
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

View-Dependent Streamline Deformation
and Exploration

Xin Tong, Student Member, IEEE, John Edwards, Chun-Ming Chen, Student Member, IEEE,

Han-Wei Shen, Member, IEEE, Chris R. Johnson, Fellow, IEEE, and Pak Chung Wong, Member, IEEE

Abstract—Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many

streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features.

We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart

and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an

interactive visualization tool to minimize visual clutter in 3D vector and tensor fields. The algorithm is able to maintain the overall

integrity of the fields and expose previously hidden structures. Our system supports both mouse and direct-touch interactions to

manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the

transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely.

Index Terms—Flow visualization, streamline, white matter tracts, focus+context, deformation, occlusion

✦

1 INTRODUCTION

S
TREAMLINES are commonly used for visualizing three-

dimensional (3D) vector and tensor fields. Streamlines show

the trajectories of particles moving along the directions of flow

and provide insight into intricate flow features such as sinks,

sources, saddles, and vortices. When too many streamlines are

shown, however, getting a clear view of important flow features

without occlusion is difficult. Even though a single streamline

does not cause much occlusion compared with higher-dimensional

geometry, mixing many streamlines of different depths together

can generate a very confusing image.

Although through interactive seeding of streamlines one can

control the amount of occlusion and visual clutter, it makes finding

specific flow features, and hence understanding their surrounding

context, more difficult. To reach a balance between displaying too

much information and too little, focus+context (F+C) techniques

provide a nice solution. In this paper, we present a streamline

deformation technique to achieve an F+C view of 3D streamlines.

Earlier streamline deformation approaches [1], [2] deform the

3D space of the flow field. The main drawback of the space

deformation approaches is that it is not easy for users to control

the deformation of continuous 3D space to remove occlusion

completely.

Adjusting transparency is another common method used to

expose occluded features [3], [4]. But it is difficult to set the

transparency value and define the semi-transparent region so

that a clear view of both the F+C objects can be obtained. For

example when visualizing a vortex in the Hurricane Isabel dataset,

• X. Tong, C.-M. Chen, and H.-W. Shen are with Department of Computer

Science and Engineering, The Ohio State University, Columbus, OH,

43210.

E-mail: {tong,chenchu,hwshen}@cse.ohio-state.edu

• J. Edwards and C. R. Johnson are with Scientific Computing and Imaging

Institute, University of Utah, Salt Lake City, UT, 84112.

E-mail: {jedwards, crj}@sci.utah.edu

• P. C. Wong is with Pacific Northwest National Laboratory, Richland, WA

99352.

E-mail: pak.wong@pnnl.gov

Manuscript received June 30, 2015.

(a) (b)

(c) (d)

Fig. 1. Three methods are compared to reveal the feature in Hurri-
cane Isabel dataset, a group of vortex-shaped streamlines, originally
occluded by other streamlines. (a) original rendering with the features
occluded; (b) transparency method is applied; (c) cutaway method that
removes both the occluding factors and the contexts; (d) our deforma-
tion method is applied, which completely removes the occlusions with
context information preserved.

as shown in Fig. 1a and 1b, the vortex-shaped streamlines are

originally occluded in (a) and then become visible after making

some streamlines more transparent in (b). However, the context

of the flow around the vortex is mostly lost if the occluding

streamlines are too transparent, and with transparency, the depth

relationships among streamlines are more difficult to discern.

Furthermore, depth sorting is required to render semi-translucent

objects correctly, but it is difficult to sort a large number of

line segments in real-time. Cutaway method is another common

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

technique to deal with occlusion. It not only removes all the

objects occluding the focus features, interesting features that users

focus on, but also removes the context features in that region, as

show in the example of Fig. 1c.

In our previous paper [5], we presented a view-dependent

deformation model for interactive streamline exploration. After

users have defined a focus region in screen space, streamlines

occluding the focus region are deformed and gradually moved

away based on two deformation models, a point model and a line

model. The point model moves streamlines away from the center

of the focus region, while the line model cuts the streamlines along

the principal axis of the focus region and moves the streamlines

to both its sides. Because occlusion has a view-dependent nature

and our deformation is performed in screen space, occlusion

can be more effectively removed. Besides, the animation of the

deformation gives users the connections between the deformed

streamline shapes and their original shapes, and allow users to

mentally reconstruct the original shapes as contexts. Compared to

the other methods mentioned above, our deformation technique

can better preserve the context streamlines in the vicinity of the

focus feature and through the graduate deformation transition, as

shown in Fig. 1d and the accompanying video. As an application

of our deformation model, an interactive 3D lens was presented to

allow users to freely move streamlines away from selected areas

on the screen using both mouse and direct-touch interaction. Two

real vector field datasets, Hurricane Isabel and Solar Plume, were

used to demonstrate our deformation framework.

In this paper, we extend the previous technique by introducing

two new lenses, layered lenses and polyline lens. After receiving

positive feedback from scientists about the techniques presented

in the previous paper, we decided to enhance the interactive lens

with additional functionality to suit different users’ needs. The

layered lenses are a set of lenses stacking on top of each other

in screen space, each of which deforms the streamlines in their

respective ranges in a specific but coherent layer. By deforming

different layers differently, we can show the features and contexts

of different layers more clearly. The polyline lens is a variation

of the previously proposed open blind lens. Instead of cutting

with a straight line, the polyline lens can cut the streamlines with

a series of connected line segments and deform the surrounding

streamlines smoothly to the side. It is much eaiser to fit features

of curvy or concave shapes to the focus region of a polyline lens.

To demonstrate the effectiveness of our new lenses, we apply our

technique on a tensor field dataset of a brain tumor patient. Our

technique is used to deform the white matter tracts generated from

the tensor field dataset in order to explore the relationship between

the brain tumor and the tracts. Additionally, neurosurgeons and

neurologists were invited to evaluate our system and provide

valuable suggestions on further studies.

2 RELATED WORK

Overcoming occlusion is an important but challenging problem in

3D visualization. Several approaches have been proposed in the

past to avoid or remove occlusion. Li et al. [6] argued that the

use of transparency fails to convey enough depth information for

the transparent layers. They use cutaways to remove occlusion

and expose important internal features. McGuffin et al. [7] used a

deformation approach to allow users to cut into, open up, spread

apart, or peel away parts of the volumetric data in real time,

which makes the interior of the volume visible while preserving

the surrounding contexts. An occlusion-free route is visualized by

scaling the buildings that occlude the route. Hurter et al. [8] used

an interactive dig tool to deform the volumetric data by simply

pushing the data points, which reduces occlusion.

In 3D streamline visualization, many streamline selection or

placement approaches have been proposed with a goal to minimize

occlusion or visual clutter. Mattausch et al. [9] applied magic vol-

ume, region of interest driven streamline placement, and spotlights

to alleviate the occlusion problem. Li and Shen [10] proposed

an image-based streamline generation approach that places seeds

on the 2D image plane, and then unprojects the seeds back to

3D object space to generate streamlines. Occlusion is avoided by

spreading out streamlines in image space. Marchesin et al. [11]

defined the overlap value, the average number of overlapping

streamlines for each pixel in the image space, to quantify the

level of clutter and then remove the streamlines that have high

overlap values on their projected pixels. Lee et al. [12] proposed a

view-dependent streamline placement method. In their method,

streamlines will not be generated if they occlude regions that

are deemed more important, characterized by Shannon’s entropy.

Another method to alleviate streamline occlusion is to reduce the

opacity of the occluding streamlines. Park et al. [3] applied multi-

dimensional transfer functions (MDTFs) based on physical flow

properties to change the color and opacity of streamlines. Xu et

al. [4] proposed to make the streamlines in lower entropy regions

more transparent to reduce occlusion. Günther et al. [13] provided

a global optimization approach to render streamlines with varying

opacity in order to achieve a balance between presenting informa-

tion and avoiding occlusion. Brambilla [14] measures the degree of

occlusion for stream surface and split the surface along a cutting

curve to reduce the degree of occlusion. The above occlusion-

aware streamline placement methods and transparency modulation

methods have their downsides. The problem for the streamline

removal methods is that some interesting streamlines may not be

shown when they occlude many other streamlines. On the other

hand, for the transparency modulation methods, it is difficult to

judge the relative depths among the semi-transparent streamlines,

and those streamlines can become a distraction. Our F+C stream-

line deformation method can solve the occlusion problem with

better user control while making all the input streamlines easier to

see.

F+C techniques have been used by different applications

that magnify the focus objects while preserving the surrounding

context. The techniques include fisheye views [15], [16], [17] and

magnification lens [18], [19], [20], [21]. Magic lens [22] changes

the presentation of objects to unveil hidden information. In flow vi-

sualization, 3D lenses have been applied to show the focus region

with greater details [9], [23]. Gasteiger et al. [24] use a magic lens

to attenuate the focus attribute while showing the context attribute

within the lens. Krüger et al. [25] use 2D lens to control the

visibility of features. Van der Zwan et al. [26] blend several levels

of detail with a halo-like shading technique to simultaneously

show multiple abstractions. NPR lens [27] and the Edgelens [28]

interactively distort the features within a 2D lens to emphasize

effects and reduce edge congestion, respectively. Among those

referenced F+C works, some of them do not solve the occlusion

problem. Some methods [9], [23] can reduce occlusion in 3D but

do not completely keep the focus objects out of occlusion. Some

other methods [24], [25], [26] can completely remove occlusion,

but they remove the context information (the occluding objects)

at the same time. Only the Edgelens [28] work solves the clutter

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

problem without removing context.

Our approach is more related to the following works with

F+C flow visualization using spatial deformation. Correa et al. [1]

proposed an illustrative deformation system for F+C visualization

of discrete datasets. Deformation is used to expose the internal

focus region, and an optical transformation is applied to mark

up the context region. Because the deformation is performed

in data space, the focus can be occlusion-free for only certain

view directions. Tao et al. [2] devised a deformation framework

specifically for streamlines. This method deforms the data grid,

and generates streamlines based on the deformed grid. It magnifies

the streamlines in the focus while compressing the context region.

In their method, because deforming space cannot move individual

streamlines according to their specific locations, it is more difficult

to avoid occlusion from certain view angles. Both Correa et al.’s

and Tao et al.’s methods are view-independent, which means the

deformation can fail to remove occlusion completely. Besides,

both methods require user input of 3D locations on a 2D screen,

which makes direct user manipulation difficult. In contrast to

these two deformation approaches, our new approach displaces

the streamline vertices in 2D screen space and hence can achieve

efficient occlusion-free rendering and easy user control for an

arbitrary view.

3 ALGORITHM

The goal of our algorithm is to expose interesting features in

the focus region by deforming the occluding streamlines. We

use two shape models, the point model and the line model, to

perform deformations. Choice of which model depends on the

shape of the focus region. These two shape models can generate

effective deformation for different shapes of focus region, and

is easy for users to control interactively. For each of the two

shape models, we design a screen-space deformation algorithm

that displaces vertices of the occluding streamlines. The point and

line models are the algorithmic underpinnings for our interactive

lenses described in section 4.

3.1 Algorithm Overview

The input to our algorithm is a set of densely distributed

streamlines, which can be roughly divided into focus streamlines

and context streamlines. Focus streamlines are what the user is

interested in visualizing without any occlusion, e.g. a cluster

of streamlines with a similar shape, or a group of streamlines

passing through a user-specified region. The remainder are context

streamlines. Any streamlines that block the focus streamlines will

be deformed and moved to the side. To perform the deformation,

our F+C deformation model divides the screen space into three

regions: focus region, transition region, and context region, as

shown in Fig. 2. The focus region is a user-specified region in

screen space that contains the features of interest; the transition

region is the area that is immediately adjacent to the focus region

used to contain the deformed streamlines; and the context region

is the rest of screen space that contains undeformed streamlines.

Although streamlines are defined in 3D space, our deformation

takes place in 2D screen space, i.e., streamlines are deformed

without changing their original depth. For this reason, our shape

model described below in Section 3.2 is defined in 2D space.

The goal of the deformation is to compress and move the

occluding streamline segments from the focus region to the

transition region. To make space for these streamlines, streamline

segments that were originally in the transition region will also

be compressed and moved towards the outer boundary of the

transition region. Essentially, the deformation makes sure that the

features of interest in the focus region are occlusion-free to the

view. The occluding streamlines are deformed but not removed,

providing the context to the focus region. Any other streamlines

outside of these two regions remain unchanged.

We have two design goals for our deformation model:

1. The deformed streamline should preserve its shape as much

as possible, even though the shape is compressed. In other words,

the relative positions of the streamlines and their vertices should

be preserved.

2. After the deformation, the vertices should be distributed on

the streamline as uniformly as possible. In other words, any two

connected vertices on a streamline should not be placed too far

from or too close from each other, compared to other pairs of

connected vertices. Otherwise, the streamlines will be jagged and

a long edge between two connected vertices may cut across the

focus region.

In our algorithm, the deformation of a streamline is achieved

by displacing its projected vertices in screen space. During de-

formation, we displace the deformed vertices away from the

center of the focus region. The amount of the displacement is

determined by each streamline vertex’s distance to the center of the

focus. We design a displacement function to place the deformed

streamlines in the transition region, preserving their shapes as

much as possible, in order to satisfy our first design goal. In

addition, an adjustment is applied to the vertex displacement to

make the deformed streamlines satisfy our second design goal.

3.2 Shape Models

We designed two shape models, a point model and a line model, to

represent the shape of the focus region. Fig. 2 illustrates these two

models. The point model is designed for focus regions that have a

circular shape, while the line model is for focus regions that have

a linear shape. Both shapes are typical for streamlines. The first

section of the accompanying video demonstrates and compares

the two shape models. We note that besides the simple regular

shapes (point and line), a more complex irregular shape could be

used, e.g. a skeleton or principal curve of the streamline cluster

and their surrounding curved tube-shaped regions. However, the

resulting context streamlines would be distorted, making it hard

for users to mentally recover their original shapes. Therefore, they

are not considered in this work.

3.2.1 Point Model

As shown in Fig. 2a, the point model is composed of a 2D focus

region (the inner black ellipse in the figure), a transition area (the

area between the inner black ellipse and the outer green ellipse),

and its center O. The inner focus region can also be represented

by a convex polygon if desired. The convex polygon and the

ellipse-based focus regions have their own advantages. The convex

polygon model can more tightly cover the focus streamlines,

while the ellipse focus has a relatively smoother and more regular

shape and can be represented analytically. The center of the focus

region in the point model is the reference point from which the

streamlines are moved away.

3.2.2 Line Model

Fig. 2b shows our line model. The line model is composed of a

principal axis line (line AB), a linear bounding area immediately

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

Porig

Pnew

context

transition

focus
O

N

M

context

transition

focus

(a) (b)

transition

Porig

Pnewd

d

O

M

N

A B

Fig. 2. Sketches of the two deformation models: (a) the point model
and (b) the line model. The region inside the black boundary is the
focus region. The region between the black and green boundaries is the
transition region. The region outside the green boundary is the context
region. During deformation, the vertex moves from Porig to Pnew. In (a) O

is the center of the black ellipse, while in (b) O is the intersection point
between the line AB and the perpendicular line of AB passing through
Porig. M and N are the intersection points between the line OPorig and the
two boundaries.

outside of the principal axis that represents the focus region, and

the transition area that is an expanded area outside of the inner

focus. We call this bounding shape open blinds, because it looks

like two window blinds that are open. Around the two end points

A and B, the shape of the open blinds is represented by the tanh

function. During the deformation, we cut the streamlines in the

open blinds region by the axis line and move the streamlines to

both sides of the axis line along the direction normal to AB, until

the focus region is clear.

The point model and the line model can be selected based

on the shape of streamlines automatically. If we apply the point

model to straight streamlines distributed in an area as in Fig. 2b,

for example, some vertices will have to travel a long distance to the

region around the point A or B, resulting in a large distortion. On

the other hand, the point model is good for circular focus regions

to avoid unnecessary cutting of the streamlines happening in the

line model. The overall shape of the focus streamlines determines

which model to use. To measure the overall shape, we use the

roundness of the focus region, which is a minimum enclosing

ellipse of the focus streamlines. If the major radius of the ellipse

is much larger than the minor radius, i.e. low roundness, then we

use the line model; otherwise, we use the point model.

3.3 Deformation Model

Our method achieves the deformation by displacing its vertices

iteratively to preserve the smoothness of the streamlines through-

out the whole process, as required by our second design goal.

This means the relative positions of the vertices on a streamline

need to be updated constantly; otherwise, the distance between

two adjacent vertices on a streamline can become too large, and

consequently, the line segment between them can cut across the

focus region and still cause occlusion. To achieve this, the force-

directed algorithm [29], which considers the relative positions of

the points by moving them iteratively to generate the final layout,

inspires the design of our approach. In our method, a vertex

does not just follow a linear path and move towards a single

predetermined direction. Instead, the deformation is computed

through multiple iterations and generates an animation sequence.

In each iteration, the vertex adjusts its moving direction so that

its relative position is preserved throughout the animation. This

animation sequence provides the context, and the final layout

of the streamlines provides an occlusion-free view of the focus

region, as shown in Fig. 1d.

When a streamline is deformed, in each iteration the position

of a vertex on the streamline is modified based on two consider-

ations. First, the vertex should gradually move out of the focus

region. Second, the vertex should not be placed too far away

from its neighboring vertices. Based on these considerations, we

control the displacement of a vertex using two subcomponents,

each of which is represented by a speed and a moving direction.

Mathematically, the vertex movement can be written as:

P′ = P+ v ·~w+ vc ·~u (1)

where P′ is the new position of the vertex, P is the old position,

v ·~w represents the movement that moves the point out the focus

region, and vc ·~u makes sure that the new point position is not

too far from its neighbors. Hereafter we refer to v · ~w as the

major displacement, and vc ·~u as the minor adjustment. The two

directions ~u and ~w are shown in Fig. 3a. Below we explain each

of the terms in detail.

3.3.1 Major Displacement

At each iteration, the streamline vertex moves away from the focus

region along the direction ~w at a speed of v. The moving direction

~w is related to the underlying shape model in use. For the point

model, as shown in Fig. 2a, ~w is from the centroid O to the current

vertex position P, i.e. ~w ‖OP, which is also shown in Fig. 3a. If the

line model is used, shown in in Fig. 2b, ~w is the normal direction

of the line AB. If we draw a line through point P and perpendicular

to AB, it intersects with AB at O, and we have ~w ‖ ~OP ⊥ ~AB. For

both shape models, we generalize the definition of ~w as:

~w = normalize
(

~OP
)

(2)

The moving speed v determines the amount of major dis-

placement in one iteration. Assuming Porig is the vertex’s original

position, and d is the distance between O and the vertex’s final

position Pnew after deformation, i.e. d = | ~OPnew|. For the vertex to

reach a distance of d from O, the speed of the movement for P is

determined by how much the point has yet to travel, that is:

v = (d−| ~OP|) ·α (3)

where α is a constant that has a value in (0,1). It controls the

magnitude of the moving speed. An empirical value of α is 0.01.

Because as P moves away from O, | ~OP| keeps increasing, and thus

the speed of v keeps decreasing, until the vertex P stops moving

and arrives at its final position Pnew.

From Equation (3), we know that d determines the final

position of each streamline vertex after the deformation. Because

we want to compress and preserve the shape of the streamline, we

control the value of d using a monotonically increasing function

to transform the original distance | ~OPorig| to a larger value d. This

function, denoted as g, takes a normalized value of | ~OPorig| as its

input and has the general form:

d = g

(

| ~OPorig|

| ~ON|

)

· | ~ON| (4)

where | ~ON| is the distance between O and the outer boundary of

the transition region along the moving direction of ~w, as shown in

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

Porig

Pnew

context

transition

focus

O

g(x)

x

r

1

N M

Pl

Pr

P
u

u

w

(a)

0 .0 0 .5 1 .0 1 .5 2 .0

x

0 .0

0 .5

1 .0

1 .5

2 .0

g
(x

)
(b)

Fig. 3. (a) Illustration of the point model in the normalized space. ~w
and ~u are the two displacement directions for the point at P. Pl and Pr

are the two vertices connected to P on this streamline. (b) Blue dotted
line: normalized displacement function g in Equation (10) when r = 0.5.
Red line: a reference displacement function F(x) = x, which gives no
displacement for the entire domain.

Fig. 2. | ~OPorig| is normalized to be between 0 and 1 by dividing

its value by | ~ON|.
Fig. 3a is an illustration of the point model similar to Fig. 2a,

marked with several normalized distances to illustrate the displace-

ment function g(x). The normalized value of | ~ON| is 1. We define r

as the normalized value of |OM|, i.e. r =
| ~OM|

| ~ON|
. Before deformation,

vertices on the non-deformed streamline segments distribute over

both the focus and transition regions, so | ~OPorig| varies in the range

[0, | ~ON|], i.e.
| ~OPorig |

| ~ON|
varies in the range [0,1]. After deformation,

the transformed vertices will all go to the transition region, so d

varies in the range [| ~OM|, | ~ON|], i.e. d

| ~ON|
varies in the range [r,1].

Essentially, g monotonically transforms a value in [0,1] to a larger

value in [r,1].

3.3.2 Displacement Function

Instead of designing the displacement function g as a linear

function , we apply the transformation function of fisheye lens [16]

to design a non-linear displacement function g to control the

speed of streamline vertices as discussed in the previous section

and produce a smoother deformation across the region boundary.

Here we assume a point model with a circular boundary shown in

Fig. 3a to explain the idea. Below, we first give the design goals

of the function g, and then solve g.

Our first criterion is that, as shown in Fig. 3a, a vertex located

at O should be moved to the inner boundary of the transition region

at M, and a vertex located at the outer boundary of the transition

region at N should remain on the outer boundary. So we have:

g (0) = r (5)

g (1) = 1 (6)

Secondly, the function g must be a monotonically increasing

function to make sure that the deformed streamlines and their ver-

tices have the same relative positions to O after the deformation.

So we have:

dg (x)

dx
> 0 (7)

dg(x)
dx

describes the amount of distortion in the deformed space

at a point whose distance to O is x. We know that
dg(x)

dx
is 1 for any

points in the context region because they will not move. To ensure

that the amount of distortion smoothly changes from the transition

region to the context region at their boundary point N in Fig. 3a,
dg(x)

dx
should be continuous at that point. So we know

dg (x)

dx

∣

∣

∣

∣

∣

x=1

= 1 (8)

Finally, our last design criterion is that, from a position near

O to a position farther away from O, the amount of distortion

should also change monotonically. The value of
dg(x)

dx
should

monotonically increase from a value less than 1 to the value 1

when x changes from 0 to 1. The change of the distortion amount

is the second derivative of displacement function
d2g(x)

dx2 . So we

get:

d2g (x)

dx2
> 0 (9)

Combining the four criteria from Equations (5) - (9), we can

solve the displacement function g. There is more than one solution

for g, and we use the simplest one:

g (x) =
(r−1)2

−r2x+ r
−

1

r
+2 x ∈ [0,1] (10)

To show that the above function satisfies the four criteria,

we plot Equation (10) in Fig. 3b. The figure clearly shows that

Equations (5) - (9) are satisfied.

(a) point model (b) line model

Fig. 4. Deformed grids using two shape models with r = 0.5.

If we use the displacement function g to move a regular grid

with our two shape models, we get the deformed grids shown in

Fig. 4. Note that we create a void focus region at the center of

the grid, because g (x)≥ g (0) = r for x ∈ [0,∞); all the streamline

vertices will be cleared out of the focus region. We also notice

that for the same amount of distortion (same value of r) in the

space we can create a larger void space with the line model shown

in Fig. 4b than the point model shown in Fig. 4a. Besides, the

deformed grid in the point model shows more stretching but less

compression than the deformed grid in the line model.

3.3.3 Minor Adjustment

The minor adjustment plays an important role in making the

vertices uniformly distributed on the deformed streamline and thus

satisfies the second design goal of our deformation model. During

our deformation process, some edges can be stretched more, which

makes those portions of the streamline jagged. Furthermore, the

long edge can cut across and hence still occlude the focus region,

which is undesired.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

As shown in Fig. 3a, the vertex P is connected to two vertices

at point Pl and point Pr with two edges. A local approach to

uniformly distribute the vertices over the streamline is that each

vertex moves towards the farther one of the two neighboring

vertices through multiple iterations so that the relative positions

among the vertices are preserved. This shortens the longest edge

in each iteration, and eventually no edge is much longer than the

other edges.

The minor adjustment vc ·~u is a product of a constant adjust-

ment speed vc and an adjustment direction ~u. ~u is a normalized

direction parallel to the longer connected edge, which is defined

as:

~u =

normalize(~PPl), if | ~PPl |> | ~PPr|

normalize(~PPr), if | ~PPl |< | ~PPr|
~0, if | ~PPl |= | ~PPr|

Note that the minor adjustment may move the vertex in a

direction other than the direction of major displacement ~OP,

which ends up changing ~w in the next iteration. This change

is not recoverable for the later iterations. Therefore, when the

viewpoint or the focus region is changed during the deformation,

if we continue the deformation with the new value of ~w or | ~ON|,
then we can still keep the focus region occlusion-free, but we

may not be able to preserve the shape of deformed streamlines

in the transition region. The solution is to recover the streamlines’

original positions and redo the deformation from the first iteration.

4 INTERACTIVE DEFORMATION

In this section we introduce a streamline exploration tool, in-

teractive 3D lens, based on the deformation algorithm described

above. To overcome the occlusion problem, the lens can be placed

anywhere in the image space with an adjustable depth to peel

away the occluding streamlines layer by layer. To enhance the

experience of user interaction, we use a direct-touch technique to

allow users to control the lens directly on the screen with multi-

touch gestures.

4.1 Interactive 3D Lens

The interactive lens is useful when users want to freely explore

the computed streamlines. The lens defines a focus region with a

certain depth range. Any streamline that is entirely or partly under

the lens and closer to the viewer than the far side of the lens is

treated as a context streamline and will be moved out of the focus

region in the screen space. The other streamlines are all treated as

focus streamlines that will not be deformed, even when they are

not the interesting features.

We design our interactive 3D lens as a 3D cylindrical object,

shown as the black cylinder in Fig. 5. The lens resides in screen

space with depth defined, shown as the blue cube in the figure. The

axis of the cylinder is perpendicular to the screen, i.e., parallel

to the z axis, and the top surface of the lens is parallel to the

XY plane. The length of the cylinder is used as the lens depth.

For the point model, the lens has an elliptical surface; while for

the line model, the lens surface has an open blind shape. As the

example shows in Fig. 5, there are three streamlines (one red and

two green), but only the red streamline that intersects with the

lens will be deformed. In the deformation, all the vertices on the

red streamlines will be moved out of the surface region in screen

u
rfa
c
e

Fig. 5. The 3D lens. The blue cube denotes the 3D space. The yellow
square denotes the 2D screen space. The lens has an ellipse-shaped
surface on the plane of the screen. Inside the cube, there are three
streamlines.

(a) (b)

(c) (d)

Fig. 6. A point-model lens is applied to the streamline visualization in (a)
to push layers apart and reveal the hidden red curled vortex in (b). A
line-model lens cuts up a flow field in (c) into 2 halves and pushes them
aside to expose the olive colored helix twisted vortex in (d).

space, even for the right tail of the red streamline that is not inside

the cylinder.

Fig. 6 (a)-(d) show examples of the interactive 3D lens using

the point and the line deformation models. In Figures 6a and

6b, we use a lens with the point deformation model to move

the straight streamlines in the front away and reveal the vortex

gradually through animation (please see the accompanying video).

In Fig. 6c and 6d, a lens with the line deformation model is

used to break the outside of the vortex in two, so that the

inner structure, which was previously occluded, now becomes

visible. Even though the streamline around the inner structure

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

only partially intersects with the 3D lens, we treat the entire

streamline as the context streamline and let all the vertices on

it be deformed out of the screen space focus region in order to

ensure the continuity of deformation on this streamline.

In the interactive system, users can use the mouse buttons to

modify the size, shape, and orientation of the lens surface on the

screen to specify the focus region. In addition, users can use the

mouse wheel to change the lens depth to explore the streamlines

at different layers in z direction.

In summary, the interactive 3D lens uses our view-dependent

deformation model to explore and reveal hidden streamlines in the

flow field. By using the lens, users can freely move their focus to

different locations and change the shapes of the lens interactively

to search for interesting streamlines. Because the lens is always

perpendicular to the image space, users can rotate the field and

change the depth of the lens to explore the 3D space. Users can

progressively discover the features at different depths even when

the features are deeply buried inside the field, or move the lens

around to explore different parts of the focus streamlines when

they are very long. Because our deformation can be performed

interactively, users can go back and forth to replace the deformed

streamlines to enhance their understanding of the 3D features.

4.2 Specialized Lenses

The interactive 3D lens described above has received positive

feedback and suggestions of extension from researchers. Thus,

we enhance our lens with additional features to meet special

needs in feature exploration. Streamline features look different

at different depths and screen locations. A good interactive lens

should adapt itself to those different features in order to better

preserve the context and accelerate the process of finding features.

In this section, we propose the layered lens and the polyline lens,

which can explore features at different depths and different screen

locations with improved flexibility and adaptability.

4.2.1 Layered Lenses

In camera space, since streamlines in different layers have dif-

ferent shapes and orientations, a lens used for the top-most layer

may not be able to reveal features clearly at a different depth

layer. For example, when users use the open blind lens to cut

the streamlines and move them to the side, they usually want to

make the cut direction follow the trajectories of the streamlines.

If the directions of the streamlines vary in different layers, the

cut directions should also be different in different layers. Another

reason to have layered lenses is that users usually want to explore

the data in a wider screen area first at the top layers, and then focus

on a smaller screen area of interest to inspect the inner structures.

To make the deformed streamlines on the top layers unchanged as

the context while exploring the smaller scale features in the inner

layers, our layered lenses can make different screen sizes of focus

regions in different depths and present the users with multiple

layers of contexts.

The layered lenses are composed of a set of regular lenses with

increasing depths and decreasing screen sizes, as shown from left

to right in the Fig. 7. The lenses are connected to each other in

the depth direction. Between two adjacent lenses, the screen area

of the lens with a larger depth is contained within the screen area

of a smaller depth lens. A streamline passing through more than

one lens will be deformed by the lens with the smallest depth,

because deforming streamlines by multiple lenses can result in

s
c
re
e
n

depth

Fig. 7. Layered lenses are composed of three connected lenses, shown
as dash line frames in three different colors. The red lens has the small-
est depth and largest screen area, while the blue lens has the largest
depth and smallest screen area. The streamlines will be deformed by the
lens that has the same color with the streamline. The yellow streamline
is the focus feature and will not be deformed.

large distortion. Also, lenses with smaller depth have larger screen

size, and thus can create a larger void region to look through.

For example in Fig. 7, the green streamline intersects with both

the green lens and the blue lens. Because the green lens has a

smaller depth and larger screen size, the green streamline will

be deformed by the green lens but not the blue lens. After the

deformation, the streamlines originally located in the three lenses

will be removed from the three 3D focus regions. Then, users will

be able to see the yellow focus streamline and also see the three

deformed streamlines (red, green and blue streamlines) as contexts

in different layers.

Fig. 8. Using layered lenses to open the brain tumor data set. Deformed
streamlines are colored by lens and deformation magnitude, e.g. red
streamlines are deformed by the top-most lens, and regions of darker
red are deformed more than regions of lighter red.

To demonstrate the use of our layered lenses, we apply it on

white matter tracts which are generated from a brain diffusion

tensor dataset using the 3D Slicer software [30], [31]. This dataset

has a resolution of 256× 256× 51 with a 3× 3 tensor matrix

on each grid point. Because this data is from a patient with a

brain tumor, we visualize the tumor as a polygonal surface in

addition to the while matter tracts. By visualizing the streamlines

and the surface together in Fig. 8, users can explore the tracts,

the tumor and their relationships. From the figure, we can see the

white brain tumor through the three lenses of different sizes and

orientations. We give the deformed streamlines different colors

according to their affecting lens in order to differentiate them from

the unchanged ones and the ones deformed by other lenses. The

biggest lens is closest to the viewer and the color of its deformed

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

streamline is red; while the smallest lens is the deepest inside the

volume and has yellow deformed streamlines. With the layered

lens, different layers of streamlines can coexist in the same image,

which gives users better context while exploring the 3D space.

4.2.2 Polyline Lens

As said previously, having a lens with an irregular shape, e.g. an

arbitrary polygon, is not desired because the affected streamlines

will be distorted too much and tend to conform to the shape of

the lens. On the other hand, a feature can have an irregular shape,

which can be difficult to inspect in detail by either the ellipse lens

or the open blind lens. In order to allow the focus region to have

more general shapes, we propose the polyline lens, which supports

more complex shapes with relatively little distortion. It divides the

streamlines by a series of connected straight lines, or a polyline,

and pushes the context streamlines to the side. It works similarly

to the open blind lens, but with more flexible shapes and can easily

fit a curvy streamline.

P1

P2

1

�

� �

11

focus

transition
N�

M�

N1

M1N3

M3

4

N�

M�

P�

P�

�

Fig. 9. Illustration of polyline lens. The red dashed lines, AO1 and O1B,
are two connected line segments that compose a polyline lens. The
region inside the black lines is the focus region. The region between
black lines and the green lines are the transition regions. Outside the
green lines are the context regions. The deformation regions of two line
segments intersect on line GO2. Draw lines from point O1 perpendicular
to line EG and FG, which intersect at point C1 and D1, respectively. Draw
lines from point O2 perpendicular to line AO1 and BO1, which intersect at
point C2 and D2. The deformation region in the entire domain is divided
into three regions, marked with red, green and blue background colors.
P1, P2, P3 and P4 are four vertices located in three different color regions.
The black arrows show their moving directions during deformation. The
extension lines of the directions are the black dash lines, which intersect
with the region boundaries at M1,2,3,4 and N1,2,3,4.

(a) (b)

Fig. 10. Magnified views of the red and green regions in Fig. 9. The blue
streamlines become the purple streamlines after deformation.

The deformation of the polyline lens mostly follows the

deformation of the line model, except for the vertices near the

joint of two connected line segments. For example in Fig. 9,

polyline AO1B is part of a polyline lens, which cuts the streamlines

and pushes them out of the focus region. Our line model cannot

be used to define the movement of the vertices in the red and

green regions, because the red/green focus region has completely

different shape with the red/green transition region, i.e. one is a

triangle and the other is a trapezoid. For example in Fig. 10a, the

red region with white dotted texture is a triangular focus region;

while the red region with checkerboard texture is a trapezoidal

transition region. By simply using line model and pushing vertices

along the direction perpendicular to the region boundaries, the

streamlines in the dots region plus checkerboard region cannot

be uniformly fitted in the checkerboard region. To give another

example, there is a blue streamline in the red region in Fig. 10a

and one in the green region in Fig. 10b. When they follow the line

mode and move along the arrow dash lines, the middle two vertices

will diverge in the red region and converge in the green region.

As a result, the deformed streamline vertices in the red/green

transition regions are either too sparse to be smooth (in the red

region) or too congested to be visible (in the blue region).

To achieve a smooth and continuous deformation around the

joint area of the polyline lens, we want to compress the red region

space into its upper transition region, and compress the green

region space into its lower transition region. We notice that such

compression will cause the vertices to move in a radial direction.

For the red region, vertices move away from point O1; while for

the green region, vertices move towards point O2. Thus, we can

apply the point model in the two regions in the joint areas. For

the red region, we can directly apply the point model and push

vertices away from the center O1. On the other hand in the green

region, instead of pushing, vertices are pulled towards the center

O2.

To determine how far a vertex should move, we still use

our displacement function g(x) to compute the vertex’s desired

distance to the focus region center by Equation (4). For example,

there are four vertices P1,2,3,4 in Fig. 9, which are from the regions

of three different colors and follow the four black arrows to move.

Vertex P1 is in the red region and follows the point model. It

is pushed away from O1 until reaching a distance of d1 from O1,

where

d1 = g

(

| ~O1P1|

| ~O1N1|

)

· | ~O1N1| (11)

Vertex P3 is in the blue region and follows the line model. After

deformation, its distance to O3 is

d3 = g

(

| ~O3P3|

| ~O3N3|

)

· | ~O3N3| (12)

If P1 and P3 are very close to each other at the boundary of red

and blue region, i.e. line O1C1, then we have ~|O1P1| = | ~O3P3|
and | ~O1N1| = | ~O3N3|. From Equations (11) and (12), we got

d1 = d3. This means that the deformation is continuous around

the boundary of the red region and the green region.

Vertex P2 is a point in the green region and follows the point

model. Equivalent to pulling towards O2, we can think of it as

pushed away from N2 and reach a distance of d2 from N2, where

d2 = g

(

| ~N2P2|

| ~O2N2|

)

· | ~O2N2| (13)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

Same as P3, Vertex P4 follows the line model and is pushed away

from O4 at a distance of

d4 = g

(

| ~O4P4|

| ~O4N4|

)

· | ~O4N4| (14)

If P2 and P4 are very close to each other around the boundary of

the green region and the blue region, i.e. line O2D2, then we have

| ~N2P2| = | ~O4P4| and | ~O2N2| = | ~O4N4|. From Equations (13) and

(14), we know that d2 = d4, which means the deformation around

the boundary of the green region and the blue region is continuous.

Because the red region and the green region do not share a

boundary, we do not need to verify the deformation continuity

between them. Although our polyline lens uses both the point

and line models in different deformation regions, its deformation

is still continuous at the boundary of the regions using different

deformation models.

Fig. 11. Using the polyline lens to open the brain tumor data set.

Fig. 11 demonstrates a visualization of the brain tumor in

the white matter tracts with the polyline lens. A polyline lens

is drawn by the user to make it follow the curvy shape of the

tumor. Streamlines around the lens are cut and pushed away from

the lens region. The deformed streamlines around the joint of two

connected line segments are smoothly deformed and continuously

connected to the surrounding deformed streamlines. Compared

to the regular ellipse lens and open blind lens, the shape of the

polyline lens can closely follow the tumor’s shape, which distorts

the streamline less and preserves the context better.

4.3 Direct-Touch Interaction

Because our deformation model is in screen space, it would be

intuitive to interact with the streamlines directly on a direct-touch

display, so that users can use the screen as an interaction space and

pull away the occluding streamlines with their fingers. It has been

reported that touch-based visualization can benefit the users with

its ability of direct manipulation and smooth interaction [32]. In

our system, users cut and move the streamlines with the interactive

3D lens, which requires users to specify its location and shape. Six

degrees of freedom (DOF) need to be supported for the lens: 2D

translation on the screen, 1D angle representing the orientation of

the lens, 1D scaling factor for the two radii of the ellipse shape

lens surface, and the 1D lens depth.

A traditional way to specify the 6DOF of the lens is through

mouse interaction, i.e. adjusting the lens surface screen position

and shape with mouse dragging, and adjusting lens depth with

Fig. 12. Placing an open blade shape lens with two fingers on a multi-
touch display.

mouse wheel scrolling. With a multi-touch display, we can replace

all the mouse interaction with more intuitive and efficient direct-

touch interaction, as described by the following. With one finger,

users can change 1DOF or 2DOF of the lens at a time, i.e.

translation or rotation or scaling. When two fingers are placed

on the boundary of the lens and move, users can change 4DOF

of the lens at the same time. Swiping two fingers changes the

2D screen location of the lens; rotating two fingers changes the

1D lens orientation; and pinching two fingers changes the size

of the lens. Pinching out/in two fingers inside the lens allows

users to increase/decrease the 1DOF lens depth and simulates

pushing away or pulling back the streamlines. Users can also

drag one or two fingers on screen to specify a cutting line of

an open blade lens. This touch interaction simulates the process

of cutting streamlines with finger tips, as shown in Fig. 12. The

Hurricane Isabel dataset is used in Fig. 12. Hurricane Isabel was

a strong hurricane in the west Atlantic region in September 2003.

The resolution of the dataset is 500 × 500 × 100. An efficient

GPU implementation of the streamline cutting process makes the

cutting effects responds to the cutting gestures in real-time. The

viewpoint navigation is also enabled with multi-touch gestures.

The accompanying video demonstrates the interactions with the

multi-touch display.

5 CASE STUDY

With the proposed deformation algorithm, as well as the interac-

tive 3D lens and direct-touch interface, we design an interactive

system for streamline exploration. We perform two case studies

using our technique with two types of data: vector field data and

tensor field data.

5.1 Streamlines from Vector Fields

In this section, we provide a case study that uses our system to

explore the Solar Plume dataset in three different ways: exploring

the streamlines at different depths, from different view directions,

and at different locations. In this case study, we provide two

ways to define focus streamlines, first as streamline bundles in

Section 5.1.2, and second as streamlines passing through a user-

specified region in Section 5.1.3. Note that users are free to use

other methods to define the focus streamlines depending on their

needs. Alternatively, when the 3D lens is used, users are not

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

required to define their focus streamlines but can simply move the

lens around the 3D space and search for them. The Solar Plume

dataset comes from a simulation of the solar plume on the surface

of the Sun. The resolution of the dataset is 126× 126× 512. A

demonstration of this case study is shown in the accompanying

video.

5.1.1 Exploration with Different Depths

(a) (b) (c)

Fig. 13. Exploring streamlines at different depths by the interactive 3D
lens with different lens depths.

Streamlines of different depths may be projected to the same

screen location, and those with smaller depths will occlude the

ones with larger depths. Our interactive 3D lens can help show the

streamlines at all different depths with reduced occlusion. To do

this, we can exploit the 3D lens that uses the line deformation

model with open blinds to explore the streamlines, as shown

in Fig. 13. In Fig. 13a, initially the lens does not touch any

streamlines so no streamline is deformed. We see a vertical vortex-

like object close to the surface of the volume. We push the lens

into the volume by increasing the lens depth, and then we see the

blue horizontal streamlines in the center of the volume, shown in

Fig. 13b. Finally in Fig. 13c, we increase the lens depth even more

to remove the straight streamlines and a funnel shaped vortex is

revealed in the back of the volume.

5.1.2 Exploration with Different View Directions

A 3D object may look very different from different views; hence

it is important to view a 3D feature from different view direc-

tions to obtain a complete understanding of its shape. Because

our deformation model is view-dependent, we can remove the

occlusion regardless of the view direction. Furthermore, users can

get different context information from different views.

(a) front (b) left (c) top

Fig. 14. Views of a bundle from different view directions.

In Fig. 14, we treat the streamline bundle as the focus stream-

lines and view them from three different sides of the volume.

A streamline bundle is a cluster of streamlines that are similar in

location and shape. We measure the similarity between the stream-

lines with the mean of closest point distance [33], and cluster

the streamlines using hierarchical clustering. The focus region is

represented by the convex hull or the minimal enclosing ellipse of

the focus streamlines. The streamlines not in the bundle, including

the streamlines behind the bundle, are the context streamlines and

will be moved out of the focus region.

This bundle shows a turbulent flow structure with straight tails.

From the front view of the bundle in Fig. 14a, a yellow vortex is

preserved at the upper-left of the figure in the context region. In

the left view of the volume (Fig. 14b), the contexts appear to

be stretched long streamlines, which look very different from the

front view. In the top view of the bundle (Fig. 14c), we can see

some curvy vertical streamlines. The yellow vortex visible in the

context of Fig. 14a is again visible from this view, which has a

more complete shape than that in Fig. 14a.

Fig. 1 is another example of streamline bundles using the

Hurricane Isabel dataset. In the accompanying video, we also

use the Isabel dataset to explore the bundle from different view

directions.

5.1.3 Exploration with Different Locations

(a) (b) (c)

Fig. 15. Exploring flow features at different locations. The streamline
picking cube moves bottom up from (a) to (c).

Users sometimes are interested in the flow behavior in a

particular spatial region. In our system, users are allowed to place

a small axis-aligned cube in the domain, and then the streamlines

passing through this region are selected as the focus streamlines.

The minimal enclosing ellipse of the focus streamlines defines the

focus region. Here we illustrate the exploration of the streamlines

from different locations around a vortex. In Fig. 15, the streamlines

passing through the selected location indicated by the green cube

are shown. In Fig. 15a, we place the cube at the bottom of the

space. A narrow vortex is selected and shown with some wider

vortex-shaped streamlines on the side. This image tells us that the

flow passing through the selected region extends to the top and the

side of the surrounding area. When we move the cube up, a new

set of focus streamlines is selected as shown in Fig. 15b. From the

tails of the focus streamlines on the left, we know that this selected

location is connected to the left side of the flow. We move the cube

to the top of the volume, as shown in Fig. 15c. As can be seen,

the flow behaviors are different on the top and the bottom of the

regions. The vortex on the top is located in a small region, while

the vortex at the bottom extends to a wider area. Note that the

three images in Fig. 15 all preserve the context features, such as

the purple vortex on the left and the horizontal straight streamlines

on the right.

5.2 White Matter Tracts from Diffusion Tensor Imaging

Diffusion tensor MRI (DTI) provides directional diffusion in-

formation that can be used to estimate the patterns of white

matter connectivity in the human brain. Diffusion tensor imaging

(DTI) and white matter tract fiber tractography have opened

new, noninvasive windows into the white matter connectivity

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

of the human brain. DTI and fiber tractography have advanced

the scientific understanding of many neurologic and psychiatric

disorders and have been applied clinically for the presurgical

mapping of eloquent white matter tracts before invasive tumor

removal surgeries [34].

The most common technique for visualizing the white matter

tracts from DTI uses the major diffusion tensor eigenvector to

define the local white matter tract direction [35], [36], [37].

The result is a dense set of tracts, which can be represented as

streamlines (or tensorlines [35]).

5.2.1 Exploring Reshaped Tracts

(a) (b) (c)

Fig. 16. Placing the layered lenses on reshaped tracts to see how the
tumor influences its surrounding tracts.

A growing brain tumor tends to compress and re-orient white

matter tracts into abnormal configurations. As seen in Fig. 16a, in

the center near the bottom, the tracts are distributed horizontally

and connect the left and right halves of the brain. However, the

tracts above and to the left of the horizontal tracts are diagonal

and not symmetric because they are reshaped by the tumor.

To further explore the tracts near the tumor, in Fig. 16b,

we place an open blind lens vertically to cut the tracts and

move them to the left and right sides. It becomes clearer that

the orientations of the tracts change from horizontal (normal) to

diagonal from bottom up. We also notice that the tumor has a

vertical elongated shape, which is the same orientation of the tracts

on the surface of the tumor. This observation supports the finding

that the tumor cells move faster along the white matter fiber tracts

in the brain [38].

In order to look at the deeper tracts near the tumor and without

losing much context information, we place a second smaller

layered lens on the top region of the first lens and make the cut

following the orientation of the tracts, as shown in Fig. 17c. Inside

the second lens, we can see the tracts are connected to the right

half of the brain, but not connected to the left half. This may

indicate the white matter on the left has been destroyed.

5.2.2 Exploring Tracts Around Tumor

Because tracts around the tumor are of significant interest to

neurosurgeons, we can place a polyline lens around the tumor

by following its silhouette, as shown in Fig. 17. Before applying

the lens as in Fig. 17a, tracts are densely distributed above and

around the tumor, which makes it difficult to inspect the tracts that

are close to the tumor but deeper inside. After placing a polyline

lens around the tumor, we create curved band shape focus region,

as shown in Fig. 17b. When the streamlines on the surface are

removed from focus region, we can see that the tracts above the

tumor is connected to the tracts on the right side. The tracts on

the left side are vertically oriented. Some of them even penetrate

through the tumor. After further increasing the lens depth, we see

the deeper tracts in Fig. 17c. Those tracts at the bottom right of the

tumor are relatively smooth and mostly horizontally distributed.

(a) (b) (c)

Fig. 17. Placing a polyline lens around the tumor to inspect the relation-
ship between the tumor and its surrounded tracts.

5.2.3 Feedback from Domain Experts

To gain useful, informal feedback, we demonstrated our streamline

exploration approach to five neuroscience experts: a biomedi-

cal engineer, two neuroradiologists and two neurosurgeons. All

experts have used primarily 2D slice- and transparency-based

occlusion reduction techniques for tract visualization. They were

all very positive about the deformation approach and said that

it is ”smooth”, ”very useful” and could be a ”terrific tool.” One

neuroradiologist noted that the 3D environment allowed him to

see relationships that he could not see with his 2D tools and the

biomedical engineer appreciated that the deformation approach

gives greater spatial context with less clutter than transparency

techniques. Two experts were interested in using the software

to explore objects and features deeply embedded beneath tract

streamlines for deep brain probing and, interestingly, visualization

deep into the kidneys. Additional application suggestions included

visualization of tract disruption in trauma cases, intraoperative

visualization, tract morphology in cases of Multiple Sclerosis and

other neurological disorders, and endoscopy simulation. We based

the coloring of deformed streamlines (see Fig. 8) from expert

feedback, as it gives a clear visual cue of true versus deformed

morphology.

6 PERFORMANCE

We measured the performance of our interactive streamline de-

formation system on a machine running Windows 7 with Intel

Core i7 2600 CPU, 16 GB RAM, and an nVidia GeForce GTX

560 GPU that has 336 CUDA cores and 2GB of memory. Table 1

shows the results of two test datasets, Plume and Isabel. In our

implementation, the CGAL library [39] is used to extract 2D/3D

convex hulls and ellipse-shaped focus regions. To speed up the

computation, CUDA and the Thrust library [40] were used to

perform the deformation computation.

Four different operations related to our deformation model

described previously were tested and the timings were collected.

The Cut operation is the first step of deformation for the line model

(Section 3.2), which cuts a streamline into multiple streamlines

by a straight line. The Lens operation runs in the interactive 3D

lens mode (Section 4), which searches for the streamlines that

intersect the lens, and is done only when the lens or the view is

changed. The Location operation runs in the streamline selection

stage by the location mode (Section 5.1.3), which searches for

the streamlines that pass through the cubic region only after the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

TABLE 1
Performance test results.

Dataset Plume Isabel

Count Streamlines 921 609

Total vertices 317,814 522,436

Operation time for Cut 22 36
preparing deformation Lens 6 9

inputs (ms) Location 7 7

Deformation time Ellipse(point model) 0.67 1.08

(ms) Polygon(point model) 13.8 25.1
Blinds(line model) 0.81 1.27

3 layered lens(line model) 0.783 1.44

Polyline lens(6 segments) 1.53 1.83

Frame Rate (FPS) Ellipse(point model) 536 347
Polygon(point model) 58.3 35.4

Blinds(line model) 483 293

3 layered lens(line model) 226 147
Polyline lens(6 segments) 209 144

cube location is changed. The results show that these operations

only take a few milliseconds, and they are only executed when

some settings are changed. Therefore, they do not affect the overall

performance of our algorithm much. The deformation operation is

performed at every frame, so its speed is crucial for the interac-

tivity of the system. We measured the deformation computation

time and the overall frame rates for the three models described

in Section 3.2. Note that the overall frame rate was computed

from the average time of drawing each frame and is not related

to the constant deformation speed. It reflects the speed of our

algorithm in all stages, including the CUDA-based deformation

operation, data transfer, and coordinates transformation. The point

model with the ellipse focus takes the shortest deformation time

and has the highest frame rate, while the line model is slightly

slower, but highly interactive. They are both suitable for real-

time performance. The point model with the convex polygon

as its focus region is much slower for deformation and has a

comparatively lower frame rate because the shapes of both the

ellipse and the open blinds have an analytical representation, but

the convex polygon is represented by a point set. Although this

model is comparatively slower, it is still moderately interactive in

our implementation running at at least 30 frame per second (FPS).

We also measured the performances of the three layered lenses

with line model and the polyline lens composed of 6 line segments.

Their speeds are slightly lower than the basic open blind lens,

but still high enough to guarantee the interactivity of the system.

Finally, we can also see that the Plume dataset has a higher frame

rate than the Isabel dataset because the deformation operates on

each vertex and the Plume dataset has fewer vertices.

7 CONCLUSION AND FUTURE WORK

We have presented a streamline deformation technique to achieve

occlusion-free focus+context streamline visualization, by displac-

ing the occluding streamline vertices in screen space. Our defor-

mation model has the following advantages:

• Creates an occlusion-free view from arbitrary view direc-

tions.

• Minimizes the distortion of the context streamlines.

• Provides smooth transition when distorting the deformed

streamlines.

• Provides interactive performance.

In this paper we describe the deformation model and its two

variations regarding the shape model used in deformation, the

point model and the line model. To allow users to freely explore

the flow field without prior knowledge, our system provides an

interactive 3D lens and direct-touch control to move away the

streamlines in user-specified regions in screen space at a given

depth. To satisfy different user requirements, we provide the

layered lenses and the polyline lens that explore the features

in different layers and the features of more complex shapes.

Our interactive streamline exploration system is based on our

deformation model and we demonstrate our system through a

case study using the Plume dataset and the brain diffusion tensor

dataset with expert feedback. Our deformation algorithm is easy

to parallelize and can achieve high performance using GPUs, and

thus can be used for interactive exploration of flow datasets. We

believe our interactive streamline exploration approach can help

CFD scientists, engineers and neuroscientists to freely explore the

data and also help students to learn about flows and brain structure.

One limitation of our deformation model is that some de-

formed streamlines close to the center of the focus region may

still get significant distortion as they are deformed, so the original

shapes of these streamlines are not well preserved. The focus

region should be relatively small and local to the feature of interest

to prevent too much distortion in the context. When the viewpoint

is changed abruptly, the transition of deformation may not always

be smooth, so sometimes users need to restart the deformation for

the new viewpoint.

Our future work is to apply a combination of deformation

and transparency to solve the occlusion problem. We can use

transparency on the streamlines whose shapes can not be well

preserved by the deformation. Our system can also be enhanced

with interactive seeding of streamlines. The deformation model

can be better designed to convey more depth information of the

deformed streamlines. To allow focus streamlines distributed in

different regions of the image space, the system should allow

deformation in multiple focus regions simultaneously. Our defor-

mation model can also be designed to work with an animation of

streamlines from time-varying flow field datasets. More interactive

tools, with different shapes of focus region and more methods to

select focus streamlines can be added to our exploration system to

allow more flexible feature exploration in screen space.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Founda-

tion grants IIS-1250752 and IIS-1065025; and by U.S. Department

of Energy grants DE-SC0007444, DE-DC0012495, and award

59172; and by National Institutes of Health grant P41GM103545.

The Pacific Northwest National Laboratory is managed for the

U.S. Department of Energy by Battelle under Contract DE-AC05-

76RL01830.

REFERENCES

[1] C. Correa, D. Silver, and M. Chen, “Illustrative deformation for data ex-
ploration,” IEEE Transactions on Visualization and Computer Graphics,
vol. 13, no. 6, pp. 1320–1327, Nov. 2007.

[2] J. Tao, C. Wang, C.-K. Shene, and S. H. Kim, “A deformation framework
for focus+context flow visualization,” IEEE Transactions on Visualiza-

tion and Computer Graphics, vol. 20, no. 1, pp. 42–55, Jan. 2014.
[3] S. W. Park, B. Budge, L. Linsen, B. Hamann, and K. I. Joy,

“Dense geometric flow visualization,” in Proc. of the Eurographics -

IEEE VGTC Symposium on Visualization, 2005, pp. 21–28. [Online].
Available: http://dx.doi.org/10.2312/VisSym/EuroVis05/021-028

[4] L. Xu, T.-Y. Lee, and H.-W. Shen, “An information-theoretic framework
for flow visualization,” IEEE Transactions on Visualization and Com-

puter Graphics, vol. 16, no. 6, pp. 1216–1224, Nov. 2010.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

[5] X. Tong, C.-M. Chen, H.-W. Shen, and P. C. Wong, “Interactive stream-
line exploration and manipulation using deformation,” in Proc. of IEEE

Pacific Visualization Symposium, April 2015.

[6] W. Li, L. Ritter, M. Agrawala, B. Curless, and D. Salesin,
“Interactive cutaway illustrations of complex 3d models,” ACM

Trans. Graph., vol. 26, no. 3, Jul. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1276377.1276416

[7] M. McGuffin, L. Tancau, and R. Balakrishnan, “Using deformations for
browsing volumetric data,” in Proc. of IEEE Visualization, Oct. 2003, pp.
401–408.

[8] C. Hurter, R. Taylor, S. Carpendale, and A. Telea, “Color tunneling:
Interactive exploration and selection in volumetric datasets,” in Proc. of

IEEE Pacific Visualization Symposium, March 2014, pp. 225–232.

[9] O. Mattausch, T. Theußl, H. Hauser, and E. Gröller, “Strategies
for interactive exploration of 3D flow using evenly-spaced
illuminated streamlines,” in Proc. of the 19th Spring Conference

on Computer Graphics, 2003, pp. 213–222. [Online]. Available:
http://doi.acm.org/10.1145/984952.984987

[10] L. Li and H.-W. Shen, “Image-based streamline generation and ren-
dering,” IEEE Transactions on Visualization and Computer Graphics,
vol. 13, no. 3, pp. 630–640, May 2007.

[11] S. Marchesin, C.-K. Chen, C. Ho, and K.-L. Ma, “View-dependent
streamlines for 3D vector fields,” IEEE Transactions on Visualization

and Computer Graphics, vol. 16, no. 6, pp. 1578–1586, Nov. 2010.

[12] T.-Y. Lee, O. Mishchenko, H.-W. Shen, and R. Crawfis, “View point
evaluation and streamline filtering for flow visualization,” in Proc. of

IEEE Pacific Visualization Symposium, March 2011, pp. 83–90.

[13] T. Günther, C. Rössl, and H. Theisel, “Opacity optimization for 3d line
fields,” ACM Trans. Graph., vol. 32, no. 4, pp. 120:1–120:8, Jul. 2013.
[Online]. Available: http://doi.acm.org/10.1145/2461912.2461930

[14] A. Brambilla, “Visibility-oriented visualization design for flow
illustration,” Ph.D. dissertation, Department of Informatics, University
of Bergen, Norway, December 2014. [Online]. Available:
http://hdl.handle.net/1956/8961

[15] G. W. Furnas, “Generalized fisheye views,” in Proc. of the SIGCHI

Conference on Human Factors in Computing Systems, 1986, pp. 16–23.
[Online]. Available: http://doi.acm.org/10.1145/22627.22342

[16] M. Sarkar and M. H. Brown, “Graphical fisheye views of
graphs,” in Proc. of the SIGCHI Conference on Human Factors

in Computing Systems, 1992, pp. 83–91. [Online]. Available:
http://doi.acm.org/10.1145/142750.142763

[17] E. Gansner, Y. Koren, and S. North, “Topological fisheye views for visu-
alizing large graphs,” IEEE Transactions on Visualization and Computer

Graphics, vol. 11, no. 4, pp. 457–468, July 2005.

[18] E. LaMar, B. Hamann, and K. Joy, “A magnification lens for interactive
volume visualization,” in Proc. of the 9th Pacific Conference on Com-

puter Graphics and Applications, 2001, pp. 223–232.

[19] M. S. T. Carpendale and C. Montagnese, “A framework for unifying
presentation space,” in Proc. of ACM Symposium on User Interface

Software and Technology, 2001, pp. 61–70. [Online]. Available:
http://doi.acm.org/10.1145/502348.502358

[20] L. Wang, Y. Zhao, K. Mueller, and A. Kaufman, “The magic volume
lens: an interactive focus+context technique for volume rendering,” in
Proc. of IEEE Visualization, Oct. 2005, pp. 367–374.

[21] X. Zhao, W. Zeng, X. Gu, A. Kaufman, W. Xu, and K. Mueller, “Confor-
mal magnifier: a focus+context technique with local shape preservation,”
IEEE Transactions on Visualization and Computer Graphics, vol. 18,
no. 11, pp. 1928–1941, Nov. 2012.

[22] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D.
DeRose, “Toolglass and magic lenses: the see-through interface,”
in Proc. of SIGGRAPH, 1993, pp. 73–80. [Online]. Available:
http://doi.acm.org/10.1145/166117.166126

[23] A. Fuhrmann and E. Gröller, “Real-time techniques for 3D flow visual-
ization,” in Proc. of Visualization, Oct. 1998, pp. 305–312.

[24] R. Gasteiger, M. Neugebauer, O. Beuing, and B. Preim, “The
FLOWLENS: a focus-and-context visualization approach for exploration
of blood flow in cerebral aneurysms,” IEEE Transactions on Visualization

and Computer Graphics, vol. 17, no. 12, pp. 2183–2192, Dec. 2011.
[Online]. Available: http://dx.doi.org/10.1109/TVCG.2011.243

[25] J. Krüger, J. Schneider, and R. Westermann, “Clearview: an interactive
context preserving hotspot visualization technique,” IEEE Transactions

on Visualization and Computer Graphics, vol. 12, no. 5, pp. 941–948,
Sept. 2006.

[26] M. van Der Zwan, A. Telea, and T. Isenberg, “Continuous navigation of
nested abstraction levels,” in Proc. of the Eurographics - IEEE VGTC

Symposium on Visualization, 2012, pp. 13–17. [Online]. Available:
http://hal.inria.fr/hal-00781297

[27] P. Neumann, T. Isenberg, and M. S. T. Carpendale, “NPR lenses:
interactive tools for non-photorealistic line drawings,” in Proc. of Smart

Graphics, vol. 4569, 2007, pp. 10–22.
[28] N. Wong, S. Carpendale, and S. Greenberg, “Edgelens: an interactive

method for managing edge congestion in graphs,” in Proc. of IEEE

Information Visualization, Oct. 2003, pp. 51–58.
[29] T. M. J. Fruchterman and E. M. Reingold, “Graph drawing

by force-directed placement,” Software: Practice & Experience,
vol. 21, no. 11, pp. 1129–1164, Nov. 1991. [Online]. Available:
http://dx.doi.org/10.1002/spe.4380211102

[30] “3D SLICER, a free, open source software package for visualization and
image analysis,” http://www.slicer.org.

[31]
[32] T. Klein, F. Guéniat, L. Pastur, F. Vernier, and T. Isenberg, “A

design study of direct-touch interaction for exploratory 3D scientific
visualization,” Computer Graphics Forum, vol. 31, no. 3pt3, pp. 1225–
1234, Jun. 2012. [Online]. Available: http://dx.doi.org/10.1111/j.1467-
8659.2012.03115.x

[33] I. Corouge, S. Gouttard, and G. Gerig, “Towards a shape model of
white matter fiber bundles using diffusion tensor mri,” in Proc. of IEEE

International Symposium on Biomedical Imaging: Nano to Macro, April
2004, pp. 344–347 Vol. 1.

[34] P. Mukherjee, J. Berman, S. Chung, C. Hess, and R. Henry, “Diffusion
tensor mr imaging and fiber tractography: theoretic underpinnings,”
American journal of neuroradiology, vol. 29, no. 4, pp. 632–641, 2008.

[35] D. Weinstein, G. Kindlmann, and E. Lundberg, “Tensorlines: Advection-
diffusion based propagation through diffusion tensor fields,” in Proc. of

IEEE Visualization, 1999, pp. 249–253.
[36] P. J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi, “In vivo

fiber tractography using dt-mri data,” Magnetic resonance in medicine,
vol. 44, no. 4, pp. 625–632, 2000.

[37] M. Lazar, D. Weinstein, J. Tsuruda, K. Hasan, K. Arfanakis, E. Meyer,
B. Badie, H. Rowley, V. Haughton, A. Field, and A. Alexander,
“White matter tractography using diffusion tensor deflection,” Human

Brain Mapping, vol. 18, pp. 306–321, 2003. [Online]. Available:
http://www.sci.utah.edu/publications/lazar03/lazar.hbm.03.pdf

[38] B. H. Menze, E. Stretton, E. Konukoglu, and N. Ayache, “Image-based
modeling of tumor growth in patients with glioma.” in Optimal control

in image processing, C. S. Garbe, R. Rannacher, U. Platt, and T. Wagner,
Eds. Springer, Heidelberg/Germany, 2011.

[39] “CGAL, computational geometry algorithms library,”
http://www.cgal.org.

[40] J. Hoberock and N. Bell, “Thrust: a parallel template library,” 2010.
[Online]. Available: http://thrust.github.io/

Xin Tong is a PhD student in the Department of
Computer Science and Engineering of The Ohio
State University. His research interests are inter-
active scientific visualization and large data visu-
alization. Tong received a BE in geoinformation
science and engineering from Tongji University
in 2010.

John Edwards is an Assistant Professor at
Idaho State University in the Informatics and
Computer Science Department. His research in-
terests are computational geometry and scien-
tific visualization. Dr. Edwards received a PhD in
Computer Science from the University of Texas
at Austin.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

Chun-Ming Chen is a PhD candidate of the
Department of Computer Science and Engineer-
ing from the Ohio State University. His research
interest is analysis and visualization for large
flow data. He received the MS from Computer
Science in University of Southern California and
the BS from Computer Science and Information
Engineering in National Chiao-Tung University,
Taiwan.

Han-Wei Shen is a full professor in Ohio State
Universitys Department of Computer Science
and Engineering. His primary research interests
are scientific visualization and computer graph-
ics. Shen received a PhD in computer science
from the University of Utah. He has won the
US National Science Foundations Career Award
and the US Department of Energys Early Career
Principal Investigator Award.

Chris Johnson is the founding director of the
Scientific Computing and Imaging (SCI) Institute
at the University of Utah where he is a Dis-
tinguished Professor of Computer Science and
holds faculty appointments in the Departments
of Physics and Bioengineering. His research in-
terests are in the areas of scientific computing
and scientific visualization. Dr. Johnson founded
the SCI research group in 1992, which has since
grown to become the SCI Institute employing
over 200 faculty, staff and students. Professor

Johnson serves on several international journal editorial boards, as well
as on advisory boards to several national and international research
centers. Professor Johnson was awarded a Young Investigator’s (FIRST)
Award from the NIH in 1992, the NSF National Young Investigator (NYI)
Award in 1994, and the NSF Presidential Faculty Fellow (PFF) award
from President Clinton in 1995. In 1996 he received a DOE Computa-
tional Science Award and in 1997 received the Par Excellence Award
from the University of Utah Alumni Association and the Presidential
Teaching Scholar Award. In 1999, Professor Johnson was awarded the
Governor’s Medal for Science and Technology from Governor Michael
Leavitt. In 2003 he received the Distinguished Professor Award from the
University of Utah. In 2004 he was elected a Fellow of the American
Institute for Medical and Biological Engineering, 2005 he was elected a
Fellow of the American Association for the Advancement of Science, in
2009 he was elected a Fellow of the Society for Industrial and Applied
Mathematics (SIAM) and received the Utah Cyber Pioneer Award. In
2010 Professor Johnson received the Rosenblatt Award from the Univer-
sity of Utah and the IEEE Visualization Career Award. In 2012 Professor
Johnson received the IEEE IPDPS Charles Babbage Award and in 2013
Professor Johnson received the IEEE Sidney Fernbach Award. In 2014,
Professor Johnson was elected an IEEE Fellow.

Pak Chung Wong is a chief scientist and project
manager at the Pacific Northwest National Lab-
oratory. His research interests include big data
analytics, graph analytics, visual analytics and
visualization, earth sciences, social networks,
and national security. Wong serves as an Asso-
ciate Editor-in-Chief of IEEE Computer Graph-
ics and Applications and an Associate Editor of
Information Visualization. He received a PhD in
Computer Science from the University of New
Hampshire.

