluated using an explicit scheme applied to the Lagrangian form of the equation of

pressure evolution in (3.38), which is given by:

P =g = () — (.

7). (6.13)
6.2.2 The Lagrangian Phase

Production ICE chooses the vector of conserved variables to include mass, linear momentum

and internal energy. The use of the nonconservative form of the system of Euler equations in

(3.32)—(3.34) means that the Lagrangian part of Production ICE is given by:

0
V;LUJL = ‘/JnU? — At p;j.l/g - p;il/g . (614)
n+1/, sk *%
AR CHE R YY)

6.2.3 The Eulerian Phase

The change in solution values due to advection over the step [t,, tn+1] is given by:

w (U). (6.15)

N 1 1
ity U3 3

an+1U;z+1 = viul - At(u;i% (U)

However, the numerical values of face-centered advected quantities in the following definition:

1 tnt1
(U)71 = Uz

= A, t)dt (6.16)

it+3
has not been quantified so far in this chapter and we will now show how to approximate it.
Normally U(z il t) is not constant for the step [t,, t,+1], but first-order accuracy is obtained
by assuming that this is constant and is an upwinded cell-centered value. However, there are
the cell-centered values at two different time levels that are available for the Eulerian phase.
These are the value at ¢, and the value after the Lagrangian step. By chosing the upwinded

cell-centered values at time ¢, for the face-centered advected quantities, we have:

ur it (u* 4, <0)
U\, — g+l Jts3 6.17
< >3+% { U’; otherwise. ()

81

Alternatively, if the upwinded cell-centered values at Lagrangian time level are considered

for face-centered advected quantities, we have:

Uy, = Uk, if (u;f+% <0) (6.18)
L1 — .
I3 UJL otherwise.

The Production ICE code uses Equation (6.18) to define the face-centered advected quan-
tities, [52, 79, 80].

6.2.4 State Variables Update Phase
The averages of cell variables p, u, e, and p are then updated using the averages of cell

conserved variables p, pu, pe, and the equation of state (3.31).

6.3 CFL Condition
The choice of the time step At in time integration affects the stability of the ICE method.
As mentioned in [120], one requirement for the method to be stable is the fastest wave at a
given time is allowed to travel, at most, one cell length Az in the chosen time step At. For the

system of Euler equations, the time step At is chosen to satisfy the condition:

CcflA.%'
SP

max

At = (6.19)

where C.f; is a Courant or CFL coefficient satisfying 0 < C.py < 1 and S}

oz 15 the largest wave

speed present through the domain at time ¢,,. A practical choice of S}’ .. as mentioned in Toro
[120] is:
Shaw = max (|uj |+). (6.20)
However, Kwatra et al. [72] proposed a novel method for alleviating the stringent CFL condition
imposed by the sound speed in simulating highly nonlinear compressible flow with shocks,
contacts and rarefactions. It is mentioned in [72] that the maximum speed in Equation (6.20)
is too restrictive for flows where the sound speed, ¢, may be much larger than |u|, so the
stringent CFL time step restriction imposed by the acoustic waves can be avoided and only
the material velocity CFL restriction is used in calculating the maximum speed. The proposed
method of [72] is well suited to the semi-implicit solver like the ICE method where only the
advection step is the explicit part. The proposed maximum speed calculation in [72] is:
S?’L

e = max|u]. (6.21)
J

82

The time step used is determined using (6.19) where S}’

max

is calculated using (6.21).

6.4 IMPICE Method
We now propose the IMPICE method, an improved implementation of Production ICE,

which aims to eliminate the discrepancies and suppress the nonphysical oscillations in the
numerical solutions to the one-dimensional, time-dependent Euler equations of gas dynamics.
Foremost, the IMPICE method makes an improvement to Production ICE by solving the FKuler
equations in conservative form in (3.28)—(3.30) and the equation of state in (3.31). We denote
cell-centered ICE that solves the conservative form of Euler equations as the conservative cell-
centered ICE. As shown in Appendix A.3, conservative cell-centered ICE can eliminate the
discrepancies in the obtained numerical solutions. However, the obtained numerical solutions
have unphysical oscillations that need to be reduced or eliminated. The oscillations in the
numerical solutions of conservative cell-centered ICE cannot be diminished by decreasing the
time step, so in this section, we will describe the algorithm used to suppress these oscillations

numerically by using a simple approximate Riemann solver.

6.4.1 Numerical Discussion
To help explain the IMPICE method, we start with a discussion of schemes that approximate

conservation laws as follows and consider a one-dimensional system in a conservation law form:

OU(z,t) OF(U(z, 1))
o ox

=0, z€][a,b;] and t>0, (6.22)

where U(x,t) is the vector of conserved variables and F(U(x,t)) is the vector of fluxes. In

order to approximate the solution of (6.22) with the initital condition:

we discretize space into N uniform cells as in Section 6.1. The cell average of the cell [z JEERE SN]
2 2
at time ¢, is denoted by U7, where:
1 [%i+3

A standard approach is used in integrating system (6.22) in space and time in the control

volume [xj_%,xj+%] X [tn, tn+1] to give:

83

ES)
2

/;j+% [U(z,tni1) — Uz, t,)] doe = — /:ﬁ [F(U($j+1 t) — F(U(xj—%’t))] dt.

This can then be written in the standard conservation form:

n—+1 n
AzUTH = AzU? — At (Fﬂ%(tn) - Fj_%(tn)) (6.25)
where:
1 tnt1
Fj+%(tn) = A /tn F(U(mﬁ%,t))dt. (6.26)

Equation (6.25) is used by finite volume methods to solve the system (6.22) approximately.
In order to use this relation, a spatial integration of the initital condition is required and the
approximations of the fluxes at the cell interfaces are needed.

The numerical flux derivation follows cell-centered ICE of Kashiwa et al. [68] will be derived
shortly. The system of Euler equations (3.28)—(3.30) of gas dynamics is written in the form
(6.22) where U = [p, pu, pE]" and F(U) = [pu, pu? + p, puE + up]T. The face-centered flux

(6.26) in this case is written as:

1 tn
1 Ettflt;bﬂ(su)(%ﬁ%,t)dt
ot = | et | .
t7l
a7 S (puE + pu)(x, 1, t)dt

=9
2

A Taylor series approximation of u(z s t) is given by:

u(mj+1 t) = u(xj-i-l’tn—i—%) + (t_tn-&-%)ut(xj-&-%’tn-i-%) +O(At2). (6.28)

ES) B
2 2

1

. . nts n+% o .
Using the notation U b= u(:cj+%,tn+%) and (ut)j+% = ut(mj+%,tn+%), we have:

1 tnt1 1 tnt1 n+% n+% 2
i oty = g5 [o0 (] et o)) ar

nt+i (1 tnt1 9
= uj_é <At/ p(:z:jJré,t)dt) + O(At?).

tn

With a similar approach, we also have:

1, iy (1 [ine nt 2
- / (o +p) (a1)t = (At / <pu><wj+;,t>dt>+pj+é+0<At>

[SILTOTN

84

and:

1 [t ntl (1 [t ntl 2
At/ (puE+up)(:Ej+%,t)dt:uj+ (At/ (pE)(:chr;,t)dt) +(up)j+% + O(At?).

1
tn 2

Then face-centered flux F; 1(t,) vector in (6.27) is rewritten as:
2

| @y)t no+;
+5 tn 2
Fj 1(tn) :u;;g A Lo pu) (g 0dt |+ | Py 1 +0(A%). (6.29)
1 tn n+z
At i, i (pE)(J}j_'_%,t)dt (up)j+%2

The reader should note that Equation (6.25) with the terms F j—1 and F, 1 are defined by
2 2

Equation (6.29) will be used in Section 6.6 to assess the numerical accuracy of the IMPICE

method.

6.4.2 IMPICE Implementation
The scheme used for approximating the fluxing velocity, u;‘ L1 in the IMPICE method is
2
similar to Equation (6.2), that is:

n—i—% n—&-%
At \PiHl TP

no— . 6.30
Jt+3

This equation was obtained by replacing <<u?+%>>p in (6.2) with u?Jr%, and (<p§‘+%>> with ,o;?Jr%.
While these quantities denote the velocity and density at face-center at t,, their numerical
values are determined differently. While <<u?+ 1))P and <<p?+ 1)) are determined using the
weighted averages in (6.3) and (6.4), the values u;.LJr 1 and p?+ L are determined based on the
simple approximate Riemann solver that will be discussed in Section 6.4.3 below.

Since the pressures used in (6.30) are time-advanced values, we need to perform a “pressure
corrector” to obtain these. The explicit “pressure corrector” in (6.7) is the one used in our
implementation of the IMPICE method. However, it is worth looking at the implicit “pressure

corrector” and seeing the difference between the solutions of these two methods. By substituting

(6.5) into (6.8), the equation for cell-centered “pressure corrector” now becomes:

At (IR 2 At
5p;} — T <pj+l p] 1> B 2)n(ﬂ*) —@;,)

o 29AT 22z CP

J n

|: At :|2(62p)n 51)?-5-1_61)}1 _ 6])?—(5]3?_1
Piti P 1

85

2

where u* L1 s defined by Equation (6.6).

t
Let o = 5A and rearrange the terms of above equation to get:
T

2 \n 2 \n 2 \n 2 \n
C . C . C - C .
1_+_02(np)] +>02(np)J o __02(np)jap?+1___02(np)75p?71
Pirs Pi-1 Piti Pi-1
Piy1 — P 9 \miek e
= —ouj (2 —o(c p)’;(uﬁ% — uj_%).

Therefore, the values dp are the solutions of the tri-diagonal linear system:

Ax=b (6.31)
where:
bi < 0 dy dp1
a9 bg Co d2 5p2
A= as by . b= d;3 Xx=| Ops3 (6.32)
CN—-1 .
0 any by dn dpN

2 \n
c
a; = aQ(np)J for j=2.(N—1),
Pi_1
2(202p)” , (2p)7 .
by = 1l+o°—"2L 4+o°—~ for j=2.(N-1),
Pivi Pi-1
9)n 2 2
c
¢ = UZ(an for j=2.(N-1),
Pii1
J 2 T pn
Pjy1 — Pj1 2 ~ % ~ % .
dj = —oul <32]> —o(e p)?(ujJr%—uji%) for j=2.(N-1),

and by, by, dy and dy are obtained from the boundary condition. So in order to use the implicit
“pressure corrector”, we have to solve the tri-diagonal linear system in (6.31). While this
obviously takes more time to calculate than the explicit “pressure corrector” in (6.7), the
results computed using the two methods show that there is not much difference between the
numerical solutions obtained from using the implicit and explicit “pressure corrector” in the
IMPICE method for the Euler equations examples used here.

The IMPICE method calculates the face-centered pressure, p;,+ L the same way as the

cell-centered ICE method does in Section 6.1.2. It uses the calculation described in Equation

(6.9).

86

The IMPICE method chooses to conserve the total energy instead of internal energy, so the
vector of conserved variables is U = [p, pu, pE]?T. The Lagrangian and Eulerian phases of the

IMPICE method are then given by:
0
ViUl =viuy - At P12 = Pj_1)2 : (6.33)

* * * *
Pii12%ip172 — Pj_1/2%j-1/2

and:

n+lymn+l __ Ly1L * n * n
vt = viuk - Ar (uj+%<U)j+% —uj_%<U>j_%>, (6.34)
in which VjL = V]'+At (u"f , —ut 1) and the terms (U)" ; and (U)" , are given by Equation
It U3 =3 Jt3

(6.18).

6.4.3 Application of Slope Limiters
in the IMPICE Method

In common with many methods for conservative laws, slope limiters may be applied to the
calculation of face-centered fluxing velocity, u;‘ +1/20 For the face-centered fluxing velocity, slope
limiters are used in the estimation of face-centered quantities at t,; in particular, they are used
in the calculation of p;L 1 and u;L e This approach originates from the idea of approximating
the cell-centered state by the reconstructed states obtained from the left and right cell-averaged
states of the previous time step. The slope limited, reconstructed states are used as inputs to
a Riemann solver to determine the state at the cell interface. This will be discussed in detail
below.

Let W7, W7 = [p?, ul, B, pﬂ T, be the vector of average cell-centered values of primitive
variables of cell j at time t,,, then the value of W on the spatial domain at ¢,, is represented by
the piecewise constant data {W;‘} The simplest and widely used way to modify the piecewise
constant data {W;L} is to replace the constant state W by a piecewise linear functions W7 (z).
The construction of the piecewise linear functions can be found in many papers; the construction
in Toro [120] will be used as described below.

As for the first-order Godunov method, one assumes that W represents an integral average

in cell I; = [ZL‘j_%,IL‘j+%] as given by:

W (z)dz. (6.35)

87

A piecewise linear, local reconstruction of W7 is:

Wi(z) =W

f T+ (r—x)AWY, z eIy, (6.36)

J
where AW is a suitably chosen slope of W’ (z) in cell I;. The integral of W’ () in cell I; is
identical to that of W’ and thus the reconstruction process is conservative. The slope AW

can be approximated by a simple finite difference formula given by:

n n
i1 — Wj

= (6.37)

AW? =
However, to achieve a higher order scheme and to maintain bounded solutions, the slope at
the current node is usually limited based on adjacent slopes. The obtained slope is a “limited

slope” AW? which is used as:
Wh(z) = W} + (¢ — 2;)AW?, 1z € I}, (6.38)

to approximate W on I;. The ratio r? represents the ratio of successive gradients on the

solution mesh at x;:

W7 — W
1! = 7;+1 - ‘]Ni (6.39)
J J

and the limited slope AW’ may be written in the form:

AW = ¢(r])AW?Y, (6.40)
where ¢(r}) is some flux limiter function. Note that the division and multiplication in (6.39)
and (6.40) are the component-wise operations. For the results in this chapter, we choose the
Monotonized Central(MC) limiter function for calculating the limited slope in (6.40). The MC
limiter function by Van Leer [130] is:

¢(r) = max|0,min(2r,0.5 + 0.5r, 2)]. (6.41)

At each interface x

lem(GRP) as follows:

j+1, We now may consider the so-called Generalized Riemann Prob-
2

8£ n JF(U)
ot ox

=0, (6.42)

88

)

W(z,t,) =)

(6.43)

Wi(z) if (z<uz;,
() if (z>w;,

N[= N

where W (x) is the limited local reconstruction in (6.38). Naturally, for nonlinear systems

the exact solution of the GRP is exceedingly complicated, but for the purpose of evaluating

face-centered states, an approximate solution may be suffice. In this approach, we are not trying

to evaluate the solution of the GRP in (6.42) analytically but rely on the boundary extrapolated

values at the interfaces. The values of W? 1 at cell boundaries using local reconstructions
(R)

n n n(L) n .
W' (x) and W74 (z) are denoted as Wj+% and Wj+% where:

n(L n n n n n
Wji%) = Wi(z;01) =Wj +05¢(r]) (W), — W)); (6.44)
n(R n n n n n
Wji; = Wi(my,1) = Wiy = 050(),) (Wi, - Wi) . (6.45)
The values W:J(FL;) and W?J(rpi) are left and right extrapolated values at the boundary z, 1
2 2

at time ¢,. In this way, one may instead consider the conventional Riemann Problem with

piecewise constant data in a new coordinate (£, 7) where { = — x 41 and T =1—ty, as:
2

oU OF
o T =0 (6.46)
w"E)if (<o)
WE0) =2 T3 (6.47)
Wi (> 0)
2

The face-centered state at t,, W(0,0), is the value at the origin immediately after the

n(L) n(R)

interaction of the piecewise constant data W j and W i1 where:

W(0,0) = lim W(0,7). (6.48)
T—07F
By determining W (0,0) in (&, 7) coordinate, we have the values of face-centered states given
by W™ | = [p", 1,u” ,,p" .]7 at t,. There are several ways to approximate the solution to
Jt3 J+s5’ It5 T Jt+s
the piecewise constant data Riemann problem (6.46) and therefore to approximate W (0,0).
In this paper, we use the simple approximate Riemann solver which was proposed by Harten

et al. [53] and discussed in Davis [28] to approximate W(0,0). In order to use the approximate

Riemann solver described in these papers, we rewrite Equation (6.46) as:

89

U OF
U(£,0) = { g; i Eé i 8?7 (6.50)

where Uy, and Up, are obtained from W?J(i) and W;LJ(FI? respectively. The approximate Riemann
2 2

solution of (6.49) is given by:

Uy, for (I/t < CLL)
U(z/t; U, Ugr) =< Urgr for (ap <x/t <agr) (6.51)
Up for (aR<x/t),

where ay, and ap are lower and upper bounds, respectively, for the smallest and largest signal
velocity and:
arUr —a Uy F(Ug)—F(UL)

Urr = . (6.52)
aR — ay, arp —ar

The bounds ar and ay, for the Euler equations are defined in Davis [28] as:
ap =ur —c¢r, R =UR+ CR, (6.53)

where uy, ¢y, are the velocity and wave speed respectively obtained from Uy, and ug, cgr are the

velocity and wave speed obtained from Ug. The solution W(0,0) in (6.48) is derived from the

2
p;?+ 1 ; these in turn are used in Equation (6.30) instead of using the mass-weighted quantities
2

in Equations (6.3) and (6.4).

approximate solution U(0; Uz, Ug) in (6.51) which includes the approximations of u;.LJrl and

In summary, the face-centered fluxing velocity, u;r L is estimated via the following steps.
First, using the local recontruction in (6.38), the left and right extrapolated values at this
cell-center are obtained using (6.44) and (6.45). These extrapolated values then form the
piecewise constant data to the Riemann problem (6.46). Second, this Riemann problem is
solved approximately using the approach of Harten et al. [53] and Davis [28]. The approximate
Riemann solution includes the approximate face-centered density, p;LJr L and face-centered
velocity, u?Jrl. Third, the “pressure correctors”, 5p;?, are calculated using Equation (6.8).

Finally, Equations (6.5) and (6.6) are used to calculate uj+1.

2

6.5 Numerical Results and Comparisons
The following well-known test problems are often used to test the accuracy and robustness

of many numerical methods in fluids. These tests for the one-dimensional, time-dependent

90

Euler equations for ideal gases can be found in Toro [120]. In [120], these examples are used
to access the performance of the numerical schemes being presented in the book. These tests
are also employed here to illustrate the performance of the Production ICE method and the
IMPICE method. In these chosen problems, two constant states, W = [pL,uL,pL]T and
Wr = [pr, uR,pR]T, are separated by a discontinuity at a position x = xg. The states W,
and Wpr are given in Table 6.1 and the problem domain is (z,t) € [0,1] x (0,7.]. We use the
transmissive boundary for these problems.

P1 is the well-known Sod’s problem and P2 is a modified version of P1. These tests are
considered very mild, but as mentioned in Toro [120] they are useful for assessing numerical
methods. P3 is considered a very hard problem for numerical methods. As mentioned in Toro
[120], the solution to P4 represents the collision of two strong shocks and consists of a left-facing
shock, a right travelling contact discontinuity and a right-travelling shock wave. Problem P5
is Lax’s test problem [74].

Beside the problems with known exact solutions in Table 6.1, we also include here the
numerical solutions to the Shu and Osher [107] test problem. This test problem contains
detailed features and structures and is considered by Greenough and Rider [42] to be a good
one-dimensional surrogate for the interaction of a shock wave with a turbulent field. The initial

condition at ¢ = 0 of the problem is defined as:

(3.85714,2.62936, 10.33333) if (r < —4.0)

(p,u,p)(,0) = { (1.0 + 0.2sin(5z), 0.0, 1.0) otherwise, (6.54)

on spatial domain [—5.0,5.0]. The end time for this problem is 7, = 1.8. As the analytical
solution of this test problem is not readily available, we use the “exact” solution obtained from
our implementation of the unmodified WENO-JS scheme discussed in Martin et al. [86] to
show how accurate of the numerical methods presented in this chapter. The “exact” solution of
Shu and Osher test problem in this chapter is obtained with the unmodified WENO-JS scheme
with r = 3 and p = 2 on 6400 grid points.

Table 6.1. Data for one-dimensional test problems with known exact solutions, for the
time-dependent, one-dimensional Euler equations

Problem | — pp, ur, PL PR uR pr |z | T. |
P1 1.0 0.0 1.0 0.125 0.0 0.1 0.3 0.2
P2 1.0 0.75 1.0 0.125 0.0 0.1 03] 0.2
P3 1.0 0.0 1000 1.0 0.0 0.1 0.5 | 0.011

P4 5.99924 | 19.5975 | 460.894 | 5.99242 | -6.19633 | 46.0950 | 0.4 | 0.034
P5 0.445 0.698 3.528 0.5 0.0 0.571 | 0.5] 0.16

91

The numerical results for the above test problems of the IMPICE method are compared
against those of the Production ICE method and shown in Figures 6.1-6.6. The time step
in Production ICE is chosen using Equations (6.19) and (6.20) while the time step in the
IMPICE method is chosen using Equations (6.19) and (6.21). It shows that the maximum
speed calculation of Kwatra et al. [72] indeed alleviates the stringent CFL condition imposed
by the sound speed in simulating these test problems. As seen in Figures 6.1-6.6, a significant
improvement in numerical solutions of the IMPICE method is shown. The profiles of the
numerical solutions of Production ICE in these figures are not close to the exact solutions.
This is due to the use of the nonconservative form in Production ICE. To see how the use

of the nonconservative scheme affects the numerical solution profiles, we include in Appendix

IMPICE o IMPICE
A Production ICE & Production ICE
14 11
Exact .
0.8 4 0.8 1
> 06 2 061
£ g
o] ®
0 04 > 0.4
0.2 4 0.2 1
b
O T T T T 1 0 4 > T T T
2 4 . . 1 2 4 . . 1
(a)O 0) 0 0.6 0.8 (b) 0 0 . 0 0.6 0.8
o IMPICE o IMPICE
A Production ICE & Production ICE
37 Exact :
5 2.6 1
2 24
't 2
] (0]
£ a
9
£
1 6 T T T T 1 0 T T T T 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
() x (d) X

Figure 6.1. Production ICE and IMPICE numerical solutions for test P1 with N=200 (cells),
Cepi = 0.2, and first-order advection: (a) density; (b) velocity; (d) internal-energy; and (c)
pressure.

92

IMPICE o IMPICE
2 Production ICE A Production ICE
1 4 Exact 1.57 Exact,
0.8 4
1 .
> 0.6 1 =
2 3 4
Q 04 2
0.5 1
02] iy
D D
0 , , , ,) 0 , , ——— i
0 0.2 0.4 0.6 0.8 1 0 0.2 < 0.4 0.6 0.8 1
X b
(a) X ;M};ICE . (®) o IMPICE
roduction A Production ICE
357 1 Exact
0.8 1
>
2 31
2 2 0.6
i 2
£ L 04
= o 47
%’ 25
0.2 1
2 = 0 T T T T 1
0 0.2 0 0.2 0.4 0.6 0.8 1
X (d) X

(€)

Figure 6.2. Production ICE and IMPICE numerical solutions for test P2 with N=200 (cells),
Cepr = 0.2, and first-order advection: (a) density; (b) velocity; (d) internal-energy; and (c)

pressure.

A.3 the comparision between the numerical results of the IMPICE method and conservative
cell-centered ICE. Conservative cell-centered ICE denotes the method that is implemented using
cell-centered ICE of Kashiwa et al. [68] described in Section 6.1.2 which conserves mass, linear
momentum and total energy. From the results in Figures 6.1-6.6 and Appendix A.3, it may be
seen that the use of conservation form improves the solution profiles. It can also be seen that,
there are no existing oscillations at the shock-front in the numerical solutions of the IMPICE
method. This results from the application of slope limiters in the data reconstruction of the
Riemann problem as shown in Appendix A.3. In short, the results in 6.1-6.6 and Appendix A.3

show that the use of conservation form improves the solution profiles and the reconstruction of

93

o IMPICE o IMPICE
& Production ICE A Production ICE
— Exact —— Exact
20 4
154
P
S
o
o 104
>
5 -
0 AmE—
0 0.2 0.4 0.6 0.8 1
(b) X
IMPICE o IMPICE
2500 4 Production ICE 1000 Ao Production ICE
— Exact
2000 A 800 A
>
o
2 1500 1 2 600
w 7
s »
S o
£ 1000 4 o 400 1
Q9
£
500 4 200
0 0
(©) 0 (d) 0 0.2 0.4 0.6 0.8 1
X X

Figure 6.3. Production ICE and IMPICE numerical solutions for test P3 with N=800 (cells),
Cepi = 0.2, and first-order advection: (a) density; (b) velocity; (d) internal-energy; and (c)

pressure.

the Riemann problem with the slope limiters helps to eliminate the nonphysical oscillations.

6.6 Accuracy in Space and Time
6.6.1 Temporal Error
Let 1leY (¢,,41) be the time integration error in U introduced at the cell centers over the step
+ g

[tn, tnt1] of the IMPICE method. The time integration error per step at cell j is then given by:

le}J<tn+1) = Uj [tn—I—l; ln, U?] - U;'H—l, (6.55)

94

IMPICE o IMPICE
& Production ICE & Production ICE
507 — Exact 2 20 &= — Lxact
154
> 10 1
8
R
>
O .
_5 -
0 T T T T T 1 _10 T T T T 1
() 0 0.2 0.4 0.6 0.8 1 (b) 0 0.2 0.4 0.6 0.8 1
X
o ;MEICE_ . o IMPICE
Ero uction A Production ICE
300 3 _ act 2000 5 — Exact
S A
250 4 %
> 1500 § R N
T 200 ; o
] 5 A
L 450 % 1000 1 b
g g 2
£ 1001 b
- 500 u— A
50 A1
O T T T T 1 0 T T T %
(©) 0 0.2 0.4) 0.6 0.8 1 (d) 0 0.2 0.4) 0.6 0.8 1

Figure 6.4. Production ICE and IMPICE numerical solutions for test P4 with N=200 (cells),
Cepi = 0.2, and first-order advection: (a) density; (b) velocity; (d) internal-energy; and (c)

pressure.

where Uj [tn+1; tn, Uﬂ is the exact cell value at t,,41 if the exact cell value at ¢, is U?. From

Equation (6.25), the exact cell value U; [th; tn, U;L] is given by:

At
Uj [tussita, UF] = Uf — (Fy(tn) = Fy 1)) (6.56)

where Fﬁ_%(tn) is defined in (6.29). On the other hand, the IMPICE solution at t,1 is:

At
n+l _ IMPICE IMPICE
Ut =07 — o (FIMPICP () — FIMPICP (1)) (6.57)

where:

95

IMPICE o IMPICE
2 Production ICE 4 Production ICE

Exact
1.54
2 11 >
S
o
g Vi
0.5 1
D
N
0.2 ' ' ' ' , 0 . ' ' ——
0 0.2 0.4 0.6 0.8 1 (b) 0 0.2 0.4 0.6 0.8 1
(a) X o IMPICE * o IMPICE
4 Production ICE A Production ICE
20 Exact 35 Exact
3 -
> 151
(o))
L?Cj g 2.5
(Lé 10 é 21 2
= o D
[0]
= 1.5 1
- 5- A
1] D
iy
0 T T T T 1 0.5 T T T T Q
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(c) X (d) X

Figure 6.5. Production ICE and IMPICE numerical solutions for test P5 with N=200 (cells),
Cepi = 0.2, and first-order advection: (a) density; (b) velocity; (d) internal-energy; and (c)

pressure.

0
F§f§ICE(tn) =up 1 (U)) s + *Pj% : (6.58)
A
Therefore:
At
1l (tn1) = - [(FﬁéPmE(tn) - FH%(tn)) - (F§§4%PICE(tn) - Fj_%(tn)ﬂ . (6.59)

From Equations (6.29) and (6.58), we have:

IMPICE
o Production ICE

3
X IMPICé
A Production ICE
= "Exact"

Velocity

96

Figure 6.6. Production ICE and IMPICE numerical solutions for Shu and Osher test problem

with N=1600 (cells), C.y; = 0.2, and first-order advection: (a) density and (b) velocity.

¢
_ wIMPICE(\ _ nt3 [L[-
Fjpi(tn) —Fi o) = v f (At - Uz, 1, t)dt <U>j+é>
0
n+ p”"’% p 9
2k n) —
+(“j+; uj+;> (U)jys + njié ity + O(At7).
2 * *

n+% ok o 2 ”""% ok — 2 .
As (u I uj+§> = O(At*) and (ijr; pj+§> = O(At*), we then have:

_RIMPICEQ Yy,

Fj+% (tn) i+

At

tn

t) about (U>;L+ :

By considering the expansion of U(x i+l 1
2 3

Ule, 0. 0) = (U, + (1

=
2 2

) (0),+ T (O),

(1 /tn+1 Ulz; 1, t)dt — (U>;L+5> +O(A).

(6.60)

(6.61)

(6.62)

97

Equation (6.61) now becomes:

B At n—&-%

F. 1(t,) — FIMPICE @ N
2

" <<U>’?)t +O(AR). (6.63)

j+s j+i

Therefore:

(Fﬁ\éPICE(tn) - Fj+%(tn)) — (Fﬁﬁ/l%PICE(tn) _ Fj_%(tn)> (6.64)
N % [“j:;; <<U>§L+%)t - “;lf (<U>?;)t] +0(At?). (6.65)

From Equations (6.59) and (6.65), le}’T(tn) is second-order in At for a fixed Axz. Therefore,
et}j(Te) is first-order in At.

As discussed in Chapter 4, the overall temporal error at cell j at t, is given by:

ety (tn) = Uj [tn; to, UY] — UJ. (6.66)
In order to calculate the overall temporal error at T, in Equation (6.66), we need to determine
the IMPICE time-integrated exact solution U [Te; to, U?] . As we do not have the exact solution
U; [T e;to,Ug], we assume that the calculated solution U J” converges to the time-integrated
exact solution Uj [T s to, UJQ} when reducing C.f;. Therefore, we use a highly resolved solution
as the time-integrated exact solution U [Te;to, Uﬂ with C.p; = 0.0001. This solution meets
the criterion mentioned in Greenough and Rider [42] that the grid converged solutions should
be at least 8 times finer than the finest grid examined for error. The temporal error norms
and their orders of accuracy of the conserved and primitive variables for the above test cases
at T, are shown in Table 6.2. The results in Table 6.2 show that the orders of accuracy of the
conserved variables for these test cases are very close to one; this is consistent with the above
analysis. The orders of accuracy of the primitive variables are also very close to one. With the
result of the method with first-order-in-time shown in Appendix A.2, we may confirm that we

do indeed get first-order convergence in the case of smooth solutions.

6.6.2 Spatial Error
With the linear spatial discretization as discussed above, the spatial error of the vector of
conserved variables U is first-order in Az. As discussed in Chapter 4, the overall spatial error

at cell j at ¢, is given by:

esy (tn) = Uz, t,) — Uj [tn; to, UY] . (6.67)

98

00T ¥O-AST'Z | 00T PO-AES'T | 00T FO-HEO'S | T0T FO-ACET | 10T ¥O-ASGT | S0°0
66'0 VO-H0ET | 86°0 F0-H99°E | 00T €0-HTI9T | T0'T F0-L9°8 | T0'T ¥O-HST'G 10
¥6'0 €0-HSS'8 | ¥6'0 FO-HSTL | 86°0 €0-ATEE | ¢0'T €0-HGLT | €OT €0-HFOT ¢0| ed
— €OF9T | — €O-H6ET | — €O-MCE9 | — €0-HESE | — €0-HITT 70
86°0 TO-ILY'C | 86°0 €0-HE€2C | SO'T TO-HOT'9 | 00T CO-HAF6'E | 160 €0-AT0C | S0°0
10T T0-HG8F | T0T €O-HTIF¥ | ¥0'T 00-H9%'T | T0°T 20-H06'L | ¥O'T €0-HSH6 10
LO'T 00-H9L°6 | 90T €0-HL'S | €0'T 00-H6G°C | €0°T TO-H6S'T | 20T TO-HV6'T 20| ¥d
— 00-HS0C | — @OHST| — 0099¢°S | — 10-d¥CE | — T0-H¥6E 70
10T Z0-{6S°L | TOT €0-HISE€ | 10T TO-HO0V | 10T 20-HSST | 20T €0-4L8°T | S0°0
20T TO-EST | 00T €O-AP9L | 20T TO-H90'S | €0'T ZO-H9T'C | 20'T €0-HLG'T 10
60T TO-HIT'E | €0'T CO-HES'T | 80'T 00-ALYT | 90°T TO-AFOT | 90T €0-H0Z'S z0| ed
— 10199 | — 20-deT€| — O00-HVFE | — T0-ASTT | — 080T 70
00T ¥O-SET | 00T ¥0-H9%'C | 00T F0-ASL'E | 10T FO-HILT | 10T ¥0-{98°T | S0°0
00T FO-H9LZ | 00T F0O-HE6Y | 0T FO-ASLL | T0T ¥O-SHE | 10T FO-HLE 10
00T ¥O-GGSC | 00T ¥0-H06'6 | T0T €0-H9S'T | €0'T F0-H96'9 | €0'T ¥O-HGG L 20| ed
— QO-HITT| — €0HS6T| — €0-dSTE | — €0y | — €0-HEST 70
00T SO-H6Z°C | 00T FO-HLTT | 00T ¥O-A6ET | 00T G0-289 | 00T GO-H9ER | G00
00T ¥O-S0°T | 00'T ¥0-HSST | 00T FO-H9L°T | 10T FO-HIET | 10T FO-HL9°T 10
L0T FO-HITE | €0'T FO-APLG | LT ¥O-AFGS | 90T FO-AFLET | FOT FO-HLEE zo0| 1d
— J0-dCYV | — €0-{G0T | — €O-HOTT | — FO-HILG | — $0O-HIT69 70
u NI u)] u)] u N u)] %)
(D) ¥ (L) ¥ (°L) 0% (°L)no¥® (°1)s10

'g—0T X D 10} SpUR}S 910 Pasn q-Fe UOneIou oYL, "1000°0 = ¥°D
Bursn Aq paure)qo oIe $ased 1599 9S91} JO SWA[qoId POZIIRIISIP dY) 10J T N0 rL) suormyos joexe pajerSejur-owtry o [, *(S[[99) OOZ=N Suisn
1°9 9[qe], Ul Sased 1899 9} I0] SO[qRIIBA SATJTWILIA PUR POAISSUOD 91} JO U ADRINDOR JO IOPIO dY) PUR SWIOU-I7 :1011y [elodW], ‘g9 9[elL

99

In order to access the spatial errors of a test case, we need the exact solution U} [Te; to, U]0} ; see
Equation (6.67). The result in Section 6.1.1 gives the rate at which the time integration com-
puted solution approaches the true time integration solution, so a more accurate approximation
to the exact solution U [T e; to, UJQ} might be obtained by comparing the numerical solution to
a finer-mesh numerical solution. Therefore, we estimate the exact solution U [Te;to, U]Q} in
Table 6.3 using the computed solutions of the IMPICE method with C.z; = 0.025 and one with
Cepr = 0.0125.

The spatial error norms and their orders of accuracy for the above test cases at T, are shown
in Table 6.3.

Theoretically the spatial error order of accuracy is first-order. However it is shown in Table
6.3 that the order of accuracy is mostly below one due to the discontinuities in the solutions of
these test cases. Greenough and Rider [42] mention earlier work showing less than first-order
accuracy for the first-order version of Godunov’s method and suggest that this is due to the
low resolution computed solutions being very different from the highly resolved solution. For
reference purposes, we include in Appendices A.1 and A.2 of this dissertation the spatial errors
and the orders of accuracy for the inviscid and viscous Burgers’ problems. For the inviscid
Burgers’ problem, the order of accuracy is below one. For the viscous Burgers’ problem, the
order is around one.

As numerical solutions obtained with first-order methods are diffusive and not accurate
enough to be used for some large problems on relatively coarse grids — for example, the numerical
solution to Shu and Osher test problem shown in Figure 6.6 — we raise the order of accuracy of

the IMPICE method to second-order in both space and time in the following sections.

6.7 Higher-order Accuracy in Time
In order to raise the order of accuracy globally in time, we use the method of extrapolation
to raise the order of accuracy locally. By raising the local order of accuracy of the temporal error
to third-order, we raise the order of accuracy of the temporal error to second-order globally.
The second-order-in-time IMPICE method is achieved using Richardson extrapolation. The
steps in the IMPICE method with second-order temporal error to obtain the solution for next

time step U?H from current time step solution U} are:

e Perform one step of the first-order IMPICE method with stepsize At to obtain the solution
Ulg”r1 at tya1.

e Perform two consecutive steps of the first-order IMPICE method with stepsize % to
obtain the solution UZ?Jrl at ty41.

e Set the solution at ¢,,41 of second-order-in-time IMPICE method to (ZUZ?H — Ul’j”l).

100

98°0 €0-HE8E€ | 98°0 €0-HGTE | 0L°0 TO-HLIC | 6G0 TO-HVST | €60 €0-H0%°6 | 0091
€L°0 €0-HG6'9 | LL'0 €0-H06'G | 96°0 ¢0-HcS'¢ | €9°0 <¢0-H9¢'¢ | €40 <CO-HIV'T | 008
98°0 TO-H9T'T | 98°0 TO-HOO'T | 69°0 TO-H6T'S | 09°0 TO-HIT'E | 95°0 ¢O-HLOT | 00F | ed
89°'0 <CO-HOT'C | PL'0 <CO-HCY'T | L0 ¢0-HLES | 660 <CO-HE6'V | 8€'0 <¢0-HOO'E | 00C
— ¢0-HGE ¢ — ¢0-d¥v0'E | — TO-HEG'T — GO-H.LY9 — ¢0-H06°¢ | 00T
9,0 00+H6Z'T | 180 CO-ATIF'T | 99°0 00+Hd66'6 | 20 00+HL9'T | 050 TO-AI6'T | 009T
T0'T 00+H6T'C | OT'T CO-HLY'G | G990 TO+HKST | €60 00+H6EC | 660 TO-H69°C | 008
00T 00+HZF¥ | 08°0 <CO-HTE'S | LL°0 TO+HLY'C | 660 00+HIFE | 660 T0-HEG'E | 007 vd
L6°0 00+HERS | 6T'T ¢CO-HSZ6 | TL'0 TO+HETT | 660 00+HICS | S0 TO-H9L'S | 00C
— T0+HELT — T10dI11T%| — 10+HE69 | — O00+HOR9 | — T0-HOL L | 00T
060 00+HSZ'T | 260 <COHEYG | TR0 TO+H6ZT | 670 00+HLOT | 870 CO-AFF'S | 0091
180 00+HEEST | L0 TO-H90'T | ¢9°0 T0+H9ZC | G660 00+HOS'T | 260 <O0-H09°L | 008
9.0 00+HOT¥ | 640 TO0-HS6'T | 870 TO+HST'E | €70 00+H0Z'C | €70 T0-H60°'T | 00% ed
7.0 00+HE6'9 | GL°0 TOHSEE | €40 TO+HYSTY | ¥¢'0 00+H96°C | 620 TO-HLV'T | 00T
— TO+H9T'T - T0-H9G¢°¢ | — T0+H90R | — 00+H67'E | — TO-HOK'T | 00T
GL0 CO-HAT'C | ¢L'0 €O0dET'E | P90 €0-HPO'L | €9°0 €O0-HET¥ | 09°0 €0-AVCc'¥ | 0091
2.0 €0-HS8G'E | G680 €O0-HST'G | TL0 <¢O0-HOT'T | 8¢°0 €0-H86'G | T9°'0 €0-HS¥'9 | 008
7.0 €0-HIT9 | ¢80 €0-HGC'6 | L9°0 <0-HOS'T | 090 €0-HE6'S | G40 €0-HA86 | 007 ¢d
TL0 ¢0-dHCO'T | 08°0 <C0HE9'T | ¥9°0 ¢CO-HLS8C | 660 <¢0-HIC'T | 8¢°0 <CO-HSY'T | 00T
— ¢0-H99'T — ¢0-HESC — CO-HLY'V — ¢0-H68'T — GO-HLT'CG | 00T
780 €0-H60'T | 06'0 €0-HG6'T | 6L°0 €0-H90°¢ | ¢9°0 €0-H6S'T | ¢9°0 €0-HO¥'¢ | 0091
780 €0HG6'T | 880 €0-HE9'EC | 8L°0 €0-H6C'G | L90 €0-HSE6'Cc | 99°0 €0-d89°¢ | 008
T80 €O0-dAST'E | G8°0 €0-HL99 | LL°0 €0-HOT'6 | 890 €0-H99V | €9°0 €0-HES'SG | 00F Id
6L°0 €0-H0T9 | ¥80 TO-H0Z'T | 6L°0 TO-H9S'T | €9°0 €O-H¥FL | 650 €0-HIT'6 | 00T
— ¢0-d90°T — GO-HGT'¢C — ¢0-d89°¢C — GO-HGT'T — GO-HSE'T | 00T
w)] w NI w NI w NI w I | N
(°L)aso (°L)ns® (°L) g08@ (°L) nos® (°L)gs®

"1°9’Q UOT}D9G UI PASSNOSIP SUOIIN[OS [RITIOWNU POSIOATOD Y} dIe R 00221 0 suorimyos joexs oYy,
"T°9 9[RBT, UI $9SBD 4897 9y} I10J So[qerres dATyMILId PUR PIAIISUOD ST} JO W ADRINDOR JO I9PIO 9} PuR SWIOU-I7 :10117] Teryedg "€:9 9[qelL

101

The temporal error norms and the orders of accuracy of the conserved and primitive variables
for the above test cases using the second-order-in-time IMPICE method are shown in Table 6.4.
We use a highly resolved solution as the exact solution Uj [T i 10, UJQ] by setting C.z; = 0.0001
when calculating temporal errors. It is shown in Table 6.4 that the time integration accuracy
for both conserved and primitive variables is very close to second-order.

In doing so, we note that this extrapolated method corresponds to the Runge-Kutta method

whose positivity properties are described by Mehdizadeh Khalsaraei [87].

6.8 Higher-order Advection

The solutions with first-order accuracy of advection where advected quantities obtained
from (6.18) are highly smeared at contact discontinuities. We have improved the spatial error
accuracy of the IMPICE method by using a higher-order advection method. A higher-order
Van Leer advection method is discussed in VanderHeyden and Kashiwa [127], in which the
compatible fluxes are also derived for this type of advection method. There are several mi-
nor differences between the derivation of the face-centered advected quantity for IMPICE in
this section and [127]. A higher-order advection scheme for IMPICE is derived based on a
higher-order approximation of the advected quantities in (6.16). This is done by assuming that
U(

equations of conserved variables in the Eulerian phase in Section 6.4.2 are given by:

z;,1,t) in Equation (6.16) is not a constant for the time step [tn,tn41]. The advection
2

U; + (uU), = 0. (6.68)

In order to determine U(z., 1,t), we will use Equation (6.68) and the constructed values,

Jjt3’
W (z,t), of primitive variables in the control volume [z; 1,z; 1] X [t;,tn41]. Within this
2 2

control volume, the constructed values, W?(.’L‘, t), are obtained by using Taylor series:

Wi (z,t) = W} + (2 — x;) (?;) A+ (t—tn) (3(;;;7) o+ O(Az?, At?). (6.69)
J J

In VanderHeyden and Kashiwa [127], the first-order term in time in the above Taylor series
expansion is omitted. The extrapolated values at cell boundaries obtained by using the con-

structed values, W (x,t), are:

W) LO(ARAR), (6.70)

W>n+O(Ax2,At2). (6.71)

102

6Z'C 900-dTS'T | 62°C 900-AIT'T | 32 900-A96°'€ | 80T L00-HLL'S | 80°C L00-AVSY | <00
L8T 900-A6T°L | 68°T 900-AVF'C | 98°T GO0-AFST | G6'T 900-HZL'E | L8'T 900-AT6'T 10
€1'c G00-429T | 90°C S00-HZ0°T | €1 S00-469°9 | 90°C GOO-HAPY'T | GT'C 900-H00"L 20| <d
— JOO-APTT | — G00-HSY'8 | — F00-AF6T | — GO0-A66'C | — GO0-ATT'E 70
PGT 200-A0F'T | OF'T $00-HE60 | L9'T 200-A0T'T | 9F'T €00-HSS'T | OV’ T $00-ALET | S0°0
0F'T 200-d90F | 2€'T F00-H9G'C | I8'T T00-4L9°0 | G&'T €00-HGTY | TF'T F00-AET9 10
88T TOO-ALOT | G&'T ¥00-HCY9 | 86'T T00-ASET | 69T 200-AS0T | 98°'T €00-AG9'T z0| vd
— 100-€6'€ | — €00-HS88'T | — T00-4LZ6 | — TO0-HSEE | — €00-H66'C 70
€61 €00-88°C | 29T FOO-HOT'T | €9'T €00-408°9 | 89°'T F00-H6T'T | 0S'T 900-HZEL | <00
98'T €00-H0E'S | 6L'T VO0-H6EE | ¥&'T TO0-HOT'T | PL'T V00-HES'E | 6&'T S00-HLOT 10
L0C 200-HT0E | 80 €00-HAST'T | €0C 200-A6F'L | 66T €00-HLZT | 06T G00-AS09 20| ed
— T00HLTT | — €00-H96F | — TOO-AIT'E | — €00-HAI6F | — F00-HITT 70
€T L00-ASST | 66'T LOO-ATIEL | 06T L00-AF0°6 | 96T LOO-HAFPS'E | 98°T 200-A%6'C | G0°0
12 900-H20°T | €0'C 900-H06'C | ST'C 900-H8E'E | L0 900-A6F'T | 1¢°C 900-H90'T 10
29T 900-ACLF | LL'T G00-HOZ'T | ¥L'T S00-AOS'T | 06T 900-HA¥Z9 | L9'T 900-A68F 20| ad
— GO0-ASP'T | — S00-HOTV | — G00-A66'F | — GO0-HEET | — G00-H9G'T 70
00 L00-SG'L | L6'T 900-H9¥'T | 10'C 900-AFS'T | 00C L0O0-HS6'C | €0C LOO-ATTL | €00
1€C 900-AE0°€ | 62°C 900-ATL'S | 08 900-AVY'L | 62°C 900-A6ET | G€'C 900-H06'C 10
LT GO0-HOS'T | ¥1'C GOO-HILT | ST'C G00-HS9'E | 9T'C G00-HOT'T | LT'C GOO-AALY'T z0| 1d
— G00-AGL9 | — VOO-H6TT| — FOO-HEYT | — GOO-HOZG | — S00-AF9'9 70
u)] u 0| u)] u 0| u)] 5%
(D) ar (L) ¥ (°L) g0%° (L) na¥® ()7

"1000°0 = 4?9 Suisn £q pourejqo oIe soseo
1599 9s91} JO sw[qoId POZIPRIISIP O} 0] T@u ‘0942 rL ‘N suormyos 10exs By, *(S[[99) 00Z=N Sulsn ['Q S[qe], Ul Sosed 189} [} I0j SI[LLIeA
oATITLIA PUR POAIOSUOD 9} JO U ADRINDOR JO IOPIO 9} puR SWIOU-T7 OTJIN] OWII-UI-I9PIO-PUOIS 9} SUIsn 1011y [erodwo], 9 o[qel

103

Therefore, there are two existing extrapolated values at the cell boundary at Tl for the time
interval [t,, tp4+1]. These values are denoted as W?(a:jJr%,t) and W74 (z j+1,t), and one may
be chosen for the face-centered value based on the face-centered fluxing velocity at this cell

boundary. The value of the vector of primitive variables at face-center is determined using:

Wi (2),1,1) ﬁ(w¢<®

Wi (x Tl t) otherwise.

Wiy, 1,1) = (6.72)

Now, as the extrapolated primitive variables at the cell boundary at x j+1 are readily available,
2
we will show how to obtain the vector of advected quantities in (6.16). We derive the advected

< 0 are derived

quantities for the case u;‘.Jr 1 > 0. The advected quantities for the case u*
2 2
similarly. The vector of advected quantities <U>;‘Jr , includes (p >j (pu)” 1 and <,0E> 1
2 2

Equation (6.68) is rewritten as follows:

dp ap ou

2% = Y3, Par (6.73)
ou ou

oF OF

Equations (6.71) and (6.73)—(6.75) are used to derive the mass advected quantity in Equation

(6.16); for the case of u;erl > 0, we have:
2

tn+1
<p>j+% - A/ i1, t)dt
1 e dp op\" 2 As2
9p
ox
ap
ox

(

8p> + O(Az?, At?)
9 J

) 2(
) é((Z)j“’ﬂ (g"‘;))wmx AL2).

n
]

é,
2
L A
2

Therefore:

n_on Az AN (Op _Atn ou\" 2 AL

104

pule;,s.1) = <ﬂ? +A;<gg>j+()

(o @ (3] o

@) o))
+pj (A; (21) <&Z>J)
(¥ (@) - @) (3

+0(Az?, At?).

% % -t (8@?))

J

The fluxed momentum at the face-center is then given by:

" 1 tnt1
(o = / pula, 1, t)dt

oy un s (AF AL (QuN" Ax (Op\ (Aw ALY (Ou)
- pj+1u Py o T ox ; 2 \ Oz i\ 2 i Ox j
Az At (Ou\" [Ou\" At? fou\" [Ou\" 2 A2
oy (&z>j <8t)j+3<0t)j <at>j+O(A$’At :

This gives us the approximation:

n 0 on " Ax o At ou\"

With a similar derivation, we also have:

. W m o (Az At (OE
(EY,) = (0, B + ol () (

= or 2 A2
5 u 5 8x>j + O(AzAt) + O(Az=, At"). (6.78)

We thus obtain second-order accuracy in space if C. ¢ remains contant. Equations (6.76), (6.77),
and (6.78) are used to calculate the face-centered fluxed quantities for the time step [ty tnt1]

when the face-centered fluxing velocity, u is greater than 0. A set of similar equations can

+ 1
be easily derived for the case when the ﬂuxmg velocity is less than 0. However, when using

these equations to estimate the face-centered advected quantities, we need to have numerical

. ap\" [ou\" IEN\" . . L .
estimations for { =—) , [=—) , and { —] . These spatial numerical derivatives are limited
oz); \0z), ox) ;

105

to eliminate artificial extrema and preserve monotonicity [127]. In this chapter, we choose one

limiter from one-parameter family of minmod limiters [54, 131],

<8W>n Wi W Wt 2 Wi g Wt W) (o

—— | = minmod(6

oz) (Ax ’ 2Ax Az
to estimate the spatial derivatives of primitive variables by setting 6 = 1. Note that, the
minmod limiter in (6.79) is applied component-wise where the multivariable minmod limiter

for a scalar quantity is defined as:

min(z1, 22, 23, ...) if (z; >0 V)
minmod(z1, 22, 23, ...) = & max(z1, 22, 23, ...) if (z; <0 Vy) (6.80)
0 otherwise.

The numerical solution of Shu and Osher test problem in Figure 6.7 is obtained using the
second-order-in-space IMPICE method. Comparing to the numerical solution of this problem
in Figure 6.6, the solution using the second-order-in-space IMPICE method is less diffusive and
more accurate.

The spatial error norms and the orders of accuracy for the test cases in Table 6.1 using the
second-order-in-space IMPICE method are shown in Table 6.5. When calculating the spatial
errors, we use the converged numerical solutions of these test problems as described in Section
6.6.2 for the exact solutions.

The result in Table 6.5 shows that the second-order-in-space IMPICE method does reduce
the spatial errors and increase the orders of accuracy in both conserved and primitive variables.
However, the orders of spatial accuracy are not close to second-order as expected, but degenerate
into first-order and below. The observation concurs with those of Greenough and Rider [42] in
that when discontinuities are present high-order methods may not always deliver the expected
advantages and may reduce their order of accuracy to first-order. In addition, Berzins [12]
shows how unless there is sufficient resolution in terms of meshpoints in a front then the
positivity preservation will tend to favor the use of lower order methods. We also would like
to estimate the spatial error in the numerical solutions of the Shu and Osher test problem.
Since the analytic solution to the Shu and Osher test problem is not readily available, a highly
resolved numerical solution is used to estimate the integral term in Equation (4.27) when
calculating spatial errors. The highly resolved numerical solution is generated from running
the second-order-in-space IMPICE method with N = 25,600 (cells) and C,5; = 0.2. The exact
cell average in Equation (4.27), ﬁ f;; ij U(z, t,)dx, is the numerical integration obtained from

the highly resolved solution while the exact solution of time integration, Uj [tn; to, U]Q}, is the

106

S0'T €00-HSZ'T | 80T €00-H0Z'T | L8'0 €00-H0T'S | GL'0 €00-A9SF | 040 €00-A98C | 0091
160 €00-HZLZ | 360 €00-ASCT | €9°0 TO0-HSY'T | 69°0 €00-H99L | 020 €00-HEYY | 008
60T €00-HOT'S | 60T €00-HESF | ¢80 00-HOE'E | 08°0 00-HETT | €4°0 €00-ASSL | 00F ed
88°0 200-AS0'T | 68°0 T00-HZO'T | 02’1 GOO-HPTY | L&°0 GO0-AST'Z | 8€°0 200-dSE'T | 00T
— 0066’7 | — 00-HO6'T | — 200A¥S6 | — 200ASLE | — T00-dE9'T | 00T
0.0 000+H29°Z | 990 E00-HIS'T | 240 T00+HTOT | 19°0 T00-AL6L | ¥9°0 200-ATT'L | 0091
V0 000+ELET | 250 T00-HLSC | €F°0 TO0+HLYT | 860 000+Hee T | ¥9°0 TOO-ATT'T | 008
¢L'0 000+AT6S | €60 TO0-HACT'F | 69°0 TOO+HGZE | 99°0 000+HEST | 69°0 TO0-AFLT | 00F vd
GH'0 000+H9L6 | L0 TO0-HCRL | GF'0 TO0+HZYE | 280 000+H68°C | €0 T00-H08'T | 00C
— 100+dEET | — TO0HATT | — T00+HL6T | — 000+AT9E | — T00-HLSE | 00T
660 TO0-HIOL | 660 E00-HOS'E | 1&'T 000+H99F | ¥6°0 T00-ALF'E | ¥S°0 200-A9LT | 0091
260 000+EG6ET | 260 TOO-HL6'9 | 9L°0 TOO+HSOT | €40 T00-HSGOC | ¥9°0 ZO0-FLE'T | 008
9.0 000+dF9°T | 6L°0 TOO-HIET | 99°0 TO0+HEST | €9°0 T00-A6E'S | 99°0 Z00-AIOF | 00F ed
G8°0 000+ELFV | €S0 TO0-H9E'T | 860 TO0+H0LT | L&0 000+HEET | €7°0 200-HSE9 | 00T
— 000+d€08 | — T00-HSE'E | — T00+HPESG | — 000+HTLT | — 200958 | 00T
28°0 FOO-HST'S | T2°0 F00-HI6'6 | GL'0 €00-HF6'T | 890 €00-H9Z'T | GL'0 €00-HSTT | 0091
€0T POOATT'6 | IT'T €00-HEQ'T | €60 €00-HST'E | 64°0 €00-AT0Z | 080 €00-AF6'T | 008
00T €00-HSS'T | GO'T €00-HICE | 88°0 €00-HST9 | 290 €00-ASFE | 69°0 €00-A6LE | 00F zd
66'0 €00-dcL'€ | FO'T €00-HSZ'L | 98°0 GOO-HPTT | 180 €00-APE'S | ¢80 €00-A6V'S | 00G
— €00d6EL | — TO0-HOS'T | — g00-HLOZ | — €00-6£6 | — €00-HT6°6 | 00T
GO'T FOO-AFT'E | LT'T F00-HES'S | 00T FOO-HEE'6 | 8L°0 FOO-HET9 | GL'0 FOO-HAIZL | 0091
L0T $00-HOS9 | T'T €00-HIET | 660 €00-ALST | 280 €00-ASO'T | 280 €00-HIZ'T | 008
GO'T €00-A9E'T | 8O'T €00-HGS'C | 66'0 €00-HOL'E | L8°0 €00-HZ6'T | 88°0 €00-AETT | 00F 1d
€0'T €00-AT8T | GO'T €00-HG09 | €0'T €00-HLEL | LL°0 €00-ATS'E | 640 €00-HOT'F | 00G
— €00dglS | — T00-HSET | — g00HOST | — €00L6'S | — €00-HOT'L | 00T
w Il w T[] w jd [w N w TN
(L) as? (L) nso (L) 705° (L) nos® (L) g2

99

UO1109G Ul PALIISOP Sk SUOIN[OS [RILISWNU PISISATO0D d1[) dIe Tnb ‘0p 42 rL) suormyos joexo oY, "T°Q O[QRI, Ul SoseD }80} oY} I0J SO[(RLIRA

oAT)TIILIA pUE POAISSUOD 9} JO Ut ADRINDOE JO IOPIO 9} PUR SWIOU-I7T FIOTJIN] @0eds-Ur-1opIo-puodss oy} Suisn 1o11y reryedS ‘G 9 o[qel,

107

o Second—order—in—space IMPICE
5 — — "Exact"

T ' T ' T ' T ' T '
1 . 3 4 5
Second—orc?ier—ln—space IMPICE

—— "Exact"

Velocity

Figure 6.7. The second-order-in-space IMPICE numerical solution for Shu and Osher test
problem with N=1600 (cells) and C.s; = 0.2: (a) density and (b) velocity.

converged numerical solutions as discussed earlier in Section 6.2.2. The spatial error norms and
the orders of accuracy of the Shu and Osher test problem are shown in Table 6.6.

As shown in Table 6.6, there is also a degeneration in the orders of accuracy for the result
of the Shu and Osher test problem when the mesh size N is below 1600 and an improvement in
its orders when the mesh size N is above 1600. This result is consistent with that of Greenough
and Rider [42]. The numerical results of the second-order-in-space IMPICE for inviscid and
viscous Burgers’ problem are included in Appendices A.1 and A.2. The spatial error norms and
the orders of accuracy for the numerical solutions of the inviscid Burgers’ problem obtained
from using the second-order-in-space IMPICE method included in Appendix A.1 show that the
orders of convergence are not very close to second-order. However, the orders of convergence
for the numerical solutions of the viscous Burgers’ problem using the second-order-in-space
IMPICE method included in Appendix A.2 are close to second-order for the cases of € = 0.05
and € = 0.01 as the solutions for these cases are smooth as shown in Appendix A.2. But the
orders degenerate into first-order for the case of € = 0.0001. This is due to the development

of the smooth steep front that appears close to a discontinuity in the solution of the viscous

108

Y¢'T COHIL9 | €T COHCET | 9¢°'T T0HOG'E | 9¢'T TOHLRT | ¢&'T <¢O-HCI'S | 00CE

ITT T0-SS'T | 80T 0-GR'E | ST'T T0-HG6'® | ST'T TO-H6LF | 8T'T TO-HE0C | 009T

0T T0-HZV'E | 86°0 <¢O0-HF0'9 | ¢L'0 00+H66'T | T90 00+HKO'T | 290 T0-H09% | 008

PO'T TO-HE0L | SO'T TO-H6T'T | L0 00+HSE'E | 20 00+HCOT | L&'0 TO-H0E L | 00F

— 00+HF7'1 — TO-HSGV'C — 00+HSST | — 00+HS6'T — TO-HI¥'6 | 00¢

w ||| w)| w)| w)| w I | N
(°L)as® (L) ns® (°L) go8@ (L) nys® (°L)gs®

"SUOTIN]OS [ROLIOWINU POSISATUO0D 1) dIe T 072 rL fn suonnjos joexo oy T, "woqoid 389} I9YS() PUe NYS I0J SO[(RLIBA
oAyTILId pUR PIAAISSUOD 97} JO Wi ADRINODE JO IOPIO 9} puR SWLIOU-IT :HOIJINT 09ords-UI-IopI0o-puodas o) SuIsn 1oi1y [eiyedS ‘99 o[qel,

109

Burgers’ problem when the viscosity € becomes small.

6.9 Summary

We have presented IMPICE, an improved Production ICE method, that uses a conservative
scheme, slope limiters and a simple approximate Riemann solver to improve and eliminate
existing oscillations to numerical solutions of Production ICE which is currently implemented
in the UCF to simulate fluid flows. We have also examined how each of these different
implementations individually impacts the overall numerical solutions of IMPICE. The IMPICE
method with a linear spatial and temporal discretization is expected to be first-order accuracy
in time and space. However, for the cases with existing discontinuities in their solutions, the
order of accuracy in space is less than one as shown in Section 6.6. As it is important to have
the method of higher-order of accuracy in both time and space, we have presented the nonlinear
spatial and temporal discretization of the IMPICE method. These are the method of temporal
extrapolation and the higher-order advection. While the method of temporal extrapolation
successfully raises the order of accuracy to second-order-in-time, a less-than-expected order
of accuracy in space is obtained from using the higher-order advection for the problems with
discontinuities.

It has shown that the IMPICE method is capable of capturing shocks and contact surfaces.
The higher-order IMPICE method is even able to capture the detailed features and structures

of the flow with shock-turbulence interaction in Shu-Osher problem.

CHAPTER 7

THE IMPROVED PRODUCTION IMPLICIT
CONTINUOUS-FLUID EULERIAN METHOD
FOR COMPRESSIBLE FLOW PROBLEMS
IN MULTIDIMENSIONAL SPACE AND
ITS EMBEDDED BOUNDARY
TREATMENT

In this chapter, we extend the one-dimensional IMPICE method to solve multidimensional
nonlinear systems of conservation laws and particularly consider the problem of multidimen-
sional compressible Euler equations of gas dynamics which plays an important role in mechanics
and physics. The multidimensional IMPICE method is a finite-volume solver on a regular
Cartesian meshes. We present numerical results obtained using IMPICE with first and second
order of spatial accuracy to the compressible flow problems governed by the system of FKuler
equations in multidimensional space.

The use of Cartesian grids in IMPICE has the advantage of ease of grid generation for simple
regular geometries, but has the disadvantage of being unable to deal with complex geometries.
In order to allow IMPICE solve complex geometries, we implement the method of cut cells to
handle the case when the computational boundary is not aligned with the cell edges. Small cut
cells on the embedded boundary cause time step restriction as the time step is proportional to
the size of a grid cell. We discuss in this chapter a new variation of the cell merging technique
used in IMPICE for merging cells to prevent time step restriction. This new variation of the cell
merging technique makes use of the magnitudes of surrounding face-centered fluxing velocities
and is described in Section 7.5.2.5.

The content of the chapter is organized as follows. Section 7.1 describes the spatial and
temporal discretization of the method. In Section 7.2, we discuss the dimensional-split Rie-
mann problem and its HLL approximate solver. In Section 7.3, a detailed description of the
multidimensional IMPICE method is given. In Section 7.4, we discuss how to increase the

order of accuracy in space to second order. The implementation of boundary conditions is

111

described in Section 7.5. For boundary conditions, we discuss the implementation of the Euler
Characteristic Boundary Condition and the embedded boundary technique. In Section 7.6, we
present the numerical results to a suite of test problems for the Euler equations which includes
the widely used double Mach reflection problem for testing the implementation of embedded
boundary. In Section 7.7, we assess the accuracy of the embedded boundary implementation
by investigating the convergent rate of the numerical solutions to the advection problem on a

bounded domain. Conclusions are drawn in Section 7.8.

7.1 Spatial Discretization, CFL Condition
and Adaptive Time Step

7.1.1 Spatial Discretization and Notations

We consider a Cartesian mesh in the computational domain Q = [a1,b1] X [ag,be] X ... X
[ag, bg] C R? in which a uniform spatial mesh divides the computational domain into Nj x
Ny X ... X Ny equal cells where N; is the number of cells in x;-dimension. The cell width in the
it"-dimension is then Ax; = %

In each cell j, the state variables are located at the centroid, x;, of the control volume,
Vj, and represent the cell average values. The variables which represent the average values of
the cell j at time ¢, consist of the cell-centered density p7, the cell-centered velocity u?, the
cell-centered total energy per unit mass L7, the cell-centered pressure p7, and the speed of
sound ¢7. The time integration method in the ICE method calculates the cell average values
at discrete time levels t1, to, t3, ..., ty from the initial cell average values at t9 = 0. The
cell average values at next time step are obtained from evaluating the changes in cell mass,
momentum, and energy via cell boundaries.

The cell boundaries are usually referred to as faces and the variables that are associated with
faces are referred to as face-centered variables. While the subscript j is used with cell-centered

variables, the subscript j + % is used in connection with face-centered variables.

7.1.2 CFL Condition and Adaptive Time Step
For the multidimensional system of Euler equations, the time step At is normally chosen to

satisfy the condition:

d .
At = Cepy % min (Az; > , (7.1)

n,t
Srriaac

where C.f; is a Courant or CFL coefficient satisfying 0 < C.5; < 1 and Sﬁlfw is the largest wave

speed present in the domain at time ¢, in x;-dimension. A reliable estimate for the largest wave

112

speed Sﬁnéx has been known to be a critical part of maintaining the method stability. A simple

choice of Sjyaz is given by:

St = ma (| (i)} +). (7.2)
In the IMPICE method for the one-dimensional sytem of Euler equations in Chapter 6, the
method which was proposed by Kwatra et al. [72] for alleviating the stringent CFL condition
imposed by the sound speed is used to determine the maximum speed. Though the method by
Kwatra et al. [72] is said to be well suited to semi-implicit solvers where only the advection
step is the implicit part, it appears not to be a good choice for the IMPICE method when it is
used for determining the time steps for some additional test cases to the test cases in Chapter
6 where instabilities develop for even small CFL numbers. For this reason, Equation (7.2) is
used to determine the maximum wave speeds in the IMPICE method for the multidimensional

system of Euler equations.

7.2 The HLL Solver for z;-split
Riemann Problem

The system of Euler equations in (3.1)—(3.3) can be written in the differential form as follows:

%U(x, t) + Z ;%Fi(U(x, t)) =0, (7.3)

where U is the vector of conserved variables. Consider the special Initial Value Problem (IVP)
for the above system in which the initial data consist of two constant states separated by the

coordinate plane in the zy-direction. The IVP is given by:

0
Ui+ o —Fi(Ux,1) = 0,

ok . (7.4)
U(X 0) . U if (.Z‘k < 0),
' B Ug if (:Ck > 0).

The solution to the above IVP problem (also known as the zj-split Riemann problem) is
extremely complicated. To many numerical methods in which the solution to the Riemann
problem is involved in some parts of the numerical procedure, the approximate solution of the
Riemann problem is often used. As mentioned in Toro [120], the approximate Riemann solvers
resulting from the combination of the HLL (Harten, Lax, and van Leer) approach in [53] and

several different wave speed estimates — such as the estimates by Davis [28], Einfeldt [33], and

113

Roe [103] — form the bases of efficient and robust approximate Godunov-type methods. The HLL
Riemann solver using the wave speed estimate by Davis [28] is simple, and it is also used in the
one-dimensional IMPICE method for compressible flow problems. This approximate Riemann
solver is also used in the multidimensional IMPICE method with the method description in

Section 7.3. The HLL Riemann solver [53] for the xj-split Riemann problem is given by:

U, it (zr/t <ar),
— F —F
Ulon/t UL Up) = 4 208= 08 HEOZHO i oy <anfi < an), (79
UR if (angk/t),

where ap and ay are wave speeds. In Davis [28], the wave speeds are estimated as follows:

ar = (ug), —cr, ar= (ur)p+ cr, (7.6)

where cr,, (uy); respectively are the wave speed and velocity in xj-direction obtained from Uy,
while the xj-directional velocity (uy)p, and wave speed cg are obtained from Ukg.

For the case when two constant states Uy, and Up are separated by a plane that is not one
of the coordinate planes, we first need to rotate the coordinates so that the separating plane
becomes a coordinate plane. We then solve the split Riemann problem in the new coordinate.
Let two constant states Uy, and Up be separated by a plane whose normal vector is n which
points from Ur, to Ug. Furthermore, let R = (7,,;) be the rotation matrix such that n, = Rn
where ny, is the normal vector in the positive direction of the coordinate plane z = 0. With
this rotation matrix, we obtain a new coordinate system (&,¢) from the original coordinate

system (x,t). The &-split Riemann problem in new coordinate is then given by:

ﬂt + %Fk(ﬁ(g,t)) = 0’
) B Up if (& <0), (77
U(¢,0) - { Ugr if (& > 0),

where U = [p, pRu, pE] and:

d

i=1

From solving the &g-split Riemann problem in (&,) coordinates using the HLL Riemann solver,

we obtain the approximate Riemann solution ﬂ({k /t; U, U r). The solution to the problem of

114

two constant states that are separated by the plane whose normal vector is n is then given by:
U(Ik/t;UL,UR) :Rflfj(gk/t;ﬁL,ﬂR). (79)

The use of the above solver in the IMPICE method for multidimensional compressible flow

problems is discussed in detail in Section 7.3.

7.3 Method Description
Assume that the cell-centered state variables are available at time t¢,, the following steps

are used to obtain the cell-centered state variables at t,+1 = t, + At:

7.3.1 The Primary Phase

The exchanges of mass, momentum, and energy among cells at the cell surfaces are ap-
proximated based on the rates of volume fluxes at cell boundaries. So it is important to
determine the face-centered fluxing velocity for all the faces. The face-centered fluxing velocity
for the multidimensional IMPICE method is determined using a similar approach for the
one-dimensional IMPICE method. In this approach, the Riemann problem is constructed using
the face-centered extrapolated values of the left and right cell-centered data.

Consider evaluating the face-centered fluxing velocity of the face in xy-direction that sepa-
rates the cells located at x; and x;41. This face’s center is located at x 4l and its face-centered
fluxing velocity is denoted as u;‘.Jr 1 Let cell j — 1 be the left cell of j and cell j+ 2 be the right
cell of j+1 in xg-direction, in order to apply the limiting process using higher order polynomial

1 are presented

interpolation of Kim and Kim [71] the left and right extrapolated values at x; 41

in different forms from (6.44) and (6.45) as follows:

n(L n n(L n n

Wji%) =W +0.5¢ (rj,j_ﬁ) (W2 —Wn_)), (7.10)
n(R n n(R n n

Wji%) =W, —0.5¢ (ﬁ;) (W2 o — W2), (7.11)

where:

rn(L) — ;L+1 B W;L I'n(R) — W.?+1 — W? (712)
T WIS WIS T W, Wi

and ¢ is a limiting function which limits the local gradient of primitive variables to obtain
monotonic condition. Note that all vector divisions and multiplications in this section are

the component-wise operations. In order to control oscillations near shock discontinuity in

115

multidimensional space, Kim and Kim [71] developed the multidimensional limiting process
(MLP) which combines the multidimensional limiting function with a higher order polynomial
interpolation. A family of interpolation schemes with different interpolation orders is used
in MLP to control oscillations. We will use the MLP scheme with third order interpolation
(MLP3) to limit the local gradient. In MLP3, the left and right extrapolated values in (7.10)

and (7.11) are given in different forms as follows:

n(L n n n(L n n
ijr%) =W +0.5¢ <rj+é(L), ajié)> (W2 — W), (7.13)
n(R n n n(R n n
Wji%) = W7, —0.5¢ <rj+%(R), ajiﬁ) (W2y = W), (7.14)
; 1+42r
where ¢(r,) = max(0, min(ar, a, T))’ the values of r?+l(L) and r?+;(R) are defined
2 2

in (7.12); and the values of a?J(rLl) and a?f? are summarized as follows:
2 2

i tanb*
Qmax(l,r?f%)) (1 + maz(0, i?‘(%l>
TL(L) Jit+3s
o0 _ , 7.15
j+3 g 1+ tan@f (719)
i tanf*
2max(1, r?fﬁ)) <1 + maz(0, :,::LJ))
nE) _ g ’ i+3 (7.16)
i+ 1+ tan@fﬂ 7

where g(x) = maxz(1, min(2,x)) and the calculation of tan&éC is dependent on the direction xy
which is defined as follows. Let AW;‘-” = (W} — Wj}_,) where j — 1 and j + 1 are left and

right cell of j in xg-direction, tan@é-g is then given by:

AWl W,
After the face-centered extrapolated values of primitive variables, W:iL;) and W;Lfﬁ), have been
2 2

obtained using (7.13) and (7.14), the left and right extrapolated conserved variables Uﬁfi) and
2
UT.LJ(FI? are also obtained. Consider the zj-split Generalized Riemann Problem (GRP) in which

2
two constant states are separated by the face centered at X, 1 as given:
2

116

0
Ui+ —Fi(U(x,t)) = 0,
oxy, o
" i 4 . 7.18
Ut t) U e < (g, (7.18)
o T U gy s (x0)
j-‘r% k J+s ks

As usual, the exact solution of the above GRP is potentially complicated, but an approximate
solution may serve the purpose of evaluating the face-centered fluxing velocity. The approximate
solution of the above GRP is obtained by solving the conventional Riemann Problem with
piecewise constant data in the new coordinate (£, 7) where £ = x — X1 and 7 =t — t, given

by:

Uit 5 FUET) = 0
U;?fj if (6, <0), - (7.19)
ve0 R LGy
j+% k 5

The face-centered conserved variables at t,,, U;l L1, are defined as the value at the origin of new
2
n(R)

coordinate immediately after the interaction of the piece-wise contant data U;Lfi) and Uj+ v
2 2

The value at the origin of the new coordinate (£, 7) is defined as:

U(0,0) = lim U(0,7). (7.20)

T—0F

The HLL approximate Riemann solver discussed in Section 7.2 is used to solve the problem

(7.19) and estimate the values of the conserved variables at the face-center at t,, U;L 1 and:
2
n _ rn(L) n(R)
Uj+% _U<0’Uj+;’Uj+§> . (7.21)

Once U?+ , is approximated using (7.21), the vector of face-centered primitive variables at
2

tn, W? L1 is also known. The face-centered primitive variables used later on in this method
2
n

include the face-centered density, ,0;7 L1 the face-centered velocity, u, and the face-centered
2 2

n
pressure . .
) p] %

The face-centered approximate velocity at ¢, , 1, ﬁ;f 1, is calculated using an explicit Euler
2 3

+
step in the Lagrangian frame in (3.12) which is given by:

(7.22)

117

where Vp;b 1 is the numerical gradient of pressure at the face center which is approximated
using central differences. Figure 7.1 illustrates the point stencil being used for calculating
the face-centered pressure gradient. In this calculation, the i-component of gradient vector
is calculated using the cell-centered pressure of left and right cells and otherwise using the
face-centered pressure of left and right faces. Note that the face-centered pressure at t,, is
obtained from numerically solving the GRP as discussed above. Since the pressure value at the
points in the point stencil for calculating face-centered pressure gradient is at t,, the calculated

face-centered fluxing velocity in (7.22) is denoted as approximate fluxing velocity, a* In

J+3°
Cell-centered ICE by Kashiwa et al. [68], the face-centered fluxing velocity u; 41 is calculated
2
using a semi-implicit scheme of Equation (3.12) which is almost the same as the scheme in
(7.22) except for the pressure gradient is approximated using the pressure values at ¢, 41, and
2

so their scheme is given as follows:

1

+7

Vp' 2

At j+l

* _.n N 2
]+§

In order to estimate the pressure gradient in the above scheme, we need to determine the
pressure values at £, | 1 at the points in the stencil used to calculate numerical pressure gradient.
2

In other words, we need to determine the pressure at ¢, 41 for all face centers and cell centers.
2
1
The cell-centered pressure at ¢, 1, p?+2, is estimated using an explicit Euler step applied to
2

Equation (3.13), that is:

n—&—l At n
p; P =pj— -5 (CQp)j V-uj, (7.24)
*.n
|pj+1
|
ia
- -
PR Pl Pt
™2 2 2
¢n
P

Figure 7.1. Point stencil for calculating face-centered pressure gradient Vp;‘ e
2

118

where V - u} is numerical velocity divergence at cell center which is approximated using the

limited cell-centered velocity gradient, Vu}. The face-centered pressure is then calculated by

a density weighted average:

n+ i nti
pn+% = p?pj+12 + p;l"rlpj ’ (725)
7+ i+ P

The face-centered and cell-centered pressures calculated in (7.24) and (7.25) are used in the

1
calculations of Vp?j:f and then uj’+ , using Equation (7.23). As mentioned above, the super-
2 2
1

script * is used to denote the face-centered variable at ¢ the face-centered pressure p?:f is
2

n—l—%’

*
also denoted as P, L

7.3.2 The Lagrangian Phase
If we neglect the convective terms, the changes in cell-centered mass, momentum and
energy are governed by Equations (3.21)—(3.24). The volume integrals on the right side of
these equations are evaluated using the divergence theorem. Thus the changes in cell mass,

momentum, and energy along a path moving with fluid velocity u are given by:

(V)5 = (o)}, (7.26)

(puV)f = (puV)? — At Y ppSiny, (7.27)
ke]ﬂ%

(pEV); = (pEV)] —At > piSiny - uj, (7.28)
k€fj+%

where I i+l is the set of indices of faces which form the boundary of cell 7, Sy is the area of face
2
k, ny, is the face’s outward surface normal, and VjL is the new cell volume which is determined

using Equation (3.21), that is:

VE=vr 4+ At Z Spny - uj . (7.29)
k61j+%

The new cell volume, VjL , is substituted into Equations (7.26) —(7.28) to determine the cell

density, p]L ; the cell velocity, uJL; and the cell total energy per unit mass, EJL .

7.3.3 The Eulerian Phase
In this phase, we will take into account the convective terms which were neglected during

the Lagrangian phase. The changes in solution values due to the advection of mass, momentum

119

and energy over the step [t,, ty+1] through the surrounding faces are evaluated. These changes
are governed by Equations (3.25)—(3.27). In order to approximate the integrals on the right
side of these equations, beside the rate of volume flux between the cells being determined in
the Primary Phase, we need to determine the advected quantities per unit volume at the faces.
If we assume that we are evaluating the advected quantities between the cells located at x; and
X;+1, the advected quantities include the face-centered advected density, (p)?+ L specific linear

momentum, <pu>?+%, and specific total energy, (pE>;L+%, e.g.,

" 1 [t 1 g
(@71 = 7 /t = /S s (7.30)

1
Jt3 Yol

These quantities are determined using the following equation:

L : *
(@), = 4j if (nj+% uj+§> >0, (7.31)
ak qu+1 otherwise,

where ¢ = p,pu, or pF, and n;, 1 is the surface normal of cell j, and qu is determined using
2
Equations (7.26)—(7.29). The changes in mass, momentum and energy due to the advection are

then:

(V)i = (V) = At Y Sk (g up) (o)F, (7.32)
k‘EIj_'_%

(paV)iHt = (pulV)f — At Z Sk (ng - ug) (pu)y, (7.33)
k61j+%

(PEV)IT = (pEV)Y = At > Si(ng - uj) (pE)}. (7.34)
k€lj+%

7.3.4 State Variables Update Phase

We update cell-centered pressure, p}”l using the equation of state (3.5).

7.4 High Order Extensions
In order to achieve a high order extension in space, the higher-order advection method of
Van Leer is used. The higher-order advection scheme is based on a higher-order approximation
of the advected quantities in (7.30). The advection equations of conserved variables in the

Eulerian phase in Section 7.3 are given by:

120

dp B
5 TV () =0, (7.35)
85: +V (pueu) =0, (7.36)
agitE +V.(pEu) =0. (7.37)

In order to determine g(x,?) with x € ;.1 , we will use Equations (7.35)(7.37) and the
2
constructed values, W7 (x,t), of primitive variables in the control volume V; X [t,,, t;+1]. Within

this control volume, the constructed values, W7 (x,), are obtained by using Taylor series:

Wi(x,t) = W} + VW (x —x;) + (t — tp) (?f) + O(Az?, At?). (7.38)

J

In order to control oscillations, VW? in the above equation is limited using limiter functions.
There are many choices to limit the values of VWY, but we choose to limit VW7 with
dimensional splitting. To limit the gradient of W7 in z;-dimension, we apply the minmod

limiter as follows:

(8W>n:minmod(0W?_ i1 Win = Wi, 0 1 = Wy

0x; Ax ’ 2Ax ’ Ax) (7.39)

J
where j — 1 and j + 1 are indices of the left and right cells in x;-direction. The multivariable
minmod limiter in (7.39) is defined by Equation (6.80).

The extrapolated values at cell boundaries obtained by using the constructed values, W;L(x7 t),

where:

W (x,t) = W7~ VW (x; — x) + (t — t,) (LVtV);? +O(Az?, At?), x € S;_1, (7.40)

Wi(x,t) = W7+ VW] (x —x;)+ (t —tn) (aafvy)? + O(Az? At?), x € Sj+%. (7.41)

N

Therefore, there are two existing extrapolated values at the cell boundary at S i+l for the time
2
interval [t,,t+1]. These values are denoted as W7 (x,t) and W7, ,(x,t) where x € S, 1 and
one may be chosen for the face-centered value based on the face-centered fluxing velocity at
this cell boundary. The value of the vector of primitive variables at face-center x € S i+l s
2

determined using:

W2 (x,6) if (nj+%-u;+%<0)

W(x,t) =
Wi (x,t) otherwise,

(7.42)

121

where n;, 1 is the outward normal of surface S i+l in cell j. Now, as the extrapolated primitive
2 2
variables at the cell boundary at Sj 41 are readily available, we will show how to obtain
2
the vector of advected quantities in (7.30). We derive the advected quantities for the case

<nj+% ~uj+l> > 0. The advected quantities for the case (nj_% -uj+%> < 0 are derived

2

similarly. The vector of advected quantities (U);, 1 includes (p); 1, (pu);, 1 and (pE); 1
2 2 2

2

Equations (7.35)—(7.37) are rewritten as follows:

ap
ou
oOF

Equations (7.41) and (7.43)—(7.45) are used to derive the mass, momentum, and energy advected
quantities in Equation (7.30); for the case of (nH; . u;k.+1> > 0, we have:
2 2

1 n+1
iy = At/

S /ml / + Vol ()+ (t—t,))" dSdt + O(Az?, At?)
- At o pj VP X =% “\at), o

2

p(x,t)dSdt

" n At (9p\"
= P ‘|‘ij (Xj—i-% —Xj) + > (615) A +O(A$2,At2)
J

At
= P+ VP (X1 —x5) = o (Vi i + Vo uf) + O(Ax?, AF?),
Let I‘? =Xj 1= Xj— AQtu;L, we have:

Let rj(x) = x — x;, we have:

122

pu(x,t) = (,0? + Vi ri(x) + (t — tn) @f)é)
)

« (u;-l -V 1 (x) + (t—) <

T n 8
(pj + V6 1) + (= ta) (af

0
)
n (Vp? rj(x) + (t = tn) <g§>n>

+O(Az?, At?).

The fluxed momentum at the face-center is then given by:

1 tn+1
g A A
tn Sj+%

()0 + AV 4 (V) (e, y =) (V)

At_ ou\" A3 fou\" [Ou\" 9 .9
+?Vuj (Xj—i-% —Xj) ((%) + 3 ((%) ((%) + O(Ax*, At?).

J J J

This gives us the approximation:

(pu); 1 = (p); 10} + p?+%Vu?r? + O(AzAt) + O(Az?, At?). (7.47)

With a similar derivation, we also have:
(PE)j 1 = (p)j 1 B + 0 A VEJT] + O(AzAl) + O(Az?, At?). (7.48)

We thus obtain second-order accuracy in space for problems with smooth true solution if C.y;
remains contant. Equations (7.46), (7.47), and (7.48) are used to calculate the face-centered
fluxed quantities for the time step [t,,t,+1] when the face-centered fluxing velocity in the
direction of outward surface normal , n, 1u’

I3 g+
can be easily derived for the case when the fluxing velocity is less than 0.

1, is greater than 0. A set of similar equations
2

7.5 Boundary Conditions
It is well-known that a good implementation of boundary conditions is important to ensure
the stability of numerical methods whereas a not-well-chosen boundary condition might ad-

versely affect the accuracy and stability of the numerical solutions. There are several approaches

123

but the method of characteristic boundary conditions is often used; see [78] and references
within. In this section, we discuss the method of characteristic boundary conditions and the

method of cut cells to the multidimensional IMPICE method.

7.5.1 The Euler Characteristic Boundary
Condition Implementation

The implementation of the Euler Characteristic Boundary Condition (ECBC) discussed in
Section 3.3.2 involves the approximation of {L; : j=1,...,(d+2)} crossing the boundary.
These wave amplitudes {L;} at the boundary in z;-direction might be approximated using the
characteristic analysis of the xz;-direction governing equations. The spatial derivatives in x;-
direction in Equations (3.56)-(3.58) are approximated based on the imposed physical conditions.
The approximation of the spatial derivatives in each wave amplitude is based on the sign
of the corresponding characteristic velocity; the corresponding characteristic velocity of wave
amplitude L; is the leading term in its description as shown in Equations (3.56)-(3.58). As
mentioned in [78], the one-side difference method of the points inside the computational domain
is used to estimate the outward wave amplitudes, but additional physical considerations must
be made for the estimation of inward wave amplitudes. With the definitions of {L;} in (3.56)—
(3.58), the following Local One Dimensional Inviscid (LODI) system of primitive variables is

obtained from Equations (3.53)—(3.55) in which the transverse terms are neglected:

ap 1 1
E = _072 LQ + §(L2+z + Ll)) (749)
0 1
87175) = —§(L2+i + L1), (7.50)
—Loyy if (k#1)
Oui - _ 1 . (7.51)
ot —— (Loyi — L1) otherwise,
2pc

for k = 1,...,d. According to [78], the neglect of the transverse terms might cause numerical
instabilities and numerical reflections if the derivative of the physical quantity in the transverse
terms is large. In [78], it showed how to include these terms in the LODI system to avoid
the problem of numerical reflections. The LODI relations in Equations (7.49)—(7.51) are
used to estimate the temporal evolution of the primitive variables at the boundaries. The
implementation of characteristic boundary condition for several situations of Navier-Stokes
equations is discussed in [99] with the detail of how to calculate the amplitudes of characteristic
waves {L;}. Among these situations, we are interested in the cases of subsonic inflow/outflow
and will discuss how to use the approach of characteristic boundary conditions for these cases

in the multidimensional IMPICE method. The calculation of L; for the cases of subsonic

124

inflow/outflow in [99] in the z;-direction is redescribed below.

For the case of subsonic outflow, only Lo, is an inward wave at left boundary and only
L; is an inward wave at right boundary in x;-direction. As mentioned in [78], the amplitudes
of the outward waves and estimated using interior points while the amplitudes of the inward
waves are addressed using additional physical considerations. The inward wave amplitudes for
the case of subsonic outflow are approximated as follows:

At the left boundary: Lovi=0ap(p—poo) -

At the right boundary: Ly =oap(p—po),
where «y, is the relaxation coefficient of the pressure term.

For the case of subsonic inflow, all waves at left boundary except L, and all waves at right
boundary except Loy; are inward waves. The inward wave amplitudes are approximated as
follows:

P_m

At the left boundary: Lo = oy, () o Lot =ay, (ur— (ug)) k=1,..,d
P

At the right boundary: L1 = o, (ui — (wi)r), L2 = oy (% — %),
Lotk = aw (ug — (ug)r) k #1,
where p;, u;, and p; are physical values imposed on left boundary; p,, u,, and p, are physical
values imposed on right boundary; «;,, and a,, are the relaxation coefficients of the terms
following these coefficients in the above calculations.

In the IMPICE method, the values {L;} are substituted into the LODI equations (7.49)-
(7.51). The LODI system is used to advance the velocities and pressures at the computational
boundary to obtain the face-centered fluxing velocities and pressures of the boundary faces
aligned with the computational boundary. We will discuss how to handle boundary faces which

are not aligned with the computational boundary next.

7.5.2 Embedded Boundary Method

A Cartesian grid approach is efficient for rectangular domain, but it is challenging to extend
the IMPICE approach to the case of an embedded boundary [55]. Embedded boundary grids
allow more automated grid generation procedures around complex objects, which is important
especially for multidimensional problems. Embedded boundaries not aligned with cell edges
cause cells that are cut. For these cut cells, there is a change in the cell boundary and the cell
center. Therefore, the cell center, which is the center of cell mass, need to be recalculated. The
change in cell boundary includes cut faces, like faces F; and Fb in Figure 7.2, and boundary
faces, like faces F3 and Fjy in Figure 7.2. The implementation of the Lagrangian and Fuler
phases in Section 7.3 suggests that the face-centered velocity and pressure for the cut faces and

the boundary faces need to be rederived. In this section, we will discuss how to calculate the

125

Figure 7.2. Boundary of cut cells.

cell-centered gradient of cut cells, the face-centered fluxing velocity and pressure of cut faces

and boundary faces.

7.5.2.1 Limited Cell-Centered Gradients

As is well known, numerical results obtained from methods with the assumption that the
cell variables are constant within each cell are very diffusive; in order to increase the order of
accuracy for these methods, the distribution of cell variables is assumed to be varying within the
cell and is determined using the gradients of cell variables. This requires a reconstruction of cell
variables’ gradients for each control volume. Typical methods for gradient reconstruction either
use a least squares or a Gauss-Green formula approach. An in-depth study of computational
complexity, discretization accuracy, and convergence rates of some of these methods is con-
ducted in Diskin and Thomas [29]. In [29], the cell-centered node-averaging(CC-NA) schemes
for gradient reconstruction show that a first-order accurate gradient reconstruction is sufficient
for use with a second-order discretization scheme. The CC-NA gradient of the variable ¢ in cell

j as defined in Dukowicz and Kodis [30] is:
(V) = — VqdV. (7.52)
4j) = V}NC NG gav, .
J

where VjN ¢ is the volume defined by the centroids of all the neighbors of the cell j as shown in
Figure 7.3. The numerical value of the above integral is evaluated using the divergence theorem

as given by:

1
(Vg;) = W j{gNC gnd.S, (7.53)
J

where S jv ¢

is the surface of volume VjN € and n is the outward surface normal of S jv ¢ Assume

that ¢ varies linearly along the surface, then the approximation in (7.53) is a first-order

126

Lo e 4

Figure 7.3. Cell-centered gradient of variables is approximated using values in the volume
defined by the centroids of the neighboring cells.

approximation of the cell-centered average gradient of ¢ in (7.52). In order to evaluate the
integral over the face in (7.53), we sum up the products of the face directed area and the
solution at the face. However, using the gradient estimate in (7.53) for construction of cell
variables’ distribution in the surrounding area of steep gradients might produce undershoots
and/or overshoots when compared to neighboring data; limiting the gradient value has been
used in the literature to prevent this. The multidimensional Van Leer limiting method uses the
limiting coefficient o;(0 < a; < 1) for each cell j such that the limited cell-centered gradient is

defined as:

Vg = a;(Vygj), (7.54)
and coefficient «; is determined as:
a; = min (1, amaz, min), (7.55)
where:
Qo = MAaX (0, M), (7.56)
Qjmax — 45
Qpnin = Max (0, M), (7.57)
qjmin — 4j

and Gmaz, ¢min are the maximum and minimum values of ¢ in the neighboring cells, and gjmqz,
@jmin are the maximum and minimum values of ¢ in cell j. The maximum and minimum values

of ¢ in cell j are the maximum and minimum values of ¢ at cell vertices. The value of ¢q at a cell

127

vertex, which is called the trial vertex value, is interpolated from the value at the cell center

using the cell-centered averaging gradient. The trial vertex value, q,, is then given as follows:

@ = qj + (V) (%o — %), (7.58)

where x,, is the position of the vertex. The above gradient limiting procedure is used to calculate
the limited cell-centered gradient of density and pressure. As mentioned in Vanderhayden and
Kashiwa [127], the gradient limiting procedure for mass-specific transport quantities such as
velocity, energy per unit mass, temperature, or species mass fraction needs to be implemented
differently in order to eliminate artificial extrema and preserving the monotone character of
the van Leer method. The formulation for the limited gradient of mass-specific transport
quantities that maintains the monotone character of the van Leer method is called compatible
by Vanderhayden and Kashiwa [127]. The compatible gradient limiting procedure proposed in
[127] is used to calculate the cell-centered gradient of velocity. In the procedure for calculating

the limited gradient of velocity of [127], the trial vertex value is:

(7.59)

After having determined the limited cell-centered gradient of density, pressure, and velocity

using the above procedure, the limited cell-centered gradient of total energy is given by:

1 E —Lu - uws
VE; = ij_(j— 305 uj)

Vpj +uj Vu. 7.60
(v — 1)p; p; A A (7.60)

The above equation is obtained from differentiating the equation of state in (3.5).

For the cells close to the embedded boundary, some neighboring cells are either cut or not
included in the computational domain. In order to approximate the cell-centered gradient of
cut cells, the divergence theorem is now applied to the volume defined by the centroids of the

neighbors of these cut cells and the embedded boundary as shown in Figure 7.4.

7.5.2.2 Face-centered Pressure Gradient
of Cut Faces

In order to estimate the pressure gradient at center F} of cut face, see Figure 7.2, in its
normal direction z;, we first find the projection points P, and P» of cell centers C; and Cs onto

the line that is perpendicular to the face and pass through the face center. The pressures at P;

128

O y/v
/
l//‘\/

Figure 7.4. Cell-centered gradient of cut cell.

and Py, p(P1) and p(P,), are obtained from interpolation the pressures at face centers C; and
C5 using the cell-centered limited gradient. The pressure gradient at F is then estimated by:
0 . _ p(P)—p(P)

; = .61
aﬂfip]+% hi+ hs (76)

The pressure gradient estimated with the above equation is used in the right side of Equation

(7.22) when calculating the face-centered velocity.

7.5.2.3 Face-centered Fluxing Velocity and Pressure
of Cut Faces

For the cut face located at x the left and right extrapolated values are defined as follows:

i+

n(L)

WIS W VWG, - x)) (7.62)
n(R n n
Wji%) = Wi + VWi (x5 1 = X541, (7.63)

where VW7 is the limited cell-centered gradient whose calculation is discussed in detail in
Section 7.5.2.1. The calculation of the face-centered fluxing velocity and pressure of the cut
face follows equations (7.21)—(7.25) with the face-centered pressure gradient of the cut face

calculated using (7.61).

7.5.2.4 Face-centered Fluxing Velocity and Pressure
of Boundary Faces

The face-centered fluxing velocity and pressure of boundary faces are used to evaluate
the changes in mass, momentum, and energy of cut cell that are described by Equations
(7.26)—(7.28). In IMPICE, the face-centered fluxing velocity and pressure are derived from

the numerical solution of the GRP problem constructed at the center of the face. A similar

129

approach is also used in the calculation of the face-centered fluxing velocity and pressure of
boundary faces. In this approach, in order to determine the fluxing velocity of the boundary
face of the cell whose center is located at x;, see Figure 7.5, we need to construct a GRP problem
at the center of the face, X1 Consider the Riemann problem where two constant states are

separated at X1 the left constant state U?J(FLR represents the value approaching x i+l of the
2 2

2

cut cell which is obtained using (7.62); the right constant state U;Lf?, however, can not be
2

determined using (7.63) since there is not a cell in the right side of the boundary. Alternatively,
the right constant state can be determined using reflected values of the conserved quantities

U;LiLl). As mentioned in Helzel et al. [55], the method of reflecting the conserved quantities
2
is a widely used procedure for obtaining boundary fluxes that simulate a reflecting boundary.

With the method of reflecting of conserved quantities, first we have to rotate the coordinate so

that the boundary plane becomes a coordinate plane in x;-direction. With this rotation, the

(L)

conserved quantities of left constant state becomes U’ The conserved quantities of right

J+2
constant states U n(1) is obtained from U _E_l) where:
i =, (7.64)
" = Aa"®) (7.65)
]+§ +2
(R) _ ~n(L)
p-i—% _pj-i-%’ (7-66)

and matrix A = (a,,;) with entries:

1 it m=1 && m#i,
amy = —1 if m=10 && m=1, (7.67)

0 otherwise.

In order to determine the fluxing velocity at x 41, We may consider the GRP problem either
2

in the original grid, the unrotated grid, or the rotated grid where the embedded boundary is

the coordinate plane in x;-direction. If the considered GRP problem is in the unrotated grid,

we need to obtain the boundary reflecting value U o 1) in the original grid which is denoted as
2

U;LJ(F}?, and solve the GRP problem with two separated constant states U?J(rﬁ) and U, (R)>

2 2 2

to evaluate the approximate fluxing velocity at the face-center X1 of the boundary face.
2

If the considered GRP problem is in the rotated grid, the approximate fluxing velocity at the

face-center x . 1 is evaluated using the approach of Section 7.2 to find the approximate solution

il
of the Riemann problem where the two constant states are separated by a plane that is not a

coordinate plane.

130

(b)

Figure 7.5. GRP at face centerer of boundary face. (a) unrotated grid and (b) rotated grid.

The approximate fluxing velocity is then time-advanced using the cell-centered limited
gradient to obtain the face-centered fluxing velocity of the boundary face. The face-centered
pressure of boundary face is obtained from interpolating the pressure of the cut cell using the

cell-centered limited gradient.

7.5.2.5 Higher Order Advection
For the cut cells, the limited gradient used in Equation (7.38) is obtained using the limited

cell-centered gradient calculated in Section 7.5.2.1 instead of using Equation (7.39).

7.5.2.6 Merge Very Small Cells

The grid cells near the embedded boundary may be orders of magnitude smaller than the
regular Cartesian grid cells; it is then necessary to use a very small time step to maintain
the stability of the method. In order to overcome this time step restriction, the cell merging
technique is often used. Many cell merging techniques have been discussed in the literature, see
Helzel et al. [55] and the references within. In these cell merging techniques, small irregular
cut cells are merged together with a neighboring regular grid cell with several different variants
mentioned in Helzel et al. [55]. In order to handle small cells in IMPICE, we use a new variation
of the cell merging technique that makes use of the magnitudes of surrounding face-centered
fluxing velocities. In this approach, we treat the small cells as independent cells and merge
their values with neighbor cells at the end of integration step. At the end of the integration
step, we determine if a cut cell is a small cell based on the ratio between the volume of the cut
cell and the size of a regular grid cell. Let V.., be the volume of regular cells and V,,; be the

volume of the cut cell; at each cut cell the following volume ratio is calculated:

(7.68)

131

A cut cell is then identified as a small cell using the following criteria:

re < a, (7.69)

for some constant a. The small cell is then merged with a cell selected from its neighbors. The
neighbor cell selected for merging is based on the face-centered fluxing velocity at the common
face. The small cell values are merged with the cell that has the greatest value of the fluxing
velocity at the common face. The values of the small cell and its selected merged cell at the
end of the time integration step are the volume averages of their combined values. If we assume

that we merge the small cell j with the merged neighbor cell, as denoted as M, then:

n+1 _n+1 n+1 _n+1
oo GV (7.70)
7 Mj ‘/']n+1+V17\14+1)
J

where ¢ = p, pu,pE. We will use this approach to overcome the small cell problem in the
IMPICE method. In IMPICE, when calculating the face-centered fluxing velocity, we use the
time-advanced scheme shown in Equation (7.23). The face-centered fluxing velocity which is
obtained from Equation (7.23), where time step At is “too large” for the size of the small cell
(the time step should be proportional to the size of a grid cell to maintain stabilities), is “too
large” that causes “too much” mass, momentum and energy of the small cell are fluxed to
the neighbor cell. When this happens, these conserved quantities in some small cells become
negative and the method becomes unstable. So the merging technique with the merging values
determined using Equation (7.70) helps to redistribute mass, momentum, and energy to prevent

the negative values of these quantities in small cells.

7.6 Numerical Results
We apply the multidimensional IMPICE method to a set of problems that are usually used
for testing numerical methods for the system of Euler equations. For the performance of the

embedded boundary method, the problem of shock reflection from a wedge is used.

7.6.1 Testing Problems
7.6.1.1 Modified Shock Tube Problem
In Chapter 6, we presented the numerical solutions of the one-dimensional IMPICE method
to several classical one-dimensional shock tube problems. In order to check for the correctness
of multidimensional setting of the method, we now present the numerical solution to the one-

dimensional shock tube problem with a multidimensional extension. The computational domain

132

of the chosen shock tube problem is x € [0.0,1.0] x [0.0,0.05] and ¢ € (0,7¢) and two constant
states are sparated by a discontinuity at x¢o = 0.3; the problem is governed by the system of

Euler equations in two-dimensional space with the given initial condition:

(1.0,0.75,0.0,1.0) if z9<0.3,

7.71
(0.125,0.0,0.0,0.1) if o > 0.3. (7.71)

(p,u1,u2,p)(x,0) = {

This is a modified version of the standard shock tube problem, proposed in Toro [120].

7.6.1.2 Two-dimensional Explosion Problem
The two-dimensional explosion test problem in a rectangular domain x € [—1.0,1.0] x
[—1.0,1.0] and ¢ € (0,T%). The problem is governed by the system of the two-dimensional Euler

equations with the given initial condition:

(1.0,0,0,1.0) if <04,

7.72
(0.125,0,0,0.1) if 7> 0.4, (7.72)

(p,u1,u2,p)(x,0) = {

2

where r? = 27 + 23. The detailed description of this problem can be found in Toro [120].

7.6.1.3 Two-dimensional Explosion Problem with
a Large Jump in Pressure

This problem has the same computational domain as the above two-dimensional explosion
problem, but it has a large jump in pressure which is over four orders of magnitude and thus
will produce a very strong outward traveling shock wave; see Toro [120] for problem details.

The initial condition is given by:

(10.0,0,0,0.0,1000) if r< 0.4,

7.73
(1.0,0,0,0.0,0.1) it r> 04, (7.73)

(p,u1,u2,p)(x,0) = {

where 72 = 23 + 3.

7.6.1.4 Shock Reflection from a Wedge Problem
We study the approximation of a Mach 10 moving shock wave reflected from a 30-degree
wedge which is originally proposed by Woodward and Colella in [138]. The computational

domain of this problem is x € [0,3] x [0,2]. The governing equations are the two-dimensional

133

Euler equations. The wedge is positioned at (0.5,0) with the initial condition in front and back

of the shock is given by the Rankine-Hugnoniot conditions as follows:

(8.0,8.25,0.0,116.5) if z, < 0.5,

7.74
(1.4,0.0,0.0,1.0) if 21 >0.5, (7.74)

(p;u1,u2,p)(x,0) = {
The solution to this problem exhibits very strong discontinuities, wall-bounded flows and

furthermore develops rich small-scale structures in time, which are difficult to resolve.

7.6.2 Numerical Results of the Multidimensional
IMPICE Method with First-order Advection

The above test problems are now used to test the implementation of the multidimensional
IMPICE method with first-order advection. We apply the transmissive boundary condition in
all directions for all of the above problems except for the problem of shock reflection from a
wedge. For the wedge problem, the exact solution is imposed for the segment [0,0.5] of the
bottom boundary and the top boundary, a reflective boundary condition is placed on the wedge,
the inflow boundary condition is applied on the left boundary, and the transmissive boundary
condition is used on the right boundary. The numerical results of the multidimensional IMPICE
method with first-order advection to these test problems are shown in Figures 7.6-7.9. The
embedded boundary method is implemented for the wedge problem. In these figures, the
numerical results of these problems (except for the shock reflection problem) are compared
against either their exact or “exact” solution. The “exact” solutions for the explosion problems
drawn in these figures are obtained from using the Random Choice Method (RCM) with the
parameters decribed in Toro [120]. In [120], these RCM solutions are also regarded as the
exact solutions since the RCM resolves discontinuities as true discontinuities and the errors are
only from the position of the waves. In Figure 7.6, the computed density p and velocity u; in
x1-direction are plotted at T, = 0.2; a cut along the z;-axis of these quantities is plotted against
the exact solution, which is the exact solution of the one-dimensional modified shock tube
problem. In this figure, the result is oscillation-free and the solution profile of the modified shock
tube problem in xj-direction is in good agreement with the numerical solution obtained using
the one-dimensional IMPICE method. The computed density p and pressure p in the numerical
solutions to the two-dimensional explosion problems are plotted and compared against the
“exact” values in the Figures 7.7-7.8; the numerical solutions in these figures approach the
“exact” solutions and are mostly free of oscillations. The computed density p in the numerical
solution to the wedge problem is depicted with forty-eight contour lines from 0.45 to 21.6 in
Figure 7.9. There are very small cells resulting from the discretization of the computational

domain of the wedge problem; therefore, the cells with volume that is smaller than 0.05 times of

134

(b)

N

7

i
i
R
A

it

2

%2

2o,
7

W

2
2

%

%

o
—~)
N 0
2 3
i) =3
c
[}
©
o 005
0 0.0
0 02 04 o6 o8 1 00
X
(c) — <+ — IMPICE (d) — <+ — IMPICE
1 "Exact" 14 "Exact"
1.2}
0.8}
1 b
=~ Q.
2 o8| S 0.8l
= >
2 2 6l
3 04r UEJ- .
0.4+t
0.2}
0.2 |
0 : : : : ' 0 : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

Figure 7.6. Modified shock tube problem. T, = 0.2. IMPICE with first-order advection on
N1 x Ny =200x10 grid, C.5; = 0.3. Two-dimensional distribution of (a)density and (b)velocity,
and a cut along the z1-axis of (c)density and (d)velocity.

the standard cell volume are merged with neighboring cells to overcome the time step restriction.
The analysis in Chapter 6 suggested that the IMPICE method — the analysis is done for the
case of one-dimensional space, but may be derived for the case of multidimensional space
— is first-order in space and time, so the numerical solutions are highly smeared at contact
discontinuities as they appear in these figures; for instance, the numerical solution to the shock

reflection from a wedge problem can not capture the detail in the close-up region in Figure 7.9.

7.6.3 Numerical Results of the Multidimensional
IMPICE Method with Second-order Advection

The second-order extension of the method in space in Section 7.4 increases the order of
accuracy in space using the second-order advection. In the second-order advection approach,

the advected quantities at cell intefaces are interpolated from the cell-centered data. The

135

density(p)
pressure(p)

AN
o l’i‘ﬂ‘t‘l‘t Ak

(c) (d)
1 1
% — & — IMPICE s, — & — IMPICE
08 08 N "Exact"
s o R
< 06 T 0.6
D 2
< 0.4 @ 0.4
© oy
02 02

o
o
o
(@]
—

o
o
o
(@]
—

Figure 7.7. Two-dimensional explosion problem. 7, = 0.25. IMPICE with first-order
advection on N1 x N = 100 x 100 grid, C.¢; = 0.3. Two-dimensional distribution of (a)density
and (b)pressure, and a cut along the xj-axis of (c¢)density and (d)pressure.

numerical results of this multidimensional IMPICE method with the discussed second-order
advection are shown in Figures 7.10-7.14. As seen in these figures, we obtain more accurate
numerical solutions when using the second-order advection. Especially for the wedge problem,
the numerical solution resolves the detail in the close-up region of Figure 7.13, and the contour
lines of the density p for the obtained result using the method described in this chapter is
similar to the contour line plot of the results from previous publications for this problem; for

example, see [55, 61, 100, 119].

136

density(p)
pressure(p)

(d)

A ——=—- IMPICE
4 "EXElCt"

1000

800

600

density(p)

400

pressure(p)

200

Figure 7.8. Two-dimensional explosion problem with large jump in pressure. 7, = 0.03.
IMPICE with first-order advection on N1 x Na = 300 x 300 grid, C.5; = 0.3. Two-dimensional
distribution of (a)density and (b)pressure, and a cut along the zj-axis of (c)density and
(d)pressure.

0.5r

Figure 7.9. Shock reflection from a wedge problem. 7T, = 0.2. IMPICE with first-order
advection on N1 x No = 900 x 600 grid, C.y; = 0.3. A cut cell is merged if the volume ratio, r,
is less than 0.05. Forty-eight density contour lines from 0.45 to 21.6. (b) is zoomed area of (a).

137

(b)

N
a

N

density(p)

© -+ —IMPICE @) — * ~IMPICE
1 "Exact" 157 "Exact"
0.8}
2 3 1
= 06f T
@ 7
G 04f @
° s 05¢
0.2t
0 0

0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

o

Figure 7.10. Modified shock tube problem. T, = 0.2. IMPICE with second-order advection
on Ny x Ny = 200 x 10 grid, Cey;y = 0.3. Two-dimensional distribution of (a)density and
(b)velocity, and a cut along the x;-axis of (c¢)density and (d)velocity.

7.7 Accuracy of the IMPICE Method for
Solving the Advection Equation on
an Embedded Boundary

Consider the following advection equation:
Zj + V- (pu) =0, (7.75)
where u(x,t) is given advection velocity and p(x,T¢) is solved from initial condition p(x,0).
The IMPICE method in Section 7.3 with the embedded boundary treatment in Section 7.5.2
is used to solve Equation (7.75) on the same computational domain for the wedge problem given
in Section 7.6.1.5. We consider a constant advection velocity given by u = [cos(f), sin(0)]”
where 6 is the angle between the wedge and the horizontal axis. In order to use the IMPICE
method for this advection problem, we assign a constant to the initial pressure on the compu-
tational domain. Two different initial conditions of p(x,0), one without a jump and one with

a jump in density, of the advection equation are considered as follows:

138

@ (b)

o
e
DI

i)
XN
0y
s
Ij{"’:’:‘:‘::'t A
RO
AN

I“
i
i
RN
i

f

density(p)
pressure(p)

(c) (d)
1 10
— + — IMPICE &ob — <+ — IMPICE
0.8 "Exact" 0.8 A "Exact"
—~ =
S 06} o 067
= o}
0 (2]
$ 04t $ 04t
© S
0.2 0.2}

o
o

0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

o

Figure 7.11. Two-dimensional explosion problem. T, = 0.25. IMPICE with second-order
advection on Ny x Ny = 100 x 100 grid, C.¢; = 0.3. Two-dimensional distribution of (a)density
and (b)pressure, and a cut along the x;j-axis of (c)density and (d)pressure.

7.7.1 Advection 1
The initial value p(x,0) is given by:

2.0 if 1 <a,
p(x,0) =< 2.0+ sin (10(z; —a)) if a<x <a+E, (7.76)
2.0 if a+ % <.

where a = 0.6.

7.7.2 Advection 2
The initial value p(x,0) is given by:

20 if x, <0.6,
p(x,0)=4¢ 10.0 if 0.6 <z < 1.2, (7.77)
2.0 if 1.2 <.

139

10 (@ 1000 (b)
LB
= s
8 5
| i
|
il .I!M
Y
(c)
10 1000 5
% ——+=—- IMPICE % -—+=—- IMPICE
8¢ "Exact" 800+ 1 "Exact"
_ a
2 61 T 600f
= =]
[} (7]
S 4f 2 400}
© 8
21 200}
0 -] 0 -
0 02 04 06 08 1 0 02 04 06 08 1
X X

Figure 7.12. Two-dimensional explosion problem with large jump in pressure. T¢,q = 0.03.
IMPICE with second-order advection on N1 x Ny = 300x 300 grid, C.y; = 0.3. Two-dimensional
distribution of (a)density and (b)pressure, and a cut along the xj-axis of (c)density and
(d)pressure.

7.7.3 Numerical Results
The numerical solutions to the advection problems in Sections 7.7.1 and 7.7.2 at T, = 0.5
using IMPICE with second-order advection are shown in Figure 7.15. The overall error norms
and the orders of accuracy for these problems with several different mesh sizes are summarized
in Table 7.1. For problem in Section 7.7.1 in which there is no jump in density, the orders of
accuracy for first-order and second-order advection are as expected. For problem in Section

7.7.2 in which there is a jump in density, there is a degeneration in accuracies.

7.8 Conclusions
We have presented a generalization of the one-dimensional IMPICE method for solving mul-
tidimensional compressible flow problems. In order to prevent the oscillations in the IMPICE’s
numerical solutions to the multidimensional system of Euler equations, it is necessary to apply
a multidimensional limiting process to limit the gradients. We tested the implementation of

the multidimensional IMPICE method on a suite of test problems for the system of Euler

1.8}

1.6

1.2

0.8

0.6

0.4

0.2

140

Figure 7.13. Shock reflection from a wedge problem. 7. = 0.2. IMPICE with second-order
advection on Ny x Ny = 900 x 600 grid, Cep; = 0.3. A cut cell is merged if the volume ratio,
Te, is less than 0.05. Sixty density contour lines from 0.4 to 23.5.

Table 7.1. Li-norms and the order of accuracy m of the overall errors in the numerical solutions
to the advection problem at T, = 0.5.

first-order second-order

Ny x Np | |lge’(Te)[, m | |lge’(Te)llL, m

60 x 40 4.28E-01 — 9.06E-02 —

Advection 1 | 120 x 80 2.74E-01 0.64 2.88E-02 1.65
240 x 160 1.64E-01 0.74 8.91E-03 1.69

480 x 320 9.55E-02 0.78 2.52E-03 1.82

60 x 40 2.69E-00 — 1.08E-00 —

Advection 2 | 120 x 80 1.90E-00 0.50 6.32E-01 0.77
240 x 160 1.33E-00 0.51 3.62E-01 0.80

480 x 320 9.32E-01 0.51 2.11E-01 0.78

equations in multidimensional space where the obtained numerical solutions have shown the

ability to capture shock waves. We implemented the method of cut cells to allow IMPICE

to solve problems in complex geometries. The implementation of the method of cut cells was

tested on the problem of shock reflection from a wedge. In this chapter, we have shown the

idea of using linear spatial distribution of cell variables for the multidimensional case makes it

possible to raise the order of accuracy in space.

141

Figure 7.14. Shock reflection from a wedge problem. T, = 0.2. IMPICE with second-order
advection on N1 x N = 900 x 600 grid, C.; = 0.3. This is a zoomed part of Figure 7.13 with
three hundred density contour lines to show the solution detail in the interested area.

Figure 7.15. Numerical solutions to the advection problem at 7, = 0.5 using IMPICE with
second-order advection on Ny x Ny = 240 x 160 grid, C.yy = 0.3: (a) Advection 1 and (b)
Advection 2.

CHAPTER 8

ADJOINT ERROR ESTIMATE FOR THE
IMPROVED PRODUCTION IMPLICIT
CONTINUOUS-FLUID EULERIAN
METHOD

We have discussed in Chapter 4 the importance of being able to estimate the errors in a
numerical solution and the increased use of adjoint-based error estimates in the error anal-
ysis of applications in Computational Fluid Dynamics (CFD). In this chapter, we propose a
discrete adjoint approach for estimating the overall error in the numerical solutions of the

one-dimensional IMPICE method.

8.1 Introduction
The IMPICE method discussed in Section 6.4 approximates the solution of the one-dimensional
Euler equations in the conservation law form (6.22) at the set of discrete points {z; : j =
1,..., N} which are the centers of the spatial mesh cells. The approximate solution at (z;,t,)
is the average value of cell j, U} = |p7, (pu)}, (pE)} !
Let:

Y = [Uy, U, U, ..., UN]T (8.1)
where:
U; = [pj, (pu)j, (pE);]" . (8.2)

Consider the following ODE system:

(8.3)

143

where:
G =[G1,G,Gs,...,Gy]" (8.4)
and G; (t,Y(t)) is defined at discrete points in time as follows:

ek 1 IMPICE IMPICE
Gyt Y") = 1= (FIMPIOP (1) — FIMPIOR(r,)) (8.5)
where F]I.f%PICE(tn) is given by Equation (6.58) and Y = [U}, U3, ..., U%]".

If we are about to numerically solve the system in (6.22) on the computational domain at
the discrete points {z; : j = 1,..., N} by solving the ODE system in Equation (8.3), then
the overall errors at these discrete points, as derived in Chapter 4, can be estimated using the

following equation:

ge(T.) ~ > AT(1) (1e (L1365, Y7) + (b1 — 1) TE(,)) + AT(O)ro, (8.6)
j=1

where a set of vector 1 is chosen such that all components of vector ge(T.) can be revealed;
such set of vector 1 is discussed in Section 4.2. In Equation (8.6), le (th; tj ?]) is the local
error from solving the ODE system (8.3) on [t;,t;41], TE(¢;) is the spatial truncation error,

and A is the solution to the following adjoint system:
(8.7)

where J(¢,Y) is the Jacobian of G (t,Y(t)) in Equation (8.3) with respect to Y evaluated at
Y.
In the overall error given by Equation (8.6), the contributions of the temporal error and

spatial error are given as follows:

1Tet(T,) ~ i AT (¢))le (tj+1; t, Yj) + AT(0)ro, (8.8)
j=1
Pes(T.) ~ S 151 — 1) (1) TE(E), (59

<.
Il
-

144

8.2 Adjoint Problem Formulation for the
One-dimensional IMPICE Method
The formulation of the adjoint problem for IMPICE involves the determination of J(¢,Y)
which is the Jacobian of G (¢,Y(t)) with respect to Y. For the purpose of error estimation,
the adjoint system in (8.7) is solved backward in time at t,,, = T¢, typ—1, ..., t1 = 0 using the

discrete values {J(t,,Y") : n = m,...,0}. From the definitions of G given by (8.4) and Y

given by (8.1), we have:

[0Gq -n, 0Gq ~n 0G1 ~n

87U1(t"’Y) 57U2(tn’Y) 8UN(t”’Y)
G 0Ga, ymy G2 yvy | 9% 3
J(tn,?n)za—Y(tn,?n): ou; ou, " o9UN T . (8.10)
OGN . wm. OGN, om OGN o
| o, Y g, YD) g e YD)

In Equation (8.5), we do not define the function G, but only provide the evaluated values of this

function at (tn, ?n> Based on the construction of the face-centered fluxes Fﬁ‘:ﬁp ICF for the
2

IMPICE method as described by Equation (8.5), we will approximate the value of an (tn, Y")
k

using the following equation:

aFI'MPICE 8FI{41PICE

8Gj ~n 1]Jrl =N J =N
t =— | —2—(tp, Y) — ——2—(tp, Y 8.11
8Uk< nY') Az oUy, (tn, X7) 0Uy (b, X)) (8:11)
OFIMPICE
where the approximation of %(tn, ?n) is discussed next.
b OFIMPICE
Based on Equation (6.58), we approximate %(tn’ Y") using the following equation:
k
_ 0 ;
" op*
aFJ{j\j[éPlCE e 8<U>?+% oy 3uj+% Pl < 1o
—o Y) M e W 0 |)
Wjis Ouji
2 % * 2
oUy, it3 +pj+% ouy |

where the partial derivative terms on the right side of Equation (8.12) will be described below.
These partial derivatives terms approximate the change in the corresponding quantities with

respect to the change in the cell-centered conserved variables. We will discuss the approxima-

U 1 8U;+1 817;;1
tions to the partial derivatives 8Ujk 2 50 2 and 90 2 in Equation (8.12) by following the
k k

steps in the IMPICE method next.

145

8.2.1 Partial Derivatives of Variables at Cell-centers

The vector of cell-centered variables W of cell j is given by:
W; = [pj.u5, By, pj]" - (8.13)

With U; defined by Equation (8.2), the partial derivatives of W; with respect to Uy where

k # j are zero vectors. For the case of k = j, the partial derivatives of W is given by:

oW, [0(py) 0(uj) O(E) d(pj)]"

= 8.14
oU; ou; 7 9u; ' ou; 7 9U; ’ ()
where the elements in the above vector are shown in the following equations:
Ip;
— = [1,0,0 8.15
8U] [D]7 ()
8uj _—u]' 1 :|
- = |—,—,0], 8.16
IU; L Pj P (510)
OF; [—FE; 1
i i o,] 7 (8.17)
Iy L pi P
8]) i [1)
ainj = 5 (v—=1) (u)", —(yv—=1Duj, (y=1)|. (8.18)
We introduce the partial derivative notation 3 Uj: which is defined as follows:
J
OW? OW
L= ——(t,). 8.19
oU; oU; (tn) ()

Wi
0U;
(8.16)(8.18) using the cell-centered numerical solution Y.

We approximate the partial derivatives at t, by evaluating the right side of Equations

8.2.2 Partial Derivatives of Limited Local Reconstructed
Variables at Face-centers

In the time integration of the IMPICE method, we first have the two states constructed at
each face-center. These constructed states are used in the calculation of the face-centered fluxing

velocity u;+ 1. In order to approximate the change in fluxing velocity with respect to the change
2

ou*

JT3

k

cell-centered conserved variables, , we first approximate the change in the constructed

ow"H) awn®

L1
it
Z and

50, lek In this dissertation,

states with respect to these variables, denoted as

146

there have been two different forms of the face-centered constructed states introduced by

Equations (6.44)—(6.45) and (7.10)—(7.11) based on the use of the different limiting processes.

ow") gwn
We will approximate 772 and ’"2 hased on the MLP limiting process, in which the
oUy oUy

reconstructed left and right states are given by Equations (7.10)—(7.11); a similar derivation
can be applied to the reconstructed states are given by Equations (6.44)—(6.45).
From Equation (7.10), we have:

n(L) n(L)
o = oo (44)) o vy - wi
—0.5¢ <r%€3;> ggf_‘ll (8.20)
= vse(s) " - w
+ [1 +0.5¢ G%@Q] ?If, (8.21)
n(L) n(L)
aa\zjf = 0.5¢, <rTVLf,L+)é> ZI;VJZE (WE—Wn), (8.22)

where:

n(L) _ Jj+1 J 8.23
WH_% VV';L o ;171 (.)

and ¢(r) is defined in [71] as follows:

1+ 2r

¢(r) = max(0, min(2, 2r, 3

))- (8.24)
In the same way as in previous chapters, the vector multiplications and divisions in the above
equations, and also for the rest of this chapter, are component-wise operations. The max and
min functions in Equation (8.24) and the derivative of function ¢ with respect to r in Equations
(8.20)—(8.22) are also performed on each component of the vector. The derivative of function

¢ with respect to r evaluated at a scalar quantity r is given by:

ép(r) = ; (8.25)

where ¢(r) = max(0, min(2, 2r, (14;27”)))‘ As shown in Figure 8.1, the limiting function ¢(r) in

147

1.5}

Figure 8.1. MLP3 limiting function ¢(r).

Equation (8.25)is not differentiable everywhere. In particular, function ¢(r) is not differentiable
at r =0, 0.25, and 2.5. However, ¢(r) is both left and right differentiable at these points. The
derivative of function ¢(r) with respect to r at these values is chosen either the left derivative

or the right derivative. Therefore, we have the following approximation:

0 it (r<o0 || 25<r),
de(r) = {2 if (0<r<0.25). (8.26)
2/3 if (0.25 <r < 2.5).

We tested the IMPICE method with several differentiable limiters; the resulting method was
nonmonotone when used with these tested differentiable limiters.

From Equation (8.23), we define the following partial derivatives:

8rn(L) n n n
Witd _ < i1~ W > OWj_y (8.27)
oU;_4 (W7 —W7_1)2) 0U; 1’
8rn(L) n n n
Wi < Wi — Wi, > OWj (8.28)
Ay (W} —WJ,)?) ou;’
n(L)
arwﬁ% _ <]_) 8W;~L+1 (8 29)
9U; 1 Wi Wi,) 00 |

With the partial derivatives defined in Equations (8.26)—(8.29), we now can approximate the

ow"")
partial derivatives 8I§+§ in Equations (8.20) — (8.22) for W?J(FL) defined by Equation (7.10).
k

aw" ")
N b A W"H defined by

1
2

A similar derivation can be applied to the approximation of 1

oUyg Itz

148

Equation (7.11). The partial derivatives of the constructed values of the speed of sound are

defined using the partial derivatives of other constructed variables as follows:

8p7,1(L) o "(L) 6177,L<R) o ”(R)
acr® L | Ty e | gnR) | ()T n(R) e
j+% 2 j+% OUy jJr% OUy j+% R j+% OUy j+% OUy

ou, 2 n(L) [n(L) n(L) ©U, 2 n(R) | n(R) n(R)
Pip i\ Pj41PjpL PivilPiti Pl

The above derivation is based on the equation of speed of sound in Equation (3.6). The

(8.30)

constructed face-centered values are then used to construct the generalized Riemann problem
(6.49) with the initial condition given by Equation (6.50). The partial derivatives of the HLL

Riemann solution at face-centers are approximated next.

8.2.3 Partial Derivatives of the HLL Riemann
Solution at Face-centers

The value of variables located at face-center is approximated using the HLL Riemann solver
described by Equation (6.51). From Equation (6.51), we will approximate the change in the

value of variables at face-center with respect to Y. In particular, the change in the face-

centered velocity at ¢, 2 and the face-centered density at ¢, T3 The changes in the
oUy oUy

face-centered density and velocity corresponding to three different cases of the HLL Riemann
solution are given as follows:

5. n(L)
Case (i): a1 > 0.
As shown in Equation (6.51), the face-centered velocity and density for this case are given

by:
u, =" pT.LJr% = pﬁ(Ll). (8.31)

ity ity N J+3

The partial derivatives of the face-centered velocity and density are then given by:

our . o5 e, 0p"H)
itz _ It ity _ _Its (8.32)

8Uk aUk ’ 8Uk aUk '

au”(L) 8pT.L(L1)

iyl
2

where and —22 are approximated using Equations (8.20) — (8.22).

oUy oUy

Case (ii): @1 < 0.

149

Similarly as in the previous case, the partial derivatives of the face-centered velocity and
density for this case are approximated using the partial derivatives of the right constructed
state as follows:

n n(R n n(R
ou” B 6uji%) c?,onrl 8pjfrl)

J+% 2 2
= = . 8.33
8Uk 8Uk ’ aUk aUkz ()

n(L) n(R)
it3 A
For this case, the face-centered velocity and density are defined using both the left and right

Case (ili): a <0<a

constructed states. From Equation (6.51), we have:

n _ (arpr — arpr) — (prRUR — pLUL) -
fivs T aRr —ar ’ (8.34)

n _ larprur —arprur) — (pr(ur)* + pr — pr(uL)* — pr)
(PU)]_;_% - - . (835)

In the above equations, the variables are written in abbreviated forms where py, and pp represent
p?j_Ll) and ,0?_5_1? respectively, and also the same for all other face-centered variables at t,. With
2 2

ar, and ap are defined by Equation (6.53), we can simplify Equation (8.34) as follows:

n (crpr +cLprL)

Py = 8.36
pj+% (a/R _ aL) ()
The face-centered velocity at t,, is obtained from Equations (8.34) and (8.35) as follows:
n
oo (pu)jJr% _ (crprugr +crLprur — pr +prL) (8.37)
1 = = . .
Ita Pl (crpr +crLpr)
2

As the partial derivatives with respect to Y of the terms on the right side of Equations (8.36)
and (8.37) are previously defined in Equations (8.20)—(8.22), and Equation (8.30), we can

determine the approximation to the partial derivatives of p;” 1 in Equation (8.36) and u?Jr , in
2 2

I f au?#
Equation (8.37). These partial derivatives are denoted as 2 and Z,
oUy oUy,

8.2.4 Partial Derivatives of Fluxing
Velocities at Face-centers

From Equation (6.30), we approximate the partial derivatives of the face-centered fluxing

velocity using the following equation:

150

n+% n+% n+% n+%
ou* | ou" L 9Pt oy Piii —Dj op". .
Jt3 _ Jt3 — 0 _ Jt+3 (&38)
6IJk 8IJk p?+l 8IJk n 2 8(Jk ’
2 ijr%
At . n+l. .
where 0 = ——. In Equation (8.38), p. 2 is the cell-centered pressure at ¢ . 1. Following
2Ax J nts3

the calculation of the explicit “pressure corrector” discussed in Section 6.4.2, the cell-centered
1

2

pressure p;-l is approximated using the following equation:

1

=t — o ()" (u;?+% —un) . (8.39)

From Equation (8.39) and the equation of state, we have:

1

nty oo nf,.n _ .n _n - n _.n
p; * =pj— o] <uj+% uj_%) = pj [1 oy (uﬁ% u]_%)} (8.40)
1
The partial derivatives of p}HZ with respect to Y are then approximated as follows:
n+y ou™ ou™
8pj i = opj [1 — o7y (u’? —u” 1>] — op; s R . (8.41)
oUy oUy Itz) J oUy oUy
Since the partial derivatives on the right side of the above equation are previously defined in
11
ap; °
Sections 8.2.1 and 8.2.3, the partial derivatives of the cell-centered pressure, aij , are also
k

now defined.

8.2.5 Partial Derivatives of Pressures at Face-centers
From Equation (6.9), the partial derivatives with respect to Y of the face-centered pressure

8p;f+ ; may be approximated using the following equation:
2

1 1
n+3 n+s

*
8pj+%: 1 pnaij L Op; Lt 9pff +pﬁ+%‘9p?+1
noom 79U +auy, Hau, 79Uy
Pt Pi

oUy

nt+i n+ i
(P?pﬁf + PP, 2) ap? 9,
- [J J] (8.42)

(P? + P?H) : OUr = OU

n+3 n+3
Op; * Opjyi Oy 0P

U, ' au, ' ou, ¢ au,

where are approximated using Equations (8.16) and (8.41).

151

8.2.6 Partial Derivatives of Advected
Quantities at Face-centers

For IMPICE with first-order advection as defined in Chapter 6, the advected quantities
<U);l 1 are defined by Equation (6.17). The partial derivatives of the advected quantities with
2

respect to Y are then approximated using the following equation:

I if (u;+1 <0> and (k=j+1)

oy 1
J+3
= ; * — 8.43
au, I if (uj+% > 0) and (k=j) (8.43)
0 otherwise,

where 0 is 3 x 3 zero matrix and I is 3 x 3 identity matrix.
For IMPICE with second-order advection discussed in Section 6.8, we need to approximate

the following partial derivatives:

— 3 (8.44)

where (p)?Jr%, <pu>?+%, and <p>;l+% are defined by Equations (6.76)—(6.78).

From Equation (6.76), we have:

o)y opn At (ou\"
Uy, Uy,

2 \ Oz

J

2 Bt NG 4
; U, 2 P U, (8.45)

2

(5:),
DY
At (Op ROU? At , Ox ;
ox

ox

ap\" u\"
Since (p) and () in Equation (8.45) are calculated using Equation (6.79), the partial
i .
derivatives with respect to Y of these terms are approximated using the following equation:

OW\"
———"1 = minmod(21, 22,23) = U, if minmod(z1, 22, 23) = 2;

50, ¢ (8.46)

otherwise

152

p)"!, 1
Equations (8.16), (8.17), and (8.46) are used to approximate the partial derivatives of 8Uj'+2
k
in Equation (8.45). From Equation (6.77), we have:
8<pu>?+% _un6</)>?+%) ouf N Az _ung ou ”8P7+%
ou, au, < Winsau, T2 T %72)\ax), v,
At 0 <gu> ou\" op" 1
n n v J u its
—— o~ — 8.47
9 i+ | T au, oz ; OU (8.47)

Note that all the partial derivative terms on the right side of Equation (8.47) have all been
derived in this section.

Similarly, we can derive the partial derivatives of <pE>;‘ 1 in Equation (6.78), as denoted
2

e, orrypies’ ©
as TQ We are now able to estimate # (tn,Y) in Equation (8.12) using
k k
a<U>;L+l au;+l ap;+l
the proposed approximations to the partial derivatives z, 2 and 2 in this
prop pproximati parti ivativ agk 90, 90, i i
G, ~n
section. Therefore, the approximation to partial derivatives U] (tn, Y) in Equation (8.11) is
k

also defined. This approximation completes the definition of J (tn,Yn) in Equation (8.10) and
therefore the definition of the adjoint problem (8.7).

8.3 Local Error and Truncation
Error Estimation

8.3.1 Local Error
The local ODE problem corresponding to the ODE system given by Equation (8.3) is as

follows:
Zn+1<t) = G(ta?n)v te [tnatn+1]7
- (8.48)
Zn+1(tn) =Y 5
where Y = [U}, U3, UL, ..., U%. |7, and G(t,Y") is defined by Equations (8.4) and (8.5).
From Equations (6.57) and (8.5), the time integration solution of the local problem in (8.48) is
given by:
Y =Y - AtG(HL Y. (8.49)

From Equations (8.48) and (8.49), the ODE local error is second-order in At. The local error can

be then estimated using Richardson’s extrapolation. The Richardson’s extrapolation method

153

for estimating the local error of order p on the single time step [ty, t,+1] includes the following

steps:

e Perform one step of the IMPICE method with stepsize At = t,,1 — ¢, to obtain the
solution Y”H at tpy1.
e Perform two consecutive steps of the IMPICE method with stepsize of % to obtain the
A n+1
solution Yn+ at tpy1.

. . v 1 . . .
e Estimate the local error for the local solution Y™ using the following equation:

~ n+1 B 2P <?n+1 N n+1>

le (tn+1;tn,§~(n> = Zua (b))~ Y = Y (8.50)

The above estimate of the local time integration error is used in the adjoint-based error

estimation of the one-dimensional IMPICE method discussed in Section 8.1.

8.3.2 Truncation Error

Richardson extrapolation has long been used to estimate the spatial truncation error in the
method of lines for PDEs. The method was used by many different authors, e.g., Berzins [13].
In this approach, the spatial truncation error is estimated based on the obtained numerical
solutions on coexisting different meshes. Assume that the system of Euler equations is also
solved on the “coarse” mesh defined at points {z; : j = 1,3,5...} and p is the order of the
spatial discretization. In order to distinguish the meshes, we use 2, to denote the “fine” mesh
and Qg to denote the “coarse” mesh. In Section 4.5.3.2, we summarized the steps to estimate
the spatial truncation error discussed in Berzins [13] for the method of lines with second-order
spatial discretization (p = 2).

For the case the spatial discretization is order of p in general, let Y% (#) and Y];I(t) be the
restriction of the numerical solution Y (¢) and the numerical derivative Yh(t) from the “fine”
mesh to the “coarse” mesh. The truncation error for the “coarse” mesh is then obtained by
evaluating the following equation as proposed in Berzins [13]:

9P

TEn(t) = 5, — |Yu() - Galt, UZ(t)ﬂ +

9p
2r —1

[étH(t) - émetff(t) (8.51)

The trunction error at the grid nodes that belong to both “fine” mesh and “coarse” mesh is

then given by:

(TEA ()i 1 = o [TBx (D) (8.52)

154

The truncation error at grid nodes that are in “fine” mesh but not in “coarse” mesh is then

obtained by extrapolating using the following equation:

TEA(D]i = = (TEx (8} + [TEa(0)]is1). (8.53)

= optl
The calculation given by Equation (8.51) could yield a better estimation of the spatial truncation
error if the time integration error ety (t) is available. For the spatial error-dominated problems,
we may simplify the estimation of the spatial truncation error as follows:
op

TEu(t) = 55— |Ya(t) - Gu(t. U (1)] . (8.54)

It is worth mentioning the observation of Debrabant and Lang [27] that, based on experiments,
even in the case when the time integration error was not small, using a time error estimate does

not yield a significantly better approximation of the spatial truncation error.

8.4 Numerical Results

8.4.1 Numerical Results of Adjoint-based Error
Estimate for the One-dimensional IMPICE
Method with First-order Advection

We applied the adjoint-based error approach discussed in Chapter 4 and this chapter to
estimate the temporal error, the spatial error, and the overall error in the numerical solutions
of the IMPICE method with first-order advection to the advection problems in Section 7.7 and
the test problems in Table 6.1 in Section 6.5. The overall error, the temporal error, and the
spatial are estimated using Equations (8.6), (8.8), and (8.9) respectively where the estimate of
the local error and the spatial truncation error in these equations are discussed in Section 8.3.
The spatial truncation error is assumed to be first-order. In Figures 8.2-8.8, the adjoint-based
estimate of the overall error in density of a particular numerical solution to each test problem
is compared against the true overall error. Figure 8.2 shows an accurate estimate of the overall
error in the region with smooth true solution. Figure 8.3 shows a less accurate estimate of
the overall error in the region with discontinuous true solution. It is known that the order of
spatial discretization decreases at discontinuities, but we did not consider this in the estimation
of the spatial truncation error. This is not an easy problem to address, but we will look into
the problem in future work. The same problem with estimating the error in the region with
discontinuous true solution for the numerical solutions of test problems P1-P5 is shown in
Figures 8.4-8.8. In Figure 8.4, we also included the error estimate for the specific momentum

and specific total energy to show how the adjoint-based error estimate works for these quantities.

155

p
0.4 — Exact ge (Te)

——o— Estimate gep(Te)

Error

Figure 8.2. The adjoint-based estimate of the overall error in density of a numerical solution to
test problem in Section 7.7.1 is compared against its true overall error. This numerical solution
is obtained using the IMPICE method with first-order advection, C.; = 0.2, and N = 300
(cells).

Exact gep(Te)

T —=o— Estimate gep(Te)

Error
o

Figure 8.3. The adjoint-based estimate of the overall error in density of a numerical solution to
test problem in Section 7.7.2 is compared against its true overall error. This numerical solution
is obtained using the IMPICE method with first-order advection, C.y; = 0.2, and N = 300
(cells).

156

Exact gep(Te)

(a) Errorinp

——o— Estimate gep (Te)

Error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X Exact gepu(Te)
(b) Errorin pu

——o— Estimate gepu(Te)

5
L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X Exact ge”(T)
(c) Error in pE N
. ——6— Estimate gepE(Te)
S
L

Figure 8.4. The adjoint-based estimate of the overall error in (a) density; (b) specific
momentum; and (c) specific total energy of a numerical solution to test problem P1 is compared
against the true overall error. This numerical solution is obtained using the IMPICE method
with first-order advection, C.5; = 0.2, and N = 200 (cells).

157

Exact gep(Te)

. —o—— Estimate gep(Te)

Error

Figure 8.5. The adjoint-based estimate of the overall error in density of a numerical solution to
test problem P2 is compared against its true overall error. This numerical solution is obtained
using the IMPICE method with first-order advection, Cry; = 0.2, and N = 200 (cells).

Exact gep(Te)

N

——o— Estimate gep(Te)

N

o

Error

|
N

|
S

o
o
—
o
N
o
w
o
~
o
a
o
o
o
~N
o
fo)
o
©
—

Figure 8.6. The adjoint-based estimate of the overall error in density of a numerical solution to
test problem P3 is compared against its true overall error. This numerical solution is obtained
using the IMPICE method with first-order advection, C.¢; = 0.2, and N = 200 (cells).

158

Exact gep(Te)

. —o— Estimate gep(Te)
0)

Error

Figure 8.7. The adjoint-based estimate of the overall error in density of a numerical solution to
test problem P4 is compared against its true overall error. This numerical solution is obtained
using the IMPICE method with first-order advection, Cry; = 0.2, and N = 200 (cells).

Exact geP(T
0.5 ge'(T)

Estimate gep(Te)

Error
o

_0.5 T I T I T I T I T I T I T I T I T I T I

Figure 8.8. The adjoint-based estimate of the overall error in density of a numerical solution to
test problem P5 is compared against its true overall error. This numerical solution is obtained
using the IMPICE method with first-order advection, C.f; = 0.2, and N = 300 (cells).

159

We show in Table 8.1 the error indices when estimating the time integration error, the
spatial error, and the overall error of the aforementioned tested problems. The results in Table
8.1 show that the error indices for the time integration error approach the value of one. The
results in this table also show that an acceptable estimate of the spatial error is provided for
all the tested problems. However, the error indices of the spatial error estimate for these tested
problems are not so close to one due to the existence of discontinuities in the solution of these

problems.

Table 8.1. Error indices eindez(et(Te)), eindex(et(Te)), and eindex(ge(Te)) of the estimated
adjoint-based global errors for numerical solutions to test problems discussed in Section 7.7 and

Section 6.5. The numerical solutions to these problems are obtained from the one-dimensional
IMPICE method with first-order advection and C.z; = 0.2.

cindex(etV(T,)) | eindex(esV(T.)) | eindex(geY(T,))

N p_pu pE | p pu pE | p pu pE
100 [1.03 1.03 1.03[0.68 0.68 068]0.76 0.76 0.76
Advectionl 200 1.03 1.03 1.03 | 0.87 0.87 0.87|0.85 0.85 0.85

300 1.02 1.02 1.02 096 096 0.96|0.96 0.96 0.96
400 1.02 102 1.02 101 1.01 1.01|1.01 1.01 1.01
100 1.02 1.02 102|070 070 0.70 | 0.7 0.77 0.77
Advection2 200 1.02 1.02 1.02]0.68 0.68 0.68]|0.75 0.75 0.75
300 1.02 1.02 1.02|0.67 0.67 0.67|0.74 074 0.74
400 1.02 1.02 1.02|0.67 0.67 0.67|0.74 0.74 0.74
100 092 091 0.88|0.68 0.83 0.87|0.68 0.87 0.86
P1 200 095 094 091|070 0.77 082|070 0.77 0.82
300 096 095 093|071 0.79 086 |0.71 0.78 0.86
400 096 096 096 |0.70 0.75 081|070 0.74 0.81
100 093 093 093080 098 1.02|081 097 1.01
P2 200 094 095 093|079 093 099|079 092 0.98
300 095 095 094|081 094 102|081 093 1.01
400 095 096 094|079 090 098 | 0.79 0.90 0.98
100 094 096 093|094 0.8 132|096 0.88 1.29
P3 200 096 097 094|077 0.73 1.08 |0.78 0.75 1.10
300 0.96 097 0.95|0.70 0.68 099|071 0.69 1.01
400 0.97 098 095|0.69 0.66 0.95|0.69 0.67 0.96
200 099 085 0.89|0.63 0.69 093 |0.63 0.68 0.93
P4 400 091 089 086 |0.65 0.73 1.02|0.68 0.76 1.02
600 0.89 087 0.85|0.65 0.72 094 | 0.67 0.75 0.95
800 0.90 090 0.84|0.66 0.75 098 | 0.68 0.77 0.98
100 0.90 089 0.87|0.65 0.70 0.77 | 0.64 0.68 0.76
P5 200 092 094 090 0.68 0.76 097 |0.68 0.76 0.97
300 094 094 092]0.68 0.73 094 |0.68 0.73 0.94
400 094 094 092|065 0.68 0.86 |0.65 0.67 0.86

160

8.4.2 Numerical Results of Adjoint-based Error
Estimate for the One-dimensional IMPICE
Method with Second-order Advection

We applied the adjoint-based error approach discussed in Chapter 4 and this chapter to
estimate the temporal error, the spatial error, and the overall error in the numerical solutions
of the IMPICE method with second-order advection to the advection problems in Section 7.7
and the test problems in Table 6.1 in Section 6.5. The overall error, the temporal error, and
the spatial are estimated using Equations (8.6), (8.8), and (8.9) respectively where the estimate
of the local error and the spatial truncation error in these equations are discussed in Section
8.3. The spatial truncation error is assumed to be second-order. Figure 8.9 shows an accurate
estimate of the overall error in the region with smooth true solution. Figure 8.10 shows a less
accurate estimate of the overall error in the region with discontinuous true solution.

We show the error indices of the estimates of the time integration error, the spatial error, and
the overall error in Table 8.2. This table shows an accurate estimate of the time integration
error when the error indices for the time integration error approach the value of one. The
error indices of the spatial error for the second-order advection method are further from one
compared to the error indices of the spatial error for the first-order advection method. As stated
in Section 8.4.1, there is a drop in the order of the spatial discretization at discontinuities. For

the first-order advection, the order of the spatial discretization drops from one to zero. For the

Exact gep (Te)

—o— Estimate gep(Te)

Error
o

-0.05

_0.1 T I T I T I T I T I T I T I T I T I T I

Figure 8.9. The adjoint-based estimate of the overall error in density of a numerical solution
to test problem in Section 7.7.1 is compared against its true overall error. This numerical
solution is obtained using the IMPICE method with second-order advection, C.p; = 0.2, and
N =300 (cells).

161

Exact ge? (Te)

——o— Estimate gep(Te)

Error

Figure 8.10. The adjoint-based estimate of the overall error in density of a numerical solution
to test problem in Section 7.7.2 is compared against its true overall error. This numerical
solution is obtained using the IMPICE method with second-order advection, C.y; = 0.2, and
N =300 (cells).

second-order advection, the order of the spatial discretization may drop from two to zero. This
results in an underestimation of the spatial truncation error in the region with discontinuous
true solution in the IMPICE method with second-order advection. This explains why the error
indices of the spatial error for the second-order advection method are further from one compared
to the error indices of the spatial error for the first-order advection method.

We also applied the adjoint-based error estimate to the numerical solution of the Shu and
Osher problem discussed in Section 6.5. We attempted to obtain the projected exact solution
for the Shu and Osher problem using the numerical solution and the estimated overall error
and compared to the “exact solution” as discussed in Section 6.5. We show this comparison in
Figure 8.11. In order to see the error estimate more clearly we show in Figure 8.12 a close-up
picture of Figure 8.11 for the region where the numerical solution has a significant error. As
shown in Figure 8.12; the adjoint-based error estimate discussed in this chapter has provided
a projected exact solution for the Shu and Osher problem which is very close to the “exact

solution”.

8.5 Summary
We have presented in this chapter a computable error estimate for the numerical solutions
of the system of Euler equations solved with the one-dimensional IMPICE method using the

discrete adjoint-based approach discussed in Chapter 4. In this discrete adjoint-based approach

162

Table 8.2. Error indices eindex(et(Te)), eindex(et(Te)), and eindex(ge(Te)) of the estimated
adjoint-based global errors for numerical solutions to test problems discussed in Section 7.7 and
Section 6.5. The numerical solutions to these problems are obtained from the one-dimensional
IMPICE method with second-order advection and C.z; = 0.2.

cindex(etV(T,)) | eindex(esU(T.)) | eindex(geP(T,))

N p_pu_ pE | p pu pE | p pu pE
100 1.01 1.01 1.00 [0.71 0.70 0.68]0.70 0.68 0.66
Advectionl 200 1.01 1.01 1.01|1.16 1.12 1.07|1.17 1.13 1.08

300 1.01 101 103|137 135 131|139 137 1.32
400 1.01 1.01 1.01 131 1.31 128|132 1.31 1.28
100 1.03 1.03 1.03 |0.53 0.53 0.52 | 0.57 0.56 0.56
Advection2 200 1.02 1.03 1.03 054 0.54 0.55]053 0.53 0.54
300 1.02 1.03 1.04 | 0.55 0.55 0.56 | 0.54 0.54 0.55
400 1.03 1.03 1.05|0.56 0.57 0.54 | 0.60 0.60 0.62
100 093 092 094|044 0.52 0.56 | 048 0.52 0.52
P1 200 096 094 095|043 050 048|047 0.50 0.52
300 096 095 096|045 0.54 0.55|0.50 0.55 0.58
400 097 096 096|043 0.53 048 | 049 0.52 0.53
100 0.89 092 092|048 0.53 0.57|0.51 0.53 0.57
P2 200 0.90 091 091|049 0.53 0.56 | 051 0.53 0.56
300 091 092 092|053 058 062|055 0.57 0.61
400 091 092 092|051 056 059|052 0.55 0.59
100 097 098 095099 124 1.18]1.02 1.27 1.12
P3 200 099 097 095|124 131 169|127 136 1.65
300 095 094 094|088 0.89 129|094 095 1.29
400 093 094 093|087 1.09 148|088 1.13 1.46
200 1.12 1.07 1.04 | 047 0.57 0.67 | 049 0.50 0.75
P4 400 1.25 1.45 1.35|0.57 0.67 0.80 | 0.58 0.62 0.93
600 1.32 147 152061 0.63 0.65]|0.64 0.58 0.76
800 1.30 1.50 1.51|0.64 0.74 0.84]0.66 0.69 0.97
100 0.87 089 090|045 0.47 051|043 045 0.50
P5 200 0.90 092 091|054 0.60 0.73|0.53 0.59 0.63
300 0.90 091 091 |0.57 058 0.59 |0.56 0.57 0.61
400 090 091 091052 051 058|052 051 0.61

for estimating the error for a numerical solution of a PDE problem, it is necessary to obtain
the adjoint problem of the spatial discretized problem, the local time integration error, and the
spatial truncation error. We have also shown in this chapter how to derive the adjoint problem
by following closely the steps in the IMPICE method as well as how to apply the method of
Richardson extrapolation to estimate the local time integration error and the spatial truncation
error.

We tested the proposed error estimate to a set of test problems with known exact solution

to assess the performance of the estimate method. The results have shown that the estimate

163

— © — IMPICE solution
— * — Projected Exact Solution
"Exact Solution"

Figure 8.11. The numerical solution for Shu and Osher test problem obtained from the
IMPICE method with second-order advection, N = 1600 (cells), and C,.f;=0.2; the “exact
solution” of Shu and Osher test problem as discussed in Section 6.5; the projected exact solution

obtained from adding the adjoint-based error estimate of the overall error to the numerical
solution.

5 — — © — IMPICE solution
4 — * — Projected Exact Solution
] "Exact Solution"

4.5 — i .;
- ® Q@
& "

4 ®

o 4 A
. 5 @
-) ®)
. o ¥ o
- ® & ""

3.5 :p u o)
. e 0
- -;/ =, Q
L J 21
- ® 9
-1 ‘,‘" 5?0
3 T T I T T T T I T T T T I T T T T I T T T T I T T T T I T T
0 0.5 1 1.5 2 2.5

Figure 8.12. A close-up picture of Figure 8.11 for the region where the numerical solution has
a significant error.

164

errors of the numerical solutions to the problems with smooth exact solutions are close to the
true errors. For the case when the exact solution is discontinuous, the estimate of the error at
the discontinuous region become less accurate due to the less accurate estimation of the spatial
truncation error in this region. The less accurate estimation of the spatial truncation error
at discontinuities results from the assumption that the order of the spatial discretization at
discontinuities is the same as the order of the spatial discretization on smooth regions. In fact,
the order of the spatial discretization at discontinuities is commonly less than its on smooth
regions. In future, we may look into determining the order of spatial discretization at each grid
point using numerical extrapolation to obtain a better estimate of the spatial truncation error
and therefore a better error estimate for the numerical solutions.

As shown in this chapter, in order to estimate the global error on the spatial domain
using the adjoint-based approach, we need to solve the adjoint system for every grid point on
the domain. As mentioned in [21], this is the limitation with the adjoint-based global error
estimation. However, the adjoint problem at each grid point can be solved independently; we
can therefore take advantage of the availability of parallel computing to overcome this mentioned

limitation.

CHAPTER 9

CONCLUSIONS AND FUTURE WORK

The Material Point Method (MPM) and the Implicit Coninuous-fluid Eulerian Method
(ICE) make possible the simulation of a wide range of engineering applications. MPM, ICE,
and the integrated combination of MPM and ICE (MPMICE) were implemented in the Uintah
Computational Framework (UCF) at the Center for the Simulation of Accidental Fires and
Explosions (C-SAFE) at the University of Utah to simulate accidental fires, explosions, and
other multiphysics computational problems. This dissertation has provided an in-depth analysis
and a possible improvement to some variation of MPM and ICE to better understand them.
In particular, we have made several contributions to the study of these methods. First, we
provide a study of various sources of time integration errors and spatial discretization errors
in a variation of MPM proposed for gas dynamics. Though the MPM in UCF designed for
solid dynamics, the analysis of this variation of MPM for gas dynamics in this dissertation is
described in a way that can be applied to other versions of MPM. Second, we proposed an
improvement to a version of ICE that is currently implemented in UCF. This improved version,
is referred to as the Improved Production Implicit Continuous-fluid Eulerian Method (IMPICE),
removes the discrepancies and eliminates the unphysical oscillations in the numerical solutions
to the one-dimensional system of Euler equations for compressible flow problems. Third, we
extended IMPICE to enable the solution of multidimensional compressible flow problems with
potentially more complex geometries than just those consisting of hexahedral elements. Finally,
we presented an adjoint-based approach to estimate errors in numerical solutions to partial
differential equations and particularly we applied this approach to estimate errors in numerical
solutions of IMPICE.

An error analysis for a variation of MPM proposed for gas dynamics is presented in Chapter
5. In order to maintain the stability of the method, we explored algorithms to ensure the
positivity of the method’s numerical approximations and prevent the creation of local extrema in
various quantities. We investigated the relationship between the numerical errors and numbers
of particles assigned to each cell. We analyzed errors in this numerical method including

the time integration errors and the space discretization errors. These various error sources are

166

introduced from projecting information from the particles onto the grid, mapping the movement
at the grid points back onto the particles, and crossing the grid points of the particles.

The IMPICE method for compressible flow problems governed by the one-dimensional
system of Euler equations is presented in Chapter 6. The use of a conservative scheme, slope
limiters, and a simple approximate HLL Riemann solver all contributed to the elimination of
oscillations in the numerical solutions of IMPICE. We have shown that the IMPICE method
with a linear spatial and temporal discretization is expected to be first-order accurate in time
and space. However, for the cases with discontinuities in their solutions, the order of accuracy
in space is less than one. We have also shown in Chapter 6 how to use the method of temporal
extrapolation and the higher-order advection in IMPICE to obtain a higher-order of accuracy
in both time and space. While the method of temporal extrapolation successfully raises the
order of accuracy to be second order in time, a less-than-expected order of accuracy in space is
obtained from using the higher-order advection for the problems with discontinuities.

In Chapter 7, we extended the IMPICE method to solve the multidimensional system
of Euler equations. In order to prevent the oscillations in the numerical solutions of the
multidimensional system of Euler equations, it is necessary to apply a multidimensional limiting
process to limit the gradients. We tested the implementation of the multidimensional IMPICE
method on a suite of test problems for the system of Euler equations in multidimensional space
where the obtained numerical solutions have shown the ability to capture shock waves. In
order to allow IMPICE to solve problems in complex geometries, we implemented the method
of cut cells which employes a new variation of the cell merging technique to overcome the “small
cell problem” with the embedded boundary. The implementation of the method of cut cells is
tested on the problem of shock reflection from a wedge. The contour lines of the IMPICE’s
numerical solution of the shock reflection problem are similar to the contour lines of numerical
solutions of this problem obtained from many numerical methods in previous publications . In
order to assess the accuracy of the embedded boundary implementation, we obtained the order
of accuracy for the advection problem on the same bounded domain as the shock reflection
problem.

In Chapter 4, we have presented the discrete adjoint-based approach for estimating spatial
and temporal errors for the method-of-lines PDEs. We tested this approach on the numerical
solutions of several ODE and PDE problems using the Backward Differentiation Formula (BDF)
method implemented in DASSL DAL solver. These results showed that the adjoint-based
approach accurately estimates both the temporal and spatial errors. Once more, this discrete
adjoint-based error estimate was applied to estimate the errors in the numerical solutions

obtained from the one-dimensional IMPICE method in Chapter 8. The challenging part in

167

the application of the adjoint-based error estimate to the IMPICE method is the derivation
of the adjoint problem. The derivation of the adjoint problem in this dissertation and the
estimate of local error and truncation error using Richardson extrapolation have also yielded
an accurate error estimation of the spatial error and temporal error for the numerical solutions
obtained from the one-dimensional IMPICE method, especially for numerical solutions to the
problems with smooth exact solutions. For the case when the exact solution is discontinuous,
the estimate of the error at the discontinuous region become less accurate due to the less
accurate estimation of the spatial truncation error in this region. In future, we will look into a
more accurate estimation of the spatial truncation error at discontinuous region.

Overall, this dissertation has provided a comprehensive study of a variation of MPM for
gas dynamics and an improved version of the Production ICE Method. The MPM method and
the Production ICE method are two main numerical methods implemented in the UCF. The
comprehensive analysis in this dissertation in combined with many current studies of MPM and
ICE at C-SAFE would help to fully understand these two methods. The detailed analysis in
this dissertation of different sources of errors in the numerical solutions of the proposed MPM
version for gas dynamics allows it to be extended to other versions of MPM. The error estimate
for the IMPICE method presented in this dissertation will help us to adaptively refine meshes
to obtain more accurate solutions for the method or to keep the error in its numerical solutions
under control. In the future, it will be necessary to extend the error estimate to work with
the multidimensional IMPICE method. The critical part of this extension is to estimate the
error on the embedded boundary. As the ICE method has also been proposed to simulate the
multiphase flow problems, we would like to have extended the IMPICE method to solve these

problems also, but again this is work for the future.

APPENDIX

A.1 IMPICE Method for Inviscid
Burgers’ Equation

Consider the one-dimensional Burgers’ equation in the inviscid limit:

ot ox

Ou 9w _ (A.1)

with f(u) = 4u? and initial data u(z,0) = ug(x), where ug(z) is a given function, z € R and

0 < t < T,. The solution, u(x/t; u?J(rLl), u?fﬁ)), to the Riemann problem of the Burgers’ equation
2 2
(A.1) with initial data:
W) if <x <T. 1)
u(z, tn) = ifé) g (A.2)
uj_’_% if <x>a:j+%),
at /t = 0 is used in the IMPICE method. The approximate solution u(0; u;LJ(rLl) , u?fﬁ)) is given
2 2
by:
n(L) n(L) n(R)
uj+§ if (0< uj+% < uj+%
. n(L) n(R)
0 if uj+% SOSU],JF%
L R R . L R
u(0; uyi%),u;i%)) = u;z(r%) if uyi%) < u;z(r%) <0 (A.3)
n(L) . n(R) n(L)
uj+§ if uj+% <u.+% and S >0
n(R) . n(R) n(L)
uj_% if uj+% <uj+% and S<0]),

_ (D), n(R)
where S = Ut +uj+§> /2.

With the same spatial and temporal discretizations as in Section 6.1.1 and known cell

averages at time t,, the steps to obtain cell averages at time ¢, 41 are as follows.

169

A.1.1 IMPICE Method Description
A.1.1.1 The Primary Phase

At face center, a data reconstruction is done as follows:

Ax R
u"B) = 4 = A, u;‘i; =y — S Ay, (A.4)

where Au}l is the limited slope of u using van Leer limiter in Equation (6.41). The face-centered

velocity, u;” 1 at t,, is determined using the approximate solution of Riemann problem where
2
u?Jr L= u(0; u;lJ(rL%), u?fr?) The equation of velocity evolution:
ut + uug = 0, (A.5)

is written in Lagrangian form as:

Du

— =0. A.6

i (A.6)

The face-centered fluxing velocity, u;er 1, is then given by:
2

* _.n
In order to apply the Lagrangian and FEulerian phases, we rewrite equation (A.1) as:
2 =L A8

(ou), + (ou), = 5 (u2), (A8)
where p is a constant and equal to one.
A.1.1.2 The Lagrangian Phase

The change in cell mass along a path moving with fluid velocity u is given by:
1 2 1 2
L L _ * *

where V" = Az and VjL = Az + At(u;rl —u* ;). As pis a constant and equal to one, the
2

ES
1
J=3

above equation may be rewritten as follows:

Vil = viur 4 At G () - % (u;_;)Q) (A.10)

D=

170

A.1.1.3 The Eulerian Phase

The change in mass due to the advection is given by:

VIt = ViG] = At (5,4)y — w5y (o)) (A1)

VI

where Vj"+1 = Ax. As pis a constant and equal to one, the above equation may be rewritten

as follows:

n+1l, n+1 __ LL_ *
VIt = Vit At(uﬁ%(u)ﬂ_é

;_%(u>j_%> . (A.12)

For first-order advection, (u)., 1 is approximated using (6.17) and for second-order advection,

J+s3
it is approximated using (6.77).

A.1.2 Numerical Results and Accuracy
in Space and Time

The initial condition used is given by:

10 i (jz]<3)
uo(z) = { 0.0 otherwise. (A.13)

The numerical solution of the inviscid Burgers’ problem using the second-order-in-space and
second-order-in-time IMPICE method is shown in Figure A.1. The spatial and temporal error
norms and the orders of accuracy for this problem are summarized in Table A.1. For temporal
errors, the orders of accuracy are as expected whereas the orders of accuracy are around one
for the first-order method and very close to two for the second-order method. However, there

is a degeneration in the spatial orders of accuracy as happened for the above test problems.

A.2 IMPICE Method for Viscous
Burgers’ Equation

The viscous form of Burgers’ Equation:
ou Of(u) 9u

with f(u) = 2u? and initial data u(z,0) = ug(z), where ug(z) is a given function and € is a

constant, r € R and 0 <t < T,.
With the same spatial and temporal discretization as in Section 6.1.1 and known cell averages

at time t,,, the steps to obtain cell averages at time ¢, are as follows.

Figure A.1.

1.2

08]

0.6

0.2

- e —IMPICE
Exact

—02:

171

The second-order (second-order-in-space and second-order-in-time) IMPICE

numerical solutions for the inviscid Burgers’ problem at 7T, = 0.5 and on the spatial domain
[—1.0,1.0] with N=200 (cells) and C.f; = 0.2.

Table A.1. Spatial and Temporal Errors: Li-norms and the order of accuracy for the inviscid

Burgers’ problem at 7, = 0.5 on the spatial domain [—1.0,1.0].

The temporal errors are

calculated for the grid using N=200 (cells) and the time-integrated exact solutions are the

converged numerical solutions.

et"(T.) es"(Te)
first-order second-order first-order second-order
Cefi I[-1lz, n [l-1lz, n N e, m -z, m
0.2 3.53E-03 — | 6.89E-05 — 100 | 5.14E-02 — | 1.86E-02 —
0.1 1.75E-03 1.02 | 1.67E-05 2.05 200 | 2.52E-02 1.03 | 6.08E-03 1.61
0.05 8.67E-04 1.01 | 4.22E-06 1.98 400 | 1.62E-02 0.64 | 3.27E-03 0.90
0.025 | 4.31E-04 1.01 | 1.05E-06 2.01 800 | 8.48E-03 0.93 | 1.52E-03 1.11
0.0125 | 2.15E-04 1.01 | 2.61E-07 2.01 || 1600 | 5.27E-03 0.69 | 8.16E-04 0.90
A.2.1 IMPICE Method Description
A.2.1.1 The Primary Phase
The equation of velocity evolution:
U + Uy = EUgy, (A.15)
is written in Lagrangian form as:
D
g EUgyp. (A.16)

Dt

172

*

The face-centered fluxing velocity, Ui is approximated using an explicit scheme in the
2

Lagrangian frame as:

n . n n
ul o =u" o+ ge i 2uj+% ! . (A.17)
ity it 2 Ax? ’ '

where the calculation of u;,‘+ ; has already been discussed in Appendix A.1. In order to apply
2

the Lagrangian and Eulerian phases, we rewrite equation (A.14) as:

(pu), + (pu?), = [;uQ—Feux]I (A.18)

where p is a constant and equal to one.

A.2.1.2 The Lagrangian Phase

The discrete form of the Lagrangian part of equation (A.18) is as follows:

ut 5 —ut ut o —ut
1 (u* 1)2 + 67]+% Jf% — 1 (’LL* 1)2 -+ 67]+% Jf%
2\ Jt3 2Ax 2\ J—3 2Ax

(A.19)

Ly NL _ ymng L
Vit(pu)y = Vi*(pu)j + At

where V" = Az and V" = Az + At (u;‘+ —ut 1) and p is a constant and equal to one.

1
2

A.2.1.3 The Eulerian Phase

The Eulerian Phase for the viscous Burgers’ Equation is the same as the Eulerian Phase for

the inviscid Burgers’ problem in Appendix A.1.

A.2.2 Numerical Results and Accuracy
in Space and Time

The initial condition for the viscous Burgers’ problem satisfies the below analytical solution:

(c —a
(0.540.1ec + e«)
(1+ef+e™)

—c —b
1 Rt e
u(z,t) = (01+05e~ +ex) if (b>0) and (b>a) (A.20)

(1+e< +ev)
a b
(14+0.5e< +0.1e<)

if (a>0) and (a>b)

- - otherwise
([(I+ec+eq)
where:
—0.25 - 0.75¢ 0.92 — 0.325 — 0.495¢ 0.8z — 0.4 — 0.24¢
a=" 1 , b= ’ 5 , and c¢= ac 1 . (A.21)

173

The numerical solutions of the viscous Burgers’ problem at T, = 0.5 on the spatial domain
[—2.0,4.0] using the second-order-in-space and second-order-in-time IMPICE method with 200
(cells) and C.p; = 0.2 for various values of € are shown in Figures A.2 and A.3. In Figures A.2
and A.3, the plotted initial cell averages are obtained from numerical integrations of the initial
condition in Equation (A.20) for these given values of e. When ¢ is small, there exists a steep

front in the solution of the viscous Burgers’ problem.

o Initial Cell Averages o Initial Cell Averages
1y Second—order IMPICE 4 Second—order IMPICE
Exact
0.8 0.8
0.61 0.6
=} =}
0.4 0.4
0.2 0.2
0 r r) 0 r r)

Figure A.2. The second-order (second-order-in-space and second-order-in-time) IMPICE
numerical solutions for the viscous Burgers’ problem at T, = 0.5 from the plotted initial cell
averages with N=200 (cells) and C.5; = 0.2: (a)e = 0.05 and (b)e = 0.01.

1 — = —Initial Cell Averages
] | o Second-order IMPICE
] | —— Exact
0.8 |
] \
>] g
0.4 |
] !
0.21 1
] |
0- T T L T T 1
-2 -1 0 1 2 3 4
X

Figure A.3. The second-order (second-order-in-space and second-order-in-time) IMPICE
numerical solutions for the viscous Burgers’ problem at T, = 0.5 from the plotted initial cell
averages with N=200 (cells) and C.z; = 0.2 and € = 0.0001.

174

The spatial and temporal error norms and orders of accuracy for the viscous Burgers’
problem with these values of € are summarized in Table A.2. The orders of accuracy for temporal
errors are consistently around one for first-order method and around two for second-order
method. The convergence rates of spatial errors for the viscous Burgers’ problem improve for
larger values of €, and get close to one for the first-order method and two for the second-order
method. However, there is a degeneration in accuracies for small e. When € = 0.0001, the
order is below one for the first-order method and approaching one for the second-order method.
This is due to the development of the steep front that appears close to a discontinuity in the

numerical solution of the viscous Burgers’ problem when e approaches zero.

A.3 IMPICE versus Conservative
Cell-centered ICE

The results in Figures A.4—A.8 show the improvement obtained from the application of slope
limiters in the data resconstruction of the Riemann problem. In Figures A.4—A.8, the numerical
results of the IMPICE method are compared against the numerical results of the conservative
cell-centered ICE method, which is implemented using Kashiwa et al. [68] and chooses to
conserve mass, linear momentum and total energy as discussed in Section 6.4. Problems P1-P5
are from Table 6.1. We use first-order advection for both of these methods. As seen in A.4-A.8,
the IMPICE method helps to eliminate the nonphysical oscillations in the implementation of

the conservative cell-centered ICE method.

A.4 Different Calculations of the
Face-centered Pressure

When discussing how to calculate the face-centered pressure, p;r L in the implementation of
the IMPICE method in Section 6.4, we mentioned that there were two other ways to calculate
this quantity in Kashiwa et al. [68]. We will present in this section the proposed methods of
[68] and see how these methods will change the results if implemented in the IMPICE method.

The following derivation is extracted from Kashiwa et al. [68]. The first step in calculating

the face-centered pressure p;f 41 is to differentiate the momentum equation.

2
The one-dimensional form of equation (3.8) is given by:

U + Uty = e (A.22)
p

Taking the partial derivative of (A.22) in space, the obtained equation is:

(g + utty)y = — <p;>m. (A.23)

175

9T'T €0-HIP'T | GL'0 €O-HF6'F | 009T || 00C L0-A96'T | TO'T FO-HILT | S€T0°0

00T €0-H92'€ | €80 €0-A8T'S | 008 || 10T L0-APSL | 0T FO-HFG'E | G200

88°0 €0-HTY'9 | 69°0 TO-HIY'T | 00F | 00C 90-A9TE€ | TOT FO-ATTL | GO0 | 10000
660 CO-HOZ'T | 68T TO-HIET | 00T || €0 GO-HLTT | 20T €O-HEP'T 10

— COHS€T | — COH8LG | 00T | — GOHATG| — €0-HIBT z0

€6'T GO-HETT | 960 €0-HL6'T | 009T || 00C S0-AT96 | T0T FO-HEET | G€T0°0

68T GO-HOG'S | €6'0 €0-H8L'G | 008 || 00T L0-APSE€ | TOT F0O-HS9C | GTO0

LLT VO-HSTE | 680 CO-HOT'T | 00F | 00T 90-HFPS'T | TOT ¥FO-H8ES | GO0 | 7100
70T €0-HS0'T | 080 CO-HPOT | 00 | T0C 90-HLT'9 | TO'T €0-HSO'T 0

— €0HEYF | — COHPSE | 00T | — GO-USPT | — €0-HSIT z0

08T 90-HES'E | 66°0 €0-HLI'T | 009T | 00C 80-H00C | TOT GO-HIF'9 | G210°0

€LT GO-HPE'T | 860 €0-HTET | 008 | 00C S0-AT0R | 00T FO-H6Z'T | G200

0T GO-HIT¥ | 60 €0-H09F | 00F | 00C L0-HIZ'E | 00T F0O-HSGT | GO0 | SO0
18T FO-AEYT | ¥6°0 €0-HO00'6 | 002 || 00T 90-AST'T | 00'T FO-HALT'G 10

— VOHIOG | — CO-HELT | 00T || — 90-HET'G| — €O-HFOT 20

w M | w M| N u N u il L50) >
JOPIO-PUOISS JopPIO-)sihg JOPIO-PUOISS JoPIO-)sIhg

(L) nS® (L)n¥®

'SUOTHILJOS [eollatunu U@M.Hw\wﬁoo

o1} IR SUOIN[OS J0BXD POJRISOIUI-OUWII)) pUR (S[[0D) (0g=N SUIsn PLIS oY) I0J poje[no[ed oIe sioll [eiodwo) oY, ‘[0'F ‘0 g—| urewop
rereds o) uo G = 27 ye we(qold S198Ing SNOISIA A} I0] ADRINDOR JO IOpIo 9} pue suLiou-I7 :sioiry Terodwa], pue [eryeds "z 'y 9[qel,

176

o cell-centered ICE o cell-centered ICE

A IMPICE A IMPICE
Exact

Exact 13
0.84
0.84
2 0.6 =
% 5 0.6 1
A 0.4 1 é’ 0.4 1 i
0.2 4 0.24
B
0 T T T T 1 O . T T T u
(a) 0 0.2 “ 04 0.6 0.8 1 (b) O 0.2 “ 0.4 0.6 0.8 1
o cell—centered ICE o cell-centered ICE
IMPICE 14 , & IMPICE
34 Exact Exact
> 0.8 1
o
) [0}
L‘C_I % 0.6 1
T)
qg) & 0.4 1
= 0.2
1.5 T T T T 1 O T T T T 1
(c) O 0.2 04 0.6 0.8 1 (dy 0 0.2 0.4 0.6 0.8 1

Figure A.4. Conservative cell-centered ICE and IMPICE numerical solutions for test P1 with
N=200 (cells) and C.y; = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.

The one-dimensional form of Equation (3.10) is given by:

P+ upe = —c*pu,. (A.24)

The time dependent quantity uy, is eliminated using the partial time derivative of the pressure

equation (A.24) which is given by:

(pt + pr)t = - (CQPUx)t . (A25)

From these equations Kashiwa et al. [68] state without derivation that linearization produces:

u [Dp

and so derive the potential equation for face-centered pressure:

177

o cell-centered ICE
A IMPICE
Exact

o cell-centered ICE
A IMPICE
Exact

1.54

0.8
2 0.6 =
2 3
8 041 2
0.2
3
e

! 0 T T T
(o) O 0.2 0.4 0.6 0.8 1
X o cell-centered ICE
A IMPICE
Exact

(@ O 0.2 0.4 0.6 0.8 1
X o cell-centered ICE

A IMPICE

> 0.8 1
o2
[0] (0]
L‘C_I § 0.6 1
w 3
qg) & 0.4
= 0.2
< O T T T T 1
(c) O 0.2 0.4 0.6 0.8 1 (d) 0 0.2 04 0.6 0.8 1

Figure A.5. Conservative cell-centered ICE and IMPICE numerical solutions for test P2 with
N=200 (cells) and C.y; = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.

p u (Dp
X X
One discrete form of this is:
n+% * * nJF%

1 |[Pivt TP Py TPy (u)" 1 (67" 577

- =\ 5 AoA L \OPjy1 — 0P;

Az? P o} c2p i+l AtAx J

1 n n * n * n

N wiy (ufyy — Uﬁ%) — Uy (Uj+% —uj)|-

The face-centered pressure is then defined by:

n+% n+%
* _ [PiPi1 PP (A.28)
Pi1tPy '

4+ Az (L)n (Piv1P]) <5pn _ 5pn>
At \ c2p j+% p;?Her? J+1 J

178

o cell-centered ICE o cell-centered ICE

A IMPICE A IMPICE
61 Exact 20 Exact
&
> 15 1
©
3 10 $
>
5 -
I
O T T T T T 1 O T T _
(@) 0 0.2 0.4 0.6 0.8 1 (b) O 02 , 04 0.6 0.8 1
X
o cell-centered ICE o cell-centered ICE
A IMPICE A IMPICE
2500 Exact 1000 Exact
>, 2000 1 800 A
o
b o
LlCJ 1500 A ; 600 4
L [0}
2 1000 1 £ 4004
Q
= 5001 200
0 T T T 0
(c) O 0.2 0.4 0.6 0.8 1 @ 0
X X

Figure A.6. Conservative cell-centered ICE and IMPICE numerical solutions for test P3 with
N=800 (cells) and C.5; = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.

The above equation is used to estimate the face-centered pressure |, p; L1 that will be used
2

in the Lagrangian phase. It is recognized in [68] that the second term in Equation (A.29) is

important in high-speed problems and the third term looks somewhat like a bulk viscosity.

These terms help to remove numerical noise, but introduces a diffusive effect in the method. A

limited version of (A.29) is given by:

1

2

n+z n—+
o PiPi+t + 5P (A.29)
o Piv1 P}

A n non
ar <1§> P) 6n - o)
t\e*p/) jp1 \ Piva £ 1)

_wM mo (g —ut,) — e (et —u)
P wip (Ui —) — Uy —ug))

where 9 is a “limiter” that is designed such that 0 < < 1, with values tending towards zero

if the velocity field is smooth to remove numerical noise in the velocity. The DIVU limiter

179

o cell-centered ICE o cell-centered ICE

A IMPICE 4 IMPICE
35 1 20 Exact
B > 107
2 S
a =
O -
_10 T T T T 1
@ © 0.2 0.4 0.6 0.8 1 (b) O 02 , 04 0.6 0.8 1
¥ o cellcentered ICE o cell-centered ICE
A IMPICE A IMPICE
300 4 Exact 2000 7 Exact g
3 1500
€ 200 4 o
L >
5 @ 1000 -
o Q
—_ 0—
2 100 A
c 500
O T T T T 1 0 T T T lm
(c) O 0.2 0.4 0.6 0.8 1 (d) O 0.2 0.4 0.6 0.8 1

Figure A.7. Conservative cell-centered ICE and IMPICE numerical solutions for test P4 with
N=200 (cells) and C.5; = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.

is introduced by Kashiwa and Lee in [67] is used for the purpose of limiting the velocity field
in calculating limited face-centered pressure p;'er 1. The limiter is required at the cell interface
2

and is a function of the face-centered velocity divergence D;.L 1 and the face-centered velocity
2

divergences on either side of the face, D;,LJ(:Z) and D;L(_l). We define these face-centered velocity
2 2

divergences as

n _ _.mn n. n(+) _ n . n(—=) _ . n n
Then the limiter is given by:
b, D D) D)
1 —max |0, min | —2, —22 272 72 if D", <0.
_ n(— n(+) n 9 n 1 =
Y= Dy Pny Ty P it (A.31)
0 otherwise.

In order to make sure the calculated face-centered pressure, p;er 1, is bounded by the surrounding
2

1 1
cell-centered pressures at ¢, , 1, p?+2 and p?:f, its calculated value is clamped with respect to
2

180

© cell-centered ICE o cell-centered ICE
A IMPICE A IMPICE
Exact 27 Exact
1 -
= =
2 S
g
O 054 >
0.5 1 N
D
O T T T T 1 0 T T T T “
() 0 02 , 04 0.6 0.8 1 (b) 0 02, 04 0.6 0.8 1
© cell-centered ICE © cell-centered ICE
20 ¢ © IMPICE A IMPICE
Exact
3 E
3 151
S o
T 10 2 27
i 2
— 0—
)
E 5] i
O T T T T 1 0 T T T T 1
(c) O 0.2 0.4 0.6 0.8 1 (d) 0 0.2 0.4 0.6 0.8 1
X

Figure A.8. Conservative cell-centered ICE and IMPICE numerical solutions for test P5 with
N=200 (cells) and C.5; = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.

[pmin, pmam] where:

n—l—% n—i—%)

: +3 nts
Pmin = mln(pj ;pj+]_ " 5 2). (A32)

i Pmaz =max(p; °,p;iq

This means the face-centered pressure, p;'f 1 is set to ppin if (p;" 41 < pmm> and is set to pimas
2 2

if (p;r% > pmax).
We compare the numerical results obtained from the IMPICE method and the pressure-
limited IMPICE method (PL-IMPICE) for the test cases in Table 6.1 in Figures A.9-A.12. The
PL-IMPICE method uses the implementation of the IMPICE method in Section 6.4 except that
the face-centered pressure, p;f +1 is calculated using the limited version in (A.29). As shown
in Figures A.9-A.12, there is a slight difference in the numerical solutions of these methods

at the discontinuous regions. However, there are no nonphysical oscillations presented in the

numerical solutions of these two methods.

181

o IMPICE o IMPICE
A PL-IMPICE A PL-IMPICE
1 Exact 11 Exact
0.8 0.8 1
2 0.6 1 2 0.6 1
2 3
Q 0.4 2 041
0.2 1 0.2
O T T T T 1 O T T T
() 0 0.2 0.4 0.6 0.8 1 (b) O 0.2 0.4 0.6 0.8 1
X o IMPICE X o IMPICE
4 PL-IMPICE 4 PL-IMPICE
35 Exact 1 Exact
0.8 1
>
D
3] o
c < 0.6 1
L 7
T 3
£ £ 047
S
0.2 4
1.5 T T T T 1 0 T T T T 1
() 0 0.2 0.4 0.6 0.8 1 (d) O 0.2 0.4 0.6 0.8 1
X

Figure A.9. PL-IMPICE and IMPICE numerical solutions for test P1 with N=200 (cells)
and Cgp = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.

182

o IMPICE o IMPICE
A PL-IMPICE A PL-IMPICE
1 Exact 1.57 Exact
0.8 1 A
1 -
_é‘ 0.6 -i? N
0O 0.4 A >
0.5 1
0.2+
5
O T T T T 1 O T T T
) 0 0.2 04X 0.6 0.8 1 (b)O 0.2 04) 0.6 0.8 1
o IMPICE o IMPICE
A PL-IMPICE 1 A PL-IMPICE
Exact Exact

0.8 1
>
o
))
c < 0.6 1
g 2
© (0]
£ x 0.41
2
£

0.2 1

0 T T T T 1
0 0.2 04 0.6 0.8 1
() .

Figure A.10. PL-IMPICE and IMPICE numerical solutions for test P2 with N=200 (cells)
and C.p = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.

183

o IMPICE o IMPICE
A PL-IMPICE A PL-IMPICE
35 7 Exact 20 Exact
30 A 15 1
25 10 1
) ;)
2 201 3 51
) ©
o >
15 1 04
10 1 I -5
5 l T T T |_ _1 O T T T T 1
(@) 0 0.2 0.4 0.6 0.8 1 (b) O 0.2 04 0.6 0.8 1
X o IMPICE X o IMPICE
4 PL-IMPICE A PL-IMPICE
Exact 2000 7
300 Exact
> 250 1 1500 A
o
2 200 % 2
' 2 1000] P
T 150 § o
5 o
<= 100 4
= 500
50 A
N
0 T T T T 1 O T T T l#
(c) O 0.2 0.4 0.6 0.8 1 (d) O 0.2 04 0.6 0.8 1
X X

Figure A.11.

PL-IMPICE and IMPICE numerical solutions for test P4 with N=200 (cells)

and C.p = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.

184

o IMPICE o IMPICE
A PL-IMPICE A PL-IMPICE
1.5 1 Exact 27 Exact
1.5 1
4
= = n
e S 11 b
s} 2
0.5 1 h
D
O T T T T 1 O T T T T
@@ O 02 04 06 08 1 (b) O 02 04 06 08 1
X o IMPICE ¥ o IMPICE
& PL-IMPICE A PL-IMPICE
20 Exact 4 Exact
5 15 1
2 o
I} >
L 104 &
S o
g o
£ 54
O T T T T 1 O T T T T 1
) O 02 04 06 08 1 @ 0 02 04 06 08 1

Figure A.12. PL-IMPICE and IMPICE numerical solutions for test P5 with N=200 (cells)
and C.p; = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.

1]

REFERENCES

ACHESON, D. J. Elementary fluid dynamics. Ozford Applied Mathematics and Computing
Science Series. Ozford: Clarendon Press 1990.

ANDERSON, W. K., AND VENKATAKRISHNAN, V. Aerodynamic design optimization on
unstructured grids with a continous adjoint formulation. AIAA Paper, 97-0643, 1997.

ASCHER, U. M, AND PETZOLD, L. R. Computer methods for ordinary differential equations
and differential algebraic equations. SIAM 1998.

BARDENHAGEN, S. G. Energy conservation error in the material point method for solid
mechanics. Journal of Computational Physics 180 (2002), 383-403.

BARDENHAGEN, S. G., AND KOBER, E. M. The Generalized Interpolation Material Point
Method. Computer Modeling in Engineering and Sciences 5 (2004), 477-495.

BARDENHAGEN, S. G., BRYDON, A. D., AND GUILKEY, J. E. Insight into the physics of
foam densification via numerical simulation. Journal of the Mechanics and Physics of Solids

53, 3 (2005), 597-617.

BarTH, T. Numerical methods and error estimation for conservation laws on structured
and unstructured meshes. Lecture notes, von Karman Institute for Fluid Dynamics, Series:
2003-04, Brussels, Belgium, March 2003.

BECKER, R., AND RANNACHER., R. An optimal control approach to a posteriori error
estimation in finite element methods. Acta Numerica 2001 10 (2001), 1-102.

BENSoN, D. J. Eulerian finite element methods for the micromechanics of hetheterogeneous
materials: Dynamic prioritization of material interfaces. Comput. Methods Appl. Mech. Eng.
151 (1998), 343-360.

[10] BEN-ARTZI, M., AND FALCOVITZ., J. A second order Godunov-Type scheme for com-

pressible fluid dynamics. J. Comput. Phys. 55 (1984), 1-32.

[11] BEN-ARTzI, M. Application of the Generalised Riemann Problem Method to 1-D com-

pressible flows with interfaces. J. Comput. Phys. 65 (1986), 170-178.

[12] BERzINS, M. Nonlinear data-bounded polynomial approximations and their applications

in ENO methods. Numerical Algorithms 55, 2 (2010), 171-188.

[13] BERzINS, M. Global error estimation in the method of lines for parabolic equations. STAM

J. Sci. Statist. Comput. 9, 4 (1988), 687-703.

[14] Bouma, R. H. B., vAN DER HEUDEN, A. E. D. M., SEWELL, T. D.; AND THOMPSON,

D. L. (2011). Simulations of deformation processes in energetic materials, numerical simula-
tions of physical and engineering processes, Jan Awrejcewicz (Ed.), ISBN: 978-953-307-620-
1, InTech, Available from: http://www.intechopen.com/articles/show/title/simulations-of-
deformation-processes-in-energetic-materials.

186

[15] BRACKBILL, J. U., AND RUPPEL, H. M. FLIP: A method for adaptively zoned, particle-
in-cell calculations of fluid flow in two dimensions. Journal of Computational Physics 65
(1986), 314-343.

[16] BRACKBILL, J. U. The ringing instability in particle in cell calculations of low-speed flow.
Journal of Computational Physics 75 (1988), 469-492.

[17] BRACKBILL, J. U. Particle methods. International Journal for Numerical Metheds in
Fluids 47 (2005), 693-705.

[18] BROWNLEE, J., LEVESLEY, J., HousTON, P., AND ROsswoOG., S. Enhancing SPH
using moving least-squares and radial basis functions. In Proc. A4A5 (Algorithms for
Approximation) , Chester UK, Jul. 18-22 2005, Springer, 2007.

[19] BRYDON, A. D., BARDENHAGEN, S. G., MILLER, E. A., AND SEIDLER, G. T. Simula-
tion of the densification of real open-celled foam microstructures. Journal of the Mechanics

and Physics of Solids 53 (2005), 2638-2660.

[20] BURGESS, D., SULSKY, D., AND BRACKBILL, J. U. Mass matrix formulation of the FLIP
Particle in Cell method. Journal of Computational Physics 103 (1992), 1-15.

[21] CAO, Y., AND PETZOLD, L. A posteriori error estimation and global error control for
ordinary differential equations by the adjoint method. SIAM J. Sci. Comput. 26, 2 (2004),
359-374.

[22] CaAsuLLl, V., AND GREENSPAN, D. Pressure method for the numerical solution of
transient, compressible fluid flows. Int. J. Num. Meth. Fluids 4 (1984), 1001-1012.

[23] CHAWLA, M. M., AND SUBRAMANIAN, R. Regions of absolute stability of explicit Runge
Kutta Nystrom methods for y00 = f(x; y; y0). Journal of Computational and Applied
Mathematics 11 (1984), 259-266.

[24] CoLELLA, P., Graves, D. T., Keen, B. J., aAND MobianNo, D. A Cartesian Grid
Embedded Boundary Method for hyperbolic conservation laws. Tech. report LBNL-56420,
Lawrence Berkeley National Laboratory, Berkeley, CA 2004.

[25] CoLELLA, P. A Direct Eulerian MUSCL Scheme for gas dynamics. SIAM J. Sci. Stat.
Comput. 6 (1985), 104-117.

[26] COIRIER, W., AND POWELL, K. An accuracy assessment of Cartesian-mesh approaches
for the Euler equations. J. Comput. Phys. 117 (1995), 121-131.

[27] DEBRABANT, K., AND LANG, J. On global error estimation and control for parabolic
equations. Report No. 2512 (2007), Technische Universitt Darmstadt, Department of Math-

ematics.

[28] Davis, S. F. Simplified Second-order Godunov-Type methods. STAM J. Sci. Stat. Comput.
9, 3 (1988), 445-473.

[29] DiskIN, B., AND THOMAS, J. L. Comparision of Node-Centered and Cell-Centered
Unstructured Finite-Volume Discretizations: Inviscid Fluxed 48th ATAA Aerospace Sciences
Meeting Including the New Horizons Forum and Aerospace Exposition 4 - 7 January 2010,
Orlando, Florida.

[30] Dukowicz, J. K., aND Kobis, J. W. Accurate Conservative Remapping (Rezoning)
for Arbitrary Lagrangian-Eulerian Computations. SIAM J. Sci. Stat. Comput. 8, 3 (1987),
305-321.

187

[31] DuncaN, C., HARMAN, T., AND GUILKEY, J. Aerodynamics of Vocal Fold Movement: A
Novel Fluid-Structure Interaction Model. Proceedings 60th Annual Meeting of the Division
of Fluid Dynamics Volume 52 Number 12, Salt Lake City, UT, 18-20 Nov 2007.

[32] ENRIGHT, W. H., A New Error-Control for Initial Value Solvers. Appl. Math. Comput. 31
(1989), 588-599.

[33] EINFELDT, B. On Godunov-Type Methods for Gas Dynamics. SIAM J. Numer. Anal. 25,
2 (1988), 294-318.

[34] EsTEP, D. J., LARSON, M. G., AND WILLIAMS, R. D. Estimating the Error of Numerical
Solutions of Systems of Reaction-Diffusion Equations. Mem. Amer. Math. Soc 696 (2000),
1-109.

[35] Evans, M. W., aND HarrLOow, F. H. The Particle-in-Cell Method for Hydrodynamic
Calculations. Los Alamos Scientific Laboratory report LA-2139 (November 1957).

[36] FALcovITz, J., ALFANDARY, G., AND HANOCH, G. A two-dimensional conservation laws
scheme for compressible flows with moving boundaries. J. Comput. Phys. 138 (1997), 83-102.

[37] FORRER, H., AND JELTSCH, R. A high-order boundary treatment for Cartesian-grid
methods. J. Comput. Phys. 140 (1998), 259-277.

[38] Gao, T., TSENG, Y.-H., aAND Lu, X.-Y. An improved hybrid Cartesian/immersed
boundary method for fluid-solid flows. Int. J. Numer. Meth. Fluids 55 (2007), 1189-1211.

[39] GaskELL, P. H., aND Lau, A. K. C. Curvature-Compensated Convective Transport:
SMART, a New Boundedness-Preserving Transport Algorithm. Int. J. Num. Meth. Fluids
8, 6 (1988), 617-641.

[40] GERMAIN, J. D. D. S., MCCORQUODALE, J., PARKER, S. G., AND JOHNSON, C. R. Uin-
tah: A massively parallel problem solving environment. In HPDC ’'00: Proceedings of the 9th
IEEE International Symposium on High Performance Distributed Computing(Washington,
DC, USA). IEEE Computer Society (2000), 33-42.

[41] GiLEs, M. B., AND PIERCE, N. A. Adjoint error correction for integral outputs. Error
Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics, edited
by T. Barth and H. Deconinck, Vol. 25 of Lecture Notes in Computational Science and
Engineering, Springer-Verlag, 2002.

[42] GREENOUCGH, J. A., AND RIDER, W. J. A quantitative comparison of numerical methods
for the compressible Euler equations: fifth-order WENO and piecewise-linear Godunov.
Journal of Computational Physics 196 (2004), 259-281.

[43] GRIGORYEV, Y. N., VsHivkov, V. A., AND FEDORUK, M. P. Numerical Particle in Cell
Methods Theory and Applications. V.SP, Utrecht, Boston, 2002.

[44] GuiLKEY, J. E., HARMAN, T., X1a, A., KasHiwa, B., AND McMURTRY, P.A. An
Eulerian-Lagrangian Approach for Large Deformation Fluid Structure Interaction Problems,
Part 1: Algorithm Development. WIT Press (2003), 143-156.

[45] GUILKEY, J. E., HARMAN, T., AND BANERJEE, B. An Eulerian-Lagrangian Approach for
Simulating Explosions of Energetic Devices. Computers and Structures 85 (2007), 660—674.

[46] HARLOW F. H. A Machine Calculation Method for Hydrodynamic Problems. Los Alamos
Scientific Laboratory report LAMS-1956 (November 1955).

188

[47] HArLOw, F. H., AND WELCH, J. E. Numerical Calculation of Time-Dependent Viscous
Incompressible Flow. Phys. Fluids 8, 2182 (1965); Selected Papers in Physics,” Vol. VI
(The Physical Society of Japan, Tokyo, 1971).

[48] HArRLOW, F. H., AND WELCH, J. E. Numerical Study of Large Amplitude Free Surface
Motions. Phys. Fluids 9 (1966), 842-851.

[49] HArRLOW, F. H., AND AMSDEN, A. A. Numerical Calculation of Almost Incompressible
Flow. Journal of Computational Physics 3 (1968), 80-93.

[50] HArLOW, F. H., AND AMSDEN, A. A. A Numerical Fluid Dynamics Calculation Method
for All Flow Speeds. Journal of Computational Physics 8 (1971), 197-213.

[51] HArRLOW, F. H., AND AMSDEN, A. A. Numerical Calculation of Multiple Fluid Flow.
Journal of Computational Physics 17 (1975), 19-52.

[52] HARMAN, T., GUILKEY, J. E., ScamipT, J., KAsSHIwA, B. A., AND MCMURTRY, P.
An Eulerian-Lagrangian approach for large deformation fluid structure interaction problems,
part 2: Multi-physics simulations. Proceedings of the Second International Conference on
Fluid Structure Interaction, Cadiz, Spain 2003.

[53] HARTEN, A., LaX, P. D., AND VAN LEER, B. On Upstream Differencing and Godunov-
Type Schemes for Hyperbolic Conservation Laws. STAM Rev. 25 (1983), 35-61.

[54] HARTEN, A., AND OSHER, S. Uniformly High-Order Accurate Nonoscillatory Schemes I.
SIAM J. Numer. Anal. 24 (1987), 279-309.

[55] HELzEL, C., BERGER, M. J., AND LEVEQUE, R. J. A High-Resolution Rotated Grid
Method for Conservation Laws with Embedded Geometries. SIAM J. Sci. Comput 26, 3
(2005), 785-809.

[56] HENDERSON, T., MCMURTRY, P., SMITH, P., VOTH, G., WRIGHT, C., AND PERSHING,

D. Simulating accidental fires and explosions. Computing in Science and Engineering 2
(1994), 64-76.

[57] HICKERNEL, F. J. A Generalized Discrepancy and Quadrature Bound. Mathematics of
Computation 67 (1998), 299-322.

[58] HicHAM, D. J. Global Error versus Tolerance for Explicit Runga-Kutta Methods. IMA
Journal of Numerical Analysis 11 (1991), 457-480.

[59] HORLEY, P., VIEIRA, V., GONZALEZ-HERNANDEZ, J., DUGAEV, V., AND BARNAS, J.
(2011). Numerical Simulations of Nano-Scale Magnetization Dynamics, Numerical Simula-
tions of Physical and Engineering Processes, Jan Awrejcewicz (Ed.), ISBN: 978-953-307-
620-1, InTech, Available from: http://www.intechopen.com/articles/show/title/numerical-
simulations-of-nano-scale-magnetization-dynamics

[60] Hou, T. Y., aAND LEFLOCH, P. G. Why Nonconservative Schemes Converge to Wrong
solutions: Error Analysis. Mathematics of Computation 62 (1994), 497-530.

[61] Hu, C., AND SHU, C.-W. Weighted essentially non-oscillatory schemes on triangular
meshes. Journal of Computational Physics 150 (1999), 97-127.

[62] Issa, R. I., GosMAN, A. D, AND WATKINS, A. P. The Computation of Compressible
and Incompressible Flow of Fluid with a Free Surface. Phys. Fluids 8, 12 (1965), 2182-2189.

189

[63] IssAa, R. I. Solution of the Implicitly Discretised Fluid Flow Equations by Operator-
Splitting. Journal of Computational Physics 62 (1986), 40—65.

[64] JAMESON, A., PIERCE, N. A., AND MARTINELLI, L. Optimum aerodynamic design using
the Navier-Stokes equations. ATAA Paper, 97-0101, 1997.

[65] JAMESON, A. Aerodynamic design via control theory. J.Sci. Comput. 3 (1988), 233-260.

[66] JAMESON, A., AND REUTHER, J. Control theory based airfoil design using the Euler
equation. ATAA Paper, 94-4272-CP, 1994.

[67] KasHiwA B. A., AND LEE W. H. Comparisons between the Cell-Centered and Staggered
Mesh Lagrangian Hydrodynamics. In Advances in the Free Lagrange Method, Trease HE,
Fritz MJ, Crowley WP (eds), Springer Verlag, Berlin 1991; 277-288

[68] KAsHIWA, B. A., PAapIAL, N. T., RAUENZAHN, R. M., AND VANDERHEYDEN, W. B. A
Cell-Centered ICE Method for Multiphase Flow Simulations. Proceedings ASME Symposium
on Numerical Methods for Multiphase Flows, Lake Tahoe, NV, 19-23 June 1994.

[69] KAasHIwA, B. A. A Multified Model and Method for Fluid-Structure Interaction Dynamics.
Los Alamos National Laboratory, Los Alamos 2001; Technical Report LA-UR-01-1136.

[70] KM, J. MPM Masters Project report unpublished. 2004

[71] Kmm, K. H., AND KM, C. Accurate, efficient and monotonic numerical methods for multi-
dimensional compressible flows. Part II: Multi-dimensional limiting process. J. Comput.
Phys. 208 (2005), 570-615.

[72] KwaTRA, N., Su, J., GRETARSSON, J., AND FEDKIW, R. A method for avoiding the
acoustic time step restriction in compressible flow. Preprint submitted to JCP.

[73] LANG, J., AND VERWER, J. G. On global error estimation and control for initial value
problems. SIAM J. Sci. Comput. 29 (2007), 1460-1475.

[74] Lax, P. D. Weak Solutions of Nonlinear Hyperbolic Equations and their Numerical
Computation. Commun. Pure Appl. Math. 7 (1954), 159-193.

[75] Lax, P. D., AND WENDROFF, B. Systems of Conservation Laws. Communications in
Pure and Applied Mathematics 13 (1960), 217-237.

[76] L1, S., AND PETZOLD, L. Adjoint Sensitivity Analysis for time-dependent Partial Differ-
ential Equations with Adaptive Mesh Refinement. J. Comput. Phys. 198 (2004), 310-325.

[77] L1, S., anD Liu, W. K. Meshfree particle methods and their applications. Applied
Mechanics Review 54 (2002), 1-34.

[78] Lin, C., AND DENGBIN, T. Navier-Stokes Characteristic Boundary Conditions for Simu-
lations of Some Typical Flows. Applied Mathematical Sciences 18, 4 (2010), 879-893.

[79] LivNE, O. E. ICE Algorithm and the Davis Advection Scheme. SCI Institute, University
of Utah 2006; Technical Report No. UUSCI-2006-006.

[80] LivNE, O. E. ICE Algorithm for the Shocktube Problem. SCI Institute, University of
Utah 2006; Technical Report No. UUSCI-2006-007.

[81] Loca, A. Multi-Adaptive Error Control for ODEs. Technical Report 98/20(1998), Oxford
University, England.

190

[82] LuITJENS, J., GUILKEY, J., HARMAN, T., WORTHEN, B., AND PARKER, S. G. Adaptive
Computations in the Uintah Framework. In Advanced Computational Infastructures for
Parallel /Distributed Adapative Applications, Ch. 1, Wiley Press, 2010.

[83] Ma, S., ZHANG, X., AND QIur, X. M. Comparison study of MPM and SPH in modeling
hypervelocity impact problems. International Journal of Impact Engineering 36 (2009),
272-282.

[84] MacCormMmACK, R. W. The Effect of viscosity in hypervelocity impact cratering. ATAA
Paper (1969), 69-354.

[85] MACNEICE, P. Particle mesh techniques. NASA Contractor Report 4666, Hughes STX,
Goddard Space Center, Greenbelt MD 20771. 1995

[86] MARTiN, M. P., TAYLOR, E. M., Wu, M., AND WEIRS, V. G. A Bandwidth-optimized
WENO Scheme for the Effective Direct Numerical Simulation of Compressible Turbulence.
Journal of Computational Physics 220 (2006), 270-289.

[87] MEHDIZADEH KHALSARAEI, M. An Improvement on the Positivity Results for 2-stage
Explicit Runge-Kutta Methods. Journal of Computational and Applied Mathematics 235
(2010), 137-143.

[88] MENG, Q., LUITJENS, J., AND BERZINS, M. Dynamic task scheduling for the uintah
framework. In Proceedings of the 3rd IEEE Workshop on Many-Task Computing on Grids
and Supercomputers (MTAGS10) (Washington DC, USA,2010), IEEE Computer Society.

[89] MONAGHAN, J. J., AND GINGOLD, R. A. Shock Simulation by the Particle Method SPH.
Journal of Computational Physics 52 (1983), 374-389.

[90] MONAGHAN, J. J., AND PoNGRACIC, H. Artificial Viscosity for Particle Methods. Applied
Numerical Mathematics 1 (1985), 187-194.

[91] MooN, K.-S., Szepessy, A., TEMPONE, R., AND ZOURARIS, G. E. Adaptive Ap-
proximation of Differential Equations Based on Global and Local Errors. TRITA-NA-0006
(2000), NADA, KTH, Sweden.

[92] MooN, K.-S., SzZEPESSY, A., TEMPONE, R., AND ZOURARIS, G. E. A Variational Princi-
ple for Adaptive Approximation of ordinary Differential Equations. Numerische Mathematik

93 (2003), 131-152.

[93] MooN, K.-S., SZEPESSY, A., TEMPONE, R., AND ZOURARIS, G. E. Convergence Rates
for Adaptive Approximation of ordinary Differential Equations. Numerische Mathematik 93
(2003), 99-129.

[94] NAIRN, J. A. Numerical simulations of transverse compression and densification in wood.
Wood and Fiber Science 38, 4 (2006), 576-591.

[95] PARKER, S. G. A component-based architecture for parallel multi-physics pde simulation.
Future Generation Computer Systems 22, 1 (2006), 204-216.

[96] PARKER, S. G., GUILKEY, J., AND HARMAN, T. A component-based parallel infrastruc-
ture for the simulation of fluid structure interaction. Engineering with Computers 22, 3-4

(2006), 277-292.

191

[97] PARKER S. G. A Component-Based Architecture for Parallel Multi-physics PDE Simu-
lation. In International Conference on Computational Science (ICCS2002) Workshop on
PDE Software April 21-24 2002. The Netherlands. Proceedings, Part III MA. Sloot, CJ
Kenneth Tan, JJ Dongarra, AG Hoekstra(Eds). Lecture Notes in Computer Science 2002;
2331 Springer-Verlag GmbH, ISSN: 0302-97}3.

[98] PEMBER, R., BELL, J., CoLELLA, P., CRUTCHFIELD, W., AND WELCOME, M. L.

An adaptive Cartesian grid method for unsteady compressible flow in irregular regions. J.
Comput. Phys. 120 (1995), 278-304.

[99] PoinsoT, T. J., AND VEYNANTE, D. Theoretical and Numerical Combustion. Edwards,
2001; ISBN 1-930217-05-6.

[100] Qru, J., AND SHU, C.-W. A Comparision of Troubled-Cell Indicators for Runge-Kutta
Discontinuous Galerkin Methods using Weighted Essentially Nonoscillaroty Limiters. STAM
J. Sci. Comput. 27, 3 (2005), 995-1013.

[101] QUIRK, J. An alternative to unstructured grids for computing gas dynamic flows around
arbitrarily complex twodimensional bodies. Comput. & Fluids 23 (1994), 125-142.

[102] REINELT, D., LAURS, A., AND ADOMEIT, G. Ignition and Combustion of a packed bed
in a Stagnation Point Flow. Combustion and Flame 99, 2 (1994), 395-403.

[103] ROE, P. L. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes.
J. Comput. Phys. 43 (1981), 357-372.

[104] SHAMPINE, L. F. Error Estimation and control for ODEs. Journal of Sci. Comput. 25, 1
(2005), 3-16.

[105] SHAMPINE, L. F. Local Error Estimation by Doubling. Computing 34 (1985), 179-190.

[106] SHU, C.-W., AND OSHER, S. J. Efficient Implementation of Essentially Non-Oscillatory
Shock Capturing Schemes. J. Comput. Phys. 77 (1988), 439-471.

[107] SHU, C.-W., AND OSHER, S. J. Efficient Implementation of Essentially Nonoscillatory
Shock Capturing Schemes II. J. Comp. Phys. 83 (1989), 32-78.

[108] Sop, G. A. A survey of several difference methods for systems of nonlinear hyperbolic
conservation laws. Journal of Computational Physics 27 (1978), 1-31.

[109] STEFFEN, M. Analysis-guided Improvements of the Material Point Method. PhD disser-
tation, University of Utah, 2008.

[110] STEFFEN, M., KIRBY, R. M., AND BERZINS, M. Analysis and reduction of quadrature
errors in the material point method (MPM). International Journal for Numerical Methods
in Engineering 76, 6 (2008), 922-948. DOI:10.1002 /nme.2360.

[111]) STEFFEN, M., WALLSTEDT, P. C., GUILKEY, J. E., KIRBY, R. M., AND BERZINS, M.
Examination and Analysis of Implementation Choices within the Material Point Method
(MPM). In Computer Modeling in Engineering and Sciences 32 (2008), 107-127.

[112] STEFFEN, M., KIRBY, R. M., AND BERZINS, M. Decoupling and Balancing of Space
and Time Errors in the Material Point Method (MPM). International Journal for Numerical
Methods in Engineering 82, 10 (2010), 1207-1243.

[113] SuLsKYy, D., CHEN, Z., AND SCHREYER, H. L. A particle method for history-dependent
materials. Computer Methods in Applied Mechanics and Engineering 118 (1994), 179-196.

192

[114] SuLsKy, D., ZHOU, S.-J., AND SCHREYER, H. L. Application of a particle-in-cell method
to solid mechanics. Computer Physics Communications 87 (1995), 236-252.

[115] SuLsKy, D., SCHREYER, H., PETERSON, K., Kwok, R., AND CooN, M. Using the
material point method to model sea ice dynamics. J. Geophys. Res. 112 (2007). C02S90.
DOI:10.1029/2005JC003329.

[116] SWEBY, P. K. High Resolution Schemes using Flux-Limiters for Hyperbolic Conservation
Laws. SIAM J. Num. Anal. 21 (1984), 995-1011.

[117] SWENSEN, D. A., DENisoN, M. K., HArRMAN, T., GUILKEY, J., AND GOETZ, R. A
Software Framework for Blast Event Simulation. Reaction Engineering International, Salt

Lake City, UT.

[118] THOMPSON, K. W. Time Dependent Boundary Conditions for Hyperbolic Systems. J.
Comput. Phys. 68, 1 (1987), 1-24.

[119] TiTAREV, V. A., AND TOrRO, E. F. ADER schemes for three-dimensional nonlinear
hyperbolic systems. Journal of Computational Physics 204 (2005), 715-736.

[120] Toro, E. F. Riemann Solvers and Numerical Methods for Fluids Dynamics: A Practical
Introduction, third ed. Springer, 2008; ISBN 978-3-540-25202-3.

[121] Toro, E. F., HipaLGO, A., AND DUMBSER, M. FORCE schemes on unstructured
meshes I: Conservative Hyperbolic Systems. Journal of Computational physics 228 (2009),
3368-33809.

[122] TrAN, L.-T., AND BERZzINS, M. Improved Production Implicit Continuous-fluid Eulerian
Method for Compressible Flow Problems in Uintah. International Journal For Numerical

Methods In Fluids 69, 5 (2012), 926-965.

[123] TraN, L.-T., Kmvm, J., AND BERzINS, M. Solving Time-Dependent PDEs using the
Material Point Method, A Case Study from Gas Dynamics. International Journal for
Numerical Methods in Fluids 62, 7 (2009), 709-732.

[124] TUCKER, P. G., AND PaN, Z. A Cartesian Cut Cell Method for Incompressible Viscous
Flow. Applied Mathematics Modelling 24 (2000), 591-606.

[125] VaLLis, G. K. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale
Clirculation. Cambridge University Press 2006; ISBN 978-0-521-84969-2.

[126] VAN ALBADA, G. D., VAN LEER, B., AND ROBERTS, W. W. A Comparative Study of
Computational Methods in Cosmic Gas Dynamics. Astron. Astrophysics 108 (1982), 76-84.

[127) VANDERHEYDEN, W. B., AND KasHiwa, B. A. Compatible Fluxes for Van Leer
Advection. Journal of Computational Physics 146 (1998), 1-28.

[128] vaN DER HEeuL, D. R., Vuik, C., AND WESSELING, P. A Conservative Pressure-
Correction Method for Flow at All Speeds. Computers and Fluids 3 (2003), 1113-1132.

[129] VAN LEER, B. Towards the Ultimate Conservative Difference Scheme II. Monotonicity
and Conservation Combined in a Second Order Scheme. J. Comp. Phys. 14 (1974), 361-370.

[130] VAN LEER, B. Towards the Ultimate Conservative Difference Scheme III. Upstream-
Centered Finite-Difference Schemes for Ideal Compressible Flow. J. Comp. Phys. 23 (1977),
263-275.

193

[131] VAN LEER, B. Towards the Ultimate Conservative Difference Scheme V. A Second Order
Sequel to Godunov’s Method. J. Comp. Phys. 32 (1979), 101-136.

[132] VAN LEER, B. On the Relation Between the Upwind-Differencing Schemes of Godunov,
Enguist-Osher and Roe. SIAM J. Sci. Stat. Comput. 5 (1985), 1-20.

[133] VENDITTI, D. A, AND DARMOFAL, D. L. Adjoint Error Estimation and Grid Adaptation
for Functional Outputs: Application to Quasi-One-Dimensional Flow. J. Comput. Phys. 16
(2000), 204-227.

[134] VERSTEEG, H., AND MALALASEKERA, W. An introduction to Computational Fluid
Dynamics: The Finite Volume Method, second ed. Prentice-Hall, 2007.

[135] VsHIVKOV, V. A. The approximation properties of the particles-in-cells method. Com-
putational Mathematics and Mathematical Physics 36, 4 (1996), 509-515.

[136] WATERSON, N. P., AND DECONINCK, H. A Unified Approach to the Design and Appli-
cation of Bounded Higher-Order Convection Schemes. In Numerical Methods in Laminar
and Turbulent Flows, Proceedings of the Ninth International Conference 1995; 9(1):203-214.

[137) WHITE, F. M. Fluid Mechanics, fifth ed. McGraw-Hill, 2003; ISBN 0-07-119911-X.

[138] WOODWARD, P., AND COLELLA, P. The Numerical Simulations of Two-Dimensional
Fluid Flow with Strong Shocks. J. Comput. Phys. 54 (1984), 115-173.

[139] YE., T., MiTrTAL, R., UDAYKUMAR, H. S., AND SHYYY., W. An Accurate Cartesian

Grid Method for Viscous Incompressible Flows with Complex Immersed Boundaries. Journal
of Computational Physics 156 (1999), 209-240.

[140] YOrK, A. R., SULSKY, D., AND SCHREYER, H. L. Fluid-membrane interaction based

on the material point method. International Journal for Numerical Methods in Engineering
48 (2000), 901-924.

